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Abstract 

 
Self-healing is becoming a critical feature of Cyber-Physical Systems (CPSs). By detecting 

faults and applying recovery adaptations at runtime, self-healing behaviors can help CPSs 

to maintain functional normal in the presence of faults. CPSs with the self-healing feature 

are named as Self-Healing CPSs (SH-CPSs). Besides recovery, SH-CPSs have to deal with 

various uncertainties, such as measurement errors from sensors and actuation deviations 

from actuators. To assess the dependability of SH-CPSs, it is necessary to test if SH-CPSs 

can still behave as expected under uncertainty. However, the autonomy of self-healing 

behaviors and the impact of uncertainties make it challenging to conduct such testing. To 

this end, an executable model-based testing approach is proposed in this thesis. In this 

approach, the expected behaviors of the SH-CPS under test are specified as an executable 

test model. By executing the SH-CPS together with the test model, sending them the same 

test inputs, and comparing their consequent states, we can dynamically test the system 

against its test model.  

To realize this executable model-based testing approach, five contributions have been 

made and are presented in this thesis: (C1) a Conceptual Model of SH-CPS and 

Uncertainty (CMSU), for constructing a comprehensive and precise understanding of CPS, 

self-healing and associated uncertainty; (C2) a Modeling framework of SH-CPS (MoSH), 

to facilitate the creation of an executable test model that captures the expected behaviors of 

the SH-CPS under test; (C3) a testing framework (TM-Executor), for testing an SH-CPS 

against a test model via co-execution of the system and the model; (C4) a Fragility-

Oriented Testing (FOT) approach, to learn the optimal policies of choosing test inputs for 

fault detection; (C5) an empirical study, to find the best reinforcement learning algorithms 

for detecting faults in the SH-CPS under uncertainty.  

By applying MoSH to create executable test models and employing TM-Executor and 

FOT to test diverse SH-CPSs, we demonstrate that it is practical to apply the executable 

model-based approach to test SH-CPSs under uncertainty. The fault detection ability of the 

fragility-oriented testing approach is significantly higher than random testing and 
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coverage-oriented testing. Reinforcement learning algorithms have shown competence in 

detecting faults in SH-CPSs under uncertainty. Based on results of the empirical study, we 

found that the combination of Q-learning and Uncertainty Policy Optimization algorithms 

managed to detect the most faults in selected six SH-CPSs. On average, they managed to 

discover two times more faults than the other reinforcement learning algorithms. 
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1 Introduction 
Cyber-Physical Systems (CPSs) are integrations of computation and physical processes [1]. 

In CPSs, computing components monitor and control physical processes via sensors and 

actuators, and cooperate with each other via network communication. The integration of 

computation, communication, and control awards CPSs a higher level of intelligence, 

which enables them to adapt and optimize their behaviors autonomously at runtime [2]. 

One of such autonomous features is self-healing, which endows CPSs with the ability to 

detect and recover from errors caused by software or hardware faults at runtime. CPSs with 

the self-healing feature are referred as Self-Healing CPSs (SH-CPSs).   

Besides recovery, SH-CPSs have to deal with various uncertainties arising from 

measurements acquired by sensors and actuations conducted by actuators. In reality, the 

exact value of a measurement error or an actuation deviation is unknown, and the uncertain 

value will affect the behaviors of SH-CPSs and may prohibit the systems from behaving as 

expected. To assess the dependability of SH-CPSs, it is necessary to test if an SH-CPS can 

still behave as expected under uncertainty.  

To tackle this testing problem, we proposed an executable model-based testing approach. 

In this approach, a test model is used to capture components and expected behaviors of the 

SH-CPS under test. To test the system, the test model is executed together with the SH-

CPS and simulators of sensors, actuators, and environment. By introducing uncertainties 

via the simulators, sending the same test inputs to the system and the test model, and 

comparing their consequent states, we can therefore determine if the system behaves as 
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expected, and also evaluate how likely the system is going to behave differently from the 

model. The likelihood is defined as fragility. It is used as a heuristic to effectively find test 

inputs leading to an unexpected behavior. To realize such an executable model-based 

testing approach, a series of model-based methodologies was proposed with respect to five 

contributions, as shown in Figure 1.  

  
Figure 1 Scope of Executable Model-Based Testing for Self-Healing Cyber-Physical Systems 

Under Uncertainty 

 First of all, a Conceptual Model of SH-CPS and Uncertainty (C1: CMSU in Figure 1) 

was proposed [3]. CMSU captures key concepts and their relationships about CPS, 

functional and self-healing behaviors, and uncertainty. The conceptual model forms a 

common understanding of what an SH-CPS is and what the uncertainty means for it.  

Based on CMSU, a Modeling framework Of SH-CPS (C2: MoSH in Figure 1) was 

developed to facilitate the specification of an executable Test Model (TM) that captures the 

expected behaviors and involved uncertainties of the SH-CPS under test [3]. A TM uses 

UML1 class diagrams to capture system components and UML state machines to specify 

expected behaviors of each component. To enable the TM execution, we restrict the 

modeling notations to the executable subset of UML, which is defined by the standards of 

Semantics of a Foundational Subset for Executable UML Models (fUML) [4] and Precise 

Semantics of UML State Machines (PSSM). Several metaclasses in the subset were 

extended by the stereotypes defined in MoSH to specify self-healing behaviors and 

uncertainties. MoSH also provides a modeling methodology to guide how to use UML 

class diagrams and state machines along with MoSH to create an executable TM.  
 

 
1 Unified Modeling Language (UML): https://www.omg.org/spec/UML/2.5.1/PDF 

Test Model SH-CPS

C2: MoSH C3: TM-Executor

C1: CMSU

Simulators
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directs

specifies
interact(s) 

with
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C5: Empirical Studyfinds the best 
algorithms 
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To execute a TM together with the SH-CPS under test, we implemented a testing 

framework (C3: TM-Executor in Figure 1), based on standards of fUML [4], PSSM [5], 

Functional Mockup Interface (FMI) [6], and our extensions to fUML and PSSM [3]. fUML, 

PSSM and the extensions provide execution semantics of model elements in a TM and the 

semantics allow it to be executed in a deterministic manner. The FMI standard provides 

standard interfaces to enable the co-execution of hybrid models, such as the TM and 

simulation models that are constructed with diverse modeling paradigms. Based on the 

FMI standard, we devised a co-execution algorithm [3]. By applying the algorithm, TM-

Executor orchestrates the execution of the SH-CPS, TM and simulators, and allows us to 

dynamically test an SH-CPS against a TM under a set of identified uncertainties.  

To effectively detect faults in SH-CPS under uncertainty, a Fragility Oriented Testing 

(C4: FOT in Figure 1) method was proposed [7]. In FOT, we evaluated the likelihood that 

the system under test is going to behave inconsistently with its TM. The likelihood is 

defined as fragility. We devised two reinforcement learning based algorithms that take the 

fragility as a reward to find optimal policies of invoking operations (i.e., interfaces of the 

system) and introducing uncertainties, respectively. More specifically, the two algorithms 

take the state of the system as input, and output an operation invocation and a value for 

each uncertainty. After performing the invocation on the system or introducing the 

uncertainties, the algorithms obtain the fragility of the system, provided by TM-Executor, 

and use the fragility to learn how to choose the invocation and uncertainty values to reach 

the highest fragility and detect faults.  

Afterward, we conducted an empirical study (C5 in Figure 1) to find the best 

reinforcement learning algorithms for the FOT approach. In this study, we evaluated the 

performance of 14 combinations of reinforcement learning algorithms, on six SH-CPSs. 

Results of the empirical study reveal that Q-learning [8] and Uncertainty Policy 

Optimization [7] managed to detect the most faults. On average, this combination found 

two times more faults and took 52% less time to find a fault than the others.  

In summary, this thesis provides a complete model-based solution for testing SH-CPSs 

under uncertainty. With the UML extensions and modeling methodology provided by 

MoSH, testers can systematically specify a test model to capture components, expected 

behaviors, and uncertainties of the SH-CPS under test. TM-Executor enables the test model 

to be executed together with the SH-CPS in a simulated environment, and a Fragility 
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Oriented Testing (FOT) method and two reinforcement learning based algorithms were 

devised to effectively detect faults in the SH-CPS under uncertainty.  

The thesis is composed of two parts. The first part (Part I) summarizes all research 

works covered by the thesis. Section 2 provides background information required to 

understand the thesis. Section 3 presents the research methodology, followed by the 

contributions of the thesis and key results in Section 4 and Section 5 respectively. Section 

6 discusses possible future directions and Section 7 concludes the thesis. The second part 

(Part II) presents the related papers with respect to the five contributions. Figure 2 shows the 

mapping between the summary and the collection of papers.  

 
Figure 2 Thesis Structure 

  

Section 1. Introduction

Section 2. Background
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Section 4. Executable Model Based Testing 
Methodologies  (Contributions)

Section 4.1. Moduling Foundations

Section 4.1.1. Conceptual Model of SH-
CPSs and Uncertainties (CMSU)
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Section7. Conclusion
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2 Background 
This section briefly introduces SH-CPS and uncertainty in Section 2.1. Section 2.2 

explains several standards that build the foundation for executing the SH-CPS under test 

together with its test model. An overview and limitations of existing model-based testing 

approaches are given in Section 2.3, and Section 2.4 introduces the general idea of 

reinforcement learning.  

2.1 Self-healing Cyber-Physical System and Uncertainty 

An SH-CPS can be seen as a set of heterogeneous and distributed physical units. Each 

physical unit has one or more controllers that use sensors and actuators to monitor and 

control some physical processes, and the controllers are cooperating with each other via 

network communication. Moreover, the SH-CPS is equipped with probes and effectors that 

allow the system to monitor its internal state and to make runtime adaptations. Based on 

the measurement generated by probes, the controllers employ fault detection algorithms to 

determine if a software or hardware fault has occurred, and apply recovery policies to 

adapt the system’s parameters, components, or behaviors via effectors, to recover the 

system from the detected fault. The fault detection algorithms and recovery policies are the 

self-healing behaviors of an SH-CPS.  

As SH-CPSs typically operate in an uncontrolled environment, the behaviors of SH-

CPSs are affected by various uncertainties. For instance, the measurement from sensors 

and the actuation performed by actuators are affected by uncertain measurement errors and 

actuation deviations. These uncertainties may prevent them from behaving as expected. 

This thesis provides a model-based solution for testing if an SH-CPS can still behave as 

expected, under a set of identified uncertainties.  

2.2 Executable Models and Hybrid Co-execution 

Model-based system engineering has emerged as a standard approach for engineering 

complex, interdisciplinary systems [9]. Model is the key to this approach. It provides a 

systematic and precise way to capture and specify the system under development. To avoid 

ambiguity and facilitate validation, the model is becoming executable, with execution 

semantics of the model defined in standards. One example is the Unified Modeling 
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Language (UML). The standards of fUML [4] and PSSM [5] define the semantics of a 

subset of UML elements. Such semantics enable UML activity diagrams and state 

machines to be executed in a deterministic manner.  

For complex, interdisciplinary systems, such as CPSs, it typically involves multiple 

models created under diverse modeling paradigms. For example, the physical process of a 

CPS could be represented as a continuous-time model, such as differential equations, while 

computation logics are described as state machines or activity diagrams. As a continuous-

time model and a discrete model have different time semantics, a co-execution framework 

is needed to orchestrate the executions of the hybrid models. Toward this direction, the 

FMI (Functional Mockup Interface) standard [6] defines the interfaces that enable data 

exchange among different models. A co-execution algorithm needs to be provided to 

determine the order and interval of the data exchanges. In this thesis (Paper A), we have 

devised such an algorithm to co-execute a test model with the SH-CPS under test.  

2.3 Model-Based Testing 

Model-Based Testing (MBT) is a sub-field of model-based system engineering. It uses a 

test model to capture the expected behaviors of the system under test and/or the behaviors 

of its environment. Pairs of input and output of the model can be automatically derived 

from the model and used as test cases to test the system, i.e., the output of the model is the 

expected output of the system.  

In a traditional MBT approach, all test cases are generated from a test model, guided by 

test selection criteria, such as covering all states and transitions. Afterward, the test cases 

are run on the system under test, and test verdicts are generated by comparing the output of 

the system and the expected one contained in the test case.  

A challenge to apply this traditional MBT approach to test SH-CPS is how to choose the 

proper test selection criteria. Aggressive criteria, such as covering all possible transition 

sequences, will lead to too many or even infinite test cases that are impractical to run all of 

them. Although fewer test cases can be obtained by conservative criteria, the fault 

detection ability of the smaller test suite is limited.  

To overcome this dilemma, an executable model-based testing approach is proposed in 

this thesis. In this approach, the system under test is dynamically tested against a test 

model. By learning the results of performed test cases, an intelligent testing algorithm can 
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identify the fragile parts of the system. By focusing on testing the fragile parts, the 

algorithm is expected to reveal faults more effectively.  

2.4 Reinforcement Learning 

To detect faults in SH-CPS under uncertainty, we need to find the optimal policy of 

choosing test inputs. Finding such an optimal policy is exactly the goal of reinforcement 

learning. Via a trial-and-error approach, reinforcement learning algorithms learn the long-

term rewards of candidate actions. By choosing the action with the highest reward, they 

can find the best policy of choosing actions and obtain the highest reward.   

In the context of testing SH-CPS under uncertainty, the candidate actions are operation 

invocations that can be performed on the system to control its behaviors, and uncertainty 

values that are to be introduced via simulators to mimic the effect of uncertainties. The 

reward of choosing an action is the likelihood that an unexpected behavior can be detected 

after conducting the action. We define this likelihood as fragility. Its value is between zero 

and one. When fragility equals one, it means an unexpected behavior is detected. Taking 

the fragility as a reward, we have devised two reinforcement learning based algorithms to 

find the optimal policies of choosing operation invocations and uncertainty values 

respectively.  Besides, we conducted an empirical study to compare the performance of 

state-of-the-art reinforcement algorithms on testing SH-CPSs under uncertainty.  
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3 Research Methodology 
This section presents the research methodology, including problem identification in 

Section 3.1, problem formulation in Section 3.2, solution realization and implementations 

in Section 3.3, and evaluation methods in Section 3.4. 

3.1 Problem Identification 

As SH-CPSs typically operate in an uncontrolled environment, they are affected by various 

uncertainties that may prohibit them from behaving as expected. To assess their 

dependability, it is necessary to test SH-CPSs under uncertainty. Based on the literature [1, 

2, 10-12], we identified following challenges to solve this testing problem. 

Challenge 1. Self-healing and uncertainty are not precisely defined. Due to lack of a 

rigorous definition, the term self-healing is used mixed with self-adaptive, self-* properties, 

fault tolerant and system dependability [13, 14]. However, the actual meaning of self-

healing is the ability to detect faults and apply proper adaptations to recover from the faults, 

which are different from fault tolerance and the other self-* properties. The key 

components of fault detection and recovery have to be identified prior to testing self-

healing systems. Regarding uncertainty, it can originate from numerous resources, such as 

missing or ambiguous requirements, inadequate design due to incomplete knowledge, and 

unpredictable environment [15, 16]. In this thesis, we focus on testing SH-CPSs under 

uncertainty arising from the interaction between the systems and their environment. We 

need to identify the uncertainties that impact the behaviors of SH-CPSs and explicitly 

specify the uncertainties to enable the uncertainty-aware testing.  

Challenge 2. Lacking a modeling methodology to enable model-based testing of SH-

CPSs under uncertainty. Model-based testing provides a systematic and automated 

approach for testing complex systems [17]. A test model is the main artifact in this 

approach. It needs a systematic modeling methodology to develop such a test model that 

can capture the expected behaviors and uncertainties of the SH-CPS under test and solve 

our testing problem. 

Challenge 3. Difficult to generate test cases offline due to self-adaptability. The self-

healing behaviors of SH-CPSs enable the systems to autonomously adapt their behaviors at 

runtime to recover from detected faults. As the expected behaviors could be adapted 
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dynamically, for a given input, the expected output depends on if one or more faults has 

occurred and if self-healing behaviors have detected them. Consequently, it will be 

challenging to generate test cases, i.e., pairs of input and expected output, for the complex 

behaviors of SH-CPSs.   

Challenge 4. Lacking a testing framework to test SH-CPSs under uncertainty. As it 

could be too expensive or unsafe to test SH-CPSs in the real world, it is preferable to test 

them in a simulated environment. Uncertainties, like measurement errors from sensors, 

need to be introduced into the environment to simulate the effect of uncertainties and test if 

an SH-CPS can still behave as expected under the uncertainties. Consequently, it needs a 

testing framework to introduce the uncertainties and test SH-CPSs in an uncertainty-

introduced environment.  

Challenge 5. Challenging to find the optimal testing policies. Two types of policies are 

required to test SH-CPSs under a set of identified uncertainties. One is the policy for 

selecting operation invocations that control the behavior of the SH-CPS under test. The 

other is the policy used to choose the value of each identified uncertainty. The uncertainty 

values instantiate a concrete, uncertainty-introduced environment condition, in which the 

behavior of SH-CPS is to be tested. As the set of candidate operation invocations and 

uncertainty values is huge, an effective algorithm is needed to find these optimal policies 

to detect faults in the most effective manner.  

3.2 Problem Formulation 

After identifying the challenges, we formulate the following five research questions to 

address each of them. 

RQ1. What are self-healing and uncertainty? Key concepts about these terms and the 

relations among the concepts need to be precisely defined to form a common 

understanding of SH-CPS and uncertainty. The identified concepts could also help us to 

capture the key components of SH-CPSs that have to be considered for testing.  

RQ2. How to specify expected behaviors and involved uncertainties of SH-CPSs? 

To test if an SH-CPS can behave as expected under a set of identified uncertainties, we 

need to specify the expected behaviors and uncertainties first. As CPSs are hybrid and 

distributed systems, their expected behaviors are composed of the behaviors of their hybrid 

components. A systematic modeling methodology is required to capture the components 
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and their behaviors. Uncertainties that may affect any of the components also need to be 

specified to enable the uncertainty-aware testing.   

RQ3. How to test an SH-CPS against its expected behaviors? After capturing the 

expected behaviors, we need to test if the SH-CPS can behave consistently with the 

specified expected behaviors. As it is difficult to pre-generate test cases before test 

execution (Challenge 3), ideally, an SH-CPS could be directly tested against its test model. 

To do so, it needs a testing framework that can execute an SH-CPS together with its test 

model and compare their behaviors during execution.  

RQ4. How to introduce uncertainties in a simulated environment? In this thesis, we 

focus on the uncertainties arising from the interactions between SH-CPSs and their 

environment, like measurement errors and actuation deviations. To test if an SH-CPS can 

behave as expected under the uncertainties, effects of the uncertainties have to be reflected 

on the measurements from sensors and actions performed by actuators. Although 

specialized simulation models could be developed to simulate the effects of uncertainties, 

it will be cumbersome and error-prone to manually build the simulation model for each 

sensor and actuator. To facilitate testing SH-CPSs under the uncertainties, it needs a testing 

framework that can automatically introduce uncertainties during test executions, based on 

the specifications of the uncertainties.   

RQ5. How to find the optimal policies of selecting operation invocations and the 

values of uncertainties to effectively detect faults? To detect a fault in an SH-CPS under 

uncertainties, it needs to find a sequence of operation invocations and a sequence of 

uncertainty values for each uncertainty that can work together to reveal the fault. As the 

numbers of candidate operation invocations and possible combinations of uncertainty 

values are huge, it is infeasible to cover all of them. It needs a novel approach that can 

learn how to choose the operation invocations and uncertainty values to increase the 

chance of detecting faults, and find faults in the most effective manner.  

3.3 Solution Realization and Implementations 

A conceptual model, a modeling framework, a testing framework, and a fragility-oriented 

testing approach were proposed to address the five research questions. Table 1 gives an 

overview of the solutions and implements.  
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Table 1 Solutions and Implementations  

RQ Solution Techniques/tools/languages Implementations 
1 CMSU UML, OCL, Eclipse Papyrus CMSU was implemented as UML class diagram with 

OCL constraints. Details of the conceptual model can 
be found in Paper A.  

2 MoSH UML, OCL, MARTE, Eclipse 
Papyrus 

MoSH was implemented as four UML profiles with 
dependency on MARTE model library. Detailed 
specification and modeling methodology can be found 
in Paper A. 

3, 4 TM-
Executor 

fUML, PSSM, FMI, Eclipse 
Papyrus Moka 

TM-Executor was implemented as a plugin of Eclipse 
Papyrus based on Moka, a model execution engine for 
UML models. Details about the framework are 
introduced in Paper A. 

5 FOT Reinforcement learning, Eclipse 
Papyrus, JAVA, Python, 
Tensorflow 

FOT includes two reinforcement learning based testing 
algorithms that are used to select operation invocations 
and uncertainty values respectively. They were 
implemented in JAVA and Python, and the algorithms 
can be used by TM-Executor to find the operation 
invocations and uncertainty values leading to 
unexpected behaviors. Details of this approach is 
explained in Paper B. 

For RQ1, a conceptual model of SH-CPS and uncertainty (CMSU) was derived from the 

literature. It captures key concepts about CPS, self-healing and uncertainty, as well as the 

relations among the concepts. The definition of each concept is also provided along with 

the model. These form the foundation of this thesis.  

To facilitate the specification of expected behaviors of SH-CPSs and uncertainties 

(RQ2), a modeling framework (MoSH) was proposed based on the conceptual model. The 

framework provides four UML profiles and a modeling methodology to specify the 

expected behaviors and uncertainties of SH-CPSs, using UML class diagrams and state 

machines.  

For RQ3 and RQ4, we proposed to test an SH-CPS by executing the system together 

with its test model. Based on extended standards of fUML [4], PSSM [5], and FMI [6], a 

testing framework (TM-Executor) was developed to enable the co-execution. Via 

simulators of sensors and actuators, TM-Executor can also introduce uncertainties during 

execution and enable the SH-CPS to be tested under uncertainties.  

A fragility-oriented testing approach was devised to effectively find the operation 

invocations and uncertainty values that can lead to unexpected behaviors of the SH-CPS 

under test (RQ5). The approach includes two reinforcement learning based testing 

algorithms to select the operation invocations and uncertainty values respectively. By 

learning and focusing on operation invocations and uncertainty values that make an SH-



 
 

13 
 
 
 
 
 

CPS more likely to behave differently from its test model, the algorithms can help TM-

Executor to effectively reveal faults in the SH-CPS under a set of identified uncertainties.   

3.4 Solution Evaluation 

We selected several representative SH-CPSs from real world projects and the literature as 

case studies to empirically evaluate the applicability and performance of our proposed 

frameworks and testing approach, including Radio-Frequency Identification Supply Chain 

[18], Intelligent Service Robot [19], and ArduCopter [20], an autopilot system for aerial 

vehicles. For the modeling and testing frameworks, we applied the frameworks to create 

test models and test the selected SH-CPSs against the test models. By evaluating the 

modeling effort and measuring the cost of applying the testing framework to perform the 

executable model-based testing, we assessed if it is feasible to use the frameworks to test 

SH-CPSs under uncertainties.  Regarding the testing approach, we compared its 

performance with the ones of state-of-the-art approaches, using broadly used evaluation 

metrics, such as state and transition coverage [21], number of detected faults [22], and 

time/space cost [23]. To reduce the effect of randomness and external factors, like the 

amount of time an approach can take to test an SH-CPS, we chose several different settings 

of the factors and conducted each testing task under each setting multiple times. Afterward, 

we performed statistical tests, such as Kruskal-Wallis test [24] and the Dunn's test [25] in 

conjunction with the Benjamini-Hochberg correction [26] and Vargha and Delaney 

statistics [27] to determine statistical significance and measure effect size. At last, we 

analyzed threats to validity of the evaluations and presented the measures we had taken to 

reduce these threats.    
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4 Executable Model Based Testing Methodologies 
To test SH-CPSs under uncertainty, a series of executable model-based testing 

methodologies is presented in this thesis, including a modeling framework (MoSH) to 

create executable test models, a testing framework (TM-Executor) to co-execute the test 

model with the SH-CPS under test, and a fragility-oriented testing methodology (FOT) to 

effectively detect faults. Figure 3 presents an overview of the series of methodologies. An 

empirical study was also conducted to evaluate the performance of different reinforcement 

learning algorithms that can be used by FOT to find faults. The following subsections give 

a more detailed description of each work.  

 
Figure 3 Overview of Executable Model-Based Testing Methodologies 

4.1 Modeling Foundations 

To realize the executable model-based testing, we first need to know how to specify the 

expected behaviors of an SH-CPS as an executable model. As both SH-CPS and 

uncertainty are complex concepts, we derived a conceptual model of SH-CPS and 

uncertainties (Section 4.1.1) from the literature, to understand and capture key components 

and their relations of SH-CPSs and uncertainties. Based on the conceptual model, a 

modeling framework — MoSH (Section 4.1.2) was developed. It includes a set of UML 

stereotypes, datatypes, and a modeling methodology for creating executable test models. 

Furthermore, a testing framework — TM-Executor (Section 4.1.3) has been implemented 

to execute the model and perform executable model-based testing.  
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4.1.1 Conceptual Model of SH-CPSs and Uncertainties (CMSU) 
The conceptual model is composed of three parts: Components of Cyber-Physical Systems, 

Self-Healing Behavior, and Uncertainty. Figure 4 presents the key concepts contained in the 

first two parts. As shown in the figure, a Cyber Physical System can be seen as a collection 

of heterogeneous, distributed Physical Units. Controllers are the cores of Physical Units. 

They provide control logic and computation capabilities to Physical Units. Via Sensors and 

Actuators, the Controllers monitor and control physical processes.  

 
Figure 4 Concepts Relevant to Components of Cyber-Physical Systems and Self-Healing Behavior 

For an SH-CPS, a Controller has two types of behaviors: 1) Functional Behaviors that 

are designed to fulfill business requirements; and 2) Self-Healing Behaviors that use 

Probes and Effectors to help Functional Behaviors to achieve their Goals even in the 

presence of Faults. A Self-Healing Behavior consists of Self-Diagnosis and Self-Recovery. 

Self-Diagnosis is for detecting, localizing, or identifying Faults based on the 

Measurements from Probes. Self-Recovery uses Effectors to adapt system behaviors at 

runtime to recover from detected Faults, directed by Recovery Policies. 

Figure 5 presents the key concepts about Uncertainty. Uncertainty is defined as the lack 

of knowledge of which value an Uncertain Feature will take at a given point in time (Time 

Instance) during execution. Universe describes the set of all possible values that an 

Uncertain Feature may take and each possible value is defined as a Datum. When we only 

have qualitative knowledge, the set of possible values (Datums) has to be described 

qualitatively. A qualitative term is defined as Category. A Membership Function can be 

used to specify to what extent a Datum belongs to a Category. Depending on the available 

knowledge about the Uncertainty, we can use Probability or Possibility Measure to specify 

the likelihoods of Datums or Categories.  
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Figure 5 Concepts Relevant to Uncertainty 

4.1.2 MoSH Modeling Framework 
Based on the conceptual model, UML profile of Modeling and Analysis of Real-Time 

Embedded Systems (MARTE) [28], and UML Testing Profile (UTP) [29], we 

implemented a modeling framework — MoSH. It provides a set of stereotypes and 

datatypes, organized in four UML profiles, to specify the expected behaviors and 

uncertainties of SH-CPSs, as shown in Figure 6.  

 
Figure 6 Overview of MoSH 

SH-CPS Component profile provides six stereotypes, like «PhysicalUnit» and 

«Controller», to annotate the role played by each system component. The component is 

specified as a UML class, with its accessible state variables and testing interfaces captured 

as class attributes and operations. The expected behaviors of each component are specified 

as UML state machines. The SH-CPS Behavior profile offers «FunctionalBehavior» and 

«SelfHealingBehavior» to distinguish the two types of behaviors. For a functional behavior, 

a Change Event stereotyped with «Fault» can be used to specify how a fault is going to 

affect the behavior, and a State stereotyped with «Error» can be used to define the 

consequent, error state after the fault has occurred. For self-healing behaviors, three 

stereotypes, «MonitoringState», «FaultIdentifiedState», and «AdaptatingState» were 

defined to identify the key stages of an self-healing behavior, i.e., self-diagnosis and self-
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recovery. For self-diagnosis, the logic of fault detection is specified via the transitions 

between «MonitoringState»s and «FaultIdentifiedState»s. «MonitoringState» is defined to 

annotate the states, where the self-healing behavior tries to detect faults based on 

measurements from probes. «FaultIdentifiedState» denotes that the self-healing behavior 

has detected, localized, or identified a fault. For self-recovery, the transitions between 

«FaultIdentifiedState»s and «AdaptatingState»s capture its recovery policy. 

«AdaptatingState» annotates the states where adaptations are to be performed by the self-

healing behavior to recover from the fault. The states defined in state machines should also 

be precisely defined by state invariants, i.e., OCL constraints on class attributes. During 

test execution, actual class attributes values can be obtained from the system under test and 

be used to evaluate the invariants. If an invariant is violated, it means an unexpected 

behavior is detected.  

To precisely define an uncertainty, the SH-CPS Uncertainty profile provides seven 

datatypes, U_Boolean, U_Integer, U_Real, U_UnlimitedNatural, U_Transition, U_String, 

and U_Equation, to define the set of possible values (i.e., Universe) of an uncertainty. 

Based on the MATLAB fuzzy library [30], the profile provides six kinds of Membership 

Functions to define a qualitative term (i.e., Category). Probability Measure or Possibility 

Measure datatypes are also defined in the profile to specify the measurement of uncertainty.  

In the SH-CPS Testing profile, «TestItem» and «TestComponent» are provided to 

identify the testing target, i.e., controllers of SH-CPSs, and simulated components like 

sensors and actuators, respectively. «CreateStimulusAction» and «CheckPropertyAction» 

are defined to capture testing interfaces used for controlling and monitoring systems. 

«CheckPropertyAction» annotates operations that are used to query the values of state 

variables, while «CreateStimulusAction» annotates operations that are used to control the 

behaviors of a system. 

With the MoSH modeling framework, we can specify the components, expected 

behaviors, and uncertainties of an SH-CPS as a set of UML class diagrams and state 

machines. It forms the test model of the SH-CPS. To make the test model executable, the 

modeling notations are restricted to the executable subset of UML, defined by fUML [4] 

and PSSM [5]. We also defined the execution semantics of MoSH stereotypes to enable a 

stereotyped test model to be executed in a deterministic manner.  
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4.1.3 TM-Executor Framework 
Based on existing standards of fUML [4], PSSM [5] and FMI [6], a testing framework — 

TM-Executor was implemented. It takes charge of executing and testing a system against a 

test model, simulating the effect of uncertainties, and orchestrating the execution of the test 

model, the system, and simulators/emulators. Figure 7 shows the key components of TM-

Executor.  

 
Figure 7 Overview of TM-Executor 

The input of TM-Executor is an executable test model (TM), which is created with 

MoSH modeling framework (Section 4.1.2). In TM-Executor, an Execution Engine 

executes the TM, the SH-CPS under test and simulators of sensors and actuators together. 

During execution, the Execution Engine periodically obtains the values of state variables 

from the system under test, and a Constraint Checker uses the values to evaluate the 

invariants defined in the model. If any invariant is evaluated to be false, it means the 

system fails to behave consistently with the test model and a fault is detected.  

To drive the execution, a Test Driver was implemented to generate operation invocations, 

based on the triggers of outgoing transitions of the current active state. The invocations are 

performed on both the system and the test model to trigger them switching their states. 

Meanwhile, an Uncertainty Introducer generates a value for each specified uncertainty and 
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uses the value to modify sensor data measured by sensors or instructions sent to actuators 

to mimic the effect of uncertainty.  

The test model, SH-CPS, and simulators/emulators have to be executed coordinately to 

fulfill the executable model-based testing. These three kinds of executable objects are 

typically implemented with different modeling/programming paradigms. To orchestrate the 

executions of the hybrid objects, an Orchestra was implemented based on the FMI standard 

[6]. It takes charge of propagating values through the executable objects and synchronizing 

their executions. 

4.2 Fragility-Oriented Testing 

With EM-Executor, we can dynamically test an SH-CPS against a test model by executing 

them together, while a testing algorithm is needed to decide how to choose the operation 

invocations and uncertainty values to drive the execution and detect faults effectively. 

Particularly, two tasks have to be addressed to solve the testing problem. The first task is to 

find the optimal sequence of operation invocations for a given test model to maximize the 

chance of detecting faults. The second task is to find the optimal values of uncertainties 

that can make the SH-CPS under test violate an invariant defined in the test model, when 

the system is handling the selected optimal sequence of operation invocations.  

To resolve the two tasks, a fragility-oriented testing approach was proposed. Here, the 

fragility is defined as a distance indicating how likely an invariant is to be violated. By 

taking the fragility as a reward, we devised two reinforcement learning based algorithms to 

find the operation invocations and uncertainty values that can work together to reveal a 

fault.  

To resolve the first task, the first algorithm aims to find the optimal sequence of 

transitions that can lead to the highest fragility, for a given set of state machines defined in 

a test model. To achieve this objective, the algorithm applies Q-learning [8], a 

reinforcement learning algorithm, to estimate the highest fragility that can be reached after 

a given transition is triggered. By focusing on choosing the transitions with high estimated 

fragility, the algorithm can gradually find the optimal sequence of transitions and generate 

a sequence of operation invocations that can trigger the transitions and reach the highest 

fragility.  
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To resolve the second task, the second algorithm uses an artificial neural network as the 

policy of selecting uncertainty values. The neural network takes the state of the system 

under test as input, and outputs a value for each uncertainty. The value is used as the mean 

value of a truncated normal distribution, with its variance fixed at a constant positive value. 

That is, the outputs of the neural network determine a probability distribution for each 

uncertainty. By sampling from the distribution, uncertainty values can be selected to test an 

SH-CPS. To effectively find faults, we need to optimize the policy so that the uncertainty 

values generated from the policy can increase the fragility of the system under test and 

make the system likely to fail. To do so, the algorithm keeps on selecting uncertainty 

values following the policy. When it observes a sequence of uncertainty values reaches a 

higher fragility, it takes the gradient descent algorithm [31] to update the neural network, 

so as to increase the selection probability of this sequence of uncertainty values. The 

algorithm keeps on this search process until reaching the maximum iterations.  

4.3 Empirical Study 

Several existing reinforcement learning algorithms [32] can be used in the fragility-

oriented testing approach. However, there is no sufficient evidence showing which 

reinforcement learning algorithms are the best to be used for testing SH-CPS under 

uncertainty. To this end, we conducted an empirical study to evaluate the performance of 

14 combinations of reinforcement learning algorithms for testing six SH-CPSs under 

dozens of identified uncertainties. As the task of selecting operation invocations is 

different from the task of selecting uncertainty values, we selected two sets of algorithms 

to perform them. Specifically, we applied two value function learning based algorithms, 

Action-Reward-State-Action (SARSA) [8] and Q-learning [8] for selecting operation 

invocations, and seven policy optimization based algorithms, Asynchronous Advantage 

Actor-Critic (A3C) [33], Actor-Critic method with Experience Replay (ACER) [34], 

Proximal Policy Optimization (PPO) [35], Trust Region Policy Optimization (TRPO) [36], 

Actor-Critic method using Kronecker-factored Trust Region (ACKTR) [37], Deep 

Deterministic Policy Gradient (DDPG) [38], and Uncertainty Policy Optimization (UPO) 

[39], for learning the policy of selecting values for uncertainties.  

In this empirical study, we first tuned the hyperparameters of these algorithms by 

applying them to test three of the selected SH-CPSs with diverse complexities. Afterward, 
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we applied the 14 combinations of algorithms with the tuned hyperparameters to test all six 

SH-CPSs. Based on the testing results, we evaluated the effectiveness, efficiency and 

scalability of each combination, by testing coverage, number of detected faults, average 

time spent to detect a fault, time and space cost used to perform the test. 
 

5 Summary of Results 
This section summarizes the key evaluation results of the modeling foundations, fragility-

oriented testing, and empirical study, corresponding to three papers submitted as a part of 

this thesis.  

5.1 Modeling Foundations (Paper A) 

“Modeling Foundations for Executable Model-Based Testing of Self-Healing Cyber-

Physical Systems” T. Ma, S. Ali, and T. Yue. Journal of Software & Systems Modeling 

(SOSYM). DOI: 10.1007/s10270-018-00703-y 

 

In this paper, a modeling framework of SH-CPS (MoSH) was created based on a 

conceptual model of SH-CPS and uncertainty (CMSU). Besides, it also provides a testing 

framework (TM-Executor) to test an SH-CPS against a test model, specified with MoSH, 

by co-executing them together.  

First, the conceptual model of SH-CPS and uncertainty was evaluated to check if the 

model can correctly cover the concepts and their relations identified from nine SH-CPSs, 

obtained from the literature. Based on the specification of the nine systems, we first 

identified their main components. For each component, we captured its behaviors and the 

environmental uncertainties that may affect these behaviors. For self-healing behaviors, we 

further identified their strategies to detect and recover from faults. The identified 

components, behaviors and uncertainties were manually mapped to the concepts and 

relationships in the conceptual model. Figure 8 presents the process, in which we verified 

and improved the conceptual model by this mapping. Initially, we derived the conceptual 

model (CMSU V.1) from the literature (Activity A1 in Figure 22). To evaluate its quality, we 

identified SH-CPS related concepts as well as their relationships (Cons. & Rels. from CSs. 

V.1), from the nine SH-CPSs’ specifications (Activity A2.1). Cons. & Rels. from CSs. V.1 

contains necessary entities required to specify self-healing behaviors and uncertainties of 
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an SH-CPS. For each identified concept or relationship, we tried to manually find a 

counterpart in CMSU V.1 (Activity A2.2). If the counterpart is missing, we further 

investigated if the extracted concept or relationship is correctly identified. In case that it 

was correct, CMSU V.1 was revised to cover the missing concept. Otherwise, the 

incorrectly identified concept or relationship was fixed. After A2.2, we created a new 

version of the extracted concepts and relationships, i.e., Cons. & Rels. from CSs. V.2. At 

last, the refined conceptual model (CMSU V.2) was further refined by A3 via a mapping 

from Cons. & Rels. from CSs. V.2 to CMSU V.2. The final obtained CMSU V.3 managed to 

correctly cover all identified concepts and relations.  

 
Figure 8 Process to Develop CMSU 

Afterward, we assessed if MoSH provides a cost-effective way of creating executable 

test models, by applying MoSH to create test models for three SH-CPSs. To measure the 

extra modeling effort required for applying MoSH, we calculated the total number of 

model elements and the percentage of stereotyped model elements. For the applicability, 

we checked the numbers of functional behaviors, self-healing behaviors, self-diagnosis 

behaviors, self-recovery behaviors, and uncertainties that can be specified with MoSH. On 

average, 206 model elements were used to build an executable test model for an SH-CPS. 

16 percent of the model elements were stereotyped with MoSH. This means that it needed 

an additional 16% modeling effort to apply MoSH to create the executable test models, as 

compared with applying standard UML notations, for the selected SH-CPSs. In total, 20 

functional behaviors, 11 self-healing behaviors, 11 self-diagnosis behaviors, 17 self-

recovery behaviors and 17 uncertainties were specified for the three systems. This 
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demonstrates the applicability of MoSH to specify executable test models for three diverse 

SH-CPSs. This effort gives us evidence that MoSH is capable of modeling different SH-

CPSs to support uncertainty-aware executable model-based testing. 

Furthermore, the performance of TM-Executor was evaluated to determine if it is 

feasible to apply the framework to test a complex SH-CPS. For this evaluation, we applied 

TM-Executor to test an SH-CPS against its test model, with operation invocations and 

uncertainty values randomly selected. We assessed how much time is required by TM-

Executor to execute a test model, generate test data, evaluate constraints, and introduce 

uncertainties. On average, it took 5.6 seconds for traversing a transition, 39 milliseconds 

for test data generation, and less than one millisecond for exiting or entering a state, 

executing an operation, evaluating a constraint or generating an uncertainty value. The 

result indicates the time taken by TM-Executor to perform testing activities was relatively 

small, and thus it is practicable to apply TM-Executor to perform the executable model-

based testing.  

5.2 Fragility-Oriented Testing (Paper B) 

“Testing Self-Healing Cyber-Physical Systems under Uncertainty: A Fragility-Oriented 

Approach” T. Ma, S. Ali, T. Yue, and M. Elaasar. Software Quality Journal (SQJ). DOI: 

10.1007/s11219-018-9437-3 

 

In this paper, a fragility-oriented testing approach was devised to effectively detect faults 

in SH-CPSs under uncertainty. The approach is comprised of two reinforcement learning 

based algorithms: Fragility-Oriented Operation Invocation (FOOI)2 for invoking operations 

and Uncertainty Policy Optimization (UPO) for introducing uncertainties. The two 

algorithms utilize the fragility, obtained from test executions, to learn the optimal policies 

of invoking operations and introducing uncertainties, so as to detect faults in the most 

effective manner.  

To evaluate the effectiveness of the two proposed algorithms, we chose a coverage-

oriented testing algorithm (COT) as the benchmark for operation invocations, and a 

 
 

2 The algorithm is named as Fragility-Oriented Testing in Paper B. To distinguish the overall fragility-
oriented testing approach and the algorithm for selecting operation invocations, the algorithm is named as 
Fragility-Oriented Operation Invocation (FOOI) in this section.  
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random approach (R) for introducing uncertainties. In total, we obtained four approaches: 

FOOI+UPO, FOOI+R, COT+UPO, COT+R. They were applied to test three SH-CPSs to 

check which one detects more faults. The number of detected faults is not only determined 

by the fault detection ability of the algorithms, but also affected by the amount of testing 

time and the variation range of each uncertainty. To reduce the effect of testing time and 

scale of uncertainty variation, we chose three settings for each of them. The three testing 

times are 72, 144, and 216 hours. This allows each testing approach to approximately 

execute an SH-CPS with its test model 500, 1000, and 1500 times to find faults. 

Meanwhile, we chose three scales of uncertainty variation: 80%, 100%, and 120%. 100% 

represents the standard variation ranges, obtained from the production specification of 

sensors and actuators. 80% (120%) means reducing (increasing) the ranges by 20 percent. 

For each case study and each test setting, we collected the number of faults detected by 

each testing approach. It turns out FOOI+UPO detected more faults than the other three 

approaches for all cases. We further conducted Mann-Whitney U test with a significant 

level of 0.05 to determine the significance of the differences. Results of the statistic tests 

show that FOOI+UPO significantly outperformed the others in most cases. Only when the 

testing time is 72 hours and the uncertainty scale is 80%, there is no significant difference 

among the four testing approaches. As the scale of uncertainty is low, the four testing 

approaches only detected few faults within 72 hours.  

5.3 Empirical Study (Paper C) 

“Testing Self-Healing Cyber-Physical Systems under Uncertainty with Reinforcement 

Learning: An Empirical Study” T. Ma, S. Ali, and T. Yue. Journal of Empirical Software 

Engineering (EMSE). DOI: 10.1007/s10664-021-09941-z. 

 

This paper presents an empirical study, in which the effectiveness, efficiency, and 

scalability of 14 combinations of reinforcement learning algorithms were evaluated for 

testing SH-CPSs under uncertainty. The 14 combinations are composed of two value 

function learning based methods (Action-Reward-State-Action (SARSA) [8] and Q-

learning [8]) for operation invocations and seven policy optimization based algorithms 

(Asynchronous Advantage Actor-Critic (A3C) [33], Actor-Critic method with Experience 

Replay (ACER) [34], Proximal Policy Optimization (PPO) [35], Trust Region Policy 
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Optimization (TRPO) [36], Actor-Critic method using Kronecker-factored Trust Region 

(ACKTR) [37], Deep Deterministic Policy Gradient (DDPG) [38], and Uncertainty Policy 

Optimization (UPO) [39]) for introducing uncertainties. These algorithms were applied to 

test six SH-CPSs. Three of them are real-world case studies, and the others are from the 

literature.  

For effectiveness, all 14 combinations of algorithms managed to cover all states and 

transitions of most case studies, except the most complex one. The p-values of the Kruskal-

Wallis test in terms of the state and transition coverages for all the testing tasks are greater 

than 0.1, therefore, indicating no significant difference among the 14 approaches regarding 

the coverages. In total, 41 faults were detected in the six SH-CPSs. These 41 faults 

correspond to 41 states in which the invariants of the states were violated when the six 

systems were being tested with simulated sensors and actuators. Q-learning + UPO 

managed to detect the most faults. On average, it detected 3.4 faults for each case study. 

SARSA + UPO performed slightly worse, with 3.3 faults detected averagely. In contrast, 

the other 12 approaches only detected 1.7 faults, on average. In over 239 (out of 300) 

testing jobs, Q-learning + UPO significantly outperformed the other 12 testing approaches, 

except SARSA + UPO. Q-learning + UPO and SARSA + UPO performed equally in 279 

jobs; SARSA + UPO beat Q-learning + UPO in 2 jobs and Q-learning + UPO was superior 

in the other 19 jobs. 

Regarding efficiency, Q-learning + UPO took the least amount of time to detect a fault, 

since all testing approaches took a similar amount of time and Q-learning + UPO detected 

the most faults. Averagely, Q-learning + UPO took 64.5 hours to detect a fault, which is 

less than half of the average time taken by Q-learning + A3C (the least efficient approach) 

for fault detection. On average, Q-learning + UPO took 52% less time than the other 

approaches to detect a fault. 

Concerning scalability, we assessed the tendencies of time and space costs of the 14 

testing approaches, as the number of states and transitions of the system under test 

increases. It turns the more states and transitions an SH-CPS has, the more time and space 

a testing approach took to learn the optimal policy of invoking operations. In contrast, the 

time and space costs of learning the policy of selecting uncertainty values remain in the 

same order of magnitude for testing SH-CPSs with diverse complexities. This is due to the 

difference of the two types of reinforcement learning algorithms used to learn these two 
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policies. Value function learning based algorithms (SARSA and Q-learning) were used for 

operation invocations and policy optimization based algorithms were used for introducing 

uncertainties. For value function learning based algorithms, they have to save the highest 

fragility that can be reached after triggering each transition. As the number of transitions 

increases, such methods will take more space and time to store and process the fragility 

values. Alternatively, policy optimization based algorithms use artificial neural networks to 

approximate their policies and value functions, the computational costs of these algorithms 

are determined by the architecture of the neural networks and the optimizer to improve the 

neural networks.  
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6 Future Directions 
This thesis provides a complete executable model-based testing solution for testing SH-

CPS under uncertainty, including a modeling framework (MoSH) to create executable test 

models, a testing framework (TM-Executor) to test an SH-CPS against a test model, and a 

fragility-oriented testing approach to effectively detect faults. This section discusses 

possible future directions of these works to further refine the executable model-based 

testing approach.  

For the modeling framework, it has been designed to create executable test models for a 

specific type of system, i.e., SH-CPS. A more general modeling framework could be 

derived from MoSH to support modeling a broader range of systems. In addition, more 

case studies and a larger scale of applications are needed to further validate and improve 

the applicability of MoSH.  

Regarding the testing framework, it has been implemented based on the standard of FMI 

[6] to co-execute hybrid executable objects, like the test model, software of SH-CPSs, and 

simulators of sensors and actuators. As SH-CPSs are complex, it is computationally 

expensive and time-consuming to execute them. A distributed testing framework could be 

built in the future to allocate more computation resources to perform the co-execution and 

reduce the time spent on execution.  

The proposed fragility-oriented testing approach makes it possible to apply various 

reinforcement learning algorithms to perform testing. As reinforcement learning is still an 

actively evolving field and more advanced reinforcement learning algorithms are emerging, 

the newly devised algorithms can be tested in this approach to possibly further enhance the 

fault detection ability.  
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7 Conclusion 
Self-healing is becoming a critical feature of Cyber-Physical Systems (CPSs). It enables 

CPSs to detect faults and apply proper adaptations to recover from the faults at runtime. 

We refer CPSs with the self-healing features as Self-healing CPSs (SH-CPSs). Besides 

recovery, SH-CPSs have to deal with various uncertainties, like measurement errors from 

sensors and actuation deviations from actuators. To assess the dependability of SH-CPSs, it 

is necessary to test if an SH-CPS can still behave as expected under these uncertainties.  

This thesis provides an executable model-based testing approach to solve this testing 

problem. The whole approach is composed of (1) CMSU, a conceptual model of SH-CPS 

and uncertainty, (2) MoSH, a modeling framework of SH-CPS to create executable test 

models, (3) TM-Executor, which enables co-execution of the test model and SH-CPS, (4) 

Fragility-Oriented Testing, which takes fragility as the rewards of reinforcement learning 

algorithms to effectively detect faults. At last, an empirical study was conducted to find the 

optimal one among 14 combinations of reinforcement learning algorithms for testing SH-

CPSs under uncertainty.  

By evaluating these works with diverse SH-CPSs, we demonstrated that (1) MoSH 

provides sufficient modeling notations and methodology to specify executable test models 

for SH-CPSs; (2) the overhead of applying TM-Executor to perform the executable model- 

based testing is small, and it is practical to apply TM-Executor to test SH-CPSs; (3) the 

fault detection ability of the fragility-oriented testing approach is significantly higher than 

random testing and coverage-oriented testing. Reinforcement learning algorithms have 

shown competence in detecting faults in SH-CPSs under uncertainty. Based on the results 

of the empirical study, we found that the combination of Q-learning and Uncertainty Policy 

Optimization algorithms managed to detect the most faults in six SH-CPSs. On average, 

they managed to discover two times more faults than the other 13 combinations of 

reinforcement learning algorithms. 
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Abstract 
Self-healing Cyber-Physical Systems (SH-CPSs) detect and recover from faults by 

themselves at runtime. Testing such systems is challenging due to the complex 

implementation of self-healing behaviors and their interaction with the physical 

environment, both of which are uncertain. To this end, we propose an executable model-

based approach to test self-healing behaviors under environmental uncertainties. The 

approach consists of a Modeling Framework of SH-CPSs (MoSH) and an accompanying 

Test Model Executor (TM-Executor). MoSH provides a set of modeling constructs and a 

methodology to specify executable test models, which capture expected system behaviors 

and environmental uncertainties. TM-Executor executes the test models together with the 

systems under test, to dynamically test their self-healing behaviors under uncertainties. We 

demonstrated the successful application of MoSH to specify 11 self-healing behaviors and 

17 uncertainties for three SH-CPSs. The time spent by TM-Executor to perform testing 

activities was in the order of milliseconds, though the time spent was strongly correlated 

with the complexity of test models.  

 

Keywords: Cyber-Physical Systems, Self-healing, Uncertainty, Model Execution, Model-

Based Testing 

 

 

1 Introduction 
Self-healing3 is becoming an important feature of Cyber-Physical Systems (CPSs) [1]. A 

Self-Healing Cyber-Physical System (SH-CPS) can perceive that it is not operating 

correctly and, without human intervention, makes necessary changes to its architecture or 

behaviors to restore itself to a normal state [2]. Despite the benefits offered by self-healing, 

there is still a need for novel testing methods to gain confidence in decisions made by such 

behaviors [3]. Since such systems often operate in an unpredictable environment [4], they 

need to be tested under environmental uncertainties. Examples of such uncertainties 
 

 
3 The term of self-healing originates from the IBM’s vision of autonomic computing [3] and self-healing is 
one of the so-called self-* properties. Self-healing is tightly related to “fault-tolerant”, but not all fault-
tolerant mechanisms can be seen as self-healing behaviors. 
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include errors in data measured by sensors, actuation deviations from actuators, and 

latency in networks. 

To effectively detect faults in an SH-CPS under uncertainties, we propose to test the 

system against an executable test model directly. By executing the system and the test 

model together, testing stimuli are dynamically selected from the model at runtime, 

directed by a test strategy and followed by executing the stimuli on the system and the 

model. Meanwhile, uncertainties specified in the test model are introduced via 

simulators/emulators of the environment. As the result of executing the stimuli, the test 

model and the system switch to their subsequent states. These states are compared to 

determine if the system behaves as expected. Such comparison also reveals how likely the 

system’s behaviors are going to deviate from the modeled behaviors. The likelihood can be 

used as a heuristic to find the optimal sequence of stimuli that can help to detect faults 

efficiently.  

Realizing such an executable model-based testing approach requires three enablers. First, 

a modeling framework is required to facilitate the specification of executable test models. 

Though there exist modeling solutions [5-9], it still lacks modeling notations and 

methodologies for specifying self-healing behaviors and uncertainties. Second, a test 

execution environment is needed to execute the test models, generate testing stimuli, 

introduce uncertainties, and test systems against the models. Third, it requires a testing 

strategy that can take advantage of the runtime information obtained from the execution to 

find the optimal sequence of stimuli and effectively detect faults.  

As the first step to realize the executable model-based approach, we propose a modeling 

framework and an accompanying execution environment in this paper. We first developed 

a conceptual model to capture necessary SH-CPS and uncertainty concepts, based on 

which, we developed an uncertainty-aware Modeling framework of SH-CPSs (MoSH) to 

assist the specification of executable test models. The modeling notations of MoSH are 

restricted to the executable subset of UML, i.e., the Foundational UML Subset (fUML) 

standard [10]. The fUML and Precise Semantics Of UML State Machines (PSSM) 

standards [11] define the execution semantics for the subset of UML and thus enable the 

test model to be directly executed without model transformation to executable test cases. 

Based on the two standards, we developed a Test Model Executor (TM-Executor) as the 
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execution environment. Testing strategies are not covered in this paper, whereas they can 

be found in our recently published paper [12].  

We evaluated MoSH and TM-Executor from three aspects: 1) quality of the conceptual 

model, based on which MoSH was implemented, 2) applicability of MoSH to build 

executable test models, and 3) performance of TM-Executor regarding the time required to 

perform test execution. The evaluation demonstrated that the conceptual model managed to 

cover 832 instances of concepts identified in the nine SH-CPSs. We successfully applied 

MoSH to specify 11 self-healing behaviors and 17 uncertainties, identified in three out of 

the nine systems. On average, 16% of model elements were stereotyped with the MoSH 

profiles. Regarding performance, the time spent by TM-Executor to perform testing 

activities was in the order of milliseconds. The complexity of guards significantly affected 

the time cost of TM-Executor for generating test data. For the most complex guard, TM-

Executor took a maximum of 0.27 seconds to generate test data. However, the time spent 

by TM-Executor to evaluate an invariant or generate an uncertainty value was not 

significantly affected by the complexity of invariants and different ways of generating 

uncertainty values.  

The rest of this paper is organized as follows: Section 2.2 introduces the background, 

followed by a running example given in Section 3. Section 4 presents the conceptual model 

of SH-CPSs and uncertainties. MoSH and its associated modeling methodology are 

explained in Section 4.1.2. Section 0 presents the main components of TM-Executor. 

Section 7 presents the evaluation. Related work is discussed in Section 8, and we 

summarize the paper and future work in Section 9. 

2 Background 
As the proposed executable model-based testing is an extension of model-based testing, we 

compare the two approaches in Section 2.1. In our work, we applied probability, possibility, 

and fuzzy set theories to measure uncertainties. As the fuzzy set theory is not commonly 

known, we introduce it in Section 2.2.  

2.1 Model-Based Testing versus Executable Model-Based Testing 

Figure 9 highlights the differences between the two testing approaches. In model-based 

testing, a system is tested for checking its conformance to a test model capturing the 
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system’s expected behaviors. Guided by a testing strategy, test cases are generated to cover 

a finite number of paths that traverse through the model. Afterward, the test cases are 

executed on the system for detecting faults. In contrast, executable model-based testing 

directly tests a system against an executable test model, by executing the model and the 

system together, sending them the same stimuli and comparing their consequent states. 

Based on the executable test model, a testing strategy is used to select the stimuli at 

runtime to drive the execution. Information about the system’s actual behaviors can be 

obtained from the execution and aids the testing strategy to find the optimal sequence of 

stimuli for fault detection.  

 
Figure 9 Model-Based Testing versus Executable Model-Based Testing 

2.2 Fuzzy Set Theory 

Uncertainty may originate from various sources in SH-CPSs, and not all sources of 

uncertainty have the same characteristics. From the perspective of knowledge and the 

range of uncertainty, uncertainty can be classified into reducible and irreducible 

uncertainty. From another perspective, uncertainty can be classified as aleatory or 

epistemic [4]. Aleatory uncertainty is caused by randomness and is usually measured by 

the probability theory. However, epistemic uncertainty is due to a lack of knowledge and 

fuzzy sets can be applied to quantify incomplete or imprecise knowledge. The members of 

the fuzzy set are defined by a membership function, which assigns each possible member a 

value between 0 and 1, representing the membership degree of the member to the fuzzy set. 

For instance, the noise value of a GPS sensor can be expressed as Low, Medium, and High. 

As the boundaries of the three types are not precisely defined, a noise value may partially 

belong to multiple types. With membership functions, one can mathematically specify the 

partial belongings. Thus, the fuzzy set theory provides a way to quantify uncertainty, in 

case testers’ knowledge about the uncertainty is unclear.   
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3 Running Example 
The running example is an unmanned aerial vehicle control system—Remotely operated 

Aerial Model Autopilot (RAMA)4 [13]. RAMA consists of two main components (Figure 

10): a Ground Control Station (GCS) and a Drone. A human pilot uses the GCS to 

maneuver the Drone. Based on the position and terrain information provided by a 

PositionLocationUnit and a TerrainDatabase, a NavigationUnit calculates a desired flight 

orientation and controls Servos accordingly to perform a movement.  

RAMA aims to prevent the Drone from crashing even if one or more components fail to 

work. To achieve this objective, Holub et al. [13] realized a set of self-healing behaviors to 

handle faults during the flight. For instance, if the connection between the Drone and GCS 

is broken, the NavigationUnit detects this fault occurrence via the absence of heartbeats 

and automatically directs the Drone to fly back to its launch position. Another example is 

the self-healing behavior for a Servo fault; when one of the four Servos stops working, the 

fault is identified by comparing expected and actual orientations of the Drone and then the 

NavigationUnit switches to control three dimensions (pitch, roll, and throttle) with the 

fourth dimension (yaw) uncontrolled, to maintain the flight.  

 
Figure 10 UML Component Diagram of RAMA (Partial) 

Besides component faults, environmental uncertainties are another factor that impacts 

the operation of RAMA, such as measurement uncertainties from sensors and uncertain 

 
 

4 The reason to select RAMA as the running example is that RAMA is an example of SH-CPS and contains a 
set of self-healing behaviors that are affected by uncertainties.   
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actuation deviations from actuators. To keep the flight stable under such uncertainties, the 

NavigationUnit uses an adaptive control strategy to constantly adjusts control signals for 

the Servos based on the Drone’s position and orientation estimated by the 

PositionLocationUnit.   

4 Conceptual Model of SH-CPSs and Uncertainties 

(CMSU) 
To realize executable model-based testing, we need a modeling solution to create 

executable test models. Since CPS, self-healing, and uncertainty are complex concepts, it is 

important to identify and understand their main components to systematically derive the 

modeling solution [14-17]. To fulfill this task, we derived a Conceptual Model of SH-

CPSs and Uncertainties (CMSU) from the literature. This section presents the three parts of 

CMSU: Components of Cyber-Physical Systems (Section 4.1), Self-Healing Behavior 

(Section 4.2), and Uncertainty (Section 4.3). Definition of each concept is provided in a 

corresponding technical report [18].  

4.1 Components of Cyber-Physical Systems 

A CyberPhysicalSystem can be seen as a collection of heterogeneous, distributed 

PhysicalUnits that work together to control or monitor PhysicalProcesses (Figure 11). For 

example, the GCS 

cooperates with 

the Drone to 

control the flight 

process (Section 

3). Controllers are the cores of PhysicalUnits (e.g., the control units in the running 

example). They provide control logic and computation capabilities to PhysicalUnits and 

communicate with each other via Networks. Relying on Sensors and Actuators, they 

monitor and control the States of PhysicalProcesses.  

4.2 Self-Healing Behavior 

For an SH-CPS, a Controller has two types of behaviors: 1) FunctionalBehaviors that are 

designed to fulfill business requirements (specified as Goals of the behaviors); and 2) Self-

 
Figure 11 Concepts Relevant to Cyber-Physical System 
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HealingBehaviors that use Probes and Effectors to help FunctionalBehaviors to achieve 

their Goals even in the presence of Faults (Figure 12). Probes and Effectors are two types 

of interfaces that are used to inquire a controller’s States and adjust its Behaviors 

respectively. In the running example, RAMA is equipped with probes for checking 

variations of speed and orientation, and effectors that are used to switch control modes. A 

Self-HealingBehavior consists of Self-Diagnosis and Self-Recovery. Self-Diagnosis is for 

detecting, localizing, or identifying Faults based on the Measurements from Probes. Self-

Recovery is for recovering from Faults, directed by RecoveryPolicies. The subsections 

below elaborate the two phases in details. 

 
Figure 12 Concepts Relevant to Self-Healing Behavior 

4.2.1 Self-Diagnosis 
Figure 13 presents the key concepts related to Self-Diagnosis, aiming to detect Faults from 

Measurements. Its fault detection ability can be classified into three levels: FaultDetection, 

FaultLocalization, and FaultIdentification [19]. The diagnosis at the FaultDetection level 

can only detect the occurrence of faults; the FaultLocalization level diagnosis can 

determine which kind of faults has happened, and the diagnosis at the FaultIdentification 

level can further determine the severity of a fault. For instance, in the running example, the 

diagnosis of the servo fault can identify the magnitude of lift loss of a servo, and thus it 

belongs to the FaultIdentification level.  

A Self-Diagnosis behavior can either be realized based on prior domain knowledge 

(DomainKnowledgeBasedDiagnosis) or constructed by analyzing historical data 

(ClassifierBased Diagnosis). For the former, there are two viable options. One is 

 
Figure 13 Concepts Relevant to Self-Diagnosis  
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QuantitativeDiagnosis, in which domain knowledge is expressed as a quantitative model 

specifying mathematical relations between the input and output of a system [20]. Faults are 

detected by checking inconsistencies (residues) between the system’s actual and expected 

output calculated from the model, via ResidualGenerator and ResidualEvaluator. The 

other option is QualitativeDiagnosis, which expresses domain knowledge in a 

QualitativeModel, i.e., qualitative relations between different system elements [20], such 

as cause-effect relations or fault trees. During execution, SearchStrategies are used to 

explore the QualitativeModel to detect faults.  

For ClassifierBasedDiagnosis, it extracts Features from historical execution data 

(Measurements) and mines relations between Features and different kinds of faulty states. 

Based on extracted relations, FaultClassifiers are constructed and used to classify system 

states as normal or faulty.  

Probes provide Measurements required by Self-Diagnosis to detect faults. According to 

the type of Measurements, Probes are classified into PerformanceProbes, EventProbes, 

and PhysicalProcessProbes. PerformanceProbes are used to monitor a system’s 

performance such as response time and throughput. EventProbes monitor Controllers’ 

behaviors described as a trace of events such as function calls and exceptions. 

PhysicalProcessProbes supervise the State of PhysicalProcesses. In the running example, 

all three kinds of Probes are utilized, including an interface for monitoring the latency of 

radio control channel (PerformanceProbe), an interface for discovering unhealthy sensors 

(EventProbe), and an interface for obtaining the vehicle’s position (PhysicalProcessProbe). 

4.2.2 Self-Recovery 
After fault diagnosis, a Self-Recovery behavior decides which AdaptationAction(s) to take 

to handle the detected fault, directed by RecoveryPolicies, as shown in Figure 14. Effectors 

provide Self-Recovery behaviors the ability to modify the system. According to the type of 

modification, Effectors can be classified into three types: ParameterEffectors for adjusting 

system components’ parameters [21], ArchitectureEffectors for adding, removing, or 

replacing system components [22], and ControlEffectors for changing 

 
Figure 14 Concepts Relevant to Self-Recovery 
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FunctionalBehavior(s) in response to faulty conditions. Since the Effects of 

AdaptationActions are different and they may have different Overheads and Delays, a Self-

Recovery behavior has to find an optimal action to recover a system from a detected fault. 

Because the effects, delays, and overheads are normally not observable from the outside of 

systems, they cannot be directly used for testing and therefore are not mandatory to be 

captured in test models.  

In the literature, there are three types of Recovery Policy [23]: ActionPolicy, GoalPolicy, 

and UtilityFunctionPolicy. ActionPolicy can be seen as a pair in the form of <condition, 

action>. If the condition is satisfied, a corresponding action is executed [24], which is 

applied in the running example. GoalPolicy specifies desired states, which requires a 

sequence of modifications to be taken to make a system transit from a faulty state to a 

desired one [25]. UtilityFunctionPolicy defines an objective function to guide a system to 

desired states that have high utility values [26]. 

4.3 Uncertainty  

During execution, Uncertainties may arise from interactions between SH-CPSs and their 

environments. 

Uncertainty is 

defined as the 

lack of 

knowledge of 

which value an 

UncertainFeatu

re will take at a 

given point in time (TimeInstance) during testing [27] (Figure 15). For instance, a sensor’s 

measurement is affected by noise, and we cannot determine the value of noise for a given 

point in time. Thus, the value of the noise is uncertain. Universe describes the set of all 

possible values that an UncertainFeature may take and each possible value is defined as a 

Datum. Taking the measurement noise as an example (Table 2), the Universe of the 

uncertain feature is an interval from -50 to 50, and every value within this interval is a 

Datum.  

 
 Figure 15 Concepts Relevant to Uncertainty  
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When we only have a 

qualitative knowledge, 

the set of possible 

values (Datums) has to 

be described 

qualitatively. As shown 

in Table 2, the 

measurement noise of 

the GPS is described as 

low, medium and high, which are conceptualized as Categories in the conceptual model. A 

Category has one MembershipFunction, which determines to what extent a Datum belongs 

to the Category. More specifically, a membership function of a Category takes one Datum 

as input and outputs a real value between 0 and 1, representing the membership degree of 

the Datum to the Category [28]. A Datum could partially belong to multiple Categories, 

and in this case, each Category is a fuzzy set. IndicatorFunction is a specialized 

membership function, which only outputs 1 or 0, meaning that a Datum either belongs or 

does not belong to the Category associated with the IndicatorFunction. In this case, the 

corresponding Category is a crisp set. Table 2 shows an example of both cases. When 

using the IndicatorFunction, the boundaries of the three Categories (i.e., low, medium and 

high) are crisp, i.e., a noise value only belongs to one of the three Categories. In contrast, 

the boundaries defined by the MembershipFunction are fuzzy. In this case, for a noise 

value of 10, its membership degree is 0.55 to Low, 0.38 to Medium, and 0.12 to High. 

Uncertainty may be measured with 

different Measures. From complete 

certainty to total ignorance, there exist 

five intermediate levels [27]. Table 3 

shows these five levels along with 

their relations to Measure, Datum, and 

Category. For Level 1 Uncertainty, at a given point in time, the value of a feature is one 

value with a margin of error, i.e., one is certain that the value falls within this margin. For 

 
 

5 𝑀!"#(10) = 1 (1 +	𝑒$.&∙(|&$|*&$))⁄ = 0.5 

Table 2 An Example of Uncertainty 

Concepts Example 
UncertainFeature Measurement noise of the GPS 
Uncertainty Actual value of the noise at a given time instance 
Universe The interval from -50 to 50 
Datum ∀𝑥, 𝑥 ∈ [−50, 50] 
Category Low, Medium, High 
Membership 
Function 

𝑀!"#(𝑥) = 1 (1 +	𝑒$.&∙(|,|*&$))⁄  
𝑀-./(𝑥) = 1 41 +	𝑒$.&∙(|,|*0$)5⁄ − 1 41 + 𝑒$.&∙(|,|*&$)5⁄  
𝑀1234(𝑥) = 1 (1 +	𝑒$.&∙(0$*|,|))⁄  

IndicatorFunction 𝑀!"#(𝑥) 						= 	1, 𝑖𝑓	|𝑥| ∈ [0,10); 			0, 𝑜𝑡ℎ𝑒𝑟𝑠	
𝑀-./256(𝑥) = 	1, 𝑖𝑓	|𝑥| ∈ [10,30); 	0, 𝑜𝑡ℎ𝑒𝑟𝑠	
𝑀1234(𝑥) 					= 	1, 𝑖𝑓	|𝑥| ∈ [30,50]; 	0, 𝑜𝑡ℎ𝑒𝑟𝑠 

 

Table 3 Uncertainty Levels 

Level Datum Measure Category 
Level 1 A determined datum 

with a margin of error 
N/A N/A 

Level 2 A set of data Probability Related 
Level 3 A set of data Possibility Related 
Level 4 A set of data N/A Related 
Level 5 Known Unknowns N/A N/A 
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this reason, no qualitative specification (Category) or Measure is required for this level. In 

the running example, a servo’s maximum thrust can be determined according to its product 

specification. However, this value is not accurate, and a tolerance interval is given to 

specify the range of possible values. Thus, the maximum thrust belongs to Level 1 

Uncertainty. 

Level 2 Uncertainty stands for the situation that a feature has alternate values with 

Probabilities. Thus, ProbabilityMeasure is used at this level to specify the Probability of a 

Datum or a Category to be true. For instance, the measurement noise of GPS conforms to a 

normal distribution. Through statistical analyses, the distribution can be determined, and 

thus it is a Level 2 Uncertainty. 

For Level 3 Uncertainty, the probability of each possible value is unknown, but each 

possible value is bound with a ranked likelihood, which can be specified via the Possibility 

and Necessity of the PossibilityMeasure. Following the running example, due to the limited 

knowledge, the probability distribution of wind speed cannot be determined, and we can 

only compare the likelihoods of different potential values. Assume that the likelihood of 

medium wind speed is high and the ones of low and high speed are low. Their possibilities 

can be specified as 0.2, 0.7, and 0.2 to reflect their ranked likelihoods.  

A Level 4 Uncertainty is the case when one can enumerate multiple alternative values of 

a feature but cannot rank their likelihoods, due to lack of knowledge, or disagreements 

among modelers [27]. Therefore, it is only possible to identify possible Categories, while 

the likelihood of each possible value is unknown. At last, Level 5 Uncertainty represents 

situations that the only thing known is that we do not know (i.e., known unknowns). 

Neither Universe nor Measure of an Uncertainty at this level is known. The only thing 

known is the existence of the uncertainty.  

5 MoSH Modeling Framework  
Based on the conceptual model (Section 4), UML profile of Modeling and Analysis of 

Real-Time Embedded Systems (MARTE) [7] and UML Testing Profile (UTP) [29], we 

implement a modeling framework — MoSH, which provides a set of UML stereotypes, 

datatypes and a modeling methodology to facilitate the specification of executable test 

models. To make the test model executable, we restrict the modeling notations to the 

executable subset of UML, which is defined by fUML [10]. Several metaclasses in the 
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subset are extended by the stereotypes from MoSH to specify self-healing behaviors and 

uncertainties. New data types are also provided to assist in setting the attributes of newly 

defined stereotypes. The stereotypes and datatypes are organized into four profiles, as 

shown in Figure 16. They are applied in four steps to create executable test models 

(Section 5.1 to Section 5.4).  

5.1 Model System Structures with the SH-CPS Component Profile 

This section presents the SH-CPS Component profile (Section 5.1.1) and methodology 

(Section 5.1.2). 

5.1.1 SH-CPS Component Profile 
Sensors, actuators, and controllers constitute the major components of a physical unit of an 

SH-CPS. Hence, six stereotypes are provided (Table 4) to annotate the role played by each 

component and to specify goals and uncertainties of the component, via the “goal” attribute 

of «PhysicalUnit»/«Controller» and “uncertainty” attribute of 

«PhysicalUnit»/«Sensor»/«Actuator»/ «Network». The “goal” is used as a test oracle, and 

the “uncertainty” specifies the uncertainty that needs to be introduced during testing.  
Table 4 Stereotypes in SH-CPS Component Profile 

Stereotype Metaclass Attribute Stereotype Metaclass Attribute 
«SelfHealingCPS» Package type: 

ArchitectureType 
«Sensor» Behaviored 

Classifier 
 

uncertainty: Uncertainty [*] 

«Network» Behaviored 
Classifier 
 

uncertainty: 
Uncertainty [*] 

«Actuator» uncertainty: Uncertainty [*] 

«PhysicalUnit» goal: Constraint [*] 
uncertainty: 
Uncertainty [*] 

«Controller» goal: Constraint [*] 

 
Figure 16 Overview of the MoSH Modeling Framework 
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5.1.2 Model System Structure 
First, physical units and networks are identified and specified as separate classes. Physical 

units can be further decomposed into sensors, actuators, and controllers. Figure 17 (A) 

shows a partial structural model of the running example, which consists of two physical 

units (GroundControlStation, Drone) connected through a network (MAVLink). Drone is 

decomposed into a NavigationUnit, a GPS and four Servos.  

All accessible state variables that can be queried via testing interfaces are specified as 

class attributes, such as the mode of the NavigationUnit and the throttle of the Servo. 

Operations capture the testing interfaces provided by corresponding components, including 

 
Figure 17 Executable Test Model of RAMA (Partial) 
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check property actions for querying state variables, create stimulus actions for 

manipulation, and fault injections for introducing faults to trigger self-healing behaviors. 

As shown in Figure 17 (A), every class has one or more operations for monitoring or 

controlling its corresponding component. Two fault injection operations, disconnect() and 

disableGPS(), are also implemented to simulate the fault of disconnection and loss of GPS 

signals.  

Using the stereotypes’ attributes, testers can specify the goals of physical units and 

controllers as OCL constraints. The constraints have to be defined on class attributes so 

that they can be validated based on the attributes’ values obtained via testing interfaces. A 

goal of the NavigationUnit is shown in Figure 17 (A), which is to avoid a crash on the 

ground, i.e., when the Drone lands on the ground (self. currPosition.alt = 0), its vertical 

velocity should be below 2 meters per second (self.ekf.zVelocity < 2).  

5.2 Model Behaviors with SH-CPS Behavior Profile 

This section presents the SH-CPS Behavior profile (Section 5.2.1) and the guidelines to 

model functional behaviors, self-healing behaviors, and their interactions (Section 5.2.2 to 

Section 5.2.4). 

5.2.1 SH-CPS Behavior Profile 
This profile is proposed to specify expected self-healing behaviors. Since the objective of 

self-healing behaviors is to recover functional behaviors from faults, the expected 

functional behaviors should also be captured to assess the utilities of self-healing behaviors. 

As shown in Table 5, «FunctionalBehavior» is provided to annotate the behaviors, and to 

specify potential faults and consequent faulty states that may appear in a functional 

behavior via its “fault” and “error” attributes. A functional behavior is to be specified as a 

UML state machine to capture its normal and faulty states. «Fault», extending UML 

metaclass ChangeEvent, is provided to define a potential fault and specify a fault injection 

operation (via its “injectionOperation” attribute) to trigger the self-healing behavior that is 

to heal the fault. Its change expression defines the condition, under which a fault is 

considered occurred. As shown in Figure 17 (C), the disconnection of the MAVLink is a 

potential fault. It is specified as a ChangeEvent stereotyped with «Fault». Its change 

expression (“latency > 3”) defines that the fault occurs if the latency exceeds 3 seconds and 

the disconnect() operation can be used to introduce this fault. When a fault occurs, i.e., a 
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fault is injected, the state of a functional behavior switches from a normal state to a faulty 

one stereotyped with «Error», which enables TM-Executor to directly identify the faulty 

state and recognize when a self-healing behavior needs to be performed.  
Table 5 Stereotypes in the SH-CPS Behavior Profile 

Package Stereotype Metaclass Attribute 
Fault «Fault» ChangeEvent name: String, injectionOperation: 

FaultInjection [*] 
«Error» State name: String  

Functional 
Behavior 

«FunctionalBehavior» StateMachine, Region fault: Fault [*], error: Error [*] 

SelfHealing 
Behavior 

«SelfHealingBehavior» StateMachine, Region fault: Fault [1..*] 
«MonitoringState» State, StateMachine measurement : Property [1..*] 
«FaultIdentifiedState» State, StateMachine fault: Fault [1..*] 
«AdaptatingState» State, StateMachine name: String 

To capture the logic of fault diagnosis and recovery, we choose to use UML state 

machines to model self-healing behaviors. «SelfHealingBehavior» is provided to annotate 

the behavior and specify which faults can be recovered by it via its “fault” attribute. Based 

on the stereotype attribute, TM-Executor can decide if a correct self-healing behavior is 

triggered by injecting a fault. If the behavior is not triggered, it means that the behavior 

failed to detect the fault and a potential implementation fault is found.  

To test if a self-healing behavior can correctly detect a fault and apply proper actions to 

recover from the fault, testers need to specify one or more conditions, under which the 

fault is to be detected, and the recovery policy, which determines the selection of recovery 

actions. First, the logic of fault detection is specified via the transitions between 

«MonitoringState»s and «FaultIdentifiedState»s. «MonitoringState» is defined to annotate 

the states, where the self-healing behavior tries to detect faults based on measurements 

from probes. «FaultIdentifiedState» denotes that the self-healing behavior has detected, 

localized, or identified a fault. Second, the transitions between «FaultIdentifiedState»s and 

«AdaptatingState»s capture the recovery policy. «AdaptatingState» annotates the actions 

that are to be used by the self-healing behavior to recover from the fault. The following 

sections explain how to use these stereotypes to model functional and self-healing 

behaviors in details.  

5.2.2 Model Functional Behaviors 
For all identified classes (Section 5.1.2), testers need to specify their functional behaviors 

first, and then specify self-healing behaviors, i.e., define how to restore the functional 

behaviors to normal states in case of faults. The functional behaviors are modeled as UML 

state machines. Each state in the state machines should be precisely defined by state 
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invariants, i.e., OCL constraints on class attributes (Section 5.1.2). During test execution, 

any inconsistency between the system’s actual state and the active state of the state 

machine indicates a potential implementation fault6.  

In state machines, a transition between two states models a valid fragment of behavior 

[30], which can be triggered by a CallEvent, SignalEvent, or ChangeEvent. CallEvents 

represent invocations from external systems or users via operational calls such as the 

transition between the Armed and Navigating states in Figure 17 (B). Along with a 

CallEvent, a Guard (OCL constraint) can be specified to define valid ranges of inputs that 

can be used to invoke an operation. SignalEvents capture interactions among different state 

machines. Via sending signals in effects or state activities, firing a transition in one state 

machine can lead to transitions in other state machines being triggered. ChangeEvents are 

used to model internal changes such as the event “currPosition == targetPosition” shown 

in Figure 17 (B).  

Based on test requirements, the faults that are to be healed by self-healing behaviors are 

specified as ChangeEvents stereotyped with «Fault». The ChangeEvents are used as 

triggers of transitions from normal states to error states to specify how functional behaviors 

are affected by the faults.  

5.2.3 Model Self-Healing Behaviors 
Self-healing behaviors are also modeled as UML state machines focusing on fault 

diagnosis and recovery. The logic of fault diagnosis is specified via the transitions between 

«MonitoringState»s and «FaultIdentifiedState»s. Triggers of the transitions are specified as 

ChangeEvents, whose change expressions define criteria used to detect, localize or identify 

faults, such as the transition from “Checking Connection” state to “GCS Disconnected” 

state in Figure 17 (B), capturing the logic of fault detection for the disconnection fault.   

For fault recovery, there are three kinds of recovery policies (Section 4.2.2). If the policy 

is action, goal or utility based and the goal or utility is defined on state variables that are 

accessible via testing interfaces, then the policy can be modeled as transitions from 

«FaultIdentifiedState»s to «AdaptatingState»s. The triggers of the transitions are specified 

as ChangeEvents whose change expressions describe which recovery action is to be used. 

 
 

6In case a system behaves differently from a test model that is derived from an incomplete requirement, it 
only indicates that a potential fault has been detected. Developers or designers who have more knowledge of 
the requirement can determine whether it is indeed an implementation fault. 
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As shown in Figure 17 (B), there are two ways to handle the disconnection fault. When the 

NavigationUnit’s mode is LAND or RTL, no manual control is required to control the flight, 

and the Drone keeps on its current task. Otherwise, the mode is changed from GUIDED to 

RTL under which the Drone flies back to its launch position. For a goal/utility based policy 

whose goal/utility is not defined on accessible state variables, testers have to identify 

invariants of the goal/utility, define them on accessible state variables, and specify them as 

class or state invariants. By checking them during testing, TM-Executor can determine if a 

wrong recovery action is performed.   

The transition from an «AdaptatingState» to a «MonitoringState» is used to specify the 

behavior after the fault has been successfully healed. As shown in Figure 17 (B), as soon as 

the connection of MAVLink is rebuilt (i.e., heartbeatInterval < 3), the flight mode is 

changed back to GUIDED to resume the flight.  

5.2.4 Model Interaction Behaviors 
Besides defining functional and self-healing behaviors in separate UML state machines, 

testers also need to specify interactions among them to facilitate the overall execution.  

In UML state machines, four model elements can be targeted for specifying an 

interaction: the Entry, Exit, and doActivity of a state, and the Effect of a transition [11]. 

Their execution semantics are different, and testers can choose the one that suits the 

context best. An Entry is executed synchronously before activating a state. When the 

execution completes, the state’s doActivity (if exists) is invoked asynchronously. When the 

state is to be exited and its doActivity is still running, the execution is aborted. An Exit 

behavior is executed synchronously before exiting a state. When a transition is triggered, 

its source state is exited first, and then its Effect is executed. As soon as the execution 

completes, the transition’s target state is entered.  

Interaction behaviors mainly involve sending SignalEvents from one state machine to 

the others. According to the fUML standard [10], an interaction behavior can be specified 

as either an activity diagram or an opaque behavior with its method defined in the Action 

Language for fUML (ALF) [31]. For instance, BroadcastStartS is an effect of a transition 

and defined as an activity diagram (Figure 17 (D)). Its execution semantics is to broadcast 

a given signal to all classes that have a direct association with the current class. When the 

transition is fired, the MAVLink will receive a StartS signal, triggering it to enter the 

Connected state.  
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5.3 Specify Uncertainties using SH-CPS Uncertainty Profile 

We present the SH-CPS Uncertainty profile in Section 5.3.1 and the guideline to use it in 

Section 5.3.2.  

5.3.1 SH-CPS Uncertainty Profile 
For testing, uncertainty is the lack of knowledge of which value an uncertain feature will 

take at a given point of time during testing. As explained in Section 4.3, an uncertainty is 

specified by defining its universe, categories, and measure. Accordingly, «Uncertainty» is 

defined, along with “universe”, “category”, and “measure” attributes (Figure 18), each of 

which corresponds to a newly defined datatype.  

 
Figure 18 SH-CPS Uncertainty Profile 

The Universe represents a collection of values. According to the type of value contained 

in a universe, we define seven subtypes: U_Boolean, U_Integer, U_Real, 

U_UnlimitedNatural, U_Transition, U_String, and U_Equation. For non-numerical 

datatypes (U_Transition, U_String, and U_Equation), the universe is specified as a 

collection of listed values. For numerical ones (U_Integer, U_Real, U_UnlimitedNatural), 

the universe can either be specified by enumeration or as an interval. Category is defined 

to specify a qualitative description of an «Uncertainty». As explained in Section 4.3, the 

elements of a Category are determined by a MembershipFunction. Based on the MATLAB 

fuzzy library [32], we provide six kinds of MembershipFunction7. Measure is defined to 

quantify uncertainty. According to testers’ knowledge, ProbabilityMeasure or 

PossibilityMeasure can be used to specify the measurement of uncertainty; 

ProbabilityMeasure uses a probability distribution to quantify the chance of possible 

values, and PossibilityMeasure uses possibility and necessity distributions to map each 

 
 

7 Include Gauss, Generalized bell, Triangular, Difference between two sigmoid, Pi-shaped, Sigmoid 
functions. 
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possible value to a rankable likelihood. To specify the measurement of uncertainty, this 

profile imports six discrete and five continuous distributions 8  from the probability 

distribution library of MARTE [7].  

5.3.2 Model Uncertainty 
To test systems under uncertainties, testers need to define the uncertainties. For each 

specified class (Section 5.1.2), testers have to identify uncertain features according to 

testing specification and their domain knowledge. For instance, the measurement noise of 

GPS cannot be determined at a given point of time during execution, and thus the noise is 

identified as an uncertain feature, which is specified as a class attribute stereotyped with 

«Uncertainty». Via the “universe”, “category”, and “measure” attributes of «Uncertainty», 

the uncertainty associated with the uncertain feature can be quantified9.  

According to the type of an uncertain feature, a type of Universe is chosen to specify its 

valid range. For a numerical feature, if its value varies within a range, an interval datatype 

(U_IntegerInterval, U_RealInterval, U_UnlimitedNaturalInterval) should be assigned. 

Otherwise, a vector can be used to list all possible values. Depending on the level of 

uncertainty (Section 4.3), the uncertainty’s category and measure are specified differently. 

For a Level 1 uncertainty, at a given point in time, the value of the uncertain feature is 

determined with a margin of error. It is specified via “universe” attribute of «Uncertainty». 

For Level 2 and Level 3 uncertainties, before quantifying the likelihood of each value, 

testers should decide if their knowledge about the uncertain feature is qualitative or 

quantitative. If it is qualitative, a membership function is used to define a category for each 

descriptive term, such as the three categories: Low, Medium, and High, defined for the 

measurement noise of GPS in Table 2.  

After defining categories, testers need to specify the measurement of each uncertainty. 

For Level 2 uncertainty, since the probability of each value is known, a probability 

measure is used to describe the likelihood. Possibility measure is adopted for Level 3 

uncertainty to state the rankable likelihood of each value. For both levels of uncertainties, 

 
 

8Include Poisson, Bernoulli, Categorical, Logarithmic, Discrete Uniform, Exponential, Gamma, Normal, 
Triangular, and Trapezoidal distributions.  
9 If the value of an uncertain feature depends on the values of some other uncertain features, OCL constraints 
can be used to specify the dependency. 
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appropriate probability, possibility, or necessity distributions can be chosen from the set of 

distributions provided by the uncertainty profile (Section 5.3.1).  

Since measures of Level 4 and Level 5 uncertainties are unknown, they cannot be 

explicitly specified in the model. However, as testing proceeds, more knowledge about 

such uncertainties may be obtained, which make them transform to Level 3, Level 2 or 

even Level 1 uncertainties. Afterward, they can be precisely specified and used in the 

testing approach.   

5.4 Model Testing Utilities with SH-CPS Testing Profile 

We present the SH-CPS Testing profile in Section 5.4.1 and guidelines to specify test 

configurations and testing interfaces that are required to execute a test model together with 

a system (Section 5.4.2).  

5.4.1 SH-CPS Testing Profile 
Figure 19 presents the SH-CPS Testing Profile. It imports five stereotypes from the Test 

Architecture and Test Behavior packages of UTP v2 [29], as these stereotypes are 

standardized and have been precisely defined by UTP v2. «TestItem» denotes the testing 

target, i.e., controllers of SH-CPSs. The class stereotyped with «TestItem» signifies the 

entry point of test execution. «CreateStimulusAction» and «CheckPropertyAction» extend 

BehavioralFeature representing testing interfaces used for controlling and monitoring 

systems. «CheckPropertyAction» annotates operations that are used to query the values of 

state variables. «CreateStimulusAction» should be applied on operations that are used to 

control the behaviors of a system. «FaultInjection» is a specialized 

«CreateStimulusAction» for faults injections. «TestComponent» represents sensors, 

actuators, networks, and external systems, which are simulated/emulated. Configurations 

of simulators/emulators can be specified via “configuration” attribute of «TestComponent».  

 
Figure 19 SH-CPS Testing Profile 

5.4.2 Model Test Utilities 
The final step of the modeling is to specify test configurations and bind the testing 

interfaces with the defined operations to achieve an executable test model. First, the main 
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class, which contains the entry point of test execution, is stereotyped as «TestItem». 

Second, sensors, actuators, and physical processes, which are to be simulated/emulated, are 

annotated with «TestComponent». The “configuration” attribute of «TestComponent» is 

used to specify the configuration parameters of simulators/emulators. Third, operations 

defined in class diagrams need to be stereotyped with «CreateStimulusAction», 

«CheckPropertyAction» or «FaultInjection» to distinguish their functionalities. For 

«CreateStimulusAction» and «FaultInjection», their input parameters capture the input of 

corresponding testing interfaces, and they can optionally have an output parameter to 

represent the result of an invocation, i.e., success or failure. For «CheckPropertyAction», it 

has no input parameters, and its output parameters declare the state variables that can be 

queried via the «CheckPropertyAction».  

The method of «CreateStimulusAction», «CheckPropertyAction» or «FaultInjection» 

can be specified using either an activity diagram or an opaque behavior with its method 

defined in ALF [31]. Figure 17 (E) presents the method of a «CreateStimulusAction» — 

setMode(). This operation is to set the NavigationUnit’s control mode and returns res to 

signify the result. In the method, an OpaqueAction — InputTestAPIInvocation, is defined 

to bind the operation with a corresponding testing interface, whose Uniform Resource 

Identifier (URI) is specified in the body of the action. 

6 TM-Executor Framework  
TM-Executor was implemented based on existing standards of fUML [10], PSSM [11] and 

FMI [33]. It takes charge of (1) executing and testing a system against a test model, (2) 

simulating the effect of uncertainties, and (3) orchestrating the execution of test model, 

system, and simulators/emulators. This section first gives an overview of TM-Executor and 

then explains these functionalities in sequence.  

6.1 Overview 

Figure 20 presents an overview of TM-Executor and its relations with MoSH. The MoSH 

modeling framework is implemented in Papyrus, a UML modeling environment [34]. With 

MoSH, testers can create an executable test model, which is taken by TM-Executor as 

input to perform uncertainty-aware executable model-based testing. In TM-Executor, the 

test model is executed by an ETM Execution Engine, which is built on Moka [35] — a 
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UML model execution platform that realizes the standards of fUML [10] and PSSM [11]. 

During execution, the execution engine periodically obtains the values of state variables 

from the system under test, and a Constraint Checker uses the values to evaluate the goals 

of classes (Section 5.1.2) and the invariants of current active states (Section 5.2.2). If any 

constraint is evaluated to be false, it means the system fails to behave consistently with the 

test model.  

 
Figure 20 TM-Executor Framework 

To drive the execution of the test model and the system under test, a Test Driver is 

implemented to generate testing stimuli during execution. Whenever the test model reaches 

a stable state configuration, in which the active states of the model are not changing, the 

Test Driver uses a testing strategy to select an outgoing transition of current active states, 

parses its trigger and guard, and uses EsOCL [36] — an OCL constraint solver, to generate 

a valid input for firing the transition.  

Besides operation invocations, uncertainties need to be introduced in the testing 

environment to test a system under uncertainties. When the system interacts with the 

environment via sensors or actuators, an Uncertainty Introducer generates a value for each 

specified uncertainty and introduces it into sensor data or actuator instructions to simulate 

the effect of the environmental uncertainty.  

Since the software of the SH-CPSs is to be tested with simulators/emulators, the test 

model, system, and simulators/emulators have to be executed coordinately to fulfill the 
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executable model-based testing. Typically, these three kinds of executable objects are 

implemented by distinct modeling/programming languages and from the perspectives of 

diverse domains. For instance, the test model, modeled by state machines, exhibits discrete 

behaviors. On the contrary, a simulator, modeled by differential equations, presents 

continuous semantics. To orchestrate the executions of the diverse objects, an Orchestra is 

implemented based on the Functional Mock-up Interface (FMI) standard [33]. It takes 

charge of propagating values through the executable objects and synchronizing their 

executions.  

6.2 Executable Model-Based Testing  

The ETM Execution Engine executes a test model according to an extended version of 

fUML [10] and PSSM [11]. The execution process and the extensions are presented in the 

following subsections.  

6.2.1 Execution Process 
When a test model is executed, the ETM Execution Engine first instantiates all class 

objects (directly or indirectly) associated with the main class stereotyped with «TestItem» 

(Section 5.4.2). Then, the engine starts the classifier behavior of each object, i.e., executing 

UML state machines (Section 5.2). When all behaviors have been started, the engine 

registers all events that can trigger the outgoing transitions of current active states. Next, 

the engine synchronizes the execution of the model with the executions of the system 

under test and simulators/emulators, to coordinate their executions.  

After synchronization, the engine automatically invokes the check property actions 

specified in the test model (Section 5.4.2) to update values of state variables. With the 

updated values, the Constraint Checker verifies the invariant of current active states and 

the goals of each class. If any constraint is violated, a potential fault is detected and the 

execution terminates. Otherwise, the engine evaluates the ChangeExpressions of registered 

ChangeEvents and sends those whose ChangeExpressions are true. The sent events are 

matched with outgoing transitions of current active states. Each matched transition is 

traversed via three steps. First, the source state of the transition is exited. If its doActivity 

behavior is still running, the execution is aborted. If the source state has an Exit behavior, it 

is executed before exiting the state. Second, the transition is traversed, and the Effect of the 

transition, if exists, is synchronously executed. Third, the target state of the triggered 
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transition is entered. If it contains Entry and doActivity behaviors, the Entry behavior is 

synchronously executed first, and then the doActivity is asynchronously executed. If any 

Signal is sent by the Effect, Entry, doActivity, or Exit behavior, a corresponding 

SignalEvent is generated and triggers other transitions.  

When the active states of all state machines are not changing, the Test Driver invokes an 

operation to trigger an outgoing transition that is selected by a testing strategy. Afterward, 

the engine executes the method of the operation to call the corresponding testing interface. 

Meanwhile, a CallEvent is generated to trigger the outgoing transition. In this way, the test 

model and the system are being stimulated by the same invocation. The execution 

continues until all state machines reaching a final state. Appendix A presents an activity 

diagram of the execution process.  

6.2.2 Extensions to fUML and PSSM 
To facilitate test execution, TM-Executor extends fUML and PSSM in four ways. First, 

TM-Executor extends fUML to execute the test model specified with MoSH. For instance, 

operations stereotyped with «CreateStimulusAction» and «CheckPropertyAction» have 

specific semantics in our case, and thus we extended the existing semantics of the 

Operation defined in fUML. Second, for certain UML model elements (i.e., 

BroadcastSignalAction and ChangeEvent), neither fUML nor PSSM defines their 

execution semantics. Thus, we defined their semantics and implemented them in the 

execution engine. Third, there exist defined semantics in PSSM for certain UML 

metaclasses, but they do not sufficiently serve our purpose. Thus, we extended them. For 

instance, the execution semantics of State and Transition were extended to consider state 

invariants. Fourth, we newly defined three types of OpaqueAction to facilitate the 

specification of testing interfaces. The detailed implementations are presented in the 

corresponding technical report [18], and Appendix B summarizes the extensions. 

6.3 Introduce Uncertainties 

In TM-Executor, environment changes are controlled by simulators/emulators. When a 

system interacts with an environment via sensors or actuators, the data measured by 

sensors or the actuations performed by actuators are potentially affected by uncertainties. 

The uncertainties, captured in a test model, have to be introduced when the interaction 

happens. The Uncertainty Introducer fulfills the task. It generates uncertainty values in 
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different ways for the three levels of uncertainties (Section 5.3.2). The values are used to 

modify data generated by sensors for measurement uncertainties, alter instructions sent to 

actuators for actuation deviations, and detain delivery of sensor data and actuation 

instructions for network latency. 

 For level 1 uncertainties, their possible uncertainty values are defined as an interval, 

representing a determined value with a margin of error. By selecting a value from the 

interval, the value of a level 1 uncertainty is generated.  For level 2 and level 3 

uncertainties, the knowledge of uncertainties can be quantitative or qualitative. For the 

qualitative knowledge, several categories are defined for the uncertainty values (Section 

5.3.2), and probability or possibility distributions define the likelihood of each category. In 

this case, the Uncertainty Introducer first selects a category based on the probability or 

possibility distribution, and then it generates an uncertainty value based on the membership 

function of the category. If the knowledge is quantitative, probability or possibility 

distribution is specified to measure the uncertainty. For a probability distribution, 

Uncertainty Introducer directly generates uncertainty values according to the distribution. 

For a possibility distribution, it is first transformed into an equivalent probability 

distribution [37], which is used to generate an uncertainty value.  

6.4 Orchestrate Execution 

Based on the FMI standard10 [33], we implemented a co-execution algorithm in the ETM 

Execution Engine to coordinate the execution of the test model, system, and 

simulators/emulators. The following two subsections explain the FMI based co-execution 

architecture and the algorithm respectively.  

6.4.1 FMI Based Co-Execution 
FMI is a standard to support co-execution of hybrid models [33] and is particularly suitable 

for SH-CPSs, as they often contain subsystems designed with diverse modeling paradigms 

[38]. In the architecture of FMI based co-execution (Figure 21), every executable model is 

wrapped as a Functional Mock-up Unit (FMU). Each FMU can be implemented by its 

 
 

10Though there are several other co-simulation standards, such as HLA (coming from military applications), 
SMP (in the space domain), FMI gained the most attention from both research and industry. Thus, it is used 
in our work. 
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simulation language, but its interfaces11 and its I/O dependence relations are defined by the 

FMI standard. Via the standard interfaces and based on the I/O dependence relations, a 

Master program orchestrates communications and executions of FMUs.  

 
Figure 21 Architecture of the FMI Based Co-Execution 

In TM-Executor, the executable test model, system, and simulators/emulators are all 

executed as FMUs (Figure 21). Their standard interfaces are either directly implemented in 

their dynamic models or indirectly realized by an FMI wrapper [33]. The ETM Execution 

Engine plays the role of the Master program. It uses the standard interfaces of the FMUs to 

orchestrate the co-execution. Because the FMI standard does not provide the algorithm 

used by Master for co-execution, inspired by Broman et al. [38], we implemented a co-

execution algorithm, which is presented in the next section.  

6.4.2 Co-Execution Algorithm 
Our co-execution algorithm (Algorithm 1) takes three inputs. The first is a set of 

interconnected FMUs, similar to the one shown in Figure 21. The connections between the 

ports of the FMUs reflect their I/O dependencies. For instance, input port T1 depends on 

output port S1, and input port M1 depends on output port T2. Note that although there is a 

loop in Figure 21, port S1 does not depend on port S2. Thus, there is no cyclic dependency. 

If there are cyclic dependencies among sensors or actuators, the Newton Raphson method 

[39] has to be used to compute the interdependent port values iteratively. As the FMI 

standard does not support the cyclic dependencies [33], we only focus on acyclic cases in 

this paper.   

The second input of the algorithm is a set of ordered I/O dependencies. Because of I/O 

dependencies among ports, values of input and output ports have to be propagated in a 

right order to assure a determinate and correct co-execution. As the I/O dependencies form 

a directed graph (Figure 21) and the graph is acyclic, we can obtain a right propagation 

order by following the graph [38].  
 

 
11There are four kinds of standard interfaces defined in FMI: init, which initializes the execution time of a 
FMU; set, which assigns a given value to a variable in a FMU; get, which queries the value of a variable in a 
FMU; and doStep, which performs an execution step on a FMU, using a given step size ∆t.  
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Algorithm 1 Coexecute(List<FMU> FMUs, List<Dependence> orderedDeps, StepSize h): 
Input FMUs is the set of FMUs that to be executed.  

 orderedDeps are the ordered I/O dependencies among the FMUs. 
 h is the maximum co-execution step size, acceptable for all the FMUs. 

Output stepNum is the total number of steps performed in the co-execution 
Begin  

1 for each M in FMUs 
2     M.init()               
3 stepNum ← 0 
4 while FMUs not terminate 
5     for each relation (Msrc.src → Mtar.tar) in orderedDeps 
6         Vsrc ← get(Msrc, src)    //get the independent value from the source FMU  
7         set(Mtar, tar, Vsrc)      // set the dependent port value for the target FMU 
8    for each M in FMUs 
9        doStep(M, h) 

10    stepNum ← stepNum + 1 
11 return stepNum 

End  
 

The third input of the algorithm is the step size, which is to be used in each execution 

step. Limited by its implementation, an FMU cannot perform an execution step with an 

arbitrary step size. For example, assume that a numerical integration is used in an FMU. 

The range of the integration restricts the maximum step size that FMU can perform. 

Therefore, before the co-execution, testers have to determine the maximum step size that is 

acceptable for all FMUs.  

Taking the three inputs, the algorithm first initializes the time of each FMU to zero, i.e., 

the beginning time of the co-execution (L1, L2). After initializing the step number (L3), 

the algorithm continuously performs two-phase execution steps until termination (L4 ~ 

L10). In the first phase, the algorithm propagates values of input and output ports, 

according to the given I/O dependencies order (L5 ~ L7). Following that, it advances the 

execution of each FMU by a given step size h (L8, L9) and then updates the step number 

(L10). At last, the algorithm returns the number of steps that have been performed in the 

co-execution. Since the time semantics of UML state machines is discrete events, 

advancing the execution time of the test model only gives the model an opportunity to 

process received events and fire transitions. This corresponds to the synchronization 

mentioned in Section 6.2.1. Physical parts of SH-CPSs are simulated or emulated by 

simulators/emulators, whose execution semantics are continuous. Advancing the execution 

time of simulators/emulators means that they perform a simulation computation with a 

constant step size.  
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The time complexity of Algorithm 1 is O((N+2P)*S), where N is the number of FMUs 

that are used in the co-execution, P is the total number of ports of all FMUs, and S is the 

average number of steps performed in each co-execution. The space complexity of 

Algorithm 1 is O(N), i.e., the space complexity is linear with the number of FMUs.  

7 Evaluation 
Section 7.1 presents the experiment design, followed by the experiment execution (Section 

7.2.2), and results (Section 7.3). Section 7.4 gives an overall discussion, and Section 7.5 

presents threats to validity.  

7.1 Experiment Design  

The experiment was designed to answer three research questions (RQ1-RQ3), as shown in 

Table 6.  
Table 6 Experiment Design 

RQ Task Metrics Systems Statistic
al Test 

1 T1: Mapping concepts and 
their relationships from 
SH-CPSs to the ones in 
CMSU  

PerCov, PerCorr VCS, TMS, 
RFID-SC, 
DSRL, ISR, 
APR, RAMA, 
PeMS, VSS 

N/A 
 

2 T2: Creating executable test 
models with MoSH 

FunBeh, HealBeh, Diagnosis, Recovery, 
Uncertainty, TotalElem, PerStereo 

RAMA, PeMS, 
VSS 

3 T3: Applying TM-Executor 
to test an SH-CPS with a 
random strategy. 

TraTime, ExitStateTime, EnterStateTime, 
ExeOpTime, GenDataTime, EvalTime, 
GenUncTime, DetectedFault, OpProcTime 

RAMA Kruskal–
Wallis 
test 

RQ1: Can CMSU cover all relevant concepts and their relationships identified in selected 

SH-CPSs? 

With this RQ, we aim to assess if any concepts or relationships cannot be correctly 

mapped to the conceptual model. Doing so helps us to find missing concepts and incorrect 

relationships in CMSU. Note that we do not prove the completeness and correctness of 

CMSU. Instead, we report empirical data to increase the confidence that CMSU is 

complete and correct.  

We, therefore, defined task T1 to answer RQ1. In the task, nine SH-CPSs were used to 

assess the quality of CMSU: Video Conferencing System (VCS) [40], Traffic Monitoring 

System (TMS) [41], Radio-Frequency IDentification Supply Chain (RFID-SC) [42], 

Distributed Systems Research Lab (DSRL) [43], Intelligent Service Robot (ISR) [44], 

Automatic Power Restoration System (APRS) [45], RAMA [13], freeway Performance 
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Measurement System (PeMS) [46], and Video Streaming System (VSS) [47]. Based on the 

specification of the nine systems, we first identified their main components. For each 

component, we captured its behaviors and the environmental uncertainties that may affect 

these behaviors. For self-healing behaviors, we further identified their strategies to detect 

and recover from faults. The identified components, behaviors and uncertainties were 

manually mapped to the concepts and relationships in CMSU. Based on the mapping, we 

calculated the Percentage of Covered Concepts and Relationships (PerCov) and the 

Percentage of Correctly Covered elements (PerCorr).  

RQ2: Does MoSH provide a cost-effective way of creating executable test models?  

With this RQ, we want to assess 1) the additional modeling effort that is required to apply 

MoSH to create executable test models, as compared with applying standard UML 

notations, and 2) the applicability of MoSH to model self-healing behaviors and 

uncertainties.  

For this RQ, we defined task T2, which applies MoSH to build executable test models for 

SH-CPSs. To measure the extra modeling effort required for applying MoSH, we 

calculated the Total number of model Element (TotalElem) and the Percentage of 

Stereotyped model elements (PerStereo). For the applicability, we checked the numbers of 

Functional Behaviors (FunBeh), Self-Healing Behaviors (HealBeh), Self-Diagnosis 

behaviors (Diagnosis), Self-Recovery behaviors (Recovery), and Uncertainties 

(Uncertainty) that can be specified with MoSH. For RQ2, we used RAMA [13], PeMS 

[46], and VSS [47] as we do not have sufficient specifications for the other six systems (for 

RQ1). 

RQ3: How is the performance of TM-Executor regarding test execution? 

With this RQ, we are interested in assessing how much time is required by TM-Executor to 

execute a test model, generate test data, evaluate constraints, and introduce uncertainties. 

For RQ3, we defined task T3, which applies TM-Executor to test the RAMA system 

against the executable test model created in task T212 under environmental uncertainties. 

For the evaluation purpose, we implemented a random testing strategy, which randomly 

selects an outgoing transition to generate a testing stimulus. To account for randomness, 

we conducted 100 runs for the experiment. In each run, TM-Executor executed RAMA 
 

 
12 We could not use PeMS and VSS to answer RQ3 as we didn’t have access to their implementations. 
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together with the test model 1000 times, directed by the random testing strategy. The 1000 

times of executions allow TM-Executor to cover most transitions specified in the test 

model. 

We evaluated the performance of TM-Executor from four aspects. First, we measured 

the time cost of TM-Executor for each execution step of the test model, i.e., Exiting a 

State (ExitStateTime), Traversing a transition (TraTime), Entering a State 

(EnterStateTime), and Executing an Operation (ExeOpTime).  

Second, we measured the time taken by TM-Executor to Generate test Data 

(GenDataTime). Because test data was obtained by solving guards specified in a test model, 

the GenDataTime was affected by the complexity of the guards, i.e., the complexity of 

OCL constraints on input parameters. Thus, we further assessed the effect of guard 

complexity on the GenDataTime. In total, there are 52 guards in the test model. According 

to three complexity metrics proposed in [48], we put the guards with the same complexity 

in one group and obtained 

four groups of guards 

(Table 7). We measured 

the GenDataTime for each 

guard covered by the 100 

runs of the experiment. On 

average, each guard is 

covered 29125 times. We 

collected 196304, 175101, 

371674, and 771395 samples of the GenDataTime for the four groups of guards, 

respectively. To check the normality of the GenDataTimes, we conducted the Shapiro–

Wilk test for each group. The p-values of the tests are lower than 2 × 10!"#. Thus, the 

samples of the four groups depart from normality. Hence, we applied the Kruskal–Wallis 

test to check if the GenDataTimes of the four groups are significantly different. 

Third, we measured the time cost of TM-Executor to Evaluate a class or state invariant 

(EvalTime), which is also defined as an OCL constraint. As the same for the GenDataTime, 

the EvalTime was also affected by the complexity of the invariant. The test model contains 

99 invariants in total. We put the invariants with the same values of complexity metrics in 

one group and obtained six groups (Table 7). We measured the EvalTime whenever an 

Table 7 Descriptive Statistics of Guard and Invariant Groups 

Groups #Types Types #Clauses Group Size 
Guard Group 1  

1 
 

Enumeration 1 6 
Guard Group 2 

Real 
1 6 

Guard Group 3 2 13 
Guard Group 4 6 27 
Invariant Group 1 

2 Enumeration & Real 
2 12 

Invariant Group 2 3 6 
Invariant Group 3 7 27 
Invariant Group 4 

1 
Enumeration 1 13 

Invariant Group 5 Real 1 29 
Invariant Group 6 2 12 

#Types is the number of parameter types contained in a constraint. 
Types are the parameter types contained in a constraint. 
#Clauses is the number of clauses in a constraint.  
Group Size is the number of constraints contained in each group 
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invariant is evaluated during the experiment. In total, we collected 650310, 300516, 

1350723, 650501, 1449653, and 600632 samples of the EvalTime for the six groups of 

invariants. Since the p-values of the Shapiro–Wilk tests for the six groups of samples are 

lower than 0.05, the samples are not normally distributed. Thus, we conducted the 

Kruskal–Wallis test to check if the EvalTimes of the six groups are significantly different.  

Fourth, we evaluated the time spent by TM-Executor to Generate an Uncertainty value 

(GenUncTime). As explained in Section 6.3, an uncertainty value is generated based on 

universes, probability distributions, possibility distributions, or membership functions. To 

assess the effect of different ways of generating uncertainty values on the GenUncTime, we 

grouped uncertainties according to the methods of generating their uncertainty values. In 

total, there are ten uncertainties specified in the test model. One of them is Level 1 

uncertainty, whose values are generated based on its universe. Seven of them are Level 2 

uncertainty, whose values are generated according to their probability distributions. One is 

Level 3 uncertainty, whose values are generated based on its possibility distribution. The 

last one is also a Level 3 uncertainty, while its values are generated based on its possibility 

distribution and membership functions, as knowledge about this uncertainty is imprecise. 

We measured the GenUncTime, whenever TM-Executor introduces an uncertainty during 

the experiment. We collected 7445059, 52115413, 7445059 and 7445059 samples of the 

GenUncTime for the four groups of uncertainties. The p-values of the Shapiro–Wilk tests 

for the samples are lower than 0.05, and thus the samples depart from normality. Therefore, 

we applied the Kruskal–Wallis test to check if the GenUncTimes of the four groups are 

significantly different. 

7.2 Experiment Execution 

This section presents the execution processes for the three tasks defined in Section 7.1.  

7.2.1 Identifying and Mapping Concepts (T1) 
Based on the specification of the nine SH-CPSs, we evaluated and improved CMSU’s 

quality, following the steps summarized in Figure 22. Initially, we derived the conceptual 

model (CMSU V.1) from the literature (Activity A1 in Figure 22). To evaluate its quality, 

we identified SH-CPS related concepts as well as their relationships (Cons. & Rels. from 

CSs. V.1), from the nine SH-CPSs’ specifications (Activity A2.1). Cons. & Rels. from CSs. 

V.1 contain necessary entities required to specify self-healing behaviors and uncertainties 
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of an SH-CPS. For each identified concept or relationship, we tried to manually find a 

counterpart in CMSU V.1 (Activity A2.2). If the counterpart is missing, we further 

investigated if the extracted concept or relationship is correctly identified. In case that it 

was correct, CMSU V.1 was revised to cover the missing concept. Otherwise, the 

incorrectly identified concept or relationship was fixed. After A2.2, we created a new 

version of the extracted concepts and relationships, i.e., Cons. & Rels. from CSs. V.2. At 

last, the refined conceptual model (CMSU V.2) was further refined by A3 via a mapping 

from Cons. & Rels. from CSs. V.2 to CMSU V.2. The final obtained CMSU V.3 is 

presented in Section 4 and was implemented as UML profiles (Section 4.1.2).  

 
Figure 22 The Process of Developing CMSU 

7.2.2 Modeling Executable Test Models with MoSH (T2) 
To answer RQ2, the first author of this paper applied MoSH to specify executable test 

models for RAMA [13], PeMS [46], and VSS [47], following the modeling methodology 

presented in Section 4.1.2. First, the architecture of each system was specified as a UML 

class diagram, with SH-CPS Component Profile applied. Second, the behaviors of each 

class were captured as UML state machines, and SH-CPS Behavior Profile was applied to 

model the potential faults and the logic of fault diagnosis and recovery. Third, SH-CPS 

Uncertainty Profile was applied to define environmental uncertainties that may impact the 

captured behaviors. To correctly define uncertainties, we used detailed product 

specifications of sensors and actuators, provided by manufacturers13. The specifications 

 
 

13 One example of the product specifications can be downloaded from:   
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf  
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specify the sensors’ and actuators’ characteristics, such as sensitivity, nonlinearity, and 

noise level. Based on the information, we identified and modeled the uncertainties in the 

test models. Fourth, UML activity diagrams were specified to bind testing interfaces with 

operations defined in each class. Meanwhile, SH-CPS Testing profile was applied to the 

class diagram to annotate the role played by a class or an operation in testing. The 

specified UML class diagrams, state machines, and activity diagrams constitute the 

executable test models. Based on them, we calculated the metrics (Section 7.1) to assess 

the cost-effectiveness and applicability of MoSH.  

7.2.3 Testing SH-CPS with TM-Executor (T3) 
To answer RQ3, we applied TM-Executor to test a real SH-CPS (RAMA), based on the 

test model built in T2. Section 7.3.2 gives a summary of the model. In total, ten functional 

behaviors and four self-healing behaviors were tested with five simulators of sensors and 

one simulator of an actuator. Via the simulators, ten environmental uncertainties (Table 12) 

were introduced during executions.  

We used a single PC, with a processor of Intel Core i7 2.6 GHz and 16 GB of RAM, to 

run the experiment. During execution, timers were used to measure the time to execute the 

model, generate test data, evaluate constraints, and generate uncertainty values. For each 

guard, invariant, and uncertainty, we measured the GenDataTime, EvalTime, GenUncTime 

(Section 7.1) and conducted the Kruskal–Wallis test to check the effects of guard 

complexity, invariant complexity, and different ways of generating uncertainty values on 

the performance of TM-Executor.  

7.3 Experiment Results 

This section presents the results of each research question.  

7.3.1 Results for RQ1 
In total, we identified 832 instances of concepts from the specifications of nine SH-CPSs. 

After the two-steps refinement presented in Section 7.2.1, CMSU succeeded to cover all 

the identified concepts and their relationships. Table 8 summarizes the statistics of 

different concepts. As shown in the table, every system consists of one or more types of 

PhysicalUnit, which are constituted by Sensors, Actuators, and Controllers. All systems 

were designed for monitoring or controlling only one kind of PhysicalProcess, such as 

videoconferencing for VCS and traffic for TMS.  
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Table 8 Descriptive Statistics of the SH-CPSs 

Concept VCS TMS APRS RFID-SC DSRL ISR RAMA PeMS VSS 
Self-Healing CPS 1 1 1 1 1 1 1 1 1 
PhysicalProcess 2 1 1 1 2 1 1 1 1 
Network 1 1 1 1 1 1 1 1 1 
PhysicalUnit 7 5 5 4 8 2 2 4 2 
Sensor 3 1 3 1 4 5 5 2 1 
Controller 7 2 2 4 9 2 3 4 2 
Actuator 2 0 5 0 4 1 1 0 0 
Functional Behavior 4 1 1 1 4 1 10 7 3 
Self-Healing Behavior 2 1 2 4 4 5 4 5 2 
Goal 1 1 1 1 1 1 1 1 1 
State 21 6 22 11 32 36 97 41 21 
Probe 2 1 3 5 4 5 5 2 2 
Effector 2 1 5 1 4 2 1 2 1 
Measurement 2 1 5 5 7 4 4 5 2 
Self-Diagnosis 2 1 5 4 4 5 4 5 2 
Self-Recovery 4 3 3 4 4 5 9 5 3 
Fault 2 1 3 4 4 5 4 5 2 
Error 2 1 5 4 4 5 4 5 2 
RecoveryPolicy 4 3 3 4 1 5 9 5 3 
AdaptationAction 4 3 10 3 8 4 4 2 2 
Uncertainty 3 1 4 4 5 6 10 6 1 
Total 78 36 90 67 115 102 180 109 55 
 

Table 9 presents the kinds of Probes, RecoveryPolicies, Effectors used by each system to 

diagnose or recovery from faults. PhysicalProcessProbe and ControlEffector are the most 

common Probe and Effector used by these SH-CPSs. With the respect of RecoveryPolicy, 

ActionPolicy is dominating. Totally, 39 Uncertainties were identified, 35 of which belong 

to Level 2 uncertainty. This reflects that the probability theory is the most common way to 

measure uncertainty.  
Table 9 Descriptive Statistics of Categories of Probe, RecoveryPolicy, Effector, and Uncertainty 

Concept VCS TMS APRS RFID- 
SC DSRL ISR RAMA PeMS VSS P 

Probe 
PerformanceProbe 2 0 0 3 0 0 0 2 2 31% 
EventProbe 0 1 0 2 0 0 0 0 0 10% 
PhysicalProcessProbe 0 0 3 0 4 5 5 0 0 59% 

Recovery 
Policy 

ActionPolicy 4 3 2 4 0 5 9 5 3 94% 
GoalPolicy 0 0 1 0 0 0 0 0 0 3% 
UtilityFunctionPolicy 0 0 0 0 1 0 0 0 0 3% 

Effector 
ParameterEffector 2 0 0 0 0 0 0 0 0 11% 
ArchitectureEffector 0 1 0 1 0 0 0 0 1 16% 
ControlEffector 0 0 5 0 4 2 1 2 0 73% 

Uncertainty 

Level 1 0 0 0 2 0 0 0 0 0 5% 
Level 2 3 1 3 2 5 6 8 6 1 87% 
Level 3 0 0 1 0 0 0 2 0 0 8% 
Level 4 0 0 0 0 0 0 0 0 0 0% 
Level 5 0 0 0 0 0 0 0 0 0 0% 

P = n / N, where n is the number of occurrences of a subclass and N is the total number of occurrences of all sub-classes, 
e.g., PerformanceProbe, EventProbe, and PhysicalProcessProbe are subclasses of Probe. 
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7.3.2 Results for RQ2 
To assess the additional effort required to apply MoSH to create executable test models, 

we report results of the PerStereo metric in Table 10. We applied stereotypes from MoSH 

to 15%, 15%, and 19% of model elements for RAMA, PeMS, and VSS. On average, 16% 

of model elements were stereotyped. This number gives us a rough indication of additional 

modeling effort required to use MoSH to create executable test models, as compared with 

applying standard UML notations. 

To evaluate the applicability of MoSH, we 

first provide the statistics of model elements in 

Table 11. The statistics reflect the complexity 

of the test models for the three SH-CPSs. 

Among the three systems, RAMA is the most 

complicated one. It contains ten functional 

behaviors and four self-healing behaviors. In 

total, 377 model elements were used to specify the 14 behaviors. In contrast, PeMS and 

VSS are relatively simple. In total, 144 model elements were used for specifying 12 

behaviors of PeMS and 97 model elements were used for specifying five behaviors of VSS.  

Second, we collected the 

numbers of functional behaviors, 

self-healing behaviors, fault 

diagnoses, fault recoveries, and 

uncertainties. As shown in Table 

10 (the FunBeh and HealBeh rows) 

and Table 8 (the Functional 

Behavior and Self-Healing 

Behavior rows), all the identified 

functional and self-healing behaviors were captured in the test models. Moreover, self-

diagnosis and self-recovery, the two key steps of self-healing behaviors, were also 

explicitly specified, as shown in the Diagnosis and Recovery rows in Table 10. They 

enable self-healing behaviors to be rigorously tested.  

We specified ten uncertainties for RAMA, six uncertainties for PeMS, and one 

uncertainty for VSS, as shown in Table 12. With MoSH, we could define the universe, 

Table 11 Descriptive Statistics of Model Elements 
(RQ2) 

Element RAMA PeMS VSS Avg. 
Class 10 7 4 7 
Attribute 42 12 11 21 
Operation 29 14 11 18 
Signal 10 10 4 8 
Association 9 7 3 6 
State Machine 14 12 5 10 
State 97 41 21 53 
Transition 166 41 38 81 
Total 377 144 97 204 
 

Table 10 MoSH Evaluation Results (RQ2) 

Metric RAMA PeMS VSS Avg. 
TotalElem 377 144 97 206 
FunBeh 10 7 3 7 
HealBeh 4 5 2 4 
Diagnosis 4 5 2 4 
Recovery 9 5 3 6 
Uncertainty 10 6 1 6 
PerStereo 15% 15% 19% 16% 
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categories, and measure for each uncertainty. Based on them, TM-Executor can introduce 

uncertainties via simulators/emulators, which enables the systems to be tested under 

uncertainties. 
Table 12 Uncertainties in RAMA, PeMS and VSS (RQ2) 

SH-CPS Uncertainty Level Universe Measure Categories 
RAMA Wind Direction 3 0°	~	360° Possibility Null 

Wind Velocity 3 0 ~ 30 m/s Possibility Low, Med, High 
GPS Noise 2 -50 ~ 50 m Probability Null 
Servo Deviation 2 -1 ~ 1 m/s2 Probability Null 
Barometer Altitude Noise 1 -10 ~ 10 m N/A N/A 
Barometer Climb Rate Noise 2 -0.5 ~ 0.5 m/s2 Probability Null 
Accelerometer Noise  2 -1 ~ 1 m/s2 Probability Null 
Gyro Noise 2 -0.1 ~ 0.1 rad/s Probability Null 
Compass Noise  2 -0.04 ~ 0.04 gauss Probability Null 
Compass Hysteresis 2 -0.01 ~ 0.01 gauss Probability Null 

PeMS Vehicle Speed 3 10 ~ 120 km/h Possibility Null 
Vehicle Size 3 2000 ~ 5000 L Possibility Mini, Compact, Mid, 

Large 
Loop Detector Impedance 2 5 ~ 10 Ω Probability Null 
Loop Detector Voltage  2 3 ~ 4 V Probability Null 
Loop Detector Sensitivity 2 0.1 ~ 1 𝜇H Probability Null 
Loop Detector Latency  2 0 ~ 0.1 s Probability Null 

VSS Latency of Channel 2 0 ~ 800 ms Probability Null 
 
7.3.3 Results for RQ3 
To answer RQ3, we summarize the time 

spent by TM-Executor to perform 

testing activities in Table 13. On 

average, it took 5.6 seconds for 

traversing a transition, 39 milliseconds 

for test data generation, and less than 

one millisecond for exiting or entering a 

state, executing an operation, evaluating a constraint or generating an uncertainty value. 

During test execution, most of the time was spent on traversing transitions. As shown in 

Table 13, after sending a stimulus to the SH-CPS, the system maximally took 9.5 seconds 

to perform an instructed operation and enter a target state. However, this time is 

determined by the software and simulators/emulators of the system. Due to the high 

computational cost of executing the software and the simulators/emulators, changing the 

state of the software takes considerable time. To improve the efficiency of testing, a 

Table 13 Evaluation Result (RQ3) 

Metric Mean 
(ms) 

Minimum 
(ms) 

Maximum 
(ms) 

TraTime  5607 5260 9531 
ExitStateTime <1 <1 <1 
EnterStateTime <1 <1 <1 
ExeOpTime <1 <1 1 
GenDataTime 39 3 270 
EvalTime <1 <1 1 
GenUncTime <1 <1 <1 
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distributed testing framework can be developed in the future. It may reduce the time cost of 

executions, by executing testing components in separate computational nodes.   

 For the first Kruskal-Wallis test which aims to evaluate the effect of guard complexity 

on the GenDataTime, the p-value is less than 2.2 × 10!"#. Thus, we conclude that the 

GenDataTimes were significantly different for guards with different complexities. On 

average, TM-Executor took 7.2, 9.3, 17.1, and 63.3 milliseconds to generate test data for 

the four groups of guards. For the second Kruskal-Wallis test which aims to evaluate the 

effect of invariant complexity on the EvalTime, its p-value is 0.6, implying that the 

complexity of the invariants did not significantly affect the time taken for evaluation. For 

the third Kruskal-Wallis test which aims to evaluate the effect of different ways of 

generating uncertainty values on GenUncTime, its p-value equals to 0.6. It reflects that the 

different ways of generating uncertainty values did not significantly influence the time 

spent on uncertainty generation. 

In the experiment, one fault (state invariant violation) was detected by TM-Executor. 

This fault led to the collision of the drone. Though a self-healing behavior helped the drone 

automatically avoid collisions with other vehicles, the drone failed to keep a safe distance 

from an intruding vehicle because of uncertainties from the GPS, compass, barometer, 

accelerometer, gyro, and servos. Note that we do not assume the system was correctly 

implemented and we only aim to test whether the self-healing behaviors can successfully 

recover systems from faults under uncertainties.  

7.4 Overall Discussion 

In this section, we provide an overall discussion based on the results presented in Section 

7.3. Based on the results presented in Section 7.3.1, we conclude that our conceptual model 

(CMSU) covered all concepts and their relations identified in nine SH-CPSs. This 

increases our confidence that CMSU captures the main concepts of SH-CPSs and 

uncertainties.  

Based on the results presented in Section 7.3.2, we conclude that, on average, it needed 

additional 16% of modeling effort to apply MoSH to create the executable test models, as 

compared with applying standard UML notations, for the selected SH-CPSs. We 

demonstrated the applicability of MoSH to specify executable test models for three diverse 

SH-CPSs of varying complexities. This effort gives us evidence that MoSH is capable of 
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modeling different SH-CPSs to support uncertainty-aware executable model-based testing. 

For the current evaluation, the first author of the paper created all the models. We 

acknowledge that a better evaluation would be to conduct a controlled experiment with 

more modelers to assess the applicability of MoSH. Conducting such controlled 

experiments (even in an academic setting) requires resources and opportunities, whereas 

we are actively pursuing such opportunities. 

Test models developed with MoSH can be executed by TM-Executor to enable the 

executable model-based testing. By applying TM-Executor to test a real-world SH-CPS, 

we demonstrated that TM-Executor could automatically test the SH-CPS under 

uncertainties. Moreover, TM-Executor could obtain runtime information about the 

system’s actual behaviors from test execution. The information can be used by dedicated 

testing strategies [12, 49] to find the optimal sequence of testing stimuli for fault detection. 

However, devising such strategies is not covered in this paper. In the evaluation reported in 

this paper, we applied a random strategy to guide the selection of stimuli, without 

exploiting the runtime information provided by TM-Executor. Thus, the random strategy is 

not optimal regarding fault detection. We have devised a more effective strategy and 

applied it with TM-Executor to test three SH-CPSs reported in [12]. With the help of 

runtime information provided by TM-Executor, the new strategy detected significantly 

more faults than a traditional coverage based method [12]. Based on the results presented 

in Section 7.3.3, we also conclude that the time taken by TM-Executor to perform testing 

activities was relatively small, i.e., in the order of milliseconds. Thus, it is practicable to 

apply TM-Executor to perform the executable model-based testing.    

7.5 Threats to Validity 

Conclusion validity threats are related to factors that can affect conclusions drawn from 

experimental results. The random testing strategy implemented in TM-Executor leads to 

different behaviors of a system being tested. For different behaviors, the amount of time 

spent by TM-Executor to perform testing activities varies as well. To deal with such a 

threat, we ran the experiment 100 runs.  

External validity threats concern the generalization of the results. One external validity 

threat is that we only applied nine SH-CPSs to evaluate CMSU and applied three of them 

to evaluate MoSH. Although the nine systems are from different domains, they cannot 
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assure to cover all kinds of self-healing behaviors. Based on the specifications of the nine 

systems, 40 uncertainties were identified. Among them, 17 and 10 uncertainties were used 

to evaluate MoSH and TM-Executor respectively. Although the uncertainties cover the 

three levels (Level 1 to Level 3) of uncertainties that are supported by MoSH and TM-

Executor, more uncertainties at each level are still needed to generalize the results further. 

Another external validity threat is that only one system was employed to evaluate TM-

Executor’s performance. However, diverse uncertainties, state invariants, guards, 

operations were exploited by TM-Executor to test a real SH-CPS. Nonetheless, additional 

case studies are needed to generalize the results further.  

Construct validity threats refer to the degree to which the experiment setting (including 

two metrics for the CMSU evaluation, seven metrics for MoSH and eight metrics for TM-

Executor evaluation) reflects the construct under study (i.e., the quality of CMSU, the cost-

effectiveness of MoSH and the performance of TM-Executor). To reduce the threats, we 

carefully selected and defined the metrics focusing on our overall objective of testing SH-

CPSs under uncertainties. Another construct validity threat is that the levels of 

uncertainties used in the evaluation were manually classified. To avoid incorrect 

classification, we did the classification based on detailed product specifications. 

Nevertheless, additional metrics and other ways of evaluation are also possible.  

8 Related work 
In this section, we discuss related work concerning fault-tolerant computing (Section 8.1), 

the conceptual model of SH-CPSs and uncertainties (Section 8.2), modeling methods for 

SH-CPSs (Section 8.3), and testing approaches for SH-CPSs under uncertainties (Section 

8.4). Section 8.5 summarizes how our work advances state of the art. 

8.1 Fault-Tolerant Computing 

A self-healing system can perceive that it is not operating correctly and, without human 

intervention, make necessary changes to its architecture or behaviors to restore itself to a 

normal state [2]. Since the goal of self-healing is to make system fault-tolerant, self-

healing can be seen as a kind of fault-tolerant mechanism. However, not all fault-tolerant 

mechanisms can be considered as self-healing behaviors, as many fault-tolerant 
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mechanisms can only mask faults and they cannot dynamically change a system’s 

architecture or behaviors to recover the system from faults [3].  

Fault-tolerance is defined as “the ability of a system to continuously perform its intended 

functions in the presence of a given number of faults” [50]. A certain amount of 

redundancy has to be applied to achieve fault-tolerance, including time redundancy, 

information redundancy, hardware redundancy, and software redundancy [51]. In time 

redundancy, computation or data transition is performed multiple times to overcome 

transient faults. Information redundancy uses error-detection code or error-correction code 

to detect or mask faulty information caused by incorrect storage or transition. For hardware 

redundancy, computation is performed on several instances of hardware components 

simultaneously.  By comparing their outputs and voting on the result, the fault can be 

detected and masked. Similarly, multi-version software fault-tolerance techniques employ 

redundant software modules to mask faults. As the aforementioned fault-tolerance 

techniques cannot make runtime adaptation that aims to restore normal system operations, 

they are not regarded as self-healing behaviors. In contrast, single-version software fault-

tolerance techniques enable the software to detect faults, diagnose causes and prevent the 

propagation of their effect throughout the system. Thus, the single version techniques can 

be considered as a kind of self-healing behaviors, whereas traditional single version 

techniques mainly rely on checkpoints and roll-backward or roll-forward to handle a 

detected fault [52]. In contrast, the self-healing behaviors, targeted in this paper, can also 

modify a system’s architecture or behaviors in case of faults. Thus, the term “self-healing” 

is used in this paper to represent the new kind of fault-tolerant mechanisms.  

8.2 Concepts of CPS, Self-Healing, and Uncertainty 

After a decade’s effort, key elements of CPSs and self-healing systems have been 

identified by academic and industrial communities. Zhang et al. [53] defined a CPS as a set 

of heterogeneous physical units communicating via heterogeneous networks, where 

physical units are recognized as the first-class objects of CPSs and networks are also 

considered important, as they enable communication among physical units. Lee et al. [54] 

considered sensors and actuator as interfaces between computational and physical 

components. CPSs were characterized by integrating computation and physical processes 

[55], and their primary goal is to control physical processes efficiently [56]. For self-
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healing, fault diagnosis and recovery are identified as its key steps by Psaier et al. [57]. 

Kephart et al. [23] and White et al. [58] introduced and evaluated three types of recovery 

policies, particularly for self-healing behaviors. Moreover, inspired by goal-oriented self-

healing approaches [59], the goal of self-healing behaviors is also captured. We adopted 

these key concepts in the components of CPSs (Section 4.1) and self-healing behavior 

(Section 4.2) parts of our conceptual model. 

How to cope with uncertainty is a grand challenge [1]. In the past, the effort was mostly 

spent on identifying uncertainty sources in SH-CPSs. Ramirez et al. [60] proposed a 

taxonomy of uncertainty sources in dynamically adaptive systems at the requirement, 

design, and execution phases. The uncertainty taxonomy is given from a system designer’s 

perspective, and it aims to help the designer to mitigate the effect of uncertainties. On the 

contrary, we define the uncertainty from a tester’s perspective, and we concern more about 

how to specify uncertainties and simulate their effect based on the specified uncertainties. 

Esfahani et al. [4] proposed another nine uncertainty sources, which need to be considered 

during design for self-adaptive systems. Although this paper introduces probability and 

possibility theories to model uncertainties, it does not identify the key elements, i.e., 

probability, possibility, and necessity, that are required to be specified for modeling 

uncertainties. Zhang et al. [53] developed a conceptual model of uncertainty for CPSs. The 

conceptual model captures three kinds of measure, i.e., vagueness, probability, and 

ambiguity. However, the key elements of the three kinds of measure are not provided, such 

as the universe and membership function. Alternatively, in the uncertainty part of the 

conceptual model (Section 4.3), we captured the concepts of Universe, Category, 

MembershipFunction, Probability, Possibility, and Necessity to specify uncertainty.  

8.3 UML-based Modeling for SH-CPSs 

To tackle the complexity of CPSs, researchers proposed to adopt model-based engineering 

[61], which uses models to facilitate system design, development, verification, and 

validation. Since a CPS is an integration of computation and physical processes, it is 

typically modeled as a hybrid system, where physical processes are specified as continuous 

models, and computation parts are defined as discrete models [62]. For physical processes, 

several modeling tools can be used to specify the continuous models such as Simulink [63], 

Modelica [64], and SystemC [65]. For the computational part, UML is the most broadly 
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used modeling language, and several UML profiles have been developed to extend UML 

for modeling CPSs, fault-tolerant mechanisms, or testing components.  

Systems Modeling Language (SysML) [6] reduces UML's software-centric restrictions 

and adds new notations and diagram types to model a broad range of components, 

including hardware, software, data,  and physical entities. However, SysML still lacks 

support from standards to be executable, and model transformation is needed to make 

SysML models executable [66]. Since our work aims to realize an executable model-based 

testing approach, the test model has to be executable. Thus, we chose to use fUML as the 

starting point to build our solution. xUML [67] is another choice for creating executable 

models. However, the semantics of modeling notations used by xUML are quite different 

than UML. As fUML is more broadly used [68], we chose to use fUML in our work. 

The profile of MARTE [7] adds capabilities to UML for model-driven development of 

real-time embedded systems. Particularly, it concerns how to model analyses and designs 

of real-time and embedded systems. We, however, aim to test if an SH-CPS can 

successfully detect and recover from faults under uncertainties. To fulfill the aim, we 

provide additional modeling support for self-healing behaviors and uncertainties. MARTE 

provides the capability of specifying probability distributions regarding frequencies, but 

not for modeling uncertainties due to incomplete or imprecise knowledge (Section 2.2). 

For instance, the measurement noise of a GPS could be described as Low, Medium, and 

High, but the boundaries of the three types are not precisely defined. In this case, testers 

can apply membership functions, provided by our modeling framework (Section 5.3.1) to 

specify the uncertainties associated with the measurement noise. Our modeling framework 

also reused the probability distribution library from MARTE, as the library provides well-

defined datatypes for modeling distributions.  

The profile of Dependability Analysis Modeling (DAM) [8] extends MARTE for 

dependability modeling and analysis. Regarding self-healing behaviors, the profile 

provides «DaReplacementStep» and «DaReallocationStep» to model replacement and 

reallocation performed by software components to recover from faults. Besides 

replacement and reallocation, SH-CPSs can also use runtime reconfiguration and 

adaptations to handle detected faults, directed by different kinds of recovery policies. To 

support modeling these fault recovery mechanisms (identified in Section 4.2.2), we provide 

the SH-CPS Behaviors Profile and an accompanying modeling methodology in Section 5.2.     
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Modeling Quality Of Service And Fault-Tolerance Characteristics And Mechanisms 

Profile (QFTP) [9] extends UML to model fault-tolerant software architecture. This profile 

focuses on modeling the redundancy used by the fault-tolerant mechanisms, including 

policies to create, deploy, monitor, and activate replicas, whereas it cannot be used to 

model self-healing behaviors that do not rely on replicas to detect and recover from faults. 

Alternatively, we identified three kinds of approaches for fault detection (Section 4.2.1) 

and three kinds of fault recovery policies (Section 4.2.2) that are not specifically associated 

with replicas. In Section 5.2, we provide the SH-CPS Behaviors Profile and a guideline to 

apply the profile to model the logic of fault detection and recovery.  

UTP v2 [29]  provides dedicated modeling support for model-based testing. It covers a 

variety of concepts that are deemed mandatory for testing, such as test-specific actions, test 

data, and test verdicts. Our modeling framework reuses the stereotypes from the Test 

Architecture and Test Behavior packages of UTP to specify testing components, as these 

stereotypes are standardized and have been precisely defined by UTP.   

8.4 Testing SH-CPSs Under Uncertainties 

This section discusses existing approaches for testing self-healing behaviors (Section 8.4.1) 

and for testing systems under uncertainties (Section 8.4.2).  

8.4.1 Testing Self-Healing Behaviors 
Fault injection is a straightforward method to test the recovery mechanisms of self-healing 

systems. By introducing faults, self-healing behaviors can be exercised; otherwise, they are 

rarely triggered. A fault model can be used to capture the faults that are to be handled by 

self-healing systems. Gama et al. [42] proposed a fault model that captures five types of 

faults (i.e., application hang, component crash, stale service, denial of service and 

excessive thread allocation). According to the model, faults are introduced by deploying 

and activating faulty Java Beans to trigger self-healing behaviors. Huebscher et al. [69] 

proposed to use context models to simulate sensor data and use the simulated data to 

trigger and evaluate self-healing behaviors. Similarly, Hänsel et al. [70] used a simulated 

architecture model as input to test the feedback loop of a self-healing system.  

These testing approaches focus on the methods to trigger self-healing behaviors, whereas 

they do not provide solutions to determine when to trigger the behaviors. Alternatively, we 

propose to build an executable test model capturing both functional and self-healing 
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behaviors, together with uncertainties. By executing the model and the system under test 

together, TM-Executor can dynamically decide how to exercise the system’s self-healing 

behaviors under uncertainties. 

8.4.2 Testing Systems Under Uncertainties 
Uncertainty in CPSs is still immature [5], whereas researchers have realized the 

importance to verify and validate SH-CPSs under uncertainties [1, 4, 60, 71]. A model 

checking approach has been proposed by Yang et al. [72] to formally verify the correctness 

of self-adaptation in the presence of uncertainties. However, formal verification 

approaches suffer from the scalability issue for realistic, complex systems [54, 73]. Besides 

formal verification, another option is testing. Fredericks et al. [74] proposed a runtime 

feedback loop (MAPE-T) to test adaptive systems under runtime uncertainty. Based on the 

feedback loop, they developed a runtime testing framework [75] that dynamically adapts 

test cases to ensure that a system continues to behave correctly in uncertain environmental 

conditions. However, this work does not concern how to generate initial test cases and how 

to exercise system behaviors. Alternatively, our testing approach uses an executable test 

model to capture expected system behaviors. By executing the model together with the 

system under test, we dynamically test the system against the model.  

As it is expensive to test SH-CPSs in a real environment, simulation becomes necessary. 

Ramirez et al. [76] proposed to use noisy values from sensors in simulations to find the 

combinations of noises that can reveal faults, whereas this approach supports only three 

types of uncertainty (i.e., static, periodic, and sporadic noises). Similarly, Minnerup et al. 

[77] presented an error model to capture inaccuracies of actuators that are specific for 

autonomous vehicles. Based on the error model, samples of inaccurate actuation are used 

in simulations to test the vehicles under uncertainties. Compared with these two works, we 

present a more general approach to support a broader range of uncertainties. Particularly, 

we provide SH-CPS Uncertainty Profile (Section 5.3) to specify uncertainties. Based on 

the specified uncertainties, TM-Executor can automatically introduce uncertainties into 

interactions between SH-CPSs and their environments to enable uncertainty-aware testing.  

Model-based testing is another enabler for uncertainty-aware testing. Zhang et al. [5, 78, 

79] recently proposed a complete model-based approach for uncertainty-aware testing of 

CPSs. In this approach, a system’s uncertain, expected behaviors are specified as UML 

state machines, based on which test cases are generated and executed. However, the 
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approach is not suitable to be applied to test SH-CPSs. First, for SH-CPSs, generating test 

cases offline is challenging, as it is difficult to predict runtime adaptations performed by 

self-healing behaviors. Second, it is hard to determine coverage criteria and choose a 

proper set of paths that have to be covered by test cases. Alternatively, MoSH provides the 

modeling constructs and methodology to specify executable test models. With TM-

Executor, a specified test model can be executed together with the system under test. 

Meanwhile, uncertainties specified in the model are automatically introduced into the 

testing environment, allowing the system to be dynamically tested against the model in the 

presence of uncertainties.  

8.5 Summary 

Our work advances state of the art in several ways. First, though some works define self-

healing concepts [2, 57]  and uncertainty related concepts  [27, 60], there is no single work 

that jointly captures concepts of self-healing and uncertainty in the context of CPSs. To 

this end, we present the conceptual model of SH-CPSs and uncertainties. It is built on the 

literature [23, 53-56, 58, 80-82] to conceptualize self-healing behaviors of CPSs and 

uncertainty together. Second, though there exist several modeling notations for defining 

self-healing behaviors such as [8, 9]; however, none of them provide a complete modeling 

solution to create the executable test model for testing SH-CPSs under uncertainties. Based 

on existing standards, MoSH provides an integrated modeling solution to provide such 

supports. Third, although there exist adaptive test strategies [75, 83] to test self-healing 

behaviors, there is no evidence that such strategies can be adapted to test SH-CPSs in the 

presence of environmental uncertainties. TM-Executor provides an integrated testing 

environment for testing the SH-CPSs under uncertainties. Finally, we extend existing 

model-based testing [5, 78, 79] to executable model-based testing that is underpinned by 

MoSH and TM-Executor. The new approach can provide information about a system’s 

actual behaviors, obtained from execution. The information can be used to effectively 

detects faults, which has been demonstrated by our recently published work [12].  

9 Conclusion and Future Work 
Self-Healing Cyber-Physical Systems (SH-CPSs) have the built-in capability to detect and 

recover from faults by themselves at runtime. Since such systems are often operated in 
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highly unpredictable environments and affected by various uncertainties, these systems are 

required to deal with such uncertainties even during the process of fault diagnosis and 

recovery. To effectively test the SH-CPSs under uncertainties, we proposed an executable 

model-based testing approach. As the first step towards realizing the approach, we present 

a Modeling Framework of SH-CPSs (MoSH) and a Test Model Executor (TM-Executor) 

in this paper. They provide the modeling support and execution environment for the new 

testing approach. MoSH and TM-Executor were evaluated with several SH-CPSs. Based 

on the evaluation, we can conclude that 1) executable test models could be successfully 

created with MoSH to capture expected behaviors and uncertainties for the selected 

systems and 2) TM-Executor could dynamically test the systems against the models, by 

executing them together. Information about the system’s actual behaviors can be obtained 

from the execution. However, to fully leverage the information, dedicated testing strategies 

have to be devised. On the one hand, the testing strategies should use the information to 

learn the optimal sequence of test actions that have the highest chance to reveal a fault. On 

the other hand, the information should be used to effectively find a sequence of uncertainty 

values that can work together with the test actions to make the system fail. Regarding the 

first aspect, we have devised a fragility-oriented strategy [12] to find the optimal 

invocations. However, the uncertainty values currently are only randomly generated. Thus, 

a more advanced uncertainty generation strategy is required to detect faults under 

uncertainties. When the strategy is devised, the proposed executable model-based testing 

approach can be fully realized, and we will perform an extensive empirical study to assess 

the fault detection ability of the whole approach. 
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Appendix A. Execution Process of an Executable Test 

Model 
This appendix presents an activity diagram to illustrate the execution process of an 

executable test model.  

 
Figure 23 Execution Process of an Executable Test Model 
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Appendix B. Extensions to fUML and PSSM 
To facilitate executable model-based testing, we made several extensions to fUML and 

PSSM, and they are summarized below.  
Table 14 Summary of the Extensions to fUML and PSSM 

Extension UML Metaclass Execution Model Element Execution Semantics 
Extensions for 

stereotypes 
Operation 

stereotyped with 
«CreateStimulus 

Action» 

CreateStimulusAction 
Execution 

Invoke the testing interface 
corresponding to the URI defined 
in the opaque behavior of the 
operation, taking input parameter 
values as inputs. 

Operation 
stereotyped with 
«CheckProperty 

Action» 

CheckPropertyAction 
Execution 

Invoke the testing interface 
corresponding to the URI defined 
in the opaque behavior of the 
operation. Update attributes 
values using the outputs of the 
testing interface. 

Extensions for 
additional 

metaclasses 

BroadcastSignal 
Action 

 

BroadcastSignalAction 
Activation 

Construct a signal using the 
values from argument pins and 
send the signal to all objects that 
are associated with the object 
from the source pin.  

ChangeEvent ChangeEventOccurrence The change expression of the 
change event is evaluated, 
whenever related attributes’ 
values are updated. If the change 
expression becomes true, the 
change event occurs.  

Extensions to 
existing 

semantics 

State StateActivation Besides the semantics defined in 
PSSM, when the state is entered, 
the invariant of the state is 
registered to the Constraint 
Checker.  

ExternalTransition ExternalTransitionActivation Besides the semantics defined in 
PSSM, the target state of the 
transition can only be entered 
when the target state’s invariant 
becomes true. 

LocalTransition LocalTransitionActivation 
InternalTransition InternalTransitionActivation 

Extensions to 
OpaqueAction 

OpaqueAction InputTestAPIInvocation 
Activation 

Invoke the testing interface, 
whose URI is specified in the 
opaque expression of the 
OpaqueAction, taking the values 
from its input pins as input. 

OutputTestAPIInvocation 
Activation 

Invoke the testing interface, 
whose URI is specified in the 
opaque expression of the 
OpaqueAction. Parse the result 
returned by the interface and 
emits the parsed result via its 
output pins.  

ShellAction 
Activation 

Execute a shell command or an 
executable shell file, whose 
location is specified in the opaque 
expression of the OpaqueAction.  
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Abstract  
As an essential feature of smart Cyber-Physical Systems (CPSs), self-healing behaviors 

play a major role in maintaining the normality of CPSs in the presence of faults and 

uncertainties. It is important to test whether self-healing behaviors can correctly heal faults 

under uncertainties to ensure their reliability. However, the autonomy of self-healing 

behaviors and impact of uncertainties make it challenging to conduct such testing. To this 

end, we devise a fragility-oriented testing approach, which is comprised of two novel 

algorithms: Fragility-Oriented Testing (FOT) and Uncertainty Policy Optimization (UPO). 

The two algorithms utilize the fragility, obtained from test executions, to learn the optimal 

policies for invoking operations and introducing uncertainties respectively, to effectively 

detect faults. We evaluated their performance by comparing them against a Coverage-

Oriented Testing (COT) algorithm and a random uncertainty generation method (R). The 

evaluation results showed that the fault detection ability of FOT+UPO was significantly 

higher than the ones of FOT+R, COT+UPO, and COT+R, in 73 out of 81 cases. In the 73 

cases, FOT+UPO detected more than 70% of faults, while the others detected 17% of 

faults, at the most. 

 

Keywords Cyber-Physical Systems, Uncertainty, Self-Healing, Model Execution, 

Reinforcement Learning 
 

 

1 Introduction 
The integration of computation, communication, and control awards Cyber-Physical 

Systems (CPSs) with a higher level of intelligence, which enables them to autonomously 

adapt and optimize their behavior at runtime [1]. One of such autonomous characteristics is 

self-healing, which endows CPSs with the ability to detect fault occurrences, diagnose 

causes and recover. We refer to this kind of CPSs as Self-Healing CPSs (SH-CPSs). 

Besides recuperation, the self-healing behaviors of SH-CPSs have to deal with 

uncertainty gracefully. Due to intimate coupling between the cyber and physical 

components, SH-CPSs are usually affected by various uncertainties. By uncertainty, we 

mean “the lack of knowledge of which value an uncertain factor will take at a given point 
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in time during execution” [2]. In this paper, we limit our scope to environmental 

uncertainty, namely measurement uncertainties from sensors and actuation deviations from 

actuators.  

Since self-healing behaviors play a key role in securing CPSs’ normal functionality, it is 

important to check the correctness of self-healing behaviors in the presence of uncertainty. 

However, achieving this task is non-trivial. Although formal verification can rigorously 

prove the correctness, these technologies are still not applicable to large-scale applications, 

due to high computational complexity particularly when many uncertainties need to be 

considered [3]. Testing is another option. However, at the current stage, the state of 

practice of testing CPSs is an ad hoc, trial and error testing approach, which cannot provide 

sufficient rigor in fault detection [4]. For the state of art of testing CPSs, coverage-oriented 

structural testing is dominating [5]. However, the high dimension of CPSs’ behaviors, the 

tight integration of cyber and physical components, and the unpredictable operational 

environment make the space of CPSs’ behaviors extremely large. It is difficult to find 

faults in such huge space by just randomly searching or trying out each possibility. Note 

that there are two kinds of faults: flaws in the SH-CPS under test (SUT) and faults targeted 

by self-healing behaviors. Except particular explanation, a fault in the following 

paragraphs refers to a flaw instead of a fault injected for testing self-healing behaviors.  

To overcome the limitations of existing methods, we propose a fragility-oriented 

approach. In this approach, we try to identify how likely the SUT is going to fail in a given 

state, i.e., the fragility of the SUT. The fragility is used as a heuristic to guide the testing 

process to spend more testing effort on the fragile states so that faults can be more 

effectively detected.  

To detect faults in the SUT under uncertainty, we have to apply fragility to select two 

kinds of inputs. The first is operation invocation, which controls the behavior performed by 

the SUT. Invoking different operations or calling the same set of operations with different 

orders may both lead to distinct system states. The second is uncertainty values. They 

define the uncertainty-introduced environment, where the SUT is executed. Both operation 

invocations and uncertainty values need to be cautiously selected to find the most fragile 

state, and detect faults.   

For operation invocation, we have devised a Fragility-Oriented Testing (FOT) algorithm. 

It employs a reinforcement learning approach to find the optimal sequence of operation 
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invocations concerning fault revelation. Regarding the generation of uncertainty values, we 

proposed a distribution based generation method in our previous work [6]. In this method, 

the variation of each uncertainty is expressed as a probability or possibility distribution. 

Based on the distribution, uncertainty values are generated. Since this method merely 

derives uncertainty values from fixed distributions, without utilizing any heuristic, it is 

suboptimal regarding the effectiveness of generating uncertainties for fault revelation.  

To overcome this weakness, we present an Uncertainty Policy Optimization (UPO) 

algorithm in this paper. The algorithm uses a parameterized policy to address the 

uncertainty generation problem. The policy takes state variable values of the SUT as input. 

Based on the values, the policy decides the uncertainty values that should be introduced for 

the current state to increase the fragility of the SUT. Directed by the fragility obtained from 

executions, the UPO algorithm gradually optimizes the policy in terms of the fragility of 

the SUT that can be achieved by following the policy. In such way, the UPO algorithm 

manages to effectively find a sequence of uncertainty values that can work together with a 

sequence of operation invocations to reveal a fault.  

We compared the performance of UPO and FOT against Coverage-Oriented Testing 

(COT) [7] and the random uncertainty generation method (R) by applying them to test nine 

self-healing behaviors of three real-world case studies. Each self-healing behavior was 

tested under eight uncertainties, with three settings of time budgets and three ranges of 

uncertainty variation. In total, 81 testing jobs (nine self-healing behaviors × three testing 

times × three uncertainty scales) were accomplished by each testing approach. The 

experiment results showed that the fault detection ability of FOT+UPO is significantly 

higher than the ones of FOT+R, COT+UPO, and COT+R, in 73 out of 81 cases. In the 73 

cases, FOT+UPO detected more than 70% of faults, while merely less than 17% of faults 

were detected by the other three approaches.  

This paper is an extension of our previous conference paper [6]. The new contributions 

of this paper are: 1) The Fragility Oriented Testing (FOT) algorithm has been improved 

with the ability to detect multiple faults. 2) A new fragility-oriented algorithm — 

Uncertainty Policy Optimization (UPO) has been devised for uncertainty generation. 3) 

The performances of the two algorithms have been evaluated by comparing the numbers 

and percentages of detected faults of four testing approaches, using nine self-healing 

behaviors from three case studies.  
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We organize the paper as follows. Section 2.5 presents the background, followed by a 

running example given in Section 3. Section 4 presents an overview of the fragility-

oriented testing approach. Section 5 and Section 6 present the FOT and UPO algorithms 

respectively. Section 7 illustrates the implementation. Section 8 presents the evaluation, 

Section 9 summarizes related work, and Section 10 concludes the paper. 

2 Background 
The proposed fragility-oriented testing approach is devised based on two fundamental 

techniques. One is model execution and the other is reinforcement learning. This section 

introduces two kinds of models used in the approach —Executable Test Model (ETM) and 

Dynamic Flat State Machine (DFSM) in Section 2.1 and Section 2.2, respectively. Section 

2.3 summarizes a test model execution framework – TM-Executor. Section 2.4 describes 

the general idea of reinforcement learning and Section 2.5 explains how to use an Artificial 

Neural Network (ANN) to facilitate reinforcement learning.    

2.1 Executable Test Model (ETM) 

A CPS can be seen as a set of networked physical units, working together to monitor and 

control physical processes. A physical unit can be further decomposed into sensors, 

actuators, and controllers. A controller monitors and controls physical processes via 

sensors and actuators, which are functional behaviors. As a specific type of CPSs, SH-

CPSs can monitor fault occurrences and adapt its behavior to self-healing behaviors when 

a fault occurs. As the objective of a self-healing behavior is to restore functional behaviors, 

both expected functional, and self-healing behaviors need to be captured for testing. 

Previously, we proposed a UML-based modeling framework, called MoSH [2], which 

allows creating an ETM for the SH-CPS Under Test (SUT). The ETM consists of a set of 

UML state machines annotated with dedicated stereotypes from the MoSH profiles.  

The set of state machines captures expected functional and self-healing behaviors of the 

SUT: 𝑆𝑀	 = 	 {𝑠𝑚", … , 𝑠𝑚$ , … , 𝑠𝑚%}, where MoSH stereotypes are applied to annotate 

the states in state machines. A 𝑠𝑚$  has a set of states 𝑆&'7 	=

{𝑠&'7", … , 𝑠&'7( , … , 𝑠&'7&}	and transitions 𝑇&'7 =	 {𝑡&'7", … , 𝑡&'7) , … , 𝑡&'7*}. A state 𝑠&'7( 
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(𝑠&'7( ∈ 𝑆&'7 ) is defined by a state invariant 𝑂&'7( , which is specified as an OCL14 

constraint, constraining one or more state variables. When 𝑠&'7( is active, its corresponding 

state invariant has to be satisfied. A transition 𝑡&'7) (𝑡&'7) ∈ 𝑇&'7) is defined as a tuple 

𝑡 ≔ 	 (𝑠&+, , 𝑠*-+ , 𝑜𝑝, 𝑔), where 𝑠&+, and 𝑠*-+ are the source and target states of 𝑡, 𝑜𝑝 denotes 

an operation call event that can trigger the transition15  and the operation represents a 

testing interface used to control the SUT. 𝑔  signifies the transition’s guard, an OCL 

constraint. It restricts input parameter values that can be used to invoke the operation for 

firing the transition. By conforming to the fUML16 and Precise Semantics Of UML State 

Machines (PSSM)17 standards, the specified state machines are executable. Thus, the test 

model is called an ETM.  

2.2 Dynamic Flat State Machine (DFSM) 

Test execution with concurrent and hierarchical state machines is computationally 

expensive and complex. Since statically flattening state machines may lead to state 

explosion, we implemented an algorithm to dynamically and incrementally flatten UML 

state machines into a Dynamic Flat State Machine (DFSM) during test execution. A DFSM 

has a set of states 𝕊 = 	 {𝕤", 𝕤., … , 𝕤/ … , 𝕤0}  and a set of transitions 𝕋 =

{𝕥", 𝕥., … , 𝕥1 	… 𝕥2}. Each state 𝕤/in	𝕊 is constituted by states from each 𝑠𝑚$, denoted as 

𝕤/ = 𝑠&'83⋀𝑠&'94⋀	…⋀𝑠&':5 . Accordingly, the conjunction of all constituents’ state 

invariants [𝑜&'83; 	⋀	𝑜&'94; 	⋀…⋀	𝑜&':5;] forms the state invariant of 𝕤/, denoted as 𝕠/;. 

Meanwhile, the set of transitions connecting the DFSM states is captured by 𝕋. In the test 

model, the interactions among different state machines are modeled by transitions with 

effects of sending signals [2]. When such a transition is triggered, it sends signals that 

activate the transitions in other state machines. The set of activated transitions are 

represented by the initially triggered transition in the flattened state machine. Consequently, 

each transition 𝕥1  belonging to 	𝕋  is uniquely mapped to a transition 𝑡&'<*  in a state 

machine 𝑠𝑚3, expressed as 𝕥1 = 𝑡&'<*. While the Executable Test Model (ETM) is being 

 
 
14 http://www.omg.org/spec/OCL/2.4 
15 Though call, change and signal event occurrences can all be triggers to model expected behaviors, only transitions having call 

event occurrences as triggers can be activated from the outside. A change event or a signal event is only for the SUT’s internal 
behaviors, which cannot be controlled for testing.  

16 http://www.omg.org/spec/FUML/1.2.1 
17 http://www.omg.org/spec/PSSM/1.0/Beta1 



 
 

95 
 
 
 
 
 

executed, the DFSM is dynamically constructed. The Fragility Oriented Testing (FOT) 

algorithm uses the DFSM to learn the value of firing each transition and find the optimal 

transition selection policy to effectively find faults. Thus, we mainly use DFSM in the 

following paragraphs.  

2.3 Test Model Execution Framework 

We developed a testing framework called TM-Executor in our previous work [2]. By 

executing the test model and the SUT at the same time, the framework can dynamically 

test the SUT against the model. Fig. 1 presents the execution process. According to the 

execution semantics of UML state machines, TM-Executor executes the test model, i.e., a 

set of UML state machines (S1).  During the execution, TM-Executor dynamically and 

incrementally derives a DFSM from the set of state machines (S2). The DFSM points out 

the candidate transitions that can be triggered to drive the execution of the model. Directed 

by an operation invocation policy, TM-Executor selects a transition and generates an 

operation invocation to trigger the transition (S3 ~ S7). As aforementioned, a transition’s 

trigger 𝑜𝑝 and guard 𝑔 specify the operation and the parameter values to be used to trigger 

the transition. While an operation is invoked, an operation call event is generated, which 

drives the execution of the test model. Meanwhile, the operation is executed to call a 

corresponding testing interface, which makes the SUT enter the next state. 

Two kinds of testing interfaces can be specified as a transition’s trigger 𝑜𝑝. One is 

functional control operation, which instructs the SUT to execute a nominal functional 

operation. Another is fault injection operation, which introduces a fault in the SUT, based 

on which, TM-Executor controls when and which faults to be injected to the SUT to trigger 

its self-healing behaviors.  

 
Fig. 1 Test Execution Process 
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On the other hand, TM-Executor uses an uncertainty generation policy to generate the 

uncertainty values and introduces the uncertainty values into the SUT to test the system 

under uncertainty (S8 ~ S10). Via testing interfaces, state variable values are queried from 

the SUT and used by TM-Executor to evaluate state invariants of the active state (S11). If 

an invariant is evaluated false, it means that the SUT fails to behave consistently with the 

ETM and a fault is detected.  

2.4 Reinforcement Learning 

To effectively detect faults in SH-CPSs under uncertainty, we aim to find the optimal 

policy for invoking operations and introducing uncertainties. The policy helps us find the 

sequence of operation invocations together with the sequence of uncertainty values that can 

reveal faults. Finding such optimal policies is exactly the goal of reinforcement learning, 

an automatic approach to learning the optimal policy from interactions [8]. Consequently, 

we devise two reinforcement learning based algorithms to facilitate testing SH-CPSs under 

uncertainty.  

Fig. 2 presents the general idea of reinforcement learning in the context of testing. The 

reinforcement-learning algorithm directs a testing agent to take testing actions on the SUT, 

with the aim of maximizing the possibility for the SUT to fail, i.e., maximizing the 

likelihood to detect faults. The agent tests the SUT in discrete time steps. At each time step 

t, the agent uses testing interfaces to obtain the state of the SUT St, represented as a 

collection of state variables. After that, it selects a testing action At from the set of 

available actions in state St. Caused by the action, the state of the SUT changes from St to 

St+1. The agent evaluates Ft+1 — the likelihood that the SUT is to fail in St+1, which is 

defined as fragility in this paper. Taking the fragility as a heuristic, the reinforcement 

algorithm continuously adjusts the agent’s action selection policy to achieve the highest 

fragility and effectively detect faults. 

 
Fig. 2 Testing with Reinforcement Learning [8] 
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2.5 Artificial Neural Network 

The policy used in the reinforcement learning can be saved in two ways. One is tabular 

form, which explicitly specifies the probability to take action in a given state. However, 

when the number of potential states or the number of valid actions becomes huge, it is 

intractable to store the probability for each pair of state and action. In this case, the policy 

has to be stored in an approximate form. One well-known form is Artificial Neural 

Network (ANN) [9], which has been successfully applied together with reinforcement 

learning in many algorithms [10, 11].  

An ANN consists of layers of interconnected neurons, as shown in Fig. 3. The first layer 

is an input layer. Each neuron in the input layer represents one dimension of the input 

space, and the activity of these neurons is just outputting the value of the corresponding 

dimension. Via weighted connections, the value is scaled by the weights of connections 

and transited to the neurons in the next layer, which is called the hidden layer. The neurons 

in the hidden layer called hidden neurons, add a bias to the sum of received values. After 

that, they input the result to an activation function and send the output of this function to 

all their successors. The values pass through the network in this way until reaching the last 

layer, the output layer. The neurons in the output layer are called output neurons. The 

activity of output neurons is the same with hidden neurons, except that the output neurons 

use an output function instead of the activation function to calculate the final outputs.  

Via the network structure, the ANN can compactly save the mapping relations between 

inputs and outputs. In the context of reinforcement learning-based testing, the input is the 

state of the SUT, and the output is the testing action to be performed in that state. However, 

this benefit of applying ANN is at the cost of lower accuracy. Since it is almost infeasible 

to train an ANN with 100% accuracy [9], an estimation error will be introduced when the 

ANN instead of a tabular form is used to estimate the output for a given input. Also, 

training an ANN is computationally expensive. Compared with tabular form, applying 

ANN to save the policy for reinforcement learning requires more computational resources, 

and it takes an extra amount of time to train the ANN [8].  

In this paper, we divide the testing task into two sub-tasks. One is responsible for 

selecting operation invocations, and the other takes charge of introducing uncertainties. For 

the first sub-task, the test model specifies the valid operation invocations for each state. 

When introducing uncertainties, each uncertainty can arbitrarily take any value within its 
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variation range. Therefore, the search space of the second sub-task is significantly larger 

than the one of the first sub-task. Due to this reason, we devise a tabular form based 

algorithm for the first sub-task and apply ANN to address the second sub-task.  

 
Fig. 3 Example of Artificial Neural Network 

3 Running Example  
We use an Unmanned Aerial Vehicle control system (ArduCopter18) as a running example 

to illustrate the problem of testing SH-CPS under uncertainty. Fig. 4 presents a UML class 

diagram, which captures a simplified architecture of the system. In the diagram, each class 

represents a sensor, actuator, controller or physical unit, accessible state variables are 

specified as class attributes, and the operations capture available testing interfaces.  

As shown in Fig. 4, ArduCopter has two physical units, i.e., Copter and Ground Control 

Station (GCS). With the GCS, users remotely control the Copter using some flight modes. 

During the flight, the Copter is constantly affected by environmental uncertainties such as 

measurements bias from the GPS. The uncertainties are specified via the «Uncertainty» 

stereotype, provided in MoSH profile [2]. An example is shown in the upper right corner 

of Fig. 4. The stereotype attribute universe specifies the variation range of the uncertainty, 

and measure defines the uncertainty’s probability distribution. For the uncertainty posBias, 

i.e., the measurement bias of position, its variation range is between -2.5 and 2.5, and the 

value of the uncertainty follows a normal distribution with mean 0 and variance 0.9. These 

are specified based on the product specification of the GPS.  

Based on the class diagram, the expected behaviors of the classes are specified as an 

ETM (shown in Fig. 11 in Appendix). The ETM captures both functional and self-healing 

behaviors. The functional behaviors such as FlightControlBehavior and ADSBBehavior, 
 

 
18 http://ardupilot.org/copter/ 
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specify how the system should behave when an operation is invoked, and the self-healing 

behaviors specify how a fault is to be healed.  

 
Fig. 4 Simplified Architecture of ArduCopter 

CollisionAvoidance is one of the self-healing behaviors. Due to improper flight control 

(operational fault), the copter may approach another aircraft. In such case, the copter 

automatically adapts the velocity and orientation (i.e., the angles of rotations in roll, pitch, 

and yaw) of the flight to avoid a collision. 

Fig. 5 presents a partial simplified DFSM corresponding to the ETM for ArduCopter. 

We take one path (bold transitions in Fig. 4: 𝕥1à	𝕥2à	𝕥3à	𝕥4à	𝕥11à	𝕥12à	𝕥19à	𝕥21) 

to explain test execution. 

Starting from the Initial state, the DFSM directly enters Stopped, as no trigger is 

required to enter the first state. From Stopped, TM-Executor fires 𝕥2  by calling the 

functional control operation arm to launch the Copter. As a result, Started becomes active. 

To make the system enter state Lift, TM-Executor invokes operation throttle with a valid 

value of input parameter t obtained by solving guard constraint [t > 1500 and t < 2000] via 

constraint solver EsOCL [12]. Then, the Copter takes off and reaches the Lift state. In the 

Lift state, TM-Executor invokes throttle with t = 1500. This invocation triggers the Copter 
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to hover above the ground. In the Hovering state, TM-Executor either changes the Copter’s 

movement (i.e., firing 𝕥5, 𝕥7, or 𝕥19) or invokes the fault injection operation setThreat, 

which simulates that an aircraft is approaching from the left behind of the Copter to trigger 

the collision avoidance behavior. Assume the second option is adopted. Triggered by this, 

the collision avoidance behavior controls the Copter to fly away from the approaching 

aircraft. When the distance between them (threatDis) is over 1000 meters (not shown in 

Fig. 5), the collision threat is avoided and the Copter’s flight mode changes back to the 

previous one. Hence, 𝕥12  is traversed 19 . Then TM-Executor chooses to trigger 𝕥19 , 

followed by firing 𝕥21, to stimulate the copter to pass through the Landing state and 

reaches the final state. 

 
Fig. 5 Simplified Partial DFSM for ArduCopter 

In addition to operation invocations, a sequence of uncertainty values is required to 

execute ArduCopter under uncertainty. Since the control loop frequency of the copter is 

400 Hz, the copter’s controller reads sensor data and outputs actuation commands every 

2.5 milliseconds. Each reading and controlling is potentially affected by uncertainties like 

measurement noise from the GPS and actuation deviation from the motor. Therefore, every 

2.5 milliseconds, the value of each uncertainty has to be generated and be used to impact 

the copter’s sensing or actuating to simulate the effect of uncertainties.  

In parallel to the execution, TM-Executor periodically obtains the values of the SUT’s 

state variables through testing interfaces and repeatedly uses these values to evaluate the 

 
 
19 When a collision is avoided, the copter is back to the flight mode. Hence, no testing interface needs to be invoked to trigger 𝕥12. 

When the flight mode is changed back, a corresponding change event is generated by TM-Executor to activate the transition. As this 
event is from inside, we do not capture it in DFSM.  
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active state’s invariant, using the constraint evaluator DresdenOCL [13]. If an invariant is 

evaluated to be false, then a fault is detected.  

The decisions of which operation to invoke and which uncertainty values to use 

determine whether a fault can be found in an execution. From specifications, we know that 

there is a fault in the collision avoidance behavior when an aircraft is approaching from -45° 

and the copter is flying to the forward left, the collision avoidance behavior has to reverse 

the copter’s orientation to make the two aerial vehicles fly away. Since reversing the 

orientation takes more time than other orientation adjustments, the copter, in this case, flies 

closer to the approaching aircraft. Due to noisy sensor data and inaccurate actuations, a 

collision does have a chance to occur in this condition.  

To detect the fault leading to the collision, the fault injection operation setThreat needs 

to be invoked in state ForwardLeft, i.e., 𝕥17 must be activated. However, activating 𝕥17 

once may not be sufficient to find the fault. On the one hand, a large number of input 

parameter values could be used to invoke an operation for firing a transition, e.g., 𝕥3 (Fig. 

5). Each input leads to a distinct flight orientation and only in a few specific orientations, 

the collision is likely to happen. On the other hand, the copter’s orientation is also affected 

by measurement uncertainties from sensors and actuation inaccuracy from actuators. 

Therefore, it requires a specific sequence of operation invocations and a specific sequence 

of uncertainty values to make the collision happen.  

From numerous candidates, it is challenging to find the “right” operation invocations 

and sequence of uncertainty values to reveal a fault. Motivated by this, we present a 

fragility-oriented approach to find such cases to detect faults effectively.  

4 Fragility-Oriented Testing under Uncertainty 
Invoking operations and introducing uncertainty are the two tasks that have to be fulfilled 

to detect faults in SH-CPS under uncertainty.  

The task of operation invocation decides which operation to be invoked and which input 

parameter values to be used to drive the execution of the SUT. A sequence of operation 

invocations determines the path in the Dynamic Flat State Machine (DFSM) that the SUT 

will follow in executions. Besides, the model regulates the operations that can be invoked 

under each state.  
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The task of introducing uncertainty defines a concrete uncertainty-introduced 

environment, in which the SUT is tested. Whenever the SUT interacts with its environment 

via sensors or actuators, the environmental uncertainty may take effect, and thus 

uncertainty values have to be generated and introduced into the SUT.  For each uncertainty, 

its value can vary within a valid range. The combination of multiple uncertainties at 

different interaction points forms a great number of possible sequences of uncertainty 

values. A specific sequence of operation invocations has to work together with a specific 

sequence of uncertainty values to reveal a fault. To reduce the complexity of finding the 

two kinds of input, we adopt a two-step approach, as presented in Fig. 6.  

 
Fig. 6 Overview of Fragility-Oriented Testing under Uncertainty 

The first step concentrates on finding a sequence of operation invocations that can make 

the SUT reach the most fragile state. During the first step, uncertainty values are only 

randomly generated. When an optimal sequence of invocations is found, it is used in the 

second step to drive the execution of SUT and test model, during which a sequence of 

uncertainty values will be found for fault revelation.  

For the first step, we devise the Fragility-oriented Testing algorithm. By exploring 

various transitions in the test model and evaluating its consequent fragilities with multiple 

iterations, the algorithm identifies the most fragile state and learns the shortest path to 

reach it. Accordingly, the sequence of operation invocations used to trigger the transitions 

in this path is selected as the optimal one and used in the next step. 

In the second step, the sequence of invocations is fixed, and the Uncertainty Policy 

Optimization algorithm gradually optimizes a parameterized uncertainty generation policy 

to find a corresponding sequence of uncertainty values that can reveal a fault. If a fault is 

detected, the transitions directly connected with the current active state are marked “faulty,” 

and it returns to the first step to find another invocation sequence without considering the 
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“faulty” transitions. Otherwise, if no faults are detected in a certain number of executions, 

the fragilities corresponding to the states in the selected path are discounted by a discount 

factor. Based on the updated fragility, the Fragility-oriented Testing algorithm will 

recalculate the optimal sequence of invocations. Accordingly, the Uncertainty Policy 

Optimization algorithm will try to find a corresponding sequence of uncertainty values 

again to detect faults. The algorithms used in the two steps are presented in Section 5 and 

Section 6 respectively.  

5 Fragility-Oriented Operation Invocation  
Definition 1. The fragility of the SUT in a given state 𝕤 is a real value between 0 and 1, 

denoted as 𝐹(𝕤). It describes how close (distance wise) the state invariant of 𝕤 is to be false, 

where 1 means that the state invariant is false and 0 means that it is far from being violated. 

We therefore define 𝐹(𝕤) as follows:  
𝐹(𝕤) = 		1 − 𝑑𝑖𝑠(¬𝕠)	 (1) 

where ¬𝕠  is the negation of state 𝕤’s invariant 𝕠  and 𝑑𝑖𝑠(¬𝕠)	  is a distance function 

(adopted from [12]) that returns a value between 0 and 1 indicating how close the 

constraint ¬𝕠 is to be true. For instance, in the running example, if the SUT is currently in 

state Avoiding2 and the value of state variable threatDis is 15, then the distance of 

invariant “threatDis > 10” to be false can be calculated as 𝑑𝑖𝑠L¬(𝑡ℎ𝑟𝑒𝑎𝑡𝐷𝑖𝑠	 > 	10)S =
("7!"8):"
("7!"8):":"

= 0.86, according to the distance function20 defined in [12]. The closer the 

distance is to zero, the higher the possibility the invariant is to be violated, i.e., the SUT 

failing in the state. Hence, 1 − 𝑑𝑖𝑠(¬𝕠) is used to define the fragility of the SUT in state 𝕤. 

Definition 2. The T-value of a transition expressed as 𝑇(𝕥), is a real value between 0 and 1. 

It states the possibility that a fault can be revealed after firing the transition 𝕥. With an 

assumption that the more fragile the SUT is, the higher the chance a fault can be revealed, 

we define the T-value of a transition as the discounted highest fragility of the SUT after 

firing the transition: 

𝑇(𝕥) = max
𝕤∈𝕊:=<>

{𝛾% ∙ 𝐹(𝕤)} (2) 

 
 
20 The distance function of greater operator is: 𝑑𝑖𝑠(𝑥 > 𝑦) = (𝑦 − 𝑥 + 𝑘) (𝑦 − 𝑥 + 𝑘 + 1)⁄ , 𝑤ℎ𝑒𝑛	𝑥 ≤ 𝑦, where k is an arbitrary 

positive value. Here we set k=1. More details are in [12] .  
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where 𝛾 (0 ≤ 𝛾 < 1) is a discount rate; 𝕊%>3* is a set of states that can be reached from 𝕥’s 

target state via a path in the DFSM, and 𝑛 is the number of transitions between 𝕤 and 𝕥’s 

target state. As for testing, revealing faults via a short path is preferable, we penalize the 

fragility of a state by multiplying 𝛾%, if traversing at least n transitions is required to reach 

the state from 𝕥’s target state. For example, in Fig. 5, to obtain the T-value of 𝕥4, we 

calculate the discounted fragility of the SUT in each state in 𝕊%>3* . For the fragility 

corresponding to Avoiding1, it needs to be discounted by 𝛾., since two transitions 𝕥5 and 

𝕥9 have to be traversed to reach Avoiding1 from 𝕥4’s target state Forward. Clearly, the 

value of 𝛾 determines the importance of the state to be reached in the future.  

5.1 Overview 

The objective of the Fragility Oriented Testing (FOT) algorithm is to find the optimal 

operation invocation policy to find faults effectively. To achieve this objective, FOT tries 

to learn transitions’ T-values during the execution of the SUT. Each transition’s T-value 

indicates the possibility that a fault will be revealed after firing the transition. When 

transitions’ T-values are learned, by simply firing the transition with the highest T-value, 

FOT can manage to find faults effectively. The pseudocode of FOT is presented below in 

Algorithm 1 (L1-L16).  

In the beginning, all transitions’ actual T-values are unknown. As every transition has a 

possibility to reveal a fault, the estimated T-value of each transition is initialized with the 

highest one (L1, L2). This encourages the algorithm to extensively explore uncovered 

transitions [8]. After that, iterations of test execution and the learning process begin. At 

each iteration, the execution of the test model as well as the SUT starts from the initial 

state (L4) and terminates at a final state (L5). During the execution, a DFSM is 

dynamically constructed (L6) to enable the learning of T-values. Whenever, the SUT 

enters a state 𝕤 , FOT selects one of the outgoing transitions of 𝕤  according to their 

estimated T-values (L7, L8) and makes TM-Executor trigger the selected transition (L9). 

As the transition is fired, the system moves from 𝕤 to 𝕤′. If the state invariant of 𝕤′ is not 

satisfied, then a fault is detected (L11 - L14). In this case, the current active state of the 

DFSM will be marked “faulty”. Any transition connected with the faulty state will not 

participate in the transition selection and T-value learning in the future.   
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If no invariant violation happens, the algorithm will evaluate the fragility of the SUT in 

𝕤′ (L15), i.e., 𝔽(𝕤′), and use 𝔽(𝕤′) to update estimated T-values. Since it is possible to 

reach 𝕤′ via numerous transitions, finding all these transitions and updating their T-values 

are computationally impractical for a test model with hundreds of transitions. Thus FOT 

only updates the estimated T-value of the last triggered transition (L16). For instance, in 

the running example, when 𝕥11 is invoked and the state of the SUT changes to Avoiding2, 

FOT evaluates the value of 𝔽(𝐴𝑣𝑜𝑖𝑑𝑖𝑛𝑔2) and uses the value to update the T-value of 𝕥11, 

i.e., 𝑇(𝕥11). Since 𝔽(𝕤′) is not a constant value, the upper bound of 𝔽(𝕤′) is used to 

update the T-value. As the iteration of the execution proceeds, the estimated T-values are 

continuously updated and getting close to their actual values. In this way, the T-values are 

learned from the execution and the learned T-values direct FOT to effectively find faults. 

Note that testing budget determines the maximum number of iterations. If it is too small, 

FOT may not be able to find faults. The details of T-value learning and transition selection 

policy are explained in the next two subsections respectively. 
Algorithm 1 FOT(TMExecutor executor, ETM etm, int maxIteration): 

Input executor is TM-Executor, the testing framework  
 etm is the Executable Test Model 

 maxIteration is the maximum iteration number  
Begin  

1 for each transition in etm 
2     transition.Tvalue ← 1              // initialize T-values of transitions 
3 for i=1 to maxIteration 
4     etm.Start( ) 
5     while etm.ReachFinalState( ) is false 
6        dfsm ← EnrichDFSM(etm)                   // dynamically construct the DFSM 
7        reachedTransitions ← dfsm.activeState.outgoingTransitions 
8        selectedTransition ← SoftmaxSelect(reachedTransitions) //select transition 
9        executor.Trigger(selectedTransition) 

10        stateInvariant ← selectedTransition.target.invariant 
11        if executor.Evaluate(stateInvariant) is false 
12            LogFaultDetected(selectedTransition) 
13            dfsm.MarkFaultDetected(dfsm.activeState) 
14            break 
15        fragility ← 1- executor.DistanceToViolation(stateInvariant) 

16        executor.UpdateTvalue(selectedTransition, fragility) // revise the T-value of 
selectedTransition 

End  

5.2 T-value Learning 

Before executing the SUT and the Executable Test Model (ETM), the T-value 𝑇(𝕥) of 

every transition is unknown. We adopt a reinforcement learning approach to learn 𝑇(𝕥) 
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from execution. A fundamental property of 𝑇(𝕥) is that it satisfies a recursive relation, 

which is called the Bellman Equation [8], as shown in the formula below:  
𝑇(𝕥) = max	{𝐹(𝕤?@A), 𝛾 ∙ max

𝕥!"#∈𝕋!"#
𝑇(𝕥E5F)} (3) 

where 𝕤*-+  is the target state of transition 𝕥; 𝕋&?,  represents a set of direct successive 

transitions whose source state is 𝕤*-+. This equation reveals the relation between the T-

values of a transition and its direct successive transitions. It states that the T-value of 𝕥 

must be equal to the greater of two values: the fragility of 𝕥’s target state (𝐹(𝕤*-+)) and the 

maximum discounted T-value of 𝕥 ’s direct successive transitions (𝛾 ∙ max
𝕥′∈𝕋GHI

𝑇(𝕥′) ). 

Given a DFSM, 𝑇(𝕥) is the unique solution to satisfy Equation (3). So, we try to update the 

estimate of each T-value to make it get increasingly closer to satisfy Equation (3). When 

Equation (3) is satisfied by the estimated T-values for all transitions, it implies that the true 

𝑇(𝕥) is learned. 

Inspired by Q-learning [8], a reinforcement learning method, FOT uses the estimated T-

value 𝐸𝑇(𝕥) to approximate 𝑇(𝕥), i.e., the true T-value. 𝐸𝑇(𝕥) is updated in the following 

way to make it approach 𝑇(𝕥). 

𝐸𝑇(𝕥)′ = 𝑚𝑎𝑥{ 𝐹(𝕤*-+) , 𝛾 ∙ max
𝕥GHI∈𝕋GHI

𝐸𝑇(𝕥&?,)} (4) 

where 𝐸𝑇(𝕥)′  denotes the updated estimate of 𝕥’s T-value and 𝐸𝑇(𝕥&?,) represents the 

current estimated T-value of a successive transition.  

Equation (4) enables FOT to iteratively update 𝐸𝑇(𝕥). Once a transition 𝕥 is triggered, 

the fragility of the SUT in 𝕥’s target state 𝐹(𝕤*-+) can be evaluated using Equation (1). 

Using Equation (4), 𝐸𝑇(𝕥)  can be updated whenever a fragility value is obtained. As 

proved in [8], as long as the estimated T-values are continuously updated, 𝐸𝑇(𝕥) will 

converge to the true T-value: 𝑇(𝕥). 

However, the fragility of the SUT in a state dynamically changes, due to the variation of 

test inputs and environmental uncertainty. To deal with this, we use the bootstrapping 

technique [14] to predict the distribution of the fragility and select the upper bound of its 95% 

interval as the value for 𝐹(𝕤*-+), to update the estimated T-value. Thus 𝐸𝑇(𝕥) is iteratively 

updated by the following equation: 

𝐸𝑇(𝕥)′ = 𝑚𝑎𝑥{𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤*-+)] , 𝛾 ∙ max
𝕥GHI∈𝕋GHI

𝐸𝑇(𝕥&?,)} (5) 

where 𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤*-+)] is the upper bound of 𝐹(𝕤*-+)’s 95% confidence interval.  
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5.3 Softmax Transition Selection 

To effectively find faults, FOT should extensively explore different paths in a DFSM. 

Meanwhile, the covered high T-value transitions should be exploited (triggered) more 

frequently to find faults, as a high T-value implies a high possibility to reveal faults. Hence, 

in FOT, we use a softmax transition selection policy to address the dilemma of exploration 

and exploitation [15] by assigning a selection probability to a transition proportional to the 

transition’s T-value. The selection probability is given below (from [8]): 

𝑃𝑟𝑜𝑏 W𝕥𝑜𝑢𝑡
′ X = 	𝑒JK(𝕥𝑜𝑢𝑡

′ ) OP 	Y 𝑒JK(𝕥$"%)/O
𝕥$"%∈𝕋$"%

Z 		 (6) 

where 𝑃𝑟𝑜𝑏(𝕥E?*
′ )  denotes the selection probability of an outgoing transition 𝕥𝑜𝑢𝑡

′ ; 

𝐸𝑇(𝕥E?*
′ ) is the estimated T-value; 𝕋E?* represents the set of all outgoing transitions under 

the current DFSM state, and 𝜏 is a parameter, called temperature [16]. 𝜏 is a positive real 

value from 0 to infinity. A large 𝜏 causes transitions to be equally selected, whereas, a 

small 𝜏  causes high T-value transitions to be selected much more frequently than 

transitions with lower T-values.  

In the beginning, all transitions’ estimated T-values (𝐸𝑇(𝕥)) are initialized to 1, thus 

initially transitions have equal probability to be selected. As testing proceeds, 𝐸𝑇(𝕥) is 

continuously updated using Equation (5). Directed by 𝐸𝑇(𝕥), the softmax policy assigns a 

high selection probability to transitions that lead to states with high fragilities. As a result, 

more fragile states will be exercised more frequently. Note that this doesn’t preclude 

covering the less fragile states. In addition, loops in the test model are also covered 

depending on fragilities of states involved in a loop.  

6 Uncertainty Policy Optimization  
When a sequence of operation invocations is selected, the sequence determines the path in 

the DFSM that the SUT will follow in test executions. Besides the operation invocations, a 

sequence of uncertainty values is required to execute the SUT under uncertainty. Due to 

the effect of uncertainty and the execution of the SUT, the state variables of the SUT 

constantly vary within a range in each state. Consequently, every state 𝕤$ in the execution 

path corresponds to a number of state instances {𝓈$", 𝓈$., … , 𝓈$)}. 
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Definition 3. A state instance, 𝓈$(, is an instance of an abstract state, 𝕤$, in a DFSM. The 

state instance reflects the SUT’s actual state at a specific time point and the state instance 

is represented by the values of the SUT’s all state variables, i.e., 𝓈$( = {𝑣", 𝑣., … , 𝑣%&F}. 

Based on the definition of fragility, we define the fragility of the SUT in a given state 

instance as follows: 

𝐹4𝓈𝑖𝑗5 = 𝐹(𝕤𝑖) = 1 − 𝑑𝑖𝑠(¬𝕠2)		 (7) 

Note that although the state invariant 𝕠$  of a state 𝕤$  constrains only a few state 

variables, the other state variables may have impacts on the constrained variables. 

Therefore, all state variables may have direct or indirect effects on the fragility. Due to this 

reason, we employ the values of all state variables to represent the state instance 𝓈$(.  

Fig. 7 illustrates the relationship between state and state instance. The number of state 

instances corresponding to a state depends on the number of environmental interactions 

that the SUT performs in the state. For instance, after the operation arm is invoked, 

ArduCopter takes one second to enter the next state Started. Within one second, the Copter 

reads sensor and controls actuators 400 times. Consequently, the state Stopped corresponds 

to 400 state instances.  

As the behavior of the SUT has been determined by the selected operation invocations, 

the uncertainty values 𝑢$( decide the next state instance, 𝓈$(:", the SUT will switch to from 

the previous instance, 𝓈$( . To effectively detect faults, the optimal uncertainty values 

should be used to maximize the fragility of the SUT. To effectively find the optimal 

uncertainty values, this section presents the UPO algorithm. 

Fig. 7 Relations Between States and State Instances 

6.1 Uncertainty Generation Policy 

To effectively explore various uncertainty values, we propose to use a parameterized 

policy 𝜋I(𝑢$(|𝓈$() to decide the uncertainty values. The policy 𝜋I(𝑢$(|𝓈$() determines the 
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probability distribution of 𝑢$( given the condition that 𝓈$( is the current state instance. The 

conditional probability distribution can be changed, by adjusting policy parameters θ.  

As Artificial Neural Network (ANN) has been demonstrated to be an effective decision-

making mechanism [17], we adopt ANN as the parameterized policy for uncertainty 

generation.  

An ANN, used for uncertainty generation, takes a state instance as input. Each neuron in 

the input layer represents a state variable of the SUT. The input neurons make the values of 

state variables traverse the ANN. Based on the received values, the output neurons 

calculate the final output. Each output determines the probability distribution of one 

uncertainty, under the condition that the current state instance is the one fed to the input 

layer. Inspired by an existing algorithm [18], we use a truncated normal distribution as the 

conditional probability distribution. The mean value of the distribution is the output value, 

and the value of its variance is a constant positive value ε. By sampling from the 

distribution, we can decide the uncertainty values to be used for each state instance. Fig. 8 

presents an example of the ANN used for the running example. The ANN receives the 

values of all state variables. The values are processed by the interconnected neurons and 

are mapped to a truncated normal distribution for each uncertainty.  

To effectively find faults, we need to optimize the parameterized policy so that the 

uncertainty values generated from the policy can increase the fragility of the SUT and 

make the system likely to fail. The parameters of the policy include the weights of 

connections and bias values of neurons. Except them, the numbers of layers and the 

neurons in hidden layers, the activation function, and the output function are all predefined. 

Once being set up, they are fixed. The next section explains an iterative approach to 

optimize the policy concerning these parameters.  

 
Fig. 8 Example of Uncertainty Generation Policy 
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6.2 Policy Optimization 

The goal of policy optimization is to tune the parameters of the uncertainty generation 

policy, to maximize the fragility of the SUT. The policy 𝜋I(𝑢$(|𝓈$()  determines the 

uncertainty values to be introduced in each state instance.  When the state instance 𝓈$( and 

uncertainty values 𝑢$( are given, the next state instance 𝓈$(:" is determined, as shown in 

Fig. 7. Since the execution of the SUT always starts from the same initial state instance, 

when the sequence of operation invocations is fixed, the uncertainty generation policy 

𝜋I(𝑢$(|𝓈$() also determines the probability distribution of the state instance. It means the 

policy decides the probability that a state instance 𝓈$( can be reached by the SUT in an 

execution. Based on this, we formally express the goal function as follow [18]: 

𝜂(𝜋I) = 𝔼𝓈7U~LV,?7U~NV	n𝑇I(𝓈$( , 𝑢$()o (8) 

where 𝔼 denotes the expectation of the highest discounted fragility, 𝑇I(𝓈$( , 𝑢$(), that can 

be obtained by following a given policy 𝜋I. 𝜌I denotes the probability distribution of the 

state instance, which is controlled by the parameters of the policy.  𝑇I(𝓈$( , 𝑢$() denotes the 

highest discounted fragility that can be reached after introducing uncertainty values 𝑢$( in a 

state instance 𝓈$(: 

𝑇IL𝓈$( , 𝑢$(S = max
)∈[",:Q)

𝛾) ∙ 𝐹L𝓈$(:)S (9) 

Since the value of 𝑇I(𝓈$( , 𝑢$() depends on the state instances that are to be covered after 

𝓈$( and the policy determines the following states, the value of 𝑇IL𝓈$( , 𝑢$(S also relies on 

the policy. As a result, both 𝜌I and 𝑇IL𝓈$( , 𝑢$(S depend on the parameters of the policy.  

Suppose we have two policies: 𝜋I and 𝜋I;. To compare them, we have to apply both 

policies to execute the SUT a number of times, and derive the distributions of state 

instance and the values of highest discounted fragility from the execution. Since the cost to 

execute the SUT is relatively high, it is difficult to find the direction for improvement 

directly based on Equation (8). 

To simplify the optimization problem, we choose to optimize an approximation of the 

goal function [19]: 

𝜂(𝜋I) ≈ 𝐿(𝜋I) = 𝔼𝓈7U~LV; ,?7U~NV	n𝑇I;𝓈$( , 𝑢$()o (10) 
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Note that 𝜌I is changed to 𝜌I;  and 𝑇I(𝓈$( , 𝑢$() is changed to 𝑇I;(𝓈$( , 𝑢$(). This allows 

us to directly find the optimal improvement direction based on the 𝜌I;  and 𝑇I;(𝓈$( , 𝑢$() 

obtained from an existing policy 𝜋I;, without extra executions. The general idea is that the 

value of 𝑇I;(𝓈$( , 𝑢$() points out the expected reward of introducing uncertainty values 𝑢$( 

in a given state 𝓈$(. To increase the total expectation, we just need to adjust the parameters 

of the policy to increase the probability to generate 𝑢$( in 𝓈$(, if 𝑇I;(𝓈$( , 𝑢$() is high. As 

proven in [18], as long as the Kullback–Leibler divergence, a distance measure, between 

the two policy 𝜋I  and 𝜋I;  is bounded by a constant step size, the true reward function 

𝜂(𝜋I) is guaranteed to be improved.  

To further simplify the calculation of Equation (10), we replace the expectation over the 

uncertainty values following 𝜋I by the expectation over the uncertainty values following 

𝜋I;, according to importance sampling [20]: 

𝐿(𝜋I) = 𝔼𝓈7U~LV; ,?7U~NV; 	 s
𝜋IL𝑢$(t𝓈$(S
𝜋I;L𝑢$(t𝓈$(S

	 ∙ 𝑇I;(𝓈$( , 𝑢$()u (11) 

Based on this, we propose the following policy optimization algorithm, as given in 

Algorithm 2. The general idea is that whenever we find a sequence of uncertainty values 

u11, u12, … , unm that leads to a high fragility, i.e., their 𝑇I(𝓈$( , 𝑢$() is high, we adjust 𝜃R to 

𝜃  to increase the probability to generate the uncertainty sequence.  

Initially, an ANN, used as the uncertainty generation policy, is constructed (L1). After 

initializing the vectors used for saving samples of states, uncertainty values, and 

discounted fragilities, the iteration of execution begins (L7). During execution, uncertainty 

values are generated by the policy (L10) and are introduced to the SUT (L11) to run it 

under uncertainty. Affected by the uncertainty values, the state of the SUT switches to 

another one. The fragility of the SUT in the new state is evaluated and discounted by a 

discount factor (L13). If the discounted fragility exceeds the highest one that has been 

found so far, it means that a better sequence of uncertainty values is found to make the 

SUT more fragile (L17). In this case, we apply the conjugate gradient algorithm [21] to 

adjust the parameter values of the policy to maximize the generation probability of the 

sequence of uncertainty values  (L20). After that, the updated policy is used in the 

following execution to find an even better sequence of uncertainty values. 
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Algorithm 2 UPO(TMExecutor executor, UnGenerator generator, int numStateVar,  
int numUncer, int maxIter): 

Input executor is TM-Executor, the testing framework 
 generator is the uncertainty generator 
 numStateVar is the number of state variables 
 numUncer is the number of uncertainties 

 maxIteration is the maximum iteration number  
Begin  

1 policy.Init(numStateVar, numUncer) 
2 highestDisFragility = 0 
3 for i=1 to maxIteration 
4     states ← [] 
5     uncertainties ← [] 
6     discountedFragilities ← [] 
7     executor.StartExecution() 
8     while not executor.Finish() 
9        s ← executor.CurrentSUTState() 

10        u ← policy.Sample(s) 
11        generator.IntroduceUncertainties(u) 
12        s’ ← executor.CurrentSUTState() 
13        f ← executor.ComputeDiscountedFragility(s’) 
14        states.Append(s) 
15        uncertainties.Append(u) 
16        discountedFragilities.Append(f) 
17        if f > highestDisFragility 
18           highestDisFragility = f 
19     if highestDisFragility is changed 
20        policy.Update(states, uncertainties, discountedFragilities) 

End  

7 Implementation  
We implemented the fragility oriented testing approach in TM-Executor. Fig. 9 presents its 

three packages: software in the loop testing (light gray), uncertainty generation (dark gray), 

and FOT (white).  

TM-Executor tests the software of the SUT in a simulated environment. During testing, 

sensor data is computed by simulation models in simulators. Based on the simulated data, 

the software generates actuation instructions to control the system. Uncertainties are added 

to simulators’ input and output to simulate the effects of uncertainties. Based on the valid 

range of each uncertainty, the UPO algorithm generates uncertainty values whenever 

sensor data or actuation instructions are transferred between the software and simulators. 

By using the values to modify simulators’ inputs and outputs, the uncertainties are 

introduced into the testing environment.  

The SUT and its Executable Test Model (ETM) are executed together by an execution 

engine, which is deployed in Moka [22], a UML model execution platform. During the 

execution, the engine dynamically derives a DFSM from the test model and uses it to guide 
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the execution. Meanwhile, the active state’s state invariant is checked by a test inspector 

(using DresdenOCL [13]). The inspector evaluates the invariant with the actual values of 

the state variables, which are updated by the execution engine via testing interfaces 

(Section 2.3). If the invariant is evaluated to be false, a fault is detected. Otherwise, the 

inspector calculates the fragility of the SUT in the current state, using Equation (1). Taking 

fragility as input, the FOT algorithm updates its estimate of T-value (Equation (5)) and 

uses the softmax policy to select the next transition. Next, the test driver generates a valid 

test input with EsOCL [12], a search-based test data generator, for firing the selected 

transition. The execution engine takes this input to invoke the corresponding operation, 

causing the ETM and the SUT to enter the next state. In this way, T-values are learned 

from iterations of execution and the learned T-values direct FOT to effectively find faults.  

 
Fig. 9 SH-CPS Testing Framework [2] 

8 Evaluation  
This section presents the performance evaluation of FOT and UPO, including experiment 

design in Section 8.1, experiment execution in Section 8.2, experiment results in Section 

8.3, the discussion in Section 8.4, and threats to validity in Section 8.5.  

8.1 Experiment Design 

This section presents the design of the experiment, by following three carefully defined 

research questions.  
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8.1.1 Research Questions. 
RQ1: Does FOT+UPO have the highest fault detection ability for testing SH-CPSs under 

uncertainty? 

Since testing SH-CPSs under uncertainties comprises two tasks, i.e., invoking operations 

and introducing uncertainties, we devise FOT and UPO to address them respectively. To 

assess their performance, we select a baseline algorithm for each of them.  For FOT, we 

choose a Coverage-Oriented Testing (COT) algorithm as the baseline since it is a prevalent 

approach applied in the testing of CPSs [5]. This algorithm selects operation invocations 

based on the coverage frequencies of transitions, and its aim is to evenly traverse each 

transition. With respect to uncertainty generation, UPO is compared with a random 

approach. In this approach, uncertainty values are just generated from probability or 

possibility distributions. As a result, we have two algorithms, FOT and COT, for selecting 

operation invocations, and two algorithms, UPO and Random (R), for generating 

uncertainty values. In total, we obtain four approaches: FOT+UPO, FOT+R, COT+UPO, 

COT+R. We apply them to test three SH-CPSs to check which approach can detect more 

faults in SH-CPSs under uncertainties.  

RQ2: To what extent the fault detection ability can be enhanced by FOT and UPO, 

compared with the others? 

With this research question, we aim to investigate the effectiveness of FOT+UPO, i.e., 

assess the percentage of improvement regarding fault detection ability achieved by FOT 

and UPO compared with the other three approaches.  

RQ3: Concerning the optimal testing approach, what are the correlations between fault 

detection ability, testing time, and the scale of uncertainty variation? 

The number of detected faults not only depends on the fault detection ability of a testing 

approach but also relies on the variation ranges of uncertainties and the amount of time that 

can be used by the testing approach. This research question helps us reveal whether more 

faults can be detected as the testing time and the scale of uncertainty variation increase.  

8.1.2 Case Studies. 
We used three open source SH-CPSs for evaluation: 1) ArduCopter is a fully featured 

copter control system supporting 18 flight modes to control a copter. It has five self-
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healing behaviors to avoid crash and collision; 2) ArduRover21 is an autopilot system for 

ground vehicles having two self-healing behaviors to avoid an obstacle and handle the 

disruption of control link; 3) ArduPlane22 is an autonomous plane control system having 

two self-healing behaviors to avoid collision and address network disruption. Test 

execution was performed with software in the loop simulators, including GPS, barometer, 

accelerometer, gyroscope, and motor simulators. Nine fault injection operations were 

implemented in the simulators to trigger the nine self-healing behaviors to test them in the 

presence of uncertainty.  

The three SH-CPSs are affected by eight uncertainties related to the sensors and 

actuators. Based on the product specifications of the sensors and actuators, we specified 

their variation range, as presented in Table 15.  

Table 15 Identified Uncertainties from the Three Case Studies 

Hardware Uncertainty Range Hardware Uncertainty Range 

Accelerometer 
Noise (-9mg, +9mg) 

GPS 

Position 
accuracy 

(-2.5m, +2.5m) 

Nonlinearity (-0.5%, +0.5%) 
Velocity 
accuracy (-0.05m/s, +0.05m/s) 

Motor 
Rotation Noise (-0.3°, +0.3°) Gyroscope Noise (-0.3°/s, +0.3°/s) 
Acceleration Noise (-0.02m/s2, +0.02m/s2) Barometer Accuracy (-150 Pa, +150 Pa) 

Before testing, we built the Executable Test Model (ETM) for each self-healing behavior 

of the three case studies. Table 16 shows the statistics of the ETMs. Moreover, we 

examined the average amount of time that the testing framework takes to execute the ETM 

and the SUT from their initial state to a final state, as presented in the last row of Table 16. 

Note that the average execution times are determined by the implementation of the SUTs, 

and they are not affected by different testing approaches.  
Table 16 Descriptive Statistics of ETMs 

 ArduCopter ArduRover ArduPlane 
 ETM1 ETM2 ETM3 ETM4 ETM5 ETM6 ETM7 ETM8 ETM9 

#States 64 60 70 64 36 58 54 79 40 
#Transitions 440 268 286 440 106 306 303 347 104 

Avg. Exe. Time 
(min.) 8 9 7 8 8 10 11 6 6 

 
 
21 http://ardupilot.org/rover/ 
22 http://ardupilot.org/plane/ 
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8.1.3 Experiment Tasks 
Three tasks have to be performed to address the three research questions. Table 17 gives an 

overview of the three tasks.  

For RQ1, T1 is performed to investigate which testing approach can detect more faults in 

the nine self-healing behaviors under the eight uncertainties. To reduce the impact of 

testing time and the scale of uncertainty variation, we choose three settings for each of 

them. The three testing times are 72, 144, and 216 hours. This allows each testing approach 

to execute the ETM and the SUT approximately 500, 1000, and 1500 times to find faults. 

Meanwhile, we choose three scales of uncertainty variation: 80%, 100%, and 120%. 100% 

represents the standard variation ranges shown in Table 15. 80% (120%) means reducing 

(increasing) the ranges by 20 percent. For instance, the 80%, 100%, and 120% variation 

ranges of the uncertainty Noise from the accelerometer are (-7.2mg, +7.2mg), (-9mg, 

+9mg), and (-10.8mg, +10.8mg) respectively. The ranges are only modified by 20% to 

avoid making the uncertainty variation ranges deviate too far from the reality. The 

differences in uncertainty scale help us reveal the fault detection ability of a testing 

approach under different uncertainty scales.  

Table 17 Overview of Experiment Design 

R
Q 

Task Metric Statistical Test Testing 
Approach 

Testing 
Time(h

our) 

Scale of 
Uncertainty 
Variation 

Case Studies 
 

1 
T1: Compare the fault detection 
ability of the selected testing 
approaches 

NDF 

Mann-Whitney 
U test 
Vargha and 
Delaney’s �̂�&T 

1: 
FOT+UPO 
2: FOT+R 
3: 
COT+UPO 
4: COT+R 

1: 72 
2: 144 
3: 216 

1: 80% 
2: 100% 
3: 120% 

1: ArduCopter 
(five SH 
Behaviors) 
2: ArduPlane 
(two SH 
Behaviors) 
3: ArduRover 
(two SH 
Behaviors) 

 
 

2 

T2: Calculate the improvement 
with respect to the percentage of 
faults detected by the optimal 
approach PDF 

 

N/A 

3 

T3: Analyze the correlations 
between the fault detection 
ability, testing time, and 
uncertainty scale 

N/A 
The 
optimal 
one 

Consequently, the nine self-healing behaviors are tested with the four approaches in nine 

different test settings. In total, 81 testing jobs are to be conducted by the four approaches. 

Moreover, each testing job is performed 10 times to reduce the impact of randomness.  

Regarding RQ2, T2 is performed to calculate the percentage of improvement in terms of 

fault detection when the optimal testing approach is applied.  
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For RQ3, we conduct T3 to analyze the correlations among fault detection ability, testing 

time, and the scale of uncertainty variation.  

8.1.4 Evaluation Metrics and Statistics Tests 
RQ1: We define the Number of Detected Faults (NDF) to quantify the fault detection 

ability of each testing approach. NDF is the number of faults that are detected by an 

approach in a self-healing behavior within limited testing time. As the first step of 

analyzing the results, we applied Shapiro-Wilk test with a significance level of 0.05 to 

check the normality of NDF values. Results show that the distribution of the NDF values 

departs from normality. Therefore, we use non-parametric Mann-Whitney U test with the 

significant level of 0.05 to determine the significance of differences between two testing 

approaches. That is, a comparison result is statistically significant if the p-value is less than 

0.05. Furthermore, following the guideline in [23], we apply Vargha and Delaney’s 𝐴w". 

statistics to measure the effect size, i.e., measure the probability that a testing approach A 

can detect more faults than another approach B. If A and B are equivalent, 𝐴w". equals 0.5. 

If 𝐴w". is greater than 0.5, then A has higher chance to detect more faults than B.   

RQ2: To calculate to what extent the fault detection ability can be enhanced by the 

optimal testing approach, compared with the others, we define another metric: the 

Percentage of Detected Faults (PDF), that is, the percentage of faults in one self-healing 

behavior that can be detected by a testing approach. It is calculated as follows: 	

𝑃𝐷𝐹$ =
STU7
VE*-W7

, where 𝑁𝐷𝐹$ is the number of faults detected in one testing job for the ith 

self-healing behavior, and 𝑇𝑜𝑡𝑎𝑙$  is the total number of faults detected in the behavior. 

Because the number of actual faults cannot be determined, the total number of detected 

faults is used instead. This metric normalizes the number of detected faults, which enables 

us to compare the performance of each approach across different self-healing behaviors.  

RQ3: We also use PDF as a measure of fault detection ability to analyze its relations 

with testing time and the scale of uncertainty variation. Here, we are interested in assessing 

the monotonic relations among them, i.e., whether more faults can be detected, as the 

testing time and the scale of uncertainty increase. Consequently, we apply box plot to 

present the distribution of PDF under each testing time and uncertainty scales, based on 

five numbers: minimum, first quartile, median, third quartile, and maximum. In the plot, a 
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rectangle spans the first quartile to the third quartile. A mark inside the rectangle indicates 

the median. The lines above and below the rectangle denote the maximum and minimum.  

8.2 Experiment Execution 
We implemented the proposed algorithms in the TM-Executor [2]. As explained in Section 

4, each testing approach consists of two steps: selecting a sequence of operation 

invocations and finding a sequence of uncertainty values. The number of iterations for the 

first step is 200, and the maximum iteration number for the second step is 500. For FOT, 

we set discount rate 𝛾  to 0.99 and temperature 𝜏  to 0.2. For UPO, the ANN used as 

uncertainty generation policy contains three layers: an input layer, an output layer, and a 

hidden layer. The number of input neurons is the number of state variables of each SUT, 

and the number of hidden neurons is two times the number of input neurons. The number 

of output neurons is equal to the number of uncertainties.  The variance ε used by the 

stochastic policy is 0.4. These are commonly used settings in reinforcement learning [24]. 

The experiment is executed on Abel, a computer cluster at the University of Oslo23. Each 

testing job is run with eight cores and 32 GB RAM.  

8.3 Experiment Results 

RQ1: Table 18 presents the average number of faults detected by each testing approach 

(Task T1). From the table, we can observe that FOT+UPO detected more faults than the 

other three approaches for all the case studies and test settings. We further conducted a 

statistical test to determine whether such results are statistically significant.  

Table 19 summarizes the results of comparing the NDF achieved by FOT+UPO against 

those achieved by FOT+R, COT+UPO, and COT+R. FOT+UPO significantly 

outperformed the other approaches in 73 out of 81 testing jobs, as the values of 𝐴w". are 

greater than 0.5 and 73 p-values are less than 0.05. For the other eight cases, since the scale 

of uncertainty is low, the four testing approaches only detected few faults within 72 hours. 

Thus, there is no significant difference among the four approaches.  

 

 
 
23 http://www.uio.no/english/services/it/research/hpc/abel/ 
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Table 18 Average Number of Faults Detected by Each Approach 

Setting Approach ArduCopter ArduPlane ArduRover Avg. SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2 

S1 

FOT+UPO 0.3 0.4 0.3 0.3 0.2 0.7 0.4 0.3 0.2 0.3 
FOT+R 0 0 0 0 0 0 0 0 0 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S2 

FOT+UPO 1.3 1.8 1.5 1.7 1.8 1.9 1 1 1 1.4 
FOT+R 0.1 0 0 0 0 0 0 0.1 0.2 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S3 

FOT+UPO 2.1 2.4 2 2.2 2.1 1.9 1 1 1 1.7 
FOT+R 0.1 0 0 0 0 0.1 0.1 0.2 0.4 0.1 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S4 

FOT+UPO 0.5 0.6 0.4 0.5 0.5 1.1 0.8 0.9 0.9 0.7 
FOT+R 0 0 0 0 0 0 0 0 0 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S5 

FOT+UPO 1.2 1.9 1.9 2.1 2 2 1 1 1 1.6 
FOT+R 0.1 0 0 0.1 0 0.2 0.1 0.1 0.3 0.1 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S6 

FOT+UPO 2.3 2.6 2.5 2.3 2.4 2 1 1 1 1.9 
FOT+R 0.3 0 0.1 0.1 0 0.3 0.1 0.3 0.5 0.2 

COT+UPO 0 0 0 0 0 0 0 0.1 0.1 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S7 

FOT+UPO 0.9 0.6 0.5 0.5 0.6 1.3 0.9 1 1 0.8 
FOT+R 0 0 0 0 0 0 0 0 0 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S8 

FOT+UPO 2 2.5 2.3 2.5 2.7 2 1 1 1 1.9 
FOT+R 0.1 0 0.1 0 0.1 0.3 0.1 0.2 0.3 0.1 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S9 

FOT+UPO 2.8 2.9 3.1 2.8 3 2 1 1 1 2.1 
FOT+R 0.3 0.1 0.2 0 0.1 0.4 0.2 0.4 0.5 0.2 

COT+UPO 0 0.1 0 0 0 0.1 0 0.1 0.1 0 
COT+R 0 0 0 0 0 0 0 0.1 0 0 

*S1: Test 72 hours with 80% uncertainty range, S2: Test 144 hours with 80% uncertainty range, S3: Test 
216 hours with 80% uncertainty range, S4: Test 72 hours with 100% uncertainty range, S5: Test 144 hours 
with 100% uncertainty range, S6: Test 216 hours with 100% uncertainty range, S7: Test 72 hours with 120% 
uncertainty range, S8: Test 144 hours with 120% uncertainty range, S9: Test 216 hours with 120% 
uncertainty range 
 

Therefore, the answer to RQ1 is that among the four testing approaches, FOT+UPO has 

the highest fault detection ability for testing SH-CPSs under uncertainties. Compared with 

the others, FOT+UPO detected significantly more faults in 73 out of 81 testing jobs. 
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Table 19 Results of Comparing the Approaches for Testing each Self-Healing Behavior 

Setting Compared 
with 

ArduCopter ArduPlane ArduRover 
SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2 

𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 

S1 
FOT+R 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35 

COT+UPO 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35 
COT+R 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35 

S2 
FOT+R 0.97 0.006 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 0.95 0.003 0.9 0.006 

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 1 0.002 1 0.002 
COT+R 1 0.004 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 1 0.002 1 0.002 

S3 
FOT+R 0.99 0.005 1 0.004 1 0.004 1 0.003 1 0.003 0.99 0.004 0.95 0.003 0.9 0.006 0.8 0.019 

COT+UPO 1 0.004 1 0.004 1 0.004 1 0.003 1 0.003 1 0.003 1 0.002 1 0.002 1 0.002 
COT+R 1 0.004 1 0.004 1 0.004 1 0.003 1 0.003 1 0.003 1 0.002 1 0.002 1 0.002 

S4 
FOT+R 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003 

COT+UPO 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003 
COT+R 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003 

S5 
FOT+R 0.96 0.006 1 0.005 1 0.004 0.99 0.004 1 0.004 1 0.004 0.95 0.003 0.95 0.003 0.85 0.011 

COT+UPO 1 0.004 1 0.005 1 0.004 1 0.004 1 0.004 1 0.002 1 0.002 1 0.002 1 0.002 
COT+R 1 0.004 1 0.005 1 0.004 1 0.004 1 0.004 1 0.002 1 0.002 1 0.002 1 0.002 

S6 
FOT+R 1 0.005 1 0.005 1 0.005 1 0.004 1 0.005 1 0.004 0.95 0.003 0.85 0.011 0.75 0.037 

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.004 1 0.005 1 0.002 1 0.002 0.95 0.003 0.95 0.003 
COT+R 1 0.004 1 0.005 1 0.005 1 0.004 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002 

 
S7 

FOT+R 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002 
COT+UPO 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002 

COT+R 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002 

S8 
FOT+R 0.99 0.008 1 0.005 0.99 0.004 1 0.005 1 0.005 1 0.004 0.95 0.003 0.9 0.006 0.85 0.011 

COT+UPO 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002 
COT+R 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002 

S9 
FOT+R 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 0.9 0.006 0.8 0.019 0.75 0.037 

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.005 1 0.005 1 0.003 1 0.002 0.95 0.003 0.95 0.003 
COT+R 1 0.004 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 0.95 0.003 1 0.002 

 

RQ2: To compare the fault detection ability of each testing approach across the nine self-

healing behaviors, we calculated the PDF by dividing the NDF by the total number of 

faults detected in the experiment (Task T2). Table 20 presents the results. In most cases, 

FOT+UPO detected more than 70% of faults, while FOT+R and COT+UPO merely 

detected less than 17% of faults. For COT+R, it only detected one fault once in a self-

healing behavior of ArduRover.  

Therefore, we answer RQ2 as compared with COT and random uncertainty generation, 

FOT and UPO together can enhance the fault detection ability of a testing approach by at 

least 50%. FOT+UPO detected over 70% faults in most cases. Whereas, FOT+R, 

COT+UPO, and COT+R at most detected 17%, 3%, and 1% faults on average respectively. 
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RQ3: Using box plot, we investigated the correlations among the fault detection ability 

(PDF) of FOT+UPO, testing time (TT), and the scale of uncertainty variation (SU). As 

shown in Fig. 10, when SU is 0.8 or 1.0, PDF tends to increase as TT grows from 72 hours 

to 216 hours. The tendency becomes less significant when SU is increased to 1.2. This 

indicates that when SU is relatively low, the testing approach needs to take 216 hours to 

detect all the faults. Whereas, when SU is high, 144 hours are sufficient for the testing 

approach to find most faults.  

 
Fig. 10 Box Plots of PDF under Each Testing Time and Uncertainty Scale  

Regarding the correlation between PDF and SU, it exposes similar phenomena. When 

TT is 72 hours, the median of PDF increases from 0 to 0.2, as SU grows from 0.8 to 1.2. 

When TT is extended to 144 hours, their positive relation becomes less significant. As the 

testing approach has sufficient time to detect most faults, there is no significant difference 

in PDF for different SUs.    

Therefore, we answer RQ3 as: PDF is positively correlated with both TT and SU. As TT 

or SU increases, PDF tends to increase as well. However, when SU is high, or TT is long, 

the positive correlations become less significant. Since PDF reaches a relatively high value 

earlier, it cannot be further significantly promoted. 
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Table 20 Percentage of Faults Detected by Each Testing Approach 

Setting Approach ArduCopter ArduPlane ArduRover Avg. SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2 

S1 

FOT+UPO 10% 10% 10% 8% 7% 35% 40% 30% 20% 19% 
FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S2 
FOT+UPO 43% 45% 50% 43% 60% 95% 100% 100% 100% 71% 

FOT+R 3% 0% 0% 0% 0% 0% 0% 10% 20% 4% 
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S3 
FOT+UPO 70% 60% 67% 55% 70% 95% 100% 100% 100% 80% 

FOT+R 3% 0% 0% 0% 0% 5% 10% 20% 40% 9% 
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S4 
FOT+UPO 17% 15% 10% 17% 17% 55% 80% 90% 90% 43% 

FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S5 
FOT+UPO 40% 48% 48% 70% 67% 100% 100% 100% 100% 75% 

FOT+R 3% 0% 0% 3% 0% 10% 10% 10% 30% 7% 
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S6 
FOT+UPO 77% 65% 63% 77% 80% 100% 100% 100% 100% 85% 

FOT+R 10% 0% 3% 3% 0% 15% 10% 30% 50% 13% 
COT+UPO 0% 0% 0% 0% 0% 0% 0% 10% 10% 2% 

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S7 
FOT+UPO 30% 15% 13% 13% 15% 65% 90% 100% 100% 49% 

FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S8 
FOT+UPO 67% 63% 58% 63% 68% 100% 100% 100% 100% 80% 

FOT+R 3% 0% 3% 0% 3% 15% 10% 20% 30% 9% 
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S9 
FOT+UPO 93% 73% 78% 70% 75% 100% 100% 100% 100% 88% 

FOT+R 10% 3% 5% 0% 3% 20% 20% 40% 50% 17% 
COT+UPO 0% 3% 0% 0% 0% 5% 0% 10% 10% 3% 

COT+R 0% 0% 0% 0% 0% 0% 0% 10% 0% 1% 

8.4 Discussion 

Based on the results of the experiment, we have three key observations. First, due to the 

effect of uncertainties, self-healing behaviors might fail to timely detect faults or 

improperly adapt system behaviors. For instance, because of sensors’ measurement 

uncertainties, the copter could not accurately capture its location, orientation, and velocity. 

When the copter was about to collide with another vehicle, inaccurate measurements 

sometimes caused the copter to incorrectly adjust its orientation, leading to a collision. 

Therefore, it is necessary to test self-healing behaviors in the presence of environmental 

uncertainties. To build such a testing environment, we adapt the software in the loop 

approach. In this approach, uncertainties are explicitly introduced via sensor data and 
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actuation instructions. Second, it requires a specific sequence of operation invocations and 

a specific sequence of uncertainty values to reveal a fault caused by the effect of 

uncertainties. Invoking different operations or invoking the same operation with different 

inputs can both lead to distinct system states. Moreover, the impacts of uncertainties cause 

the states to diverge further.  Since a fault may only be activated in a few special states, 

specific operation invocations and uncertainty values need to be found to reveal the fault. 

In this context, coverage-oriented testing, which aims to evenly explore each system state, 

is ineffective to find faults. To address this issue, we present a fragility-oriented approach 

in this paper. By focusing on the fragile states of the SUT, it managed to find faults more 

effectively. Third, FOT and UPO have to cooperate to effectively detect faults under 

uncertainties. Directed by the fragility obtained from execution, FOT and UPO can 

gradually learn the optimal policy to select operation invocations and the optimal 

uncertainty generation policy respectively. The experiment results demonstrated that 

compared with the other approaches, FOT+UPO could enhance the fault detection ability 

by at least 50%.  

8.5 Threats to Validity 

Conclusion validity is concerned with factors that affect the conclusion drawn from the 

outcome of experiments [25]. Because of random transition selection and random 

uncertainty generation used by the four testing approaches, randomness in the results is the 

most probable conclusion validity threat. To reduce this threat, all the testing jobs were 

repeated 10 times. We applied Mann-Whitney U test and Vargha and Delaney’s 𝐴w". to 

evaluate the statistical difference and magnitude of improvement.  

Internal validity threat refers to the influence that affects the causal relationship 

between the treatment and outcome [25], i.e., the testing approach and its fault detection 

ability. Since testing time and scale of uncertainty have impacts on the performance of a 

testing approach, they could be the threat to internal validity. To reduce such threat, we 

compared the performance of the four selected testing approaches under three testing times 

and three uncertainty scales. 

External validity threats concern the generalization of the experiment results [25]. We 

employed nine self-healing behaviors from three real case studies to compare the 
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performance of four testing approaches. However, additional case studies are needed to 

generalize the results further.  

Construct validity is concerned with how well the metrics used in the experiment 

reflect the construct [25] — fault detection ability of a testing approach. Because the 

number of actual faults is unknown, we used the number of detected faults and the 

percentage of detected a fault as the evaluation metrics, which are comparable across the 

four testing approaches.  

9 Related Work 
This section presents the related work from three aspects: model-based testing in Section 

9.1, testing with reinforcement learning in Section 9.2, and uncertainty-wise testing in 

Section 9.3.  

9.1 Model-Based Testing 

Model-Based Testing (MBT) has shown good results of producing effective test suites to 

reveal faults [26]. For a typical MBT approach, abstract test cases are generated from 

models first, e.g., using structural coverage criteria (e.g., all state coverage) [27, 28]. 

Generated abstract test cases are then transformed into executable ones, which are 

executed on the SUT. To reduce the overhead caused by test cases generation, researchers 

proposed to combine test generation, selection, and execution into one process [29, 30]. De 

Vries et al. [29] created a testing framework, with which the SUT is modeled as a labeled 

transition system. By parsing this model, test inputs are generated on the fly to perform 

conformance testing. This approach aims to test all paths belonging to this model. 

However, if loops exist or the specified model is large, additional mechanisms are required 

to reduce the state space. Larsen et al. [30] proposed a similar testing tool for embedded 

real-time systems. It uses the timed I/O transition system as the test model, and test inputs 

are randomly generated from the model on the fly for testing.  

Different from the existing works, the proposed fragility-oriented testing approach relies 

on the execution of ETMs to facilitate the testing of SH-CPSs under uncertainty. During 

the execution, FOT and UPO apply reinforcement learning techniques to learn the optimal 

policy of invoking operations and best policy of generating uncertainties respectively. In 
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addition, our work focuses on testing self-healing behaviors in the presence of 

environmental uncertainty, which is not covered by existing works.  

9.2 Testing with Reinforcement Learning  

The first reinforcement learning based testing algorithm was proposed in [7]. It uses 

frequencies of transitions’ coverage as the heuristics of reinforcement learning. Directed by 

the frequencies, the algorithm tries to explore all transitions equally. However, a long-term 

reward is not realized in this approach. Groce et al. [31] created a framework to simplify 

the application of reinforcement learning for testing, which uses coverage as the heuristic 

and relies on SARSA(λ) [8] for calculating long-term rewards. Similarly, Araiza-Illan et al 

[32] used coverage as the reward function to test human-robot interactions with 

reinforcement learning. Due to uncertainty, achieving the full transition coverage is 

insufficient to find faults in self-healing behaviors. Thus, we propose to use fragility 

instead of coverage as the heuristic. Moreover, we devised two novel algorithms, FOT and 

UPO, for operation invocation and uncertainty generation respectively.  

9.3 Uncertainty-wise Testing 

Regarding uncertainty-wise testing, some taxonomies of uncertainty for self-adaptive 

systems have been proposed in [33, 34], and a conceptual model of uncertainty for CPSs 

has been built in [35].  To test systems in the presence of the uncertainty, Fredericks et al. 

[36] developed a run-time testing framework. It dynamically adapts a set of predefined test 

cases to test whether the SUT behaves correctly when adaptation is required to handle 

changes in environmental conditions. However, the paper does not mention how to obtain 

the initial test cases and how to construct an uncertainty-introduced testing environment. 

Yang et al. [37] devised a formal approach to verify the correctness of self-adaptive 

applications under uncertainty. While, the formal verification approach is computationally 

expensive, and it requires extra effort to prove the SUT is consistent with the verified 

model. Zhang et al. [38] proposed a multi-objective search-based approach for test case 

generation and minimization, with the aim of discovering unknown uncertainties.  

Different from the existing works, we aim to test whether the SUT can behave properly 

in the presence of uncertainty. To effectively detect faults, we devise the UPO algorithm. 

By utilizing the fragility to optimize the uncertainty generation policy (an ANN), it 
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manages to effectively find a sequence of uncertainty values that can cooperate with a 

sequence of operation invocations to reveal faults. 

10 Conclusion 
This paper presents a fragility-oriented approach for testing Self-Healing Cyber-Physical 

Systems (SH-CPSs) under uncertainty. The testing approach consists of two steps. One is 

to select a sequence of operation invocations, which determines the behavior of the SH-

CPS Under Testing (SUT) in test execution. The other is to generate a sequence of 

uncertainty values to make the SUT behave under uncertainty. For the two steps, we devise 

two algorithms: Fragility-Oriented Testing (FOT) and Uncertainty Policy Optimization 

(UPO). Both of them employ the fragility to learn the optimal policies for operation 

invocations and uncertainty generation respectively. To evaluate their performance, we 

compared them against three testing approaches: FOT+R, COT+UPO, and COT+R, where 

COT represents a coverage-oriented algorithm for operation invocations and R represents a 

random mechanism for uncertainty generation. The four testing approaches were applied to 

test nine self-healing behaviors from three real-world case studies. The testing results 

showed that FOT+UPO significantly detected more faults than the other three approaches, 

in 73 out of 81 testing jobs. In the 73 jobs, FOT+UPO detected more than 70% of faults, 

while the others detected 17% of faults, at the most.  
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Appendix 
Fig. 11 presents a simplified ETM for ArduCopter. According to the ETM, a DFSM can be 

constructed, and part of the DFSM is shown in Fig. 5.  

 
Fig. 11 Simplified ETM for ArduCopter 

  



 
 

131 
 
 
 
 
 

 

 

Paper C 
 

Testing Self-Healing Cyber-Physical 
Systems under Uncertainty with 

Reinforcement Learning: An Empirical 
Study 

 

 
Tao Ma, Shaukat Ali, and Tao Yue 

 
 
 
 
 
 
 

Journal of Empirical Software Engineering (EMSE). DOI: 10.1007/s10664-021-

09941-z 



 
 

132 
 
 
 
 
 

Abstract  
Self-healing is becoming an essential feature of Cyber-Physical Systems (CPSs). CPSs 

with this feature are named Self-Healing CPSs (SH-CPSs). SH-CPSs detect and recover 

from errors caused by hardware or software faults at runtime and handle uncertainties 

arising from their interactions with environments. Therefore, it is critical to test if SH-

CPSs can still behave as expected under uncertainties. By testing an SH-CPS in various 

conditions and learning from testing results, reinforcement learning algorithms can 

gradually optimize their testing policies and apply the policies to detect failures, i.e., cases 

that the SH-CPS fails to behave as expected. However, there is insufficient evidence to 

know which reinforcement learning algorithms perform the best in terms of testing SH-

CPSs behaviors including their self-healing behaviors under uncertainties. To this end, we 

conducted an empirical study to evaluate the performance of 14 combinations of 

reinforcement learning algorithms, with two value function learning based methods for 

operation invocations and seven policy optimization based algorithms for introducing 

uncertainties. Experimental results reveal that the 14 combinations of the algorithms 

achieved similar coverage of system states and transitions, and the combination of Q-

learning and Uncertainty Policy Optimization (UPO) detected the most failures among the 

14 combinations. On average, the Q-Learning and UPO combination managed to discover 

two times more failures than the others. Meanwhile, the combination took 52% less time to 

find a failure. Regarding scalability, the time and space costs of the value function learning 

based methods grow, as the number of states and transitions of the system under test 

increases. In contrast, increasing the system’s complexity has little impact on policy 

optimization based algorithms. 

 

 

Keywords Cyber-Physical Systems, Uncertainty, Self-Healing, Model Execution, 

Reinforcement Learning, Empirical Evaluation 
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1 Introduction 
As an essential feature of Cyber-Physical Systems (CPSs), self-healing enables a CPS to 

autonomously detect and recover from errors caused by software or hardware faults at 

runtime. We refer to this kind of CPSs as Self-Healing CPSs (SH-CPSs). Besides recovery, 

SH-CPSs have to address various uncertainties, which mean uncertain values that may 

affect behaviors of an SH-CPS during execution, including measurement errors from 

sensors and actuation deviations from actuators. In reality, uncertainties are uncontrollable 

and exact values of errors are unknown for a given interaction between an SH-CPS and its 

environment. To assess the reliability of SH-CPSs, we would like to test if an SH-CPS can 

still behave as expected under uncertainties, with the range of each uncertainty given. As 

SH-CPSs have two kinds of behaviors (i.e., functional behaviors for fulfilling business 

requirements and self-healing behaviors for handling faults [1]) both affected by 

uncertainties, we aim to test both kinds of behaviors of SH-CPSs under uncertainties.  

To solve the testing problem, previously, we proposed a fragility-oriented approach [2]. 

In this approach, we evaluate how likely the system will fail in a given state, defined as 

fragility, and use the fragility as a heuristic to find the optimal testing policies for detecting 

failures, i.e., unexpected behaviors. Here, we need to find two policies. The first policy is 

used to decide how to exercise the SH-CPS by invoking its testing interfaces. Meanwhile, 

another policy is used to determine the value of each uncertainty that affects a 

measurement or actuation when an SH-CPS uses a sensor or actuator to monitor or change 

its environment. The value is then passed to simulators of sensors or actuators to replicate 

the uncertainty’s effect. In our previous work [2], reinforcement learning has demonstrated 

its effectiveness in learning these two policies. Compared with random testing and a 

coverage-oriented testing approach, the fragility-oriented approach with reinforcement 

learning discovered significantly more failures. However, as several reinforcement 

learning algorithms are available [3], there is no sufficient evidence showing which 

reinforcement learning algorithms are the best to be used for testing SH-CPS under 

uncertainties. 

To this end, we conducted this empirical study, in which the performance of 14 

combinations of various reinforcement learning algorithms was evaluated together with the 

fragility-oriented approach for testing six SH-CPSs. As aforementioned, to detect failures, 
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the algorithms need to learn the optimal policy for invoking testing interfaces (task 1) and 

learn the best strategy to choose uncertainty values (task 2). As these two tasks are 

different, we applied two sets of algorithms to perform them. Specifically, we applied two 

value function learning based algorithms, Action-Reward-State-Action (SARSA) [4] and 

Q-learning  [4], for finding the policy of invoking testing interfaces, and seven policy 

optimization based algorithms, Asynchronous Advantage Actor-Critic (A3C) [5], Actor-

Critic method with Experience Replay (ACER) [6], Proximal Policy Optimization (PPO) 

[7], Trust Region Policy Optimization (TRPO) [8], Actor-Critic method using Kronecker-

factored Trust Region (ACKTR) [9], Deep Deterministic Policy Gradient (DDPG) [10], 

and Uncertainty Policy Optimization (UPO) [2], for learning the policy of selecting values 

for uncertainties.  

Results of our empirical study reveal that Q-learning + UPO was the optimal 

combination that discovered the most failures in the six SH-CPSs under uncertainties. On 

average, the combination found two times more failures and took 52% less time to find a 

failure than the others. Regarding the scalability of the applied algorithms, as the numbers 

of states and transitions of the systems under test increased, the time and space costs of the 

value function learning based algorithms (SARSA and Q-learning) grew as well, as they 

had to save values of each state and transition and choose the optimal action based on the 

values. In contrast, the policy optimization based algorithms were rarely affected by 

varying complexities of the systems, as they used artificial neural networks to select 

actions and estimate the values of states and transitions.  

The remainder of this paper is organized as follows. Section 2 provides background 

information, followed by the experiment design in Section 3. Section 0 and Section 5 

present the experiment execution and results, with a discussion about the results and 

alternative approaches given in Section 6. Section 7 analyzes threats to validity. After a 

discussion about related work in Section 8, Section 9 concludes the paper.  
 

2 Background 
This section briefly introduces the test model used to capture components, expected 

behaviors, and uncertainties of the SH-CPS under test in Section 2.1. Section 2.2 explains 

how to test the SH-CPS against a test model. The problem is formulated in Section 2.3, and 
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Section 2.4 shows the reinforcement learning algorithms that can be used to solve the 

testing problem. In this section, key concepts related to testing and reinforcement learning 

are italicized. 

2.1 Uncertainty-Wise Executable Test Model 

To test SH-CPSs under uncertainty, in our previous work [1], we have proposed the 

Executable Model-Based Testing approach (EMBT). In this approach, an executable test 

model is used to capture components, uncertainties, and expected behaviors of an SH-CPS 

under test. This section will use an example of an autonomous Copter system to introduce 

the test model, a simplified which is given in Fig. 12. 

An executable test model consists of a collection of UML24 class diagrams and state 

machines. The class diagrams capture components of the SH-CPS under test as UML 

classes. The components’ state variables that are accessible via testing interfaces are 

specified as properties of the classes and the testing interfaces for controlling or monitoring 

the components are defined as operations. For example, the Copter has a NavigationUnit 

and a GPS, and they are specified as UML classes (Fig. 12 (A)). The properties of the 

NavigationUnit capture its state variables, like “velocity” and “height”, that can be queried 

by the testing interface status(). Besides status(), the NavigationUnit provides several 

interfaces used to control the flight, including throttle(), pitch(), arm(), and land(). They are 

all specified as operations of the NavigationUnit. When an SH-CPS uses sensors and 

actuators to monitor and change its environment, the measurement and actuation 

performed by the sensors and actuators are affected by uncertainties. Such uncertainties are 

specified as stereotyped25 properties, with their ranges specified as stereotype attributes. 

For instance, the measurement error of “ velocity” measured by GPS is an uncertainty. It is 

specified as a property of the GPS class, “vError”, and its range is specified by the 

stereotype attributes: “min” and “max”. Note that as the probability distributions of the 

uncertainty may not be known, our testing approach does not test SH-CPSs with 

uncertainties sampled from distributions. Instead, it applies effective algorithms to find the 

 
 
24 UML: Unified Modeling Language (https://www.omg.org/spec/UML/) 
25 Stereotype: it is an extension mechanism provided by UML. We defined a set of stereotypes, also called UML 

profiles, to extend UML class diagram and state machine to specify components, uncertainties, and expected behaviors of 
the SH-CPS under test.  
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values of uncertainties that can prohibit a system from behaving normally. Therefore, only 

the valid range of each uncertainty is defined in the test model. 

 
Fig. 12 Simplified Test Model of a Copter System 

Expected behaviors of each component are specified as UML state machines. A state in 

a state machine is defined together with a state invariant, which is an OCL26 constraint of 

state variables. By evaluating the invariant, with the variables’ values accessed from the 

system under test, we can check if the invariant is satisfied when a component is supposed 

to be in a given state. For example, Fig. 12 (B) presents two expected behaviors of the 

NavigationUnit. The first behavior specifies how the NavigationUnit controls a flight in 

response to invocations of its operations. For example, the Copter starts to take off when 

throttle() is invoked with its parameter “t” above 1500. Normally, the NavigationUnit 

employs the GPS to monitor the flight. When the GPS loses its signal and fails to measure 

the Copter’s position and velocity, a self-healing behavior (i.e., an adaptive control 

algorithm) will detect the incorrect measurement, identify the cause (i.e., GPS fault) and 

switch to other sensors27 until the GPS outage is over. During this period, the self-healing 

behavior controls the Copter’s movement properly to avoid it crashing on the ground. The 

second state machine in Fig. 12 (B) specifies this self-healing behavior. The state invariant 

 
 
26 OCL: Object Constraint Language. https://www.omg.org/spec/OCL/ 
27 Other sensors include barometer, accelerometer and gyroscope. Limited by the space, they are not shown in Fig. 1. 
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of “Fallback” requires that the Copter should be above the ground, i.e., “height > 0”, when 

the behavior takes effect.  

Because the self-healing behavior is internal, it is controlled by the NavigationUnit, 

instead of external instructions. Consequently, it needs a fault injection operation (e.g., 

stopGPSSignal() defined in the GPS class ) to trigger such behavior. We also use UML 

state machines to specify when a fault can be injected and how it will affect the state of a 

corresponding component, with the stereotypes of «Fault» and «Error» provided by our 

modeling framework [2]. For instance, Fig. 12 (C) presents the behavior of GPS. Initially, 

GPS is in the “Normal” state. Then, stopGPSSignal() can be invoked, and it will trigger 

GPS switching to the “Signal  Lost” state, in which the GPS will stop measuring position 

and velocity to mimic the fault of losing signal from GPS. After 10 seconds, GPS will 

switch back to the “Normal” state and start measuring again. The state machine tells us that 

this is a transient fault. In contrast, a permanent fault will keep a component in an error 

state. Based on the UML state machines, an algorithm can inject the fault in various 

conditions and learn when a fault should be injected to reveal an unexpected behavior.  

In summary, a test model captures 1) components, 2) properties, operations, and 

expected behaviors of each component, and 3) uncertainties that affect the behaviors and 

ranges of the uncertainties, for an SH-CPS. We aim to test if the SH-CPS behaves 

consistently with the test model under uncertainties. Note that the purpose of this testing is 

to detect failures of SH-CPSs under uncertainties. A failure should be differentiated from a 

fault that is to be healed by self-healing behaviors. The failure that is to be observed by 

testing is an unexpected behavior, representing a case where an SH-CPS fails to behave 

consistently with its test model. In contrast, the fault that is to be handled by self-healing 

behaviors should have been identified at design time, and self-healing behaviors have been 

implemented to detect errors, identify the faults causing the errors, and apply proper 

adaptations to recover from the errors. For example, the self-healing behavior of the 

NavigationUnit is designed to detect incorrect GPS measurement (error), caused by the 

GPS signal loss (fault). If the system fails to detect the error during testing, a failure 

(unexpected behavior) can be observed. 
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2.2 Uncertainty-Wise Executable Model-Based Testing 

To efficiently test SH-CPSs, we proposed an executable model-based testing approach. In 

this approach, an SH-CPS is tested against a test model, by executing the system and the 

model together, sending them the same testing stimuli (e.g., operation invocations) and 

comparing their consequent states. To realize the approach, we have developed a testing 

framework. In this subsection, we briefly introduce the theoretical foundations of the 

executable model-based testing approach in Section 2.2.1 and then present the testing 

framework in Section 2.2.2. More details about the theoretical foundations and 

implementation can be found in our previous work [1].  

2.2.1 Theoretical Foundations 
There are three theoretical foundations underlying this executable model-based testing 

approach.  

First, the standard of Semantics of a Foundational Subset for Executable UML Models 

(fUML) [11], Precise Semantics of UML State Machines (PSSM) [12], and our extensions 

[1] provide precise execution semantics of UML model elements that are used to specify a 

test model. The semantics enables the test model to be executed in a deterministic manner. 

Second, the Object Constraint Language (OCL) [13] standard gives us a standard way to 

specify constraints that an SH-CPS has to satisfy during execution. As explained in the 

previous section, each state in a test model is defined together with a state invariant, i.e., a 

constraint on the values of state variables in OCL. By evaluating the invariant with actual 

values of the state variables obtained from the system under test, we can rigorously check 

if the system behaves as expected in a given state.  

Third, the Functional Mockup Interface (FMI) standard has defined a way to co-execute 

hybrid models. Based on the standard, we have devised a co-execution algorithm and 

implemented a testing framework [1] to enable a test model to be executed together with 

an SH-CPS, even though the test model and components of the SH-CPS are implemented 

with diverse modeling paradigms.  

These three theoretical foundations enable us to co-execute the test model and SH-CPS 

in a deterministic manner, and also allow us to rigorously check if the system behave 

consistently with the model.  
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2.2.2 Implementation (TM-Executor) 
To realize the executable model-based testing, we have developed a testing framework, 

TM-Executor. Fig. 13 presents an overview of the framework. As shown in the figure, a 

test model is executed by an Execution Engine, together with the SH-CPS under test. To 

drive the execution under uncertainties, a Test Driver has to invoke operations on the 

system and the model to control their behaviors. Meanwhile, an Uncertainty Introducer 

needs to introduce uncertainties in the environment to replicate the effects of measurement 

errors and actuation deviations via simulators of sensors and actuators. The two parallel 

processes determine how an SH-CPS is tested under uncertainties. 

 
Fig. 13 Overview of the TM-Executor Testing Framework 

For operation invocations, the Test Driver takes the current active state and its outgoing 

transitions as input and outputs an operation invocation that is to be performed by the 

Execution Engine to make the SH-CPS and test model switch to a consequent state. The 

operation invocation is defined as follows: 

Definition 1. An operation invocation is a combination of an operation and its input 

parameter values that are used to call the operation and trigger a transition defined in a test 

model.  

For instance, when the active states of the NavigationUnit and GPS are (“Idle”, 

“Checking GPS”, “Normal”) as shown in Fig. 12, the Test Driver needs to choose either to 

invoke pitch() to let the NavigationUnit switch to state “Forward” or “Backward”, or to 

call stopGPSSignal() to inject a GPS fault. When an operation is selected, and an operation 

invocation is generated by the Test Driver, the Execution Engine will perform the 
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invocation to trigger an outgoing transition in the test model. Meanwhile, the Execution 

Engine invokes the testing interface represented by the operation with the same input 

parameter values, to make the system enter the target state of the outgoing transition as 

well. To check if the consequent states of the SH-CPS and test model are the same, the 

Execution Engine obtains state variables’ values from the SH-CPS via testing interfaces, 

and passes the values to a Constraint Checker28 to evaluate the invariant of the target state. 

If the invariant is not satisfied, it means that the SH-CPS failed to behave consistently with 

the test model, and thus a failure is revealed. Otherwise, the Test Driver will keep on 

generating operation invocations to drive the execution until a terminal state is reached.  

On the other hand, the Uncertainty Introducer needs to select an uncertainty value for 

each uncertainty and each measurement or actuation that the uncertainty may take effect. 

The definition of uncertainty value is given below: 

Definition 2. An uncertainty value is an exact value of a measurement error or actuation 

deviation.   

The uncertainty value is used to modify measurements performed by the sensors and 

actions performed by actuators to simulate the effect of uncertainties. For example, an 

uncertainty value is chosen for the measurement error of GPS, “vError” (shown in Fig. 12 

(A)), for each velocity measured by the GPS. By adding the measurement error (“vError”) 

to the true value of the velocity, derived from a simulation model, we can replicate the 

effect of the uncertainty, and test if the system will violate any invariants with the selected 

measurement errors.  

With the help of TM-Executor, we can execute an SH-CPS together with its test model, 

and check if they are behaving consistently under uncertainties, given the ranges of 

uncertainties. The remaining problem is how to efficiently explore various sequences of 

operation invocations and uncertainty values to find the ones that can reveal a failure. In 

the next section, we will see how reinforcement learning can be used to solve this problem. 

2.3 Problem Formulation 

As explained in the previous section, testing an SH-CPS under uncertainties involves two 

parallel processes: 1) invoking operations on the system to explore its behaviors and 2) 

 
 
28 DresdenOCL (https://github.com/dresden-ocl/standalone) is used in TM-Executor to evaluate OCL constraints.  



 
 

141 
 
 
 
 
 

introducing uncertainties in the environment to simulate the effects of measurement errors 

and actuation deviations. The two processes are independent from each other, since in the 

real-world the uncertainties keep changing, independent of operation invocations 

performed on the system. 

To find a sequence of operation invocations, Si, and a sequence of uncertainty values, Su, 

that can work together to make an SH-CPS violate an invariant, we can either find them 

concurrently or find them sequentially, i.e., find a sequence of operation invocations first 

and then find uncertainty values that make the SH-CPS violate an invariant during 

handling the operation invocations. In case they are to be found concurrently, Si and Su are 

to be found from 𝑂 ∗ 𝑈  candidate solutions, where O is the number of all possible 

sequences of operation invocations and U is the number of all possible sequences of 

uncertainty values. Alternatively, if we find them sequentially and Si is found as the nth 

best solution, with uncertainty values only uniformly sampled from their ranges, then Su 

can be found with the top n best sequences of operation invocations. Consequently, Si and 

Su only need to be found from 𝑂 + 𝑛 ∗ 𝑈 candidate solutions. Under the assumption that Si 

can still lead to a high chance of detecting a failure when uncertainty values are uniformly 

sampled, the “n” will be small, and thus 𝑂 + 𝑛 ∗ 𝑈 will be much less than 𝑂 ∗ 𝑈. Therefore, 

we chose to solve the testing problem by sequentially resolving two tasks: 

Task 1. Given a test model, find the optimal sequence of operation invocations to 

maximize the chance of detecting failures, with uncertainties uniformly sampled from their 

ranges.  

Task 2. Given a test model and a sequence of operation invocations, find the sequence of 

uncertainty values that makes the SH-CPS under test violate an invariant during handling 

the operation invocations.  

Using the terms from reinforcement learning, the two tasks can be rephrased as finding 

the optimal policy of choosing actions (i.e., operation invocations or uncertainty values) 

for an agent (i.e., Test Driver or Uncertainty Introducer) to maximize a long-term reward 

(i.e., fragility that indicates the chance to detect a failure). Formally, the fragility is defined 

as follows.  

Definition 3. Fragility is defined as a distance that indicates how likely a state invariant is 

to be violated: 
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𝐹(𝑠*) = 		1 − 𝑑𝑖𝑠(¬𝑜* , 𝑉)	 (1) 

where 𝑜* is a state invariant, i.e., a constraint on the values of a set of state variables in 

OCL (Section 2.1), 𝑉 is the values of state variables, 𝑑𝑖𝑠(¬𝑜* , 𝑉)		is a distance function 

that returns a value between 0 and 1 indicating how close the constraint ¬𝑜*  is to be 

satisfied by 𝑉. The distance functions for all types of OCL constraints can be found in [14].  

Take the Copter shown in Fig. 12 as an example. Assume the Copter is in the “Fallback” 

state. Its state invariant is “height > 0”, where height is a state variable, representing the 

distance between the Copter and ground. This invariant requires that height must be larger 

than zero to avoid crashing on the ground (i.e., “height=0” means crashing). If height 

equals to 10, the fragility of the Copter equals to:1 − 𝑑𝑖𝑠[¬(ℎ𝑒𝑖𝑔ℎ𝑡		 > 0)] = 1 − "8
"8:"

=

0.09, according to the distance function given in [14]. If the height is reduced to 1, then the 

fragility will be increased to 0.5, indicating the Copter is closer to crash on the ground. 

When height is reduced to zero, and the invariant is violated, the fragility is increased to 

one, its maximum value.  

In the context of testing, the purpose of the agents is to discover failures, and thus they 

are interested in finding actions that can lead to a violation of an invariant, i.e., making 

fragility equal to 1, rather than increasing the sum of fragilities. For instance, one sequence 

of actions makes an SH-CPS go through three states: 𝑠", 𝑠., and 𝑠X, with their fragilities 

being 0.0, 0.0, and 0.9, respectively. Another sequence leads to states 𝑠"R , 𝑠.R , 𝑠XR , 𝑠YR , and 𝑠7R  

with their fragilities being 0.1, 0.2, 0.1, 0.3, and 0.3, respectively. Though the later 

sequence of actions obtains a higher sum of fragilities, it is less likely to detect a failure 

than the first sequence. Therefore, we adapt the objective of reinforcement learning from 

maximizing cumulative rewards to maximizing a future reward, i.e., increasing the 

maximum fragility that can be reached in the future, as defined below: 

𝐽(𝜃) = 𝔼N[ max*∈[",Q)
(𝛾* ∙ 𝐹(𝑠*))] (2) 

where 𝜋  denotes a policy used to choose actions, which can be either operation 

invocations or uncertainty values; 𝔼N[… ] means the expected value when 𝜋  is used to 

select actions; 𝛾 is a discount factor, between 0 and 1. It determines the importance of 

future fragilities. If 𝛾  equals to 1, the fragility that can be reached in the future is 

considered equally important as the recent ones. On the contrary, if 𝛾 is 0, the algorithms 

will consider only the next fragility after taking a selected action. Based on the adapted 
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objective, we also need to update two value functions that are broadly used by 

reinforcement learning algorithms, as discussed below. 

Definition 4. State value function represents the highest discounted fragility that can be 

reached, starting from a given state 𝑠∗ and thereafter following policy 𝜋:  

𝑉N(𝑠∗) = 𝔼N[ max)∈[8,Q)
𝛾) ∙ 𝐹(𝑠*:))|𝑠* = 𝑠∗, 𝑎*:)~𝜋] (3) 

where 𝔼N[… ] denotes the expected value, 𝛾 is the discount factor, 𝐹(𝑠*:)) represents the 

fragility, and 𝜋 is the policy of selecting actions. 𝑎*:)~𝜋 means choosing action, 𝑎*:), by 

following the policy 𝜋. 

Definition 5. Action value function, also called Q function, specifies the Q value — the 

highest discounted fragility that can be obtained, when taking action 𝑎∗ in state 𝑠∗ and then 

following policy 𝜋: 

𝑄N(𝑠∗, 𝑎∗) = 𝔼N[ max)∈[8,Q)
𝛾) ∙ 𝐹(𝑠*:))|𝑠* = 𝑠∗, 𝑎* = 𝑎∗, 𝑎*:)~𝜋] (4) 

Based on the adapted objective, we can apply reinforcement learning algorithms to 

address the two tasks sequentially. For Task 1, an algorithm takes the current active state 

and its outgoing transitions as inputs. As a state only has finite outgoing transitions, the 

input space of the algorithm is finite and discrete. The output of the algorithm is one of the 

outgoing transitions. A test data generator, EsOCL [14], is used to generate an operation 

invocation (including an operation and valid inputs of the operation) to activate the trigger 

specified on the transition. Consequently, the algorithm only needs to choose one of the 

outgoing transitions as output, and thus its output space is also discrete. After a number of 

episodes29 , the sequence of operation invocations that leads to the highest fragility is 

chosen to be the optimal one. It is used in Task 2 to find the uncertainty values that can 

reveal a system failure. For the algorithms used to address Task 2, their inputs are the 

ranges of uncertainty values and the state of the SH-CPS under test, reified as state 

variables’ values of the system, like the velocity and position of the Copter. The output of 

the algorithm is an uncertainty value for each uncertainty. As the state variables’ values 

and uncertainty values are continuous, both input and output spaces of the algorithm are 

continuous. As the two tasks have different characteristics, they pose different 

 
 
29 An episode is to execute an SH-CPS from an initial state to a final state once.  
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requirements for reinforcement learning algorithms. The following section presents the 

state-of-the-art algorithms for solving the tasks.  

2.4 Reinforcement Learning Algorithms 

In general, reinforcement learning algorithms can be classified into value function learning 

based approaches and policy optimization based approaches [3]. Based on these two 

categories and more detailed subcategories proposed in literature reviews [3, 15, 16] we 

selected a benchmark reinforcement learning algorithm for each subcategory, summarized 

in Table 22 and Table 21. More details are given in the following subsections. 

2.4.1 Value Function Learning Methods 
The essence of value function based reinforcement learning algorithms is temporal 

difference learning, that is, to reduce the difference between the Q value estimated at time 

step 𝑡 and the Q value estimated for the next time step 𝑡 + 1. The difference is also called 

temporal difference error. When the error is reduced to zero for all state-action pairs, the 

Q function is learned. By selecting the action with the highest Q value, we can obtain the 

optimal policy.  

State-Action-Reward-State-Action (SARSA) [4] SARSA uses the following equation to 

learn 𝑄N for policy 𝜋.  

𝑄N(𝑠* , 𝑎*) = 𝑄N(𝑠* , 𝑎*) + 𝛼 ∙ 𝐸𝑟𝑟N,* (5) 

where 𝑄N	is estimated Q function for 𝜋;	𝛼 is a learning rate, which controls the step size of 

each update; 𝐸𝑟𝑟N,*  is the temporal difference error. Based on the adapted objective of 

reinforcement learning (Section 2.3), 𝐸𝑟𝑟N,*  is calculated by 𝑚𝑎𝑥	[𝐹(𝑠*), 𝛾 ∙

𝑄N(𝑠*:", 𝑎*:")] 	− 𝑄N(𝑠* , 𝑎*) . When a sample of (state, action, reward) is obtained, 

SARSA takes Equation (5) to update 𝑄N(𝑠* , 𝑎*). To collect the sample, SARSA applies the 

ε-greedy policy to select actions. That is, with a probability of ε, the policy randomly 

selects from all possible actions, and with a probability of 1- ε, it selects the action with the 

highest Q value. In theory, SARSA can converge to the Q function of the optimal policy, 

as long as all state-action pairs are visited an infinite number of times, and the ε-greedy 

converges in the limit to the greedy policy, i.e., reducing ε to zero [17].   

Q-learning [4] Instead of learning the Q function of a given policy as SARSA does, Q-

learning tries to learn the Q function of the optimal policy directly, independent of the 

policy being followed:  
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𝑄∗(𝑠* , 𝑎*) = 𝑄∗(𝑠* , 𝑎*) + 𝛼 ∙ 𝐸𝑟𝑟∗,* (6) 

where 𝑄∗(𝑠* , 𝑎*) represents the estimated Q function of the optimal policy, and 𝐸𝑟𝑟∗,* is the 

temporal difference error for 𝑄∗ , calculated by 𝑚𝑎𝑥	[𝐹(𝑠*), 𝛾 ∙ 𝑄∗(𝑠*:", 𝑎*:")] 	−

𝑄∗(𝑠* , 𝑎*). In this case, the policy, 𝜋, used by Q-learning only determines which state-

action pair is to be visited, while the state-action pair and observed reward are used to 

update 𝑄∗, rather than 𝑄N. As all pairs of state-action continue to be visited, Q-learning 

will gradually learn the Q function and find the corresponding optimal policy [4]. 
Table 21 Policy Optimization Based Reinforcement Learning Algorithms* 

Algorithm Policy 
Evaluation Gradient Used to Update Policy Method to Reuse Samples 

A3C 𝐴W(𝑠? , 𝑎?) ∇X log 𝜋X(𝑎?|𝑠?) ∙ 𝐴W(𝑠? , 𝑎?)  N/A  
ACKTR ∇XY*Z[\ log 𝜋X(𝑎?|𝑠?) ∙ 𝐴W(𝑠? , 𝑎?)  
DDPG 𝑄W(𝑠? , 𝑎?) ∇X log 𝜋X(𝑎?|𝑠?) ∙ 𝑄W(𝑠? , 𝑎?)  
TRPO ∇XF"R log 𝜋X(𝑎?|𝑠?) ∙ 𝑄W(𝑠? , 𝑎?) ,  

subject to 𝐷Y!(𝜋"]/|𝜋X) < 𝛿 
Important sampling 

PPO 𝐴W(𝑠? , 𝑎?) ∇X log 𝜋X(𝑎?|𝑠?) ∙ 𝐴W
F]2^(𝑠? , 𝑎?)  Clipped important sampling 

ACER min	{c, 𝑤?} ∙ ∇Xlog 𝜋X(𝑎?|𝑠?) ∙ [𝑄_.?(𝑠? , 𝑎?) −
𝑉W(𝑠?)] + 𝐶𝑜𝑟𝑟 2@E , subject to 𝐷Y!4𝜋@a3o𝜋X5 < 𝛿 

Truncated important 
sampling with bias 
correction 

UPO N/A ∇XF"R log 𝜋X(𝑎?|𝑠?) ∙ 𝑄`.E?(𝑠? , 𝑎?)  N/A  
*Policy optimization based algorithms maintain a policy network (an artificial neural network) to select actions. To 

make the policy network converge to the optimal policy, the algorithms 1) collect samples of (state, action, reward) by 
following the policy network, 2) optionally use the samples to evaluate the current policy, and 3) optimize the policy 
network based on the samples or evaluation. 𝑨𝝅(𝒔𝒕, 𝒂𝒕) is the advantage function; 𝝅𝜽(𝒂𝒕|𝒔𝒕) is a policy controlled by 
parameters 𝜽; 𝛁𝜽 is the gradient with respect to the parameters of the policy; 𝛁𝜽𝑲'𝑭𝑨𝑪 is an approximated natural gradient 
by K-FACC; 𝛁𝜽𝒄𝒐𝒏 is another approximated natural gradient by conjugate gradient algorithm; 𝑫𝑲𝑳(𝝅𝒐𝒍𝒅|𝝅𝜽) is KL 
divergence between 𝝅𝒐𝒍𝒅 and 𝝅𝜽; 𝑨𝝅

𝒄𝒍𝒊𝒑 is clipped advantage function; 𝒘𝒕 is importance weight; 𝑸𝑹𝒆𝒕(𝒔𝒕, 𝒂𝒕) is a Q 
function estimated by Retrace; 𝑪𝒐𝒓𝒓𝒃𝒊𝒂𝒔 is a bias correction term used by ACER; 𝑸𝒃𝒆𝒔𝒕(𝒔𝒕, 𝒂𝒕) represents the Q values 
of the optimal actions that have been found so far.  

 
Table 22 Value Function Learning Based Reinforcement Learning Algorithms* 

Algorithm Exploration Policy Value Function Learning 
SARSA e-greedy 𝑄W(𝑠? , 𝑎?) = 𝑄W(𝑠? , 𝑎?) + 𝛼 ∙ 𝐸𝑟𝑟W,? 
Q-learning 𝑄∗(𝑠? , 𝑎?) = 𝑄∗(𝑠? , 𝑎?) + 𝛼 ∙ 𝐸𝑟𝑟∗,? 

*Value function learning based reinforcement learning algorithms apply an exploration policy, e.g., e-greedy, to select 
actions based on their Q values. They try to learn Q values and select actions with the highest Q values, thus they do not 
need to learn an explicit policy for selecting actions. 𝑸𝝅(𝒔𝒕, 𝒂𝒕) is estimated Q function for policy 𝝅; 𝑸∗(𝒔𝒕, 𝒂𝒕) is 
estimated Q function for the optimal policy; 𝜶 is a learning rate; 𝑬𝒓𝒓 is temporal difference error.  

2.4.2 Policy Optimization Methods 
In contrast to value function based methods, policy-based reinforcement learning 

algorithms maintain a policy network (an Artificial Neural Network (ANN)) to select 

actions. The policy network takes the state of the environment as input and outputs an 

action that is to be performed on the environment. By following the policy network, the 

policy-based algorithms collect samples of (state, action, reward), optionally take the 
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samples to evaluate the policy determined by the policy network, and then optimize the 

policy network based on the samples or evaluation. The main differences among the 

policy-based algorithms lay in the method of policy evaluation, optimization, and 

whether/how samples can be reused for the evaluation.  

Asynchronous Advantage Actor-Critic (A3C) [5] In A3C, multiple threats are run in 

parallel to collect samples of (state, action, reward) by following a threat dependent policy 

network. The samples are used to train a critic (another ANN) that estimates an advantage 

function for evaluating the policy. The advantage function, 𝐴N(𝑠* , 𝑎*) , equals to 

𝑄N(𝑠* , 𝑎*) − 𝑉N(𝑠*). It reveals how good an action 𝑎* is to be taken in a given state 𝑠*, 

compared with the average value of all candidate actions in state 𝑠*. Each threat updates its 

policy network by the gradient of the “goodness” of actions with respect to the parameters 

of its policy, i.e., ∇I log 𝜋I(𝑎*|𝑠*) ∙ 𝐴N(𝑠* , 𝑎*) . From time to time, the local policy 

networks are synced with a global one, so that the threats can work together to learn the 

optimal policy.  

Actor-Critic method using Kronecker-factored Trust Region (ACKTR) [9] Compared 

with the gradient taken by A3C, a natural gradient can give a better direction for 

improvement. However, computing natural gradient is extremely expensive. To reduce the 

computational complexity, ACKTR proposes to use Kronecker-Factored Approximated 

Curvature (K-FAC) [18] to obtain an approximate natural gradient and take the 

approximate gradient to optimize the policy network and critic.  

Deep Deterministic Policy Gradient (DDPG) [10] From another perspective, DDPG uses 

Q function instead of the advantage function to evaluate the goodness of actions. It 

calculates the gradient of Q function with respect to the policy’s parameters, ∇->𝑄(𝑠* , 𝑎*) ∙

∇I𝜋I(𝑎*|𝑠*), and uses the gradient to update the policy network to make the network select 

actions with the highest Q value.  

Trust Region Policy Optimization (TRPO) [8] A shortcoming of aforementioned 

algorithms is that they need to recollect samples of (state, action, reward) to evaluate the 

policy network after each update. To improve the sample efficiency, importance sampling 

can be used as an off-policy estimator to estimate the advantage function or Q function of a 

given policy, using samples collected under other policies: 

𝐴wNV(𝑠* , 𝑎*) =
𝜋I(𝑎*|𝑠*)
𝜋Idef(𝑎*|𝑠*)

𝐴NVdef(𝑠* , 𝑎*) (7) 



 
 

147 
 
 
 
 
 

𝑄�NV(𝑠* , 𝑎*) =
𝜋I(𝑎*|𝑠*)
𝜋Idef(𝑎*|𝑠*)

𝑄NVdef(𝑠* , 𝑎*) (8) 

where NV[𝑎*\𝑠*]
NVdef[𝑎*\𝑠*]

 is called importance weight. However, if 𝜋I(𝑎*|𝑠*) deviates too much 

from 𝜋Idef(𝑎*|𝑠*) , importance sampling will have high variance. Imagine that, if 

𝜋Idef(𝑎*|𝑠*) is zero for a pair of (𝑠*, 𝑎*) and 𝜋I(𝑎*|𝑠*) is greater than zero, the importance 

weight will become infinite. Therefore, to use importance sampling, it is necessary to 

bound the difference between the two policies. To do so, TRPO adds a KL divergence [19] 

constraint to each policy update, and it transforms the reinforcement learning problem into 

a constrained optimization problem:  

 

 
maximize   𝔼&>~LVdef ,->~NVdef[

NV[𝑎*\𝑠*]
NVdef[𝑎*\𝑠*]

𝑄Idef(𝑠* , 𝑎*)] 

subject to    𝐷^_�����(𝜃EW`|𝜃) ≤ 𝛿 
(9) 

where 𝜌Idef is the state distribution determined by policy 𝜋Idef; 𝑄Idef is the Q function of 

policy 𝜋Idef; 𝐷^_�����(𝜃EW`|𝜃) is average KL divergence between two policies; and 𝛿 controls 

the maximum step size for one policy update. The KL divergence constraint defines a trust 

region for a policy update. When the constraint is met, TRPO can guarantee a monotonic 

improvement for the policy network. To efficiently solve the constrained optimization 

problem, TRPO applies the Conjugate Gradient Algorithm [20] to approximately calculate 

natural gradient and follows the direction of the gradient to find the solution of the 

optimization problem.  

Proximal Policy Optimization (PPO) [7] As TRPO is relatively complicated, PPO was 

proposed to use a clip function as an alternative to the KL divergence constraint. The clip 

function is:  

𝑐𝑙𝑖𝑝(𝑤* , 1 − 𝜀, 1 + 𝜀) = �
1 + 𝜀,				𝑖𝑓		1 + 𝜀 ≤ 𝑤*															
𝑤* ,									𝑖𝑓	1 − 𝜀 ≤ 𝑤* < 1 + 𝜀
1 − 𝜀,				𝑖𝑓	𝑤* < 1 − 𝜀																

 (10) 

where 𝑤* is the importance weight, NV[𝑎*\𝑠*]
NVdef[𝑎*\𝑠*]

. PPO uses the clip function to bound the 

value of importance weight and takes the gradient, ∇I log 𝜋I(𝑎*|𝑠*) ∙ 𝐴N
,W$a(𝑠* , 𝑎*) =

𝛻I 𝑙𝑜𝑔 𝜋I(𝑎*|𝑠*) ∙ 𝑐𝑙𝑖𝑝(𝑤* , 1 − 𝜀, 1 + 𝜀) ∙ 𝐴NVdef(𝑠* , 𝑎*) , to update the policy network. 

However, the clip function will introduce a bias to the estimation of the advantage function, 

which could lead to a suboptimal policy learned by the algorithm.  
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Actor-Critic method with Experience Replay (ACER) [6] To improve sample efficiency 

and stabilize the estimation of the value function, ACER was proposed with three 

techniques. First, it uses Retrace [21] to estimate the Q function of the current policy, using 

samples collected under past policies. As proven in [21], Retrace has low variance, and it 

can converge to the Q function of a given policy, using samples collected from any policies.  

Second, ACER truncates importance weights and adds a bias correction term to reduce 

the bias caused by the truncation. Particularly, it takes the following gradient to update its 

policy network: 

𝑔$%&' = 𝑚𝑖𝑛{𝑐, 𝑤(} ∙ ∇) 𝑙𝑜𝑔 𝜋)(𝑎(|𝑠() ∙ 9𝑄*&((𝑠( , 𝑎() − 𝑉+&$'((𝑠()=

+ 𝔼$~+ @A
𝑤((𝑎) − 𝑐
𝑤((𝑎)

B
-
∙ ∇) 𝑙𝑜𝑔 𝜋)(𝑎(|𝑠() ∙ 9𝑄+&$'((𝑠( , 𝑎() − 𝑉+&$'((𝑠()=C 

(11) 

where 𝑤* is the importance weight; c is a threshold used to truncate the importance weight; 

𝑄b>*(𝑠* , 𝑎*) is a Q function estimated by Retrace; 𝑉NVdef(𝑠*) and 𝑄NVdef are state value 

function and Q function estimated by a critic, using samples collected under past policies; 

�c>(-)!,
c>(-)

�
:

equals to c>(-)!,
c>(-)

 when 𝑤*(𝑎)  is greater than c, and it is zero otherwise. 

Intuitively, if the importance weight is less than the threshold, it means that the policy 𝜋I 

does not deviate much from  𝜋Idef, and Retrace can give a relatively accurate estimation. 

Consequently, 𝑄b>*(𝑠* , 𝑎*) is taken to calculate the gradient used for a policy update. In 

contrast, when 𝑤* > 𝑐, as 𝜋I and 𝜋Idef are too different, the importance weight becomes 

too large and the Retrace estimation is unreliable to be used alone. Therefore, the 

importance weight is truncated, and the Q value estimated by the critic, i.e., 𝑄NVdef(𝑠* , 𝑎*), 

is used to compensate for the truncation.  

Third, to further stabilize the learning process, ACER adds a KL divergence constraint. 

Different from TRPO that limits the KL divergence between updated and current policies, 

ACER maintains an average policy, representing all past policies and constrains an 

updated policy not deviating too much from the average.  

Uncertainty Policy Optimization (UPO) [2] Different from the aforementioned methods, 

which apply a critic to evaluate their policy, UPO directly searches the space of all 

possible policies to find the optimal one. In UPO, the policy is decomposed into a 

probability distribution and a policy network that outputs statistics of the distribution.  For 

example, if we choose to use the normal distribution, the outputs of the policy network will 
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be mean and variance of the distribution. Therefore, given a distribution, the policy 

network determines the policy used to select actions. In the beginning, UPO starts with a 

randomly initialized policy network, and it keeps on selecting actions by following the 

policy determined by the network. When UPO observes a sequence of actions leading to a 

higher fragility, it calculates the conjugate gradient [20] of the policy network, multiplied 

with Q value, i.e., ∇I,E% log 𝜋I(𝑎*|𝑠*) ∙ 𝑄d>&*(𝑠* , 𝑎*) , where ∇I,E% log 𝜋I(𝑎*|𝑠*)  is the 

conjugate gradient and 𝑄d>&*(𝑠* , 𝑎*) is the Q value of a pair of state and action that has 

been observed by performing the sequence of actions. Afterward, UPO takes the gradient 

to update parameters of the policy network, so as to increase the selection probability of 

this sequence of actions. UPO continues the search process until reaching the maximum 

iterations.  

3 Experiment Planning 
Following the guidelines of conducting and reporting empirical studies [22] [23] [24], we 

designed and conducted the experiment. Section 3.1 presents our research goals. Sections 

3.2 to 3.4 describe the rationale of choosing candidate algorithms, subject systems, and 

testing tasks performed by the algorithms. Hypotheses and related variables are described 

in Section 3.5, and Section 0 explains the applied statistical tests.  

3.1 Goals 

The objective of the empirical study is to find the best reinforcement learning algorithms 

for testing SH-CPSs under uncertainty. More specifically, we would like to identify the 

optimal algorithm for choosing operation invocations and the optimal algorithm for 

selecting uncertainty values, such that the two algorithms can work together to discover the 

most failures, and preferably take the least amount of time. Meanwhile, we would also like 

to investigate the scalability of the algorithms to assess the feasibility of applying them to 

test complex SH-CPSs. Consequently, we defined two goals for the empirical study.  

Goal 1. In the context of uncertainty-wise executable model-based testing, analyze the 

effectiveness and efficiency of the reinforcement learning algorithms to determine the 

optimal algorithms of invoking operations and introducing uncertainties, for discovering 

failures of SH-CPSs under uncertainty.  
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Goal 2. In the context of uncertainty-wise executable model-based testing, analyze the 

scalability of the reinforcement learning algorithms to examine their abilities to be applied 

for testing complex SH-CPSs.  

3.2 Algorithms under Investigation 

As explained in Section 2.3, testing SH-CPSs under uncertainty is comprised of two tasks: 

selecting a sequence of operation invocations and choosing a sequence of uncertainty 

values. Because the two tasks have different requirements, which cannot be satisfied by all 

the algorithms introduced in Section 2.4, we chose different sets of reinforcement learning 

algorithms to address these two tasks.  

For operation invocations, an algorithm has to select one of outgoing transitions of the 

current active state, specified in a test model. As the set of outgoing transitions varies from 

state to state, the algorithm has to choose a transition from an unfixed set of options. 

However, for the reinforcement learning algorithms using Artificial Neural Networks 

(ANN), the set of candidates has to be fixed, as an ANN has to have fixed numbers of 

inputs and outputs. Hence, we only applied the remaining two algorithms (i.e., Q-learning 

and SARSA) to solve the first task.  

For the task of choosing uncertainty values, an algorithm has to select a value for each 

uncertainty, whenever an SH-CPS interacts with its environment via sensors or actuators. 

Assume an SH-CPS is affected by k uncertainties, each uncertainty has n possible values, 

and the CPS interacts with its environment m times. In total, 𝑛) ×𝑚  combinations of 

uncertainty values need to be selected. As value function learning based algorithms 

(Section 2.4.1) have to learn the Q value for each combination and find the combination 

with the highest Q value, it is too computationally expensive for them to handle such a 

huge number of combinations. In contrast, policy optimization based algorithms (Section 

2.4.2) explicitly maintain a policy network to select actions, instead of choosing actions 

based on their Q values, and thus they can efficiently select an action from a huge set of 

options. Therefore, we applied the policy optimization methods (i.e., A3C, ACER, PPO, 

TRPO, ACKTR, DDPG, and UPO) for the second task.  

In summary, two reinforcement learning algorithms were used for selecting operation 

invocations, and seven algorithms were applied to choose uncertainty values. In total, there 

are 14 combinations of the algorithms, also called 14 testing approaches (denoted as APP) 
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in the following. We implemented SARSA, Q-learning, and UPO by ourselves, and the 

other algorithms were taken from OpenAI Baselines30.  

3.3 Subject Systems 

To evaluate the performance of the algorithms, we employed six SH-CPSs from different 

domains, with diverse complexities, for the empirical evaluation. Three of them are real-

world systems, and the others are from the literature. Section 3.3.1 introduces their 

functionalities, self-healing behaviors, and associated uncertainties. Section 3.3.2 explains 

how test models were specified for the six SH-CPSs.  

3.3.1 System Description 
ArduCopter (AC) 31  is a full-featured, open-source control system for multicopters, 

helicopters, and other motor vehicles. It can cater to a range of flight requirements, from 

First Person View racing, to aerial photography and autonomous cruising. It is equipped 

with five self-healing behaviors. Two of them are rule-based policies used to detect the 

disconnection between a copter and its radio controller or ground control station, and guide 

the copter to return and land. Another self-healing behavior is a quantitative model-based 

method [25] for detecting measurement errors caused by a transient GPS fault. When such 

an error is detected, the behavior will identify the fault and adapt the copter to use other 

sensors. The other two self-healing behaviors are two control algorithms that are used in 

the event of high vibration, e.g., strong wind, to stabilize the flight, and used to avoid 

collision with an intruding aerial vehicle. In total, AC uses four sensors (one GPS, one 

accelerometer, one gyroscope, and one barometer) and one actuator (a motor) to monitor 

and control the flight. Table 23 shows the eight types of uncertainty related to these sensors 

and the actuator. The ranges of the uncertainties are specified in their product specification. 

Each type of uncertainty affects measurement errors or actuation deviations in three 

dimensions, i.e., longitude, latitude, and altitude of the copter. Therefore, there are three 

instances for each uncertainty type. In total, there are 24 uncertainty instances, affecting 

the flight.  

 
 
30 https://github.com/openai/baselines 
31 http://ardupilot.org/copter/ 
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ArduPlane (AP)32 is an autonomous control system for fixed-wing aircraft, and it is 

instrumented with two self-healing behaviors. One is a rule-based policy for handling 

network disruption between an aircraft and its ground controller. When the response time 

from the controller is over a threshold, the aircraft is considered as disconnected with the 

controller, and then the behavior will control the aircraft to fly back and land on the 

launching place. The other self-healing behavior is a control algorithm used to avoid 

collision with a nearby aerial vehicle. AP uses four sensors and one actuator, the same with 

ArduCopter, to locate and manipulate an aircraft. Thus, its behaviors are also affected by 

24 uncertainty instances.  

Table 23 Uncertainties in the Subject Systems 

Sys. Hardware Uncertainty Range #Instance
s Sys. Hardwar

e Uncertainty Range #Instan
ces 

AC, 
AP, AR 

Accelerometer 

Acceleration 
Accuracy 

(-9mg, 
+9mg) 

3 for AC, 
AP 

 
2 for AR 

RC 

Speed 
Sensor 

Velocity 
Accuracy 

(-0.1m/s, 
0.1m/s) 2 

Nonlinearity (-0.5%, 
+0.5%) 

Eddy 
Current 
Sensor 

Current 
Accuracy (-1A, 1A) 8 

Motor 

Rotation 
Deviation 

(-0.3°, 
+0.3°) 

Cab GPS 

Position 
accuracy 

(-2.5m, 
+2.5m) 2 

Acceleration 
Deviation 

(-
0.02m/s2, 

+0.02m/s2) 
Velocity 
accuracy 

(-0.05m/s, 
+0.05m/s) 2 

GPS 
Position 

Accuracy 
(-2.5m, 
+2.5m) Cab 

Engine 

Acceleration 
Deviation 

(-0.1m/s2, 
0.1m/s2) 2 

Velocity 
Accuracy 

(-0.05m/s, 
+0.05m/s) 

Rotation 
Deviation (-1°, +1°) 2 

AC, AP 
Gyroscope 

Angular 
Velocity 
Accuracy 

(-0.3°/s, 
+0.3°/s) 3 

MR 

Laser 
Scanner 

Direction 
Accuracy (-5°, +5°) 2 Barometer Accuracy (-150 Pa, 

+150 Pa) 
AR Rangefinder Accuracy (-10cm, 

+10cm) 2 

APC 

Cart Position 
Deviation 

(-0.1m, 
+0.1m) 9 

Sonar 
Range 
Finder 

Distance 
Accuracy 

(-0.01m, 
0.01m) 2 

Cell Monitor Position 
Accuracy 

(-0.05m, 
0.05m) 9 Robot 

Motor 

Rotation 
Deviation (-3°, +3°) 2 

Acceleration 
Deviation 

(-0.01m/s2, 
+0.01m/s2) 2 

ArduRover (AR)33 is an open-source autopilot system for ground vehicles. It has two 

self-healing behaviors. One is a control algorithm for avoiding collisions. The other is a 

rule-based policy that helps a vehicle to drive back when it is disconnected with its radio 

controller. Totally, ArduRover employs three sensors (one accelerometer, one GPS, and 

one rangefinder) and one actuator (a motor) to control a vehicle. Since a ground vehicle 

runs on the ground, ArduRover only monitors and controls two dimensions of the vehicle, 

 
 
32 http://ardupilot.org/plane/ 
33 http://ardupilot.org/rover/ 
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i.e., longitude and latitude. Thus, there are two instances for each type of uncertainty of the 

sensors and actuator. In total, ArduRover is affected by 14 uncertainty instances.  

Adaptive Production Cell (APC) [26] is an autonomous manufacturing unit, which is 

comprised of three robots and three carts that deliver workpieces among the robots. A 

workpiece is to be processed in three steps, referred as three tasks for the robots. Every 

robot is equipped with three tools for accomplishing the three tasks. As it takes time for a 

robot to switch its tools, the three robots are configured to work together, and each of them 

only performs one of the tasks. APS is equipped with one self-healing behavior: a rule-

based policy that reassigns tasks among robots to maintain the normal function of the 

production cell, in case one or multiple tools of a robot break. Due to inaccurate positions, 

delivered by the carts, and measured by the robots’ sensors, APC is affected by 18 

uncertainty instances: 3 carts × 3 instances of Position Deviation + 3 robots × 3 instances 

of Position Accuracy.  

RailCab (RC) [27] is an autonomous railway system, whose function is to make rail 

vehicles drive in convoy to reduce energy consumptions. Driving in convoy requires the 

vehicles to maintain a small distance between each other, and thus it is crucial to keep a 

correct speed and direction of all vehicles in convoy. RC employs two speed sensors and 

eight eddy current sensors to measure the speed and steering direction of a vehicle. The 

self-healing behavior of RC is a quantitative model-based algorithm, used to detects errors 

caused by malfunction of the speed sensors used by a vehicle. In case the errors are 

detected, the behavior will identify the fault and adapt the vehicle to use GPS rather than 

speed sensors to measure its speed. As shown in Table 23, the movement is affected by 18 

uncertainty instances, arising from the 11 sensors and one actuator. 

Mobile Robot (MB) [28] [29] is an autonomous robot control system for directing a 

robot to play soccer. In normal operation mode, MB controls three omnidirectional wheels 

to move the robot. Three self-healing behaviors are implemented in MB. Two of the 

behaviors are control algorithms that are used to detect the incorrect movement caused by 

the fault that a wheel becomes stuck or a wheel rotates freely, and make the robot still 

follow a desired trajectory in case the fault happens. The remaining self-healing behavior is 

a rule-based policy used to detect and restart malfunctioning software services. As there 

are strong dependencies among the services, the self-healing behavior has to find a correct 

order to stop and start involved services. In the system, a robot is equipped with a laser 
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scanner to locate a soccer, a sonar range finder to measure the distance to the soccer, and a 

motor for movement. In total, eight uncertainty instances are impacting the behaviors of a 

robot, with two instances of Direction Accuracy from the scanner, two instances of 

Distance Accuracy from the range finder, and four uncertainty instances from the motor.  

Testing these self-healing behaviors is challenging, as it is needed to decide when and 

which fault is to be introduced to test the self-healing behavior. As a fault may occur at any 

time during execution, the set of all possible test cases is huge. It could be infeasible to 

cover all cases. To effectively find cases in which a self-healing behavior will fail, we have 

proposed the executable model-based testing in our previous work [1]. In this approach, we 

test an SH-CPS against a test model, by executing them together, sending them the same 

testing stimuli, and comparing their consequent states. In this way, no test cases need to be 

generated before test execution. Additionally, by learning from the results of performed 

stimuli, reinforcement learning algorithms can be applied to learn the best policies of 

choosing stimulus to more effectively detect unexpected behaviors. 

3.3.2 Test Models 
By applying MoSH (a modeling framework for testing SH-CPS under uncertainty) [1], the 

first author of this paper built the test models34 for the selected six SH-CPSs. For each 

system, we first captured its main components (e.g., sensors, actuators, and controllers) as 

UML classes, and then specified the components’ state variables and testing interfaces as 

properties and operations. For each component, we further specified its expected behaviors 

as state machines. Based on the requirement of each system (summarized in Table 24), we 

defined state invariants for all the states in the state machines.  

Note that the state of an SH-CPS comprises the states of its components, and the 

behaviors of all components form the SH-CPS behavior. With a flattening algorithm [2], 

the components’ behaviors can be combined into a single state machine, representing the 

behavior of the SH-CPS. Table 25 presents descriptive statistics of the combined state 

machine for the six SH-CPSs.  

 

 

 

 
 
34 The test models are available at http://zen-tools.com/journal/TSHCPS_RL.html 
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Table 24 Requirements of the Subject Systems Used for Deriving State Invariants 

Subject 
System Requirement Exemplary Invariant 

ArduCopter 
(AC) To avoid crash and collision, the distance 

between a copter/plan/rover and another object 
(e.g., intruding aircraft or obstacle) should 
always be greater than zero. 

dis > 0 
where dis represents the distance 
between a vehicle and an obstacle 

ArduPlane 
(AP) 
ArduRover 
(AR) 
Adaptive 
Production 
Cell (APC) 

Keep the normal function of the production 
cell, and ensure produced workpiece is valid. 

validity = 1 
where validity is a state variable used 
to measure if a produced workpiece is 

valid 

RailCab (RC) 
To avoid collision, the distance between two 
adjacent vehicles must be greater than braking 
distance.   

𝑑𝑖𝑠	 > 	𝑣&T − 𝑣TT 2𝑎⁄  
Where dis is the distance between two 
adjacent vehicles; 𝑣& and 𝑣T are their 

velocities; 𝑎 is acceleration 

Mobile Robot 
(MR) 

Ensure a robot follow a desired trajectory, i.e., 
ensure the distance between a robot’s desired 
position and actual position is within d 
centimeters. d is the size of the robot. 

|𝑃@F?5@] − 𝑃?@A3.?|/2E < 𝑑 
where 𝑃@F?5@] and 𝑃?@A3.? are actual 

and expected positions of a robot 

Table 25 Descriptive Statistics of Behaviors of the Subject Systems 

Category Subject 
System 

# 
States 

# 
Transitions 

# 
Uncertainties 

Average Model 
Execution Time 

(second) 

Average System 
Execution Time 

(min) 

Real-world 
Systems 

ArduCopter 
(AC) 432 1396 24 12 8 
ArduPlane 
(AP) 96 270 24 3 6 
ArduRover 
(AR) 140 650 12 8 10 

Systems 
from 
literature 

Adaptive 
Production 
Cell (APC) 

1016 8512 18 15 3 

RailCab (RC) 2160 13310 18 18 5 
Mobile Robot 
(MR) 1080 4656 8 15 3 

As explained in Section 2, the specified test models are executable, and they are 

executed together with the SH-CPSs for testing. The last two columns of Table 25 show 

the average time taken to execute a test model alone and the time taken to execute an SH-

CPS (software part) with simulators of sensors, actuators, and environment, for one 

episode. As the software of the system and the simulation models used by the simulators 

are complex, executing an SH-CPS is computationally expensive. Consequently, compared 

with executing a test model, it is much slower to execute an SH-CPS.  

3.4 Tasks 

To assess the failure detection abilities and scalabilities of the reinforcement learning 

algorithms, we apply them to test the six SH-CPSs, check the effectiveness and efficiency 

of the algorithms, and calculate their time and space cost. An algorithm’s performance 

depends on its capability of learning, while it also relies on the number of episodes (i.e., 
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testing runs) that an algorithm can take to detect failures, as well as the range of each 

uncertainty.  

On the one hand, the number of episodes determines the number of opportunities that an 

algorithm can take to try different operation invocations or uncertainty values. The more 

episodes an algorithm can take, the more samples of fragility the algorithm can obtain to 

learn the optimal policy, and thus the higher the probability it can detect a failure. Ideally, 

we should not limit the number of episodes an algorithm can take to find failures. However, 

testing an SH-CPS is computationally costly and time-consuming, as many simulators are 

involved in simulating its sensors, actuators, and environment. With eight CPU cores and 

16 GB of memory, it takes a few minutes to perform one episode. Limited by current 

available computational resources, we evaluated the performance of the algorithms for 

1000, 2000, 3000, 4000, and 5000 episodes.   

On the other hand, the range of each uncertainty will affect its impact on an SH-CPS. 

For instance, if the range of an measurement error is extremely small, it will have little 

impact on the measurement. In contrast, if the measurement error is sufficiently large, it 

may lead to an incorrect measurement, which may increase the risk of abnormal behavior. 

The ranges presented in Table 23 were defined based on the product specifications of the 

sensors and actuators, whereas the actual ranges of measurement errors and actuation 

deviations could differ from the specifications. To account for the effect of the ranges, we 

chose to test each SH-CPS with 10 sets of ranges, which includes the set of ranges shown 

in Table 23 as the standard ranges, and nine sets of ranges derived by increasing or 

reducing the standard ranges by 10, 20, 30, 40, and 50 percent. We use 10 scales, i.e., 60%, 

70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, to represents these 10 sets of 

ranges. The scale of 100% represents the standard range, 60% denotes the ranges reduced 

by 40%, and 150% means the ranges increased by 50%.  

In summary, we applied 14 combinations of reinforcement learning algorithms to test six 

SH-CPSs with 10 uncertainty scales and five numbers of episodes ranging from 1000 to 

5000. In total, there are 300 testing tasks (6 SH-CPSs × 10 uncertainty scales × 5 numbers 

of episodes). Due to the probabilistic policies used by the reinforcement learning 

algorithms, even for the same testing task, an algorithm may generate different results. To 

account for this randomness, each of the 300 testing tasks was performed 10 times by each 

combination of reinforcement learning algorithms.  
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3.5 Hypotheses and Variables 

For Goal 1, we aim to evaluate the effectiveness and efficiency of reinforcement learning 

algorithms in the context of testing. For effectiveness, as the purpose of testing is to find 

failures in the system under test, we chose to use the Number of Detected Failures (NDF) 

as the metric. In addition, as it is preferable to cover more behaviors of the system under 

test, we selected State Coverage (SCov) and Transition Coverage (TCov) as two additional 

metrics for assessing the effectiveness. Regarding efficiency, it is related to effectiveness 

and cost. As time cost is the main concern for testing, we chose to use the average amount 

of time spent to detect a failure as the metric.  

Based on the selected metrics, we formulate two kinds of null hypotheses:  

1. Null hypothesis: given a maximum number of episodes (ENUM) and an uncertainty 

scale (SCALE), there is no significant difference in effectiveness (measured by State 

Coverage (SCov), Transition Coverage (TCov), and the Number of Detected Failures 

(NDF)) among the combinations of reinforcement learning algorithms.  

H0: ∀𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∀𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∀𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇: 

𝐸𝑓𝑓𝑒𝑐𝑡(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) = 𝐸𝑓𝑓𝑒𝑐𝑡7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8 

Alternative hypothesis,  

H1: ∃𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∃𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∃𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇: 

𝐸𝑓𝑓𝑒𝑐𝑡(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) ≠ 𝐸𝑓𝑓𝑒𝑐𝑡7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8 

• APPi: one of the 14 testing approaches 

• APP_SET: the set of the 14 testing approaches, {APPQ_A3C, APPQ_TRPO, 

APPQ_UPO, APPQ_PPO, APPQ_DDPG, APPS_ACKTR, APPS_DDPG, APPS_A3C, 

APPS_ACER, APPS_PPO, APPS_TRPO, APPS_UPO, APPQ_ACKTR, 

APPQ_ACER}35 

• SCALE_SET: the set of uncertainty scales, {60%, 70%, 80%, 90%, 100%, 110%, 

120%, 130%, 140%, 150%} 

• ENUM_SET: the set of numbers of episodes, {1000, 2000, 3000, 4000, 5000} 

• Effect represents an effectiveness metric, which could be SCov, TCov, or NDF 

 
 
35 Q represents Q-learning and S represents SARSA. 
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• SCov is the percentage of states that are covered by a number of episodes. It is 

calculated by: 𝑆𝐶𝑜𝑣(𝐴𝑃𝑃$ , 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
e⋃ gg,hii7,jkhlmG

mnop=
gq8 e

|gree|
, where 

𝑆),ijj7,gki_lG  represents the set of states, visited by 𝐴𝑃𝑃$  in the kth episode, under 

uncertainty scale 𝑆𝐶𝐴𝐿𝐸&; 𝑆-WW represents the set of all states in a test model.  

• TCov is the percentage of covered transitions. Similar with SCov, TCov is calculated 

by 𝑇𝐶𝑜𝑣(𝐴𝑃𝑃$ , 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
e⋃ Vg,hii7,jkhlmG

mnop=
gq8 e

|Vree|
, where 𝑇),ijj7,gki_lG  is the 

set of transitions, visited by 𝐴𝑃𝑃$ in the kth episode, under uncertainty scale 𝑆𝐶𝐴𝐿𝐸&; 

𝑇-WW represents the set of all transitions.  

• NDF is calculated by:𝑁𝐷𝐹(𝐴𝑃𝑃$ , 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) = ∑ 𝐹𝐷),ijj7,gki_lG
lSmn=
)o" , where 

𝐹𝐷$,ijj7,gki_lG denotes whether a failure is detected by 𝐴𝑃𝑃$ in the kth episode, under 

uncertainty scale 𝑆𝐶𝐴𝐿𝐸&. 𝐹𝐷$,ijj7,gki_lG equals 1 if a failure is detected, otherwise, 0.  

2. Null hypothesis: given an ENUM and a SCALE, there is no significant difference in 

efficiency (measured by an efficiency measure EFF), among the combinations of 

reinforcement learning algorithms. 

H0: ∀𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∀𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∀𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇: 

𝐸𝐹𝐹(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) = 𝐸𝐹𝐹7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8 

Alternative hypothesis,  

H1: ∃𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∃𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∃𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇: 

𝐸𝐹𝐹(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) ≠ 𝐸𝐹𝐹7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8 

• EFF is calculated by: 𝐸𝐹𝐹(𝐴𝑃𝑃$ , 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
∑ VkE&*g,hii7,jkhlmG
mnop=
gq8

STU(ijj7,gki_lG,lSmn=)
, where 

∑ 𝑇𝐶𝑜𝑠𝑡),ijj7,gki_lG
lSmn=
)o"  is the total amount of time taken by APPq for the number of 

episodes of 𝐸𝑁𝑈𝑀>.  

For Goal 2, we evaluated the time and space costs of each combination of reinforcement 

learning algorithms. For each testing task, we measured the following two variables: 

• Time Cost (TCost): 𝑇𝐶𝑜𝑠𝑡(𝐴𝑃𝑃$ , 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
∑ VkdG>g,hii7,jkhlmG
mnop=
gq8

lSmn=
 

• Space Cost (SCost): 𝑆𝐶𝑜𝑠𝑡(𝐴𝑃𝑃$ , 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) = 𝑚𝑎𝑥
"r)rlSmn=

𝑆𝐶𝑜𝑠𝑡),ijj7,gki_lG , 

where 𝑆𝐶𝑜𝑠𝑡),ijj7,gki_lG denotes the memory usage of 𝐴𝑃𝑃$ for the kth episode, under 

uncertainty scale 𝑆𝐶𝐴𝐿𝐸&. 
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In summary, the empirical study involves three independent variables and six dependent 

variables. Table 26 summarizes their values and mapping to the goals.  
Table 26 Independent and Dependent Variables 

Variable 
Type 

Variable 
Name Value Mapping to 

Goals 

Independent 
Variable 

APP 
APPQ_A3C, APPQ_TRPO, APPQ_UPO, APPQ_PPO, APPQ_DDPG, 
APPS_ACKTR, APPS_DDPG, APPS_A3C, APPS_ACER, APPS_PPO, 
APPS_TRPO, APPS_UPO, APPQ_ACKTR, APPQ_ACER Goal 1, Goal 

2 SCALE 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 
150% 

ENUM 1000, 2000, 3000, 4000, 5000 

Dependent 
Variable 

SCov Real Number 

Goal 1 TCov Real Number 
NDF Integer Number 
EFF Real Number 
TCost Real Number Goal 2 SCost Real Number 

3.6 Statistical Tests 

Table 27 summarizes the statistical tests and related variables used to evaluate the 

effectiveness, efficiency, time cost, and space cost of the 14 combinations of reinforcement 

learning algorithms. We first tested the normality of the samples of dependent variables 

(SCov, TCov, NDF, and EFF), using the Shapiro-Wilk test [30] with a significance level of 

0.05. Test results showed that the samples are not normally distributed. Therefore, we 

chose to use non-parametric statistics, the Kruskal-Wallis test [31] and the Dunn's test [32] 

in conjunction with the Benjamini-Hochberg correction [33], to check statistical 

significances, and applied the Vargha and Delaney statistics [34] to measure effect sizes.  

For the samples of dependent variables, we first applied the Kruskal-Wallis test to check 

whether there are significant differences in these variables among the 14 combinations of 

algorithms. If the Kruskal-Wallis test indicates there are significant differences (i.e., a p-

value is less than 0.05), we further performed the Dunn's test in conjunction with the 

Benjamini-Hochberg correction to evaluate the significance of the difference of each pair 

of data groups.  

For each data groups pair, we also applied the Vargha and Delaney statistics 𝐴w".  to 

measure the effect size, which reveals the probability that an approach A has higher SCov, 

TCov, NDF, or EFF than the other approach B. If 𝐴w".  equals to 0.5, then the two 

approaches perform equally well. If 𝐴w". is greater than 0.5, then A has a higher chance to 

perform better, and vice versa.  
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Table 27 Overview of Statistical Tests with Goals 

Goal Description Dependen
t Variable Statistical Test 

1 

G1.1. For each pair of approaches, compare their 
SCov, TCov, and NDFs 

SCov, 
TCov, 
NDF 

The Kruskal-Wallis test 
The Dunn's test 
The Vargha and Delaney 
statistics  G1.2. For each pair of approaches, compare their 

EFFs EFF 

2 T2.1. Evaluate TCost for each approach TCost N/A T2.2. Evaluate SCost for each approach SCost 

4 Experiment Execution 
We introduce the hyperparameter settings of the reinforcement learning algorithms in 

Section 4.1 and the experiments' execution process in Section 0.  

4.1 Hyperparameter Tuning 

Although reinforcement learning algorithms have demonstrated great learning abilities in 

multiple fields [10, 35, 36], the success of a particular learning algorithm depends upon the 

joint tuning of the model structure and optimization procedure [37]. Both of them are 

controlled by several hyperparameters, such as a neural network’s structure, learning rate, 

loss function, and the number of episodes. The hyperparameters impact the whole learning 

process, and must be tuned to fully unlock an algorithm’s potential. However, 

hyperparameter tuning is computationally expensive and time-consuming. In the context of 

software testing, testers may not have a sufficient time budget to tune an algorithm for 

every system under test. It will be helpful to have a hyperparameter setting that can achieve 

relatively good performance for a wide range of systems.  

Reinforcement learning researchers have recommended several default hyperparameter 

settings [38]. However, these settings were tuned for playing computer games, which are 

different from the testing problem. Due to the high computational cost of hyperparameter 

tuning and limited computational resources we have, we could not afford to use all systems 

with all variables’ settings to tune the hyperparameter. Among the six selected SH-CPSs, 

AP is the simplest, with the least number of states and transitions, while RC is the most 

complex one, and AC is a moderate one. We chose to use these three systems with diverse 

complexities to do the tuning, to make the selected systems more representative. For the 

value of the uncertainty scale and the number of episodes, we chose a moderate setting for 
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tuning, i.e., the uncertainty scale of 100% and the number of 3000, so as to avoid achieving 

a hyperparameter setting performing well only in extreme cases.  

We applied the Population-Based Training (PBT) method [37] for tuning. Compared 

with sequential optimization or parallel grid/random search, PBT can focus on the 

hyperparameter space that has a higher chance of producing good results, and thus more 

efficiently find a better hyperparameter setting. For each reinforcement learning algorithm 

used in the experiment (Section 3.2), PBT was allowed to take maximally 1000 iterations 

to find the optimal hyperparameter setting. During the search, the three systems (AC, AP, 

and RC) were used to evaluate the performance of a setting, with the uncertainty scale of 

100% and the number of episodes of 3000. The setting that leads to the highest fragility 

was regarded as the optimal solution. Table 28 presents the optimal hyperparameter setting 

we found for each algorithm.  
Table 28 Overview of Hyperparameter Settings 

Algorithm Hyperparameter Value Algorithm Hyperparameter Value 

Q-learning 
Learning Rate 0.1 

SARSA 
Learning Rate 0.1 

Discount Rate 0.98 Discount Rate 0.98 
ε-greedy 0.2 ε-greedy 0.2 

A3C 

Discount Rate 0.99 

ACER 

Discount Rate 0.99 
#Hidden Layers 3 #Hidden Layers 2 
#Hidden Neurons 32 #Hidden Neurons 96 
Activation 
Function ReLU Activation Function ReLU 
Optimizer RMSProp Optimizer RMSProp 
Learning Rate 0.1 Learning Rate 0.001 
Batch Size 1000 Batch Size 500 
#Epochs 1 #Epochs 1 

PPO 

Discount Rate 0.9 

TRPO 

Discount Rate 0.9 
#Hidden Layers 3 #Hidden Layers 3 
#Hidden Neurons 32 #Hidden Neurons 96 
Activation 
Function Tanh Activation Function Tanh 
Optimizer Adam Optimizer Adam 
Learning Rate 0.001 Learning Rate 0.001 
Clip 0.3 Max KL 0.05 
Batch Size 500 Batch Size 2000 
#Epochs 10 #Epochs 50 

ACKTR 

Discount Rate 0.9 

DDPG 

Discount Rate 0.9 
#Hidden Layers 2 #Hidden Layers 3 
#Hidden Neurons 32 #Hidden Neurons 32 
Activation 
Function Tanh Activation Function ReLU 
Optimizer Kfac Optimizer Adam 
Learning Rate 0.01 Learning Rate 0.0001 
Max KL 0.01 Batch Size 1000 
Batch Size 2500 #Epochs 50 #Epochs 1 

UPO 

Discount Rate 0.99 
Activation 
Function Tanh 
#Hidden Layers 3 
#Hidden Neurons 96 
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4.2 Execution Process 

As explained in Section 3, we applied 14 combinations of reinforcement learning 

algorithms to test six SH-CPSs with 10 uncertainty scales and five settings of episodes 

numbers. The experiment was conducted on Abel, a cluster at the University of Oslo36. 

Each testing job was run on eight nodes with 32 GB RAM. The whole empirical study took 

more than six months’ worth of execution time.  

We measured the state coverage (SCov), transition coverage (TCov), number of detected 

failures (NDF), time cost (TCost), and space cost (SCost) for each approach and each 

testing task. The approaches’ efficiencies (EFFs) were further calculated, using NDF and 

TCost. At last, we applied statistical tests to assess the differences of the measurements 

among the 14 approaches.  

5 Experiment Results 
This section shows the results of the empirical study. Sections 5.1 and 5.2 present the 

effectiveness and efficiency of the 14 combinations of reinforcement learning algorithms, 

and Section 5.3 analyses their time and space costs.  

5.1 Effectiveness  

For most of the testing tasks, the 14 testing approaches managed to cover all the states and 

transitions of the SH-CPS under test, i.e., the state coverage (SCov) and transition coverage 

(TCov) equal to 100%. The exceptions are the tasks for testing RC, APC, and MR. For 

testing APC and MR with 1000 episodes, only 74.2% and 69.4% transitions were covered, 

on average. When the number of episodes increased to above 2000, all of the approaches 

managed to cover all transitions. For testing RC, none of the 14 approaches achieved 100% 

transition coverage, and only a few approaches got 100% state coverage in very few cases, 

as RC has huge sets of states and transitions (Table 25). As an example, Fig. 14 presents 

the box plots of the state and transition coverages of the approaches for testing RC. The p-

values of the Kruskal-Wallis test in terms of the state and transition coverages for all the 

testing tasks are greater than 0.1, thereby indicating no significant difference among the 14 

approaches regarding the coverages.  

 
 
36 http://www.uio.no/english/services/it/research/hpc/abel/ 
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Fig. 14 State and Transition Coverages for RC 

Next, we assess the actual failure detection ability of the approaches. There are 41 

failures detected in the six SH-CPSs, with seven failures detected in AC, eight failures 

detected in AR, eight failures detected in AP, five failures detected in APC, eight failures 

detected in RC, and five failures detected in MR. These 41 failures correspond to 41 states 

in which their invariants were violated when the six systems were being tested with 

simulated sensors and actuators. Examples of these failures include a collision between a 

copter and an intruding vehicle, a crash of a plane on the ground, and a collision between a 

rover and an obstacle. Table 29 presents the average number of detected failures (NDF) for 

the 14 testing approaches, under 10 uncertainty scales and five numbers of episodes.  

As shown in the table, 𝐴𝑃𝑃s_mju managed to detect the most failures. On average, it 

detected 3.4 failures in a testing task. 𝐴𝑃𝑃g_mju performed slightly worse, with 3.3 failures 
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detected averagely. In contrast, the other 12 approaches only detected 1.7 failures, on 

average, and only detected three failures or less in most of the testing tasks.  
Table 29 Average Numbers of Detected Failures (NDF) by the 14 testing Approaches 

* #1: APPQ_A3C, #2: APPQ_TRPO, #3: APPQ_UPO, #4: APPQ_PPO, #5: APPQ_DDPG, #6: APPS_ACKTR, #7: APPS_DDPG, #8: 
APPS_A3C, #9: APPS_ACER, #10: APPS_PPO, #11: APPS_TRPO, #12: APPS_UPO, #13: APPQ_ACKTR, #14: APPQ_ACER 

We first conducted the Kruskal-Wallis test to determine whether there are significant 

differences in the NDFs among the 14 approaches. The p-value of the Kruskal-Wallis test 

is less than 10!"X, and thus significant differences do exist. Afterward, we applied the 

Dunn's test together with the Benjamini-Hochberg correction to check the significance of 

SCALE ENUM #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

60% 

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0 
3000 1.7 1.8 3.6 1.6 1.7 1.7 1.7 1.7 1.7 1.5 1.7 3.5 1.7 1.7 
4000 1.9 2.0 4.8 2.0 1.9 2.0 2.0 2.1 2.1 2.1 2.0 4.7 1.9 2.0 
5000 2.8 2.8 6.0 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.9 5.9 2.8 2.8 

70% 

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0 
3000 1.7 1.6 3.4 1.6 1.7 1.7 1.7 1.7 1.6 1.5 1.6 3.5 1.7 1.8 
4000 1.9 2.0 4.9 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 4.6 2.0 2.0 
5000 2.8 2.8 5.9 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.8 5.8 2.8 2.8 

80% 

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0 
3000 1.8 1.8 3.6 1.8 1.7 1.5 1.7 1.7 1.7 1.7 1.6 3.4 1.7 1.6 
4000 2.0 2.0 4.8 2.0 2.0 2.1 2.0 2.1 2.0 2.0 2.0 4.6 2.0 2.0 
5000 2.8 2.8 5.9 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.8 6.0 2.8 2.8 

90% 

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.1 1.0 1.0 
3000 1.7 1.7 3.6 1.7 1.7 1.7 1.7 1.6 1.6 1.6 1.6 3.3 1.7 1.6 
4000 2.0 2.0 4.7 2.1 2.0 2.0 1.9 2.0 2.0 2.0 1.9 4.7 2.0 2.0 
5000 2.8 2.8 6.0 2.8 2.8 2.8 2.9 2.9 2.8 2.9 2.8 5.9 2.8 2.8 

100% 

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.2 1.0 1.0 
3000 1.6 1.6 3.4 1.7 1.8 1.7 1.6 1.6 1.5 1.7 1.8 3.3 1.7 1.7 
4000 1.9 2.0 4.7 2.0 1.9 2.1 2.1 2.0 2.0 2.1 2.0 4.4 1.9 1.9 
5000 2.8 2.8 5.6 2.8 2.8 2.8 2.9 2.8 2.8 2.8 2.8 5.5 2.8 2.8 

110% 

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0 
3000 1.8 1.7 3.5 1.7 1.7 1.5 1.6 1.5 1.6 1.7 1.6 3.3 1.7 1.6 
4000 1.9 2.0 4.6 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.0 4.4 2.0 1.9 
5000 2.8 2.8 5.6 2.8 2.8 2.8 2.9 2.8 2.8 2.8 2.8 5.5 2.8 2.7 

120% 

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.1 1.0 1.0 
3000 1.6 1.7 3.4 1.6 1.7 1.7 1.6 1.6 1.7 1.5 1.6 3.2 1.6 1.6 
4000 2.0 2.1 4.6 2.1 2.0 1.9 2.0 1.9 2.0 2.0 2.1 4.3 2.0 1.9 
5000 2.7 2.8 5.6 2.8 2.8 2.8 2.9 2.7 2.7 2.8 2.8 5.4 2.8 2.6 

130% 

1000 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 0.9 1.0 1.0 
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 2.0 1.0 1.0 
3000 1.6 1.6 3.5 1.7 1.6 1.5 1.7 1.7 1.7 1.7 1.6 3.1 1.6 1.7 
4000 1.9 2.0 4.5 2.0 2.0 1.8 2.0 2.0 2.0 2.0 2.1 4.2 2.0 1.9 
5000 2.6 2.8 5.7 2.8 2.8 2.7 2.9 2.7 2.7 2.8 2.9 5.2 2.7 2.6 

140% 

1000 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 1.9 1.0 1.0 
3000 1.5 1.7 3.5 1.7 1.7 1.6 1.7 1.6 1.6 1.6 1.6 3.1 1.7 1.5 
4000 1.9 2.0 4.6 1.9 2.0 1.9 2.1 1.9 2.0 2.0 2.0 4.2 1.8 1.9 
5000 2.6 2.8 5.7 2.7 2.8 2.6 2.9 2.7 2.6 2.7 2.9 5.1 2.7 2.6 

150% 

1000 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 2.0 1.0 1.0 
3000 1.6 1.6 3.4 1.6 1.7 1.6 1.6 1.6 1.7 1.6 1.7 3.1 1.7 1.6 
4000 1.9 2.0 4.7 1.9 2.0 1.9 2.0 1.9 1.9 2.0 2.0 4.1 1.9 1.9 
5000 2.6 2.8 5.6 2.7 2.8 2.6 2.8 2.6 2.6 2.7 2.9 5.2 2.6 2.6 

Average 1.7 1.7 3.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 3.3 1.7 1.7 
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the difference in NDFs between each pair of approaches. The effect size of the difference 

was also evaluated, using the Vargha and Delaney statistics 𝐴w".. Since 𝐴𝑃𝑃s_mju detected 

the most failures, we focused on checking if this superiority is statistically significant. 

For each of the other 13 testing approaches, denoted as APPc, we checked the p-value of 

the Dunn's test, corresponding to the pair of 𝐴𝑃𝑃s_mju and APPc. If the p-value is over 

0.05, the two testing approaches are considered to be performing equally well. Otherwise, 

we further examined the Vargha and Delaney statistics 𝐴w"., using the NDFs of the two 

approaches. If 𝐴w". is above 0.5 for the pair of 𝐴𝑃𝑃s_mju and APPc, it means 𝐴𝑃𝑃s_mju has 

a higher chance to detect more failures, and thus 𝐴𝑃𝑃s_mju is considered to be superior to 

APPc. Otherwise, 𝐴𝑃𝑃s_mju is considered to be worse.  

In over 239 (out of 300) testing jobs, 𝐴𝑃𝑃s_mju significantly outperformed the other 12 

testing approaches, except 𝐴𝑃𝑃g_mju . 𝐴𝑃𝑃s_mju  and 𝐴𝑃𝑃g_mju  performed equally in 279 

jobs; 𝐴𝑃𝑃g_mju beat  𝐴𝑃𝑃s_mju in 2 jobs and 𝐴𝑃𝑃s_mju was superior in the other 19 jobs. 

Table 30 in Appendix A presents detailed results. When the maximum number of episodes 

(ENUM) is 1000, all testing approaches performed almost the same, while, as ENUM 

increases, 𝐴𝑃𝑃s_mju  and 𝐴𝑃𝑃g_mju  exceeded the others. When the uncertainty scale 

(SCALE) is above 120%, 𝐴𝑃𝑃s_mju detected more failures than 𝐴𝑃𝑃g_mju did in nine jobs, 

and they performed almost on the same level in other cases.  

5.2 Efficiency 

We evaluate the efficiency of the reinforcement learning algorithms, to find the 

combination of algorithms that takes the shortest time to detect failures. Fig. 15 shows the 

time taken by the algorithms to execute an SH-CPS from its initial state to a final state 

once. Particularly, the time cost includes the time taken to select operations and uncertainty 

values, generate test input, invoke corresponding testing interfaces, execute the system, 

evaluate the fragility of the consequent states, and use the fragility to update the Q function 

and uncertainty policy. On average, the testing approaches took less than 150 seconds to 

complete one episode. The differences among the average execution times of the different 

testing approaches are small, within 10 seconds. However, for different SH-CPSs, SCALEs, 

and ENUMs, the execution time varies a lot, ranging from 53 seconds to 480 seconds. 
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Compared with the approaches using SARSA, the approaches with Q-learning took less 

time to perform one episode.  

 
Fig. 15 Total Time Cost for One Episode 

As the time taken to execute the system depends on the system’s implementation, rather 

than the performance of the algorithms, Fig. 16 presents the time cost, excluding the time 

spent for executing the system. On average, the algorithms took about 12 seconds in one 

episode. Consistent with the trend revealed by Fig. 15, Fig. 16 also shows that SARSA 

related approaches took a longer time to perform an episode. In general, 𝐴𝑃𝑃s_iXk  incurred 

the least time cost, though the differences are within 5 seconds.  

Based on the time costs and the number of detected failures (NDF), shown in Section 5.1, 

we calculated the efficiency measure (EFF), shown in Fig. 17. Unsurprisingly, 𝐴𝑃𝑃s_mju 

took the least amount of time to detect a failure, since all testing approaches took a similar 

amount of time and 𝐴𝑃𝑃s_mju  detected the most failures within this time. Averagely, 

𝐴𝑃𝑃s_mju took 64.5 hours to detect a failure, which is less than half of the average time 

taken by 𝐴𝑃𝑃s_iXk  (the least efficient approach) for failure detection. On average, 

𝐴𝑃𝑃s_mju took 52% less time than the other approaches to detect a failure.  



 
 

167 
 
 
 
 
 

 
Fig. 16 Algorithm Related Time Cost for One Episode  

 
Fig. 17 Testing Approaches’ Efficiencies for 300 Testing Jobs 

To evaluate the significance of the differences, we conducted the Kruskal-Wallis test. 

The p-value of the test is less than 10!"8, and thus there are significant differences in the 

EFFs among different testing approaches. We further applied the Dunn's test together with 

the Benjamini-Hochberg correction to examine if EFFs of 𝐴𝑃𝑃s_mju  are significantly 

smaller than EFFs of the other approaches. The Vargha and Delaney statistics 𝐴w". was 

used to assess the effect size. Compared with 𝐴𝑃𝑃g_mju, 𝐴𝑃𝑃s_mju took significantly less 

time for failure detection in 98 jobs, more time in one job, and performed equally well in 

201 jobs. For the other testing approaches, 𝐴𝑃𝑃s_mju was significantly more efficient in 

over 238 jobs. Table 31 in Appendix B presents more details.  
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5.3 Scalability 

We first assess the tendencies of time and space costs of the 14 testing approaches for 

learning the policy of choosing operation invocations, i.e., learning how to trigger the 

outgoing transitions of each state defined in a test model to maximize the fragility of the 

SH-CPS under test. Fig. 18 shows the average time cost of each testing approach per 

episode, and Fig. 19 presents their average space costs. In the figures, the systems are 

shown in the increasing order of numbers of states and transitions, i.e., AP has the least 

states and transitions, and RC has the most. As shown in the figures, all costs exhibit the 

same tendency: the more states and transitions an SH-CPS has, the more time and space a 

testing approach took to learn the optimal policy of invoking operations for failure 

detection. For the simplest subject system, AP, which contains 96 states and 270 transitions, 

the 14 testing approaches took about 10 seconds to perform one episode, and used 5 GB 

memory space on average. In contrast, for the most complex system, RC, with 2160 states 

and 13310 transitions, the testing approaches’ time and space costs raised to about 70 

seconds and 15 GB respectively.  

 
Fig. 18 Average Time Cost for Choosing and Invoking Operations 

 
Fig. 19 Average Space Cost for Choosing and Invoking Operations 
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For the second task, the algorithms need to learn the policy of choosing uncertainty 

values that can impede the SH-CPSs and lead to failures. Fig. 20 and Fig. 21 present 

tendencies of their time and space costs as the number of involved uncertainties increase, 

where the systems are shown in the increasing order of the number of uncertainties. As one 

can see from the figures, the time and space costs remained at the same level for the six 

SH-CPSs with varying numbers of uncertainties. Because the policy based algorithms 

employ Artificial Neural Network (ANN) to select actions, they do not need to store the Q 

values of all actions for each state. Consequently, their time and space costs are fixed as 

long as the architectures of the ANNs are not changed. In Appendix C, Table 32 presents 

the detailed time and space cost of each testing approach for each SH-CPS.  

 
Fig. 20 Average Time Cost for Selecting and Introducing Uncertainties 

 
Fig. 21 Average Space Cost for Selecting and Introducing Uncertainties  
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6 Discussion 
This section discusses the experiment results about effectiveness in Section 6.1, efficiency 

in Section 6.2, scalability in Section 6.3 and alternative approaches in Section 6.4.  

6.1 Effectiveness 

Based on the results of the effectiveness, we can conclude that the combination of Q-

learning and UPO is the most effective approach that detected the most failures in the six 

SH-CPSs, even though the 14 testing approaches achieved similar state and transition 

coverages. As shown in Fig. 22, when ENUM equals 1000, the 14 combinations of the 

algorithms performed at the same level. When the algorithms only had 1000 episodes to 

find failures, they could not collect sufficient experience from the executions, and just 

detected one failure on average. As the ENUM increased, the algorithms had more chances 

to explore the states of the system under test, with diverse operation invocations and 

uncertainty values. Consequently, the algorithms had more data to optimize their policies, 

and applied them to detect more failures. However, the increasing tendencies of NDF are 

different for the 14 testing approaches. The approaches with UPO tend to detect more 

failures than the approaches using A3C, ACER, ACKTR, DDPG, PPO, and TROP. 

Because the algorithms, like A3C and ACER, have to learn a value function to evaluate 

their policies and then update the policies based on the value function, many episodes were 

needed to obtain data for learning the value function, whenever the policy is updated. In 

contrast, UPO explores the space of policy directly using a probabilistic policy, which 

keeps UPO on trying different sequences of uncertainty values. Whenever it finds an 

uncertainty sequence that leads to a higher return, it updates its policy to increase the 

probability of selecting such a sequence. Therefore, UPO eliminates the cost of learning 

value functions, and potentially covers more promising sequences of uncertainty values for 

failure detection.   



 
 

171 
 
 
 
 
 

 
Fig. 22 Average Number of Detected Failures with Different ENUMs 

Compared with ENUM, SCALE has less effect on the NDF. As shown in Fig. 23, the 

average NDFs of the different testing approaches decrease slightly, as SCALE increases. A 

higher SCALE leads to larger uncertainty values, which may cause a greater impact on 

system behaviors and make them more likely to fail. However, a large SCALE also 

broadens the space of uncertainty values, which makes it more difficult to find the optimal 

sequence of uncertainty values. Due to these two reasons, SCALE is only slightly affected 

by the NDF. It should also note that the ranges of uncertainty values have great impact on 

the performance of the testing approaches. Sufficient knowledge is required to specify the 

ranges correctly prior to applying the testing approaches. 

 
Fig. 23 Average Number of Detected Failures with Different SCALEs 

6.2 Efficiency 

Based on the results of the efficiency (Section 5.2), we know that the combination of Q-

learning and UPO took the least amount of time to detect a failure. As shown in Fig. 16, on 
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average, the algorithms took about 12 seconds to perform one episode. The difference in 

the average time costs among different algorithms is within 5 seconds. For operation 

invocations, both SARSA and Q-learning aim to learn the optimal Q function, based on 

which the algorithms find the optimal policy. While the Q function is being updated, 

SARSA has to follow its current policy (Equation (4)), whereas Q-learning only needs to 

find the maximum Q value of consequent states (Equation (5)). Therefore, the 

computational complexity of Q-learning is less than SARSA’s. For introducing uncertainty, 

all of the policy optimization algorithms calculate a standard gradient or natural gradient, 

and apply gradient descent methods to optimize their policies. Consequently, their 

computational complexities are similar and mainly determined by the architecture of 

ANNs, used as the policy and value function in these algorithms. Since, in this experiment, 

the ANNs used by the algorithms have almost the same number of layers and the same 

number of neurons in each layer (Table 28), the algorithms had very similar time costs.  

6.3 Scalability 

The results in Section 5.3 reveal that the time and space costs of learning the policy of 

selecting uncertainty values remain in the same order of magnitude for testing SH-CPSs 

with diverse complexities. In contrast, the costs of learning the policy of invoking 

operations are rising as the numbers of states and transitions of the system under test 

increase. Since the policy optimization methods were used for uncertainties and they take 

advantage of ANNs to approximate their policies and value functions, the computational 

costs of these algorithms are determined by the architecture of the ANNs and the optimizer 

to improve the ANNs. Alternatively, value function methods, i.e., Q-learning and SARSA 

used for operation invocations, have to store the Q value for each pair of state and 

transition explicitly. As the number of states and transitions increases, such methods will 

take more space and time to store and process the Q values. This could be a potential 

scalability issue that limits the maximum numbers of states and transitions of the SH-CPS 

under test. One approach to resolve this issue is to use ANNs to approximate the Q value. 

However, as explained in Section 3.2, for testing an SH-CPS, the candidate operation 

invocations are not fixed. They will change when the system switch from one state to 

another. As the inputs of ANNs have to be fixed, we have to train an ANN for each 

operation to predict its Q value. Further study is needed to determine whether multiple 
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ANNs could be trained together efficiently to find the optimal policy for operation 

invocations.  

6.4 Alternative Approaches 

The objective of testing an SH-CPS under uncertainty is to find a sequence of operation 

invocations and a sequence of uncertainty values that can work together to make an SH-

CPS fails to behave as expected. We formulate this testing problem as an optimization 

problem, that is to find the optimal policies of choosing operation invocations and 

uncertainty values to maximize the chance of detecting failures. Through a trial and error 

process, reinforcement learning can learn how to select testing stimuli to reach the highest 

fragility and reveal a failure. Results from our previous work also demonstrated the 

effectiveness of RL in solving this testing problem [2].  

As explained in Section 2.3, since the number of possible combinations of uncertainty 

values is huge, we chose to decompose the testing problem into two tasks and addressed 

them sequentially to find the optimal operation invocations and uncertainty values. 

Alternatively, one can try to reduce possible combinations of uncertainty values by, for 

instance choosing the minimum and maximum possible values of uncertainties or sample 

uncertainty values at a big interval. By taking such measures, a single-step algorithm might 

be devised. However, dedicated experiments are needed to compare our current approach 

with these alternatives. 

In our empirical study, we applied seven policy-based reinforcement learning algorithms 

to find optimal uncertainty values. However, we acknowledge that evolutionary algorithms 

could also be applied together with reinforcement learning as demonstrated in [39, 40]. 

Due to limited resources, these algorithms were not included in this empirical study. It will 

be valuable to evaluate the performance of these algorithms in the future. Evolutionary 

algorithms can also be used alone to solve this testing problem. However, to test a system 

based on state machines, evolutionary algorithms have to find valid transition paths first, 

which has already been proven as a challenging task [41, 42]. A walkaround solution is to 

generate all valid transition paths first, according to some coverage criteria, such as all 

transitions, and then apply evolutionary algorithms to select a subset of paths as a test suite 

[43]. Nevertheless, our previous experiment results demonstrate that covering all states and 
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transitions is not sufficient for detecting failures in the SH-CPSs problem [2]. 

Consequently, we did not choose evolutionary algorithms to solve the testing problem.  

A* is another popular algorithm that can be used to find the optimal path from a source 

to a destination, i.e., a transition path leading to the highest fragility in the context of our 

testing problem. However, to use the fragility as the heuristic of A* to find the optimal 

path, we have to know the fragility for each state. However, it is difficult (if not infeasible) 

to collect the fragilities for all states, since the number of possible states of an SH-CPS is 

huge. Moreover, each fragility has to be obtained from executions, which are 

computationally expensive and time-consuming. In contrast, reinforcement learning 

algorithms use an explore strategy (e.g., e-greedy) to explore the space of all possible 

states. Guided by the estimated value function (state value function or Q function), 

reinforcement learning algorithms can gradually find the path leading to the highest 

fragility 

Model checking is another approach that can be used to formally prove the correctness 

of a system. However, as we take the SH-CPS under test as a black box, it is unknown how 

the system’s state variables’ values are to be changed by an operation invocation or 

uncertainty value. Therefore, we could not use model checking to prove the correctness of 

an SH-CPS.  

Due to these reasons, we only focused on evaluating the performance of different 

reinforcement learning algorithms in this empirical study. Fourteen combinations of 

reinforcement learning algorithms were applied to test six SH-CPSs, while more 

experiments are still needed to further address the threats to validity, explained in the next 

section.  

7 Threats to Validity 
This section analyzes the threats to validity from four aspects.  

7.1 Construct Validity 

To evaluate the failure detection ability of the 14 combinations of reinforcement learning 

algorithms, we took the percentages of covered states (SCov) and transitions (TCov) and 

the number of detected failures (NDF) as the metrics. In addition, we further defined 

efficiency measure (EFF), time cost (TCost), and space cost (SCost), to investigate the 



 
 

175 
 
 
 
 
 

efficiency and scalability of the algorithms. The metrics are comparable across the 14 

combinations of algorithms, and they can directly reflect the effectiveness, efficiency, and 

cost of each combination.  

One threat to construct validity is that the failures detected by the algorithms could be 

caused by potential flaws in test models rather than system defects. To mitigate the threats, 

first, we have defined four UML profiles to extend UML class diagrams and state 

machines [1]. Stereotypes defined in the profiles enable us to precisely specify expected 

functional behaviors, abnormal behaviors due to faults that occurred at runtime, self-

healing behaviors for handling faults, and uncertainties that will affect these behaviors. 

Meanwhile, state invariants were used to define the valid ranges of state variables. The 

invariants enable us to rigorously define what behaviors are expected for a given state. 

In addition to the above-mentioned rigorousness of the modeling notations, the modeling 

framework strictly enforces compliance with the UML standard and ensures syntactic 

correctness for the model. Moreover, we applied the framework to execute the models 

together with the SH-CPSs under test. As explained in Section 2.1, the framework could 

automatically compare the SH-CPSs’ behaviors against the ones specified in the models. 

When a conflict was detected, we further examined whether this conflict was due to 

incorrectly specified models, including improper state invariants, wrong triggers or guards 

of transitions, and mismatched operations and testing interfaces. Consequently, we not 

only tested the SH-CPSs against the models, but also utilized the SH-CPSs to validate the 

models. In this way, we boosted the quality of the models and increased the credibility of 

the testing results.  

7.2 Internal Validity 

As explained in Section 2.3, we chose to test SH-CPSs in a two-steps approach, as it can 

reduce the search space an algorithm has to explore to find the optimal solution. 

Nevertheless, additional experiments are still needed to verify if the two-steps approach is 

the best choice. Based on this two-steps approach, we evaluated the performance of 14 

combinations of algorithms. The effectiveness and efficiency of a combination of 

reinforcement learning algorithms depend on the complexity of the system under test, the 

ranges of uncertainties that impact the system, the number of episodes the algorithms can 

take to detect failures, and hyperparameter settings of the algorithms.  
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In the experiment, we only compared the failure detection abilities of the algorithms for 

testing six subject systems with ten scales of uncertainty range and five settings of the 

number of episodes. The optimal combination of reinforcement learning algorithms found 

in this experiment may not perform the best in other settings, and thus more experiment 

results are needed to further confirm the conclusion.  

Tuning the hyperparameters of the reinforcement learning algorithms is costly in terms 

of the time and computational devices that are required to conduct this task. Consequently, 

it is impractical and inefficient for testers to tune the hyperparameters every time before 

applying the algorithms to test a system. In this work, we only tuned the hyperparameters 

of each algorithm for three SH-CPSs with varying complexities. Although the tuned 

hyperparameters might not be the optimal one for all cases, they form a baseline and can 

be used as a starting point for future work.  

7.3 Conclusion Validity 

Due to the indeterminate policy used by the reinforcement learning algorithms to explore 

different operation invocations or uncertainty values, the number of detected failures and 

space/time costs are affected by randomness, threatening the conclusion validity. To 

reduce the threat, we repeated each testing job 10 times and applied statistical tests to 

evaluate the significance of the experiment result. We conducted the Kruskal-Wallis test 

[31] and Dunn's test [32] in conjunction with the Benjamini-Hochberg correction [33] to 

check statistical significance, and Vargha and Delaney statistics [34] to measure effect size. 

Finally, we acknowledge that more repetitions are needed to increase the trust on the 

results further.  

7.4 External Validity 

External validity concerns the generalization of the experiment results. In this experiment, 

we only tested three real-world systems, and three systems from the literature. They have 

96 to 2160 states, and 270 to 2432 transitions. Each system is affected by a number of 

uncertainties, varying from 8 to 24. Although the results obtained from the six subject 

systems provide the evidence to support the conclusion, results from more SH-CPSs are 

still desired to validate the conclusion further.  
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8 Related Work 
This section discusses related works on testing with reinforcement learning (Section 8.1) 

and testing under uncertainty (Section 8.2). 

8.1 Testing with Reinforcement Learning 

As a machine learning approach to solve sequential decision problems, reinforcement 

learning algorithms have been applied by a few researchers to solve several testing 

problems, as described below.  

In a pioneering work, Veanes et al. devised an ad hoc reinforcement learning algorithm 

for online testing [44]. With the aim of covering more system behaviors, the algorithm 

keeps track of the number of times a transition has been triggered, and chooses a transition 

that has been triggered with the least of times. In their experiments, the ad hoc algorithm 

was compared with a random testing algorithm, and the proposed algorithms managed to 

cover more states than the random one, with much less time. However, the ad hoc 

algorithm does not consider the long-term reward, that is, the coverage of future transitions. 

Thus, the policy learned by this algorithm may be suboptimal.  

In another work, Groce et al. proposed a light-weight automated testing framework for 

container-like classes [45]. In their framework, SARSA (a value function learning 

algorithm, see Section 2.4.1) was used to learn the policy of generating test cases, i.e., 

sequences of method calls on container objects. In the evaluation, the SARSA based 

approach was compared with random testing and a modeling checking approach for 15 

container classes. Their evaluation results show that the new approach performed better in 

7 out of the 15 classes. As no other reinforcement learning algorithms were evaluated in 

the experiment, it is unknown whether other algorithms will perform better.  

Mariani et al. and Reichstaller et al. applied Q-learning for GUI [46] and interoperability 

testing [47]. In the first work, Q-learning was used to select the testing action that 

maximizes the changes of displayed GUI widgets, to cover functions of a system under test. 

In their empirical evaluation, the Q-learning based approach was compared with GUITAR, 

an open-source GUI testing tool, for four GUI applications. For all of these applications, 

the Q-learning based approach achieved a higher code coverage, and detected more faults 

than GUITAR. In the second work, Q-learning was applied to find implementation faults 
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that can lead to the most critical failures, so that the riskiest implementation faults can be 

tested. The proposed testing approach was only evaluated by applying it for one case study, 

without comparing it with other methods.   

Spieker et al. proposed a value function learning based reinforcement learning algorithm, 

similar to Q-learning, for test case prioritization [48]. In the evaluation, the reinforcement 

learning-based approach was compared with a random and two static test case 

prioritization approaches. Evaluation results demonstrated that the reinforcement learning-

based approach could effectively learn to prioritize test cases that have a high chance to 

detect faults, with performance comparable with the two static methods, within 60 

iterations.   

More recently, Reichstaller and Knapp proposed a model-based reinforcement learning 

algorithm for testing self-adaptive systems [49]. Different from the reinforcement learning 

algorithms evaluated in this empirical study, the model-based algorithm tries to learn a 

Markov Decision Process (MDP) model of the system under test. An MDP model is 

defined by 1) a set of states of the system, 2) a set actions that can be performed on the 

system, 3) the transition probability that the system switches from one state to another 

when an action is conducted, and 4) the reward of performing an action under a state. 

When the MDP model is learned, it can be used to find the optimal policy of taking actions 

to maximize cumulative rewards. In the evaluation, the model-based algorithm was 

compared with Q-learning and a random method for testing a smart vacuum system. 

Testing results reveal that the model-based algorithm performed the best, and both model-

based algorithm and Q-learning outperformed the random method. However, sufficient 

domain knowledge is needed to obtain the MDP model, and the current algorithm only 

supports learning the transition probability for a low-dimensional state space. These 

limitations restrict the applicability of the model-based reinforcement learning algorithm, 

and it needs further research to enhance the generalizability and learning capability.  

In summary, existing works mainly evaluated the performance of value function learning 

based reinforcement learning algorithms for test case generation, prioritization, and risk-

based testing. Besides, the hyperparameter settings used in these works, and how the 

hyperparameter settings were selected, were rarely mentioned in these papers. To find the 

optimal reinforcement learning algorithms for testing SH-CPSs under uncertainty, we 

conducted this empirical study and evaluated the performance of 14 combinations of 
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reinforcement learning algorithms. By tuning these algorithms and applying them to test 

six SH-CPSs, we found the optimal reinforcement learning algorithms that detected the 

most failures in these systems, and with the least time cost.  

8.2 Testing under Uncertainty 

As uncertainty has been becoming prevalent in nowadays complex software systems, 

researchers have proposed approaches to either mitigate the uncertainty or test a system 

with uncertainties explicitly captured and introduced.  

For uncertainty mitigation, Zhang et al. and Ji et al. both proposed to use Model-Based 

Testing (MBT) to discover unknown system behaviors due to indeterminate environmental 

conditions [50] or uncertain networks [51]. In another work [52], Camilli et al. also applied 

MBT to collect actual system responses at runtime, and then the responses are fed to a 

Bayesian inference process that updates beliefs on uncertain parameters of system 

behaviors, modeled as a Markov Decision Process (MDP). Based on the result of the 

Bayesian inference process, values of the uncertain parameters are calibrated, and the 

calibrated MBP model can be used to support future development. From another 

perspective, Walkinshaw and Fraser proposed an uncertainty-driven Learning Based 

Testing (LBT) approach for unit testing [53]. In this approach, Walkinshaw and Fraser 

apply genetic programming to learn multiple inference models of the program under test, 

based on previous testing results. Then, an active learning technique (Query By Committee) 

is used to select a test input, for which the inference models are the most uncertain about 

the outputs. The test input is then used to test the program, and the actual output of the 

program is used to further update the inference models, which are used to choose the next 

test input. Unlike these works that aim to discover unknown system behaviors or mitigate 

uncertainty, our work aims to find failures in SH-CPSs under a set of already identified 

uncertainties (measurement errors and actuation deviations), with the range of each 

uncertainty given. 

To enable testing under uncertainty, Menghi et al. proposed an approach to generate test 

oracles for testing Simulink models with uncertain parameter values and white noises. In 

this approach, functional requirements are specified as Restricted Signals First Order Logic 

(RFOL) formulas and the formulas are transformed to Simulink blocks to calculate a 

quantitative measure, representing the degree of satisfaction of the requirements. 
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Alternatively, in our work, we use a test model to capture the requirements of the system 

under test, and the constraints defined in the test model serve as test oracles. Simulation is 

also a common approach used to test systems under uncertainty. Ramirez et al. proposed to 

use simulators of sensors to test a goal model used by an adaptive system, with the 

measurement of sensors affected by noises and failures [54]. Similarly, Minnerup and 

Knoll proposed to use simulators of actuators to test automated vehicles against a set of 

actuator inaccuracies [55]. In these two works, the options of uncertainty are limited to 

either a few types, durations and severities of noises [54] or several samples of actuator 

inaccuracies, sampled from their ranges [55]. On the contrary, our work aims to find a 

value within a valid range for each uncertainty and for each measurement or actuation, the 

uncertainty may take effect. Since the solution space of our testing problem is huge, we 

proposed to use reinforcement learning to effectively find the sequence of uncertainty 

values that can reveal a failure.  

In summary, our work aims to find sequences of operation invocations and uncertainty 

values that make an SH-CPS failed to behave as expected, with the expected system 

behaviors captured as a test model and the range of each uncertainty given. This testing 

problem is different from the ones of the works mentioned above. We conducted this 

empirical study to find the optimal reinforcement learning algorithms for solving this test 

problem. 

9 Conclusion 
This paper presents an empirical study of applying reinforcement learning algorithms to 

test SH-CPSs under uncertainty, to find the optimal algorithms for failure detection. In this 

work, we applied 14 combinations of reinforcement learning algorithms to test six SH-

CPSs, including two algorithms (State-Action-Reward-State-Action and Q-learning) for 

operation invocations, and seven algorithms (Asynchronous Advantage Actor-Critic, 

Actor-Critic method using Kronecker-factored Trust Region, Deep Deterministic Policy 

Gradient, Trust Region Policy Optimization, Proximal Policy Optimization, Actor-Critic 

method with Experience Replay, and Uncertainty Policy Optimization) for introducing 

uncertainties. Testing results reveal that the combination of Q-learning and Uncertainty 

Policy Optimization managed to detect the most failures, and on average, they took the 

least amount of time to detect a failure. Regarding the scalability of the algorithms, 
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increasing the numbers of states and transitions of the system under test will incur extra 

space and time costs for SARSA and Q-learning, which were used for operation 

invocations. Whereas increasing the number of uncertainties has little effect on the costs of 

the other algorithms, which were used for introducing uncertainties.  
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Appendix A Evaluation Results for Effectiveness 
Table 30 presents the statistical test results for the Number of Detected Faults (NDF). As 

𝐴𝑃𝑃s_mju  detected the most faults, we focus on comparing 𝐴𝑃𝑃s_mju  with the other 

approaches. For each of the other 13 testing approaches, denoted as APPc, we checked the 

p-value of the Dunn's test, corresponding to the pair of 𝐴𝑃𝑃s_mju and APPc. If the p-value 

is over 0.05, the two testing approaches are considered to perform equally well, denoted as 

“=” in Table 30. Otherwise, we further computed the Vargha and Delaney statistics 𝐴w"., 

using the NDFs of the two approaches. If 𝐴w". is above 0.5 for the pair of 𝐴𝑃𝑃s_mju and 

APPc, it means 𝐴𝑃𝑃s_mju has a higher chance to detect more faults, and thus 𝐴𝑃𝑃s_mju is 

considered to be superior to APPc, signified as “>”. Otherwise, 𝐴𝑃𝑃s_mju is considered to 

be worse, signified as “<”.  
Table 30 Statistical Test Results for Effectiveness 

SCALE ENUM 

APPQ_UPO      
vs. 

APPQ_A3C APPQ_ACER APPQ_PPO APPQ_TRPO APPQ_ACKTR APPQ_DDPG 
> < = > < = > < = > < = > < = > < = 

60% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

70% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

80% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

90% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

100% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

110% 1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
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2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

120% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

130% 

1000 1 0 5 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

140% 

1000 1 0 5 1 0 5 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

150% 

1000 1 0 5 1 0 5 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

Sum 243 0 57 242 0 58 240 0 60 240 0 60 240 0 60 239 0 61 
 

Table 10 Statistical Test Results for Effectiveness (continued) 

SCALE ENUM 

APPQ_UPO            
vs.   

APPS_A3C APPS_ACER APPS_PPO APPS_TRPO APPS_ACKTR APPS_DDPG APPS_UPO 
> < = > < = > < = > < = > < = > < = > < = 

60% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 1 5 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 

70% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 

80% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 

90% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 

100% 1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 1 0 5 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
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3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 

110% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 

120% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 

130% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 1 0 5 
2000 5 0 1 5 0 1 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 1 4 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 

140% 

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 
2000 4 0 2 4 0 2 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 

150% 

1000 1 0 5 0 0 6 0 0 6 0 0 6 1 0 5 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
3000 6 0 0 5 0 1 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 

SUM 238 0 62 236 0 64 240 0 60 240 0 60 241 0 59 240 0 60 19 2 279 

Appendix B Evaluation Results for Efficiency 
Table 31 summarizes the evaluation results for efficiency. We focus on comparing 

𝐴𝑃𝑃s_mju with the other approaches. If an approach 𝐴𝑃𝑃, took significantly more (less) 

time than 𝐴𝑃𝑃s_mju to detect a fault, 𝐴𝑃𝑃, is inferior (superior) to 𝐴𝑃𝑃s_mju in terms of 

efficiency, denoted as “>” (“<”) in Table 31.  

Table 31 Statistical Results for Efficiency 

SCALE ENUM 

APPQ_UPO 
vs. 

APPQ_A3C APPQ_ACER APPQ_PPO APPQ_TRPO APPQ_ACKTR APPQ_DDPG 
> < = > < = > < = > < = > < = > < = 

60% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

70% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
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80% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

90% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

100% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

110% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

120% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

130% 

1000 1 0 5 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 5 0 1 5 0 1 5 1 0 5 0 1 5 0 1 5 0 1 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

140% 

1000 0 0 6 1 0 5 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 5 0 1 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

150% 

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 

Sum 240 0 60 239 0 61 239 61 0 239 0 61 238 0 62 238 0 62 
 

Table 11 Statistical Results for Efficiency (continued) 

SCALE ENUM 

APPQ_UPO 
vs.   

APPS_A3C APPS_ACER APPS_PPO APPS_TRPO APPS_ACKTR APPS_DDPG APPS_UPO 
> < = > < = > < = > < = > < = > < = > < = 

60% 

1000 2 0 4 2 0 4 2 0 4 1 0 5 2 0 4 2 0 4 1 0 5 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 

70% 1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 
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2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 

80% 

1000 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 

90% 

1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 

100% 

1000 1 0 5 1 0 5 2 0 4 1 0 5 1 0 5 1 0 5 2 0 4 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 

110% 

1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 4 0 2 2 0 4 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 

120% 

1000 2 0 4 2 0 4 1 0 5 2 0 4 2 0 4 2 0 4 2 0 4 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5 

130% 

1000 3 0 3 2 0 4 2 0 4 3 0 3 2 0 4 2 0 4 2 0 4 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 1 2 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 

140% 

1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 
2000 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1 6 0 0 2 0 4 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 

150% 

1000 1 0 5 1 0 5 1 0 5 1 0 5 2 0 4 1 0 5 3 0 3 
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4 
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3 

SUM 258 0 42 257 0 43 257 0 43 257 0 43 257 0 43 259 0 41 98 1 201 
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Appendix C Time and Space Costs of Reinforcement 

Learning Algorithms 
Table 32 presents quantiles of time and space costs of each testing approach for the six SH-

CPSs.  
Table 32 Time and Space Costs of Each Testing Approach for Six SUTs  

APP SUT #States #Transitions #Unc. 
Time Cost (s) Space Cost (G) 

1st 
Qu. Median 3rd 

Qu. 
1st 
Qu. Median 3rd 

Qu. 
Q_A3C 
 

AC 432 432 24 15.6 25.3 39.0 5.7 6.8 7.6 
AR 140 360 12 6.9 9.2 11.6 5.3 5.7 6.1 
AP 96 270 24 6.1 7.9 10.6 4.6 5.0 5.9 
APC 1000 1008 18 22.6 37.1 56.2 6.6 7.8 9.2 
RC 2160 2432 18 52.6 65.4 87.0 13.2 15.3 17.0 
MR 1080 1656 8 35.6 46.2 63.1 8.2 9.2 9.9 

Q_TRPO 
 

AC 432 432 24 15.9 22.8 38.4 5.7 6.7 7.7 
AR 140 360 12 6.6 8.8 11.6 5.3 5.7 6.1 
AP 96 270 24 6.4 8.1 10.4 4.6 5.0 5.9 
APC 1000 1008 18 22.8 36.5 60.8 6.5 8.0 9.2 
RC 2160 2432 18 54.4 67.8 84.8 13.2 15.4 17.1 
MR 1080 1656 8 35.4 45.2 62.4 8.0 9.3 10.0 

Q_UPO 
 

AC 432 432 24 14.7 23.6 39.1 5.8 6.8 7.6 
AR 140 360 12 6.7 9.0 11.4 5.3 5.6 6.1 
AP 96 270 24 6.0 7.7 10.4 4.6 5.1 5.9 
APC 1000 1008 18 22.4 37.8 61.5 6.6 7.8 9.1 
RC 2160 2432 18 49.4 62.7 84.1 13.1 15.3 17.1 
MR 1080 1656 8 34.1 43.4 60.6 8.2 9.2 10.0 

Q_PPO 
 

AC 432 432 24 15.0 24.6 38.3 5.8 6.8 7.6 
AR 140 360 12 7.1 9.4 12.1 5.2 5.6 6.1 
AP 96 270 24 6.1 7.9 10.5 4.6 5.1 5.9 
APC 1000 1008 18 21.5 35.5 61.3 6.6 7.9 9.2 
RC 2160 2432 18 54.4 68.5 88.1 13.1 15.3 17.1 
MR 1080 1656 8 35.4 45.4 60.6 8.1 9.2 9.9 

Q_DDPG 
 

AC 432 432 24 15.3 22.4 37.7 5.8 6.8 7.6 
AR 140 360 12 6.8 9.1 11.8 5.3 5.7 6.1 
AP 96 270 24 6.2 7.8 10.8 4.6 5.0 5.9 
APC 1000 1008 18 21.3 33.6 59.8 6.5 8.0 9.2 
RC 2160 2432 18 52.8 67.2 85.6 13.2 15.3 17.0 
MR 1080 1656 8 34.5 43.5 58.7 8.2 9.2 9.9 

S_ACKTR 
 

AC 432 432 24 18.4 27.2 39.6 6.6 7.3 7.9 
AR 140 360 12 6.8 9.0 11.7 5.3 5.9 6.4 
AP 96 270 24 8.3 10.9 14.7 4.8 5.2 6.0 
APC 1000 1008 18 37.5 62.9 94.8 8.0 9.2 10.3 
RC 2160 2432 18 64.2 80.7 96.9 14.1 15.1 16.5 
MR 1080 1656 8 41.8 53.9 66.6 9.4 10.0 10.8 

S_DDPG 
 

AC 432 432 24 17.3 27.4 38.9 6.6 7.3 8.0 
AR 140 360 12 6.5 8.7 11.1 5.3 5.9 6.4 
AP 96 270 24 8.1 11.0 14.1 4.8 5.2 5.9 
APC 1000 1008 18 35.5 63.6 98.2 8.0 9.3 10.5 
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RC 2160 2432 18 56.6 70.5 85.7 14.0 15.2 16.5 
MR 1080 1656 8 39.4 50.9 64.1 9.3 10.0 10.8 

S_A3C 
 

AC 432 432 24 19.5 28.2 39.2 6.6 7.3 7.9 
AR 140 360 12 6.3 8.3 10.8 5.3 5.8 6.4 
AP 96 270 24 8.0 10.4 13.9 4.8 5.2 5.9 
APC 1000 1008 18 30.7 52.3 88.6 8.0 9.2 10.6 
RC 2160 2432 18 57.4 69.9 85.5 13.9 15.1 16.5 
MR 1080 1656 8 39.1 51.1 65.0 9.3 9.9 10.9 

S_ACER 
 

AC 432 432 24 19.8 30.1 40.7 6.6 7.3 8.0 
AR 140 360 12 7.1 9.3 11.9 5.3 5.8 6.4 
AP 96 270 24 8.7 11.6 14.9 4.8 5.3 6.0 
APC 1000 1008 18 34.6 51.9 91.6 8.0 9.2 10.4 
RC 2160 2432 18 64.9 79.0 96.9 14.0 15.2 16.4 
MR 1080 1656 8 43.5 55.3 68.5 9.3 9.9 10.8 

S_PPO 
 

AC 432 432 24 18.0 26.9 38.3 6.6 7.3 7.9 
AR 140 360 12 6.3 8.6 11.1 5.3 5.8 6.4 
AP 96 270 24 7.8 10.4 13.6 4.8 5.2 6.0 
APC 1000 1008 18 34.5 57.7 91.8 8.0 9.3 10.4 
RC 2160 2432 18 58.4 72.3 88.4 13.9 15.1 16.4 
MR 1080 1656 8 39.3 50.7 64.4 9.3 10.0 10.8 

S_TRPO 
 

AC 432 432 24 19.1 27.3 38.8 6.7 7.3 8.0 
AR 140 360 12 6.3 8.5 10.9 5.3 5.8 6.4 
AP 96 270 24 7.8 10.9 14.1 4.8 5.2 6.0 
APC 1000 1008 18 31.0 54.8 95.9 8.0 9.3 10.5 
RC 2160 2432 18 57.6 69.0 89.0 14.0 15.3 16.4 
MR 1080 1656 8 40.2 51.0 65.4 9.3 9.9 10.8 

Q_ACKTR 
 

AC 432 432 24 16.2 22.9 35.0 5.8 6.8 7.6 
AR 140 360 12 7.0 9.1 11.6 5.3 5.7 6.1 
AP 96 270 24 6.6 8.4 10.8 4.6 5.0 5.9 
APC 1000 1008 18 23.8 39.6 67.7 6.6 7.9 9.3 
RC 2160 2432 18 59.0 72.3 94.4 13.1 15.3 17.0 
MR 1080 1656 8 36.5 45.1 63.5 8.2 9.3 9.9 

S_UPO 
 

AC 432 432 24 18.0 26.8 39.2 6.7 7.3 7.9 
AR 140 360 12 6.2 8.4 10.7 5.3 5.9 6.4 
AP 96 270 24 8.1 10.8 13.7 4.8 5.2 6.0 
APC 1000 1008 18 35.5 56.7 95.6 7.9 9.3 10.4 
RC 2160 2432 18 52.8 66.7 81.3 14.0 15.1 16.5 
MR 1080 1656 8 36.6 47.4 61.7 9.4 10.0 10.8 

Q_ACER 
 

AC 432 432 24 16.1 25.0 39.1 5.8 6.8 7.7 
AR 140 360 12 7.3 9.8 12.2 5.3 5.7 6.1 
AP 96 270 24 6.5 8.7 11.2 4.6 5.0 5.9 
APC 1000 1008 18 22.1 37.3 59.7 6.6 7.8 9.2 
RC 2160 2432 18 58.6 72.4 96.0 13.3 15.2 17.3 
MR 1080 1656 8 38.8 50.1 67.2 8.2 9.2 9.9 

* #Unc: Number of uncertainty instances 

 
 
 
 

 

 


