
University of Oslo
Faculty of mathematics and natural sciences

Executable Model Based Testing for Self-Healing

Cyber-Physical Systems Under Uncertainty

Tao Ma

Thesis submitted for the degree of Ph.D.

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

December 2020

i

Abstract

Self-healing is becoming a critical feature of Cyber-Physical Systems (CPSs). By detecting

faults and applying recovery adaptations at runtime, self-healing behaviors can help CPSs

to maintain functional normal in the presence of faults. CPSs with the self-healing feature

are named as Self-Healing CPSs (SH-CPSs). Besides recovery, SH-CPSs have to deal with

various uncertainties, such as measurement errors from sensors and actuation deviations

from actuators. To assess the dependability of SH-CPSs, it is necessary to test if SH-CPSs

can still behave as expected under uncertainty. However, the autonomy of self-healing

behaviors and the impact of uncertainties make it challenging to conduct such testing. To

this end, an executable model-based testing approach is proposed in this thesis. In this

approach, the expected behaviors of the SH-CPS under test are specified as an executable

test model. By executing the SH-CPS together with the test model, sending them the same

test inputs, and comparing their consequent states, we can dynamically test the system

against its test model.

To realize this executable model-based testing approach, five contributions have been

made and are presented in this thesis: (C1) a Conceptual Model of SH-CPS and

Uncertainty (CMSU), for constructing a comprehensive and precise understanding of CPS,

self-healing and associated uncertainty; (C2) a Modeling framework of SH-CPS (MoSH),

to facilitate the creation of an executable test model that captures the expected behaviors of

the SH-CPS under test; (C3) a testing framework (TM-Executor), for testing an SH-CPS

against a test model via co-execution of the system and the model; (C4) a Fragility-

Oriented Testing (FOT) approach, to learn the optimal policies of choosing test inputs for

fault detection; (C5) an empirical study, to find the best reinforcement learning algorithms

for detecting faults in the SH-CPS under uncertainty.

By applying MoSH to create executable test models and employing TM-Executor and

FOT to test diverse SH-CPSs, we demonstrate that it is practical to apply the executable

model-based approach to test SH-CPSs under uncertainty. The fault detection ability of the

fragility-oriented testing approach is significantly higher than random testing and

ii

coverage-oriented testing. Reinforcement learning algorithms have shown competence in

detecting faults in SH-CPSs under uncertainty. Based on results of the empirical study, we

found that the combination of Q-learning and Uncertainty Policy Optimization algorithms

managed to detect the most faults in selected six SH-CPSs. On average, they managed to

discover two times more faults than the other reinforcement learning algorithms.

 iii

Acknowledgements
Five years ago, I decided to quit my job and became a Ph.D student in software

engineering department at Simula. Although it was a bit challenging at the beginning, as a

completely fresh guy in the software engineering field, the decision has offered me a great

opportunity to expand my boundary and make me more clearly understand myself.

Definitely, doing a Ph.D. is not an easy journey. I am really grateful to all the people

around me.

First and foremost, I would like to thank my supervisors Shaukat Ali and Tao Yue.

Thanks for your trust that allows me to start my Ph.D. journey. Thanks for your patient

listening, insightful comments, and valuable teaching and discussions that help me to know

how to solve a research problem rigorously and systematically.

To all my colleagues, I must express my gratitude for all your supports. At the beginning

of my Ph.D., I only know few about the research works in software testing and model-

based engineering. The valuable discussions with you helped me to much more quickly get

familiar with these new fields. Without you, I cannot imagine how I could conquer the

challenges I have met through the journey.

To my beloved wife, Hong, thanks for your accompanies, support, inspiration, and

sacrifice. You are the most precious gift I have gotten in my life. Also, thanks to all my

family. Thanks for your care and support.

 iv

List of Papers
My entire PhD work leads to five pulications (three journal papers and two conference

papers). Since Paper B is a journal extension of Paper D and Paper A is presented as a

journal first paper (Paper E), these two papers (D and E) are not included in the thesis to

avoid redundancy.

Paper A. Modeling Foundations for Executable Model-Based Testing of Self-Healing
Cyber-Physical Systems

T. Ma, S. Ali, and T. Yue.
Journal of Software & Systems Modeling (SOSYM). DOI: 10.1007/s10270-018-00703-
y

Paper B. Testing Self-Healing Cyber-Physical Systems under Uncertainty: A
Fragility-Oriented Approach

T. Ma, S. Ali, T. Yue, and M. Elaasar.
Software Quality Journal (SQJ). DOI: 10.1007/s11219-018-9437-3

Paper C. Testing Self-Healing Cyber-Physical Systems under Uncertainty with
Reinforcement Learning: An Empirical Study

T. Ma, S. Ali, and T. Yue.
Journal of Empirical Software Engineering (EMSE). DOI: 10.1007/s10664-021-09941-
z

Paper D. Fragility-Oriented Testing with Model Execution and Reinforcement
Learning

T. Ma, S. Ali, T. Yue, and M. Elaasar.
In: IFIP International Conference on Testing Software and Systems (ICTSS 2017).
DOI: 10.1007/978-3-319-67549-7_1

Paper E. Modeling Foundations for Executable Model-Based Testing of Self-Healing
Cyber-Physical Systems

T. Ma, S. Ali, and T. Yue.
Journal first paper presented in: IEEE International Conference on Software Testing,
Verification and Validation (ICST 2020)

 v

Contents

Abstract ... i

Acknowledgements ... iii

List of Papers .. iv

Contents .. v

Part I ... 1

1 Introduction ... 2

2 Background .. 6

2.1 Self-healing Cyber-Physical System and Uncertainty ... 6

2.2 Executable Models and Hybrid Co-execution ... 6

2.3 Model-Based Testing ... 7

2.4 Reinforcement Learning .. 8

3 Research Methodology .. 9

3.1 Problem Identification ... 9

3.2 Problem Formulation ... 10

3.3 Solution Realization and Implementations .. 11

3.4 Solution Evaluation ... 13

4 Executable Model Based Testing Methodologies ... 14

4.1 Modeling Foundations ... 14

4.1.1 Conceptual Model of SH-CPSs and Uncertainties (CMSU) 15

4.1.2 MoSH Modeling Framework .. 16

4.1.3 TM-Executor Framework .. 18

4.2 Fragility-Oriented Testing ... 19

4.3 Empirical Study ... 20

5 Summary of Results ... 21

5.1 Modeling Foundations (Paper A) .. 21

5.2 Fragility-Oriented Testing (Paper B) ... 23

5.3 Empirical Study (Paper C) ... 24

 vi

6 Future Directions ... 27

7 Conclusion ... 28

8 References for Summary ... 29

Part II ... 32

Paper A ... 33

Abstract ... 34

1 Introduction ... 34

2 Background ... 36

2.1 Model-Based Testing versus Executable Model-Based Testing 36

2.2 Fuzzy Set Theory .. 37

3 Running Example .. 38

4 Conceptual Model of SH-CPSs and Uncertainties (CMSU) ... 39

4.1 Components of Cyber-Physical Systems .. 39

4.2 Self-Healing Behavior ... 39

4.2.1 Self-Diagnosis ... 40

4.2.2 Self-Recovery ... 41

4.3 Uncertainty .. 42

5 MoSH Modeling Framework .. 44

5.1 Model System Structures with the SH-CPS Component Profile 45

5.1.1 SH-CPS Component Profile ... 45

5.1.2 Model System Structure .. 46

5.2 Model Behaviors with SH-CPS Behavior Profile ... 47

5.2.1 SH-CPS Behavior Profile ... 47

5.2.2 Model Functional Behaviors ... 48

5.2.3 Model Self-Healing Behaviors ... 49

5.2.4 Model Interaction Behaviors ... 50

5.3 Specify Uncertainties using SH-CPS Uncertainty Profile 51

5.3.1 SH-CPS Uncertainty Profile ... 51

5.3.2 Model Uncertainty .. 52

5.4 Model Testing Utilities with SH-CPS Testing Profile .. 53

 vii

5.4.1 SH-CPS Testing Profile .. 53

5.4.2 Model Test Utilities ... 53

6 TM-Executor Framework .. 54

6.1 Overview ... 54

6.2 Executable Model-Based Testing .. 56

6.2.1 Execution Process ... 56

6.2.2 Extensions to fUML and PSSM .. 57

6.3 Introduce Uncertainties .. 57

6.4 Orchestrate Execution .. 58

6.4.1 FMI Based Co-Execution .. 58

6.4.2 Co-Execution Algorithm ... 59

7 Evaluation .. 61

7.1 Experiment Design .. 61

7.2 Experiment Execution ... 64

7.2.1 Identifying and Mapping Concepts (T1) .. 64

7.2.2 Modeling Executable Test Models with MoSH (T2) ... 65

7.2.3 Testing SH-CPS with TM-Executor (T3) .. 66

7.3 Experiment Results .. 66

7.3.1 Results for RQ1 ... 66

7.3.2 Results for RQ2 ... 68

7.3.3 Results for RQ3 ... 69

7.4 Overall Discussion ... 70

7.5 Threats to Validity ... 71

8 Related work .. 72

8.1 Fault-Tolerant Computing ... 72

8.2 Concepts of CPS, Self-Healing, and Uncertainty .. 73

8.3 UML-based Modeling for SH-CPSs .. 74

8.4 Testing SH-CPSs Under Uncertainties .. 76

8.4.1 Testing Self-Healing Behaviors .. 76

8.4.2 Testing Systems Under Uncertainties ... 77

 viii

8.5 Summary ... 78

9 Conclusion and Future Work .. 78

References ... 79

Appendix A. Execution Process of an Executable Test Model ... 87

Appendix B. Extensions to fUML and PSSM ... 88

Paper B ... 89

Abstract ... 90

1 Introduction ... 90

2 Background ... 93

2.1 Executable Test Model (ETM) .. 93

2.2 Dynamic Flat State Machine (DFSM) .. 94

2.3 Test Model Execution Framework .. 95

2.4 Reinforcement Learning .. 96

2.5 Artificial Neural Network ... 97

3 Running Example .. 98

4 Fragility-Oriented Testing under Uncertainty ... 101

5 Fragility-Oriented Operation Invocation ... 103

5.1 Overview ... 104

5.2 T-value Learning ... 105

5.3 Softmax Transition Selection .. 107

6 Uncertainty Policy Optimization ... 107

6.1 Uncertainty Generation Policy .. 108

6.2 Policy Optimization ... 110

7 Implementation .. 112

8 Evaluation .. 113

8.1 Experiment Design .. 113

8.1.1 Research Questions. .. 114

8.1.2 Case Studies. ... 114

8.1.3 Experiment Tasks .. 116

8.1.4 Evaluation Metrics and Statistics Tests .. 117

 ix

8.2 Experiment Execution ... 118

8.3 Experiment Results .. 118

8.4 Discussion .. 122

8.5 Threats to Validity ... 123

9 Related Work ... 124

9.1 Model-Based Testing ... 124

9.2 Testing with Reinforcement Learning ... 125

9.3 Uncertainty-wise Testing ... 125

10 Conclusion ... 126

Acknowledgement ... 126

References ... 126

Appendix ... 130

Paper C ... 131

Abstract .. 132

1 Introduction ... 133

2 Background .. 134

2.1 Uncertainty-Wise Executable Test Model ... 135

2.2 Uncertainty-Wise Executable Model-Based Testing .. 138

2.2.1 Theoretical Foundations .. 138

2.2.2 Implementation (TM-Executor) .. 139

2.3 Problem Formulation ... 140

2.4 Reinforcement Learning Algorithms ... 144

2.4.1 Value Function Learning Methods .. 144

2.4.2 Policy Optimization Methods .. 145

3 Experiment Planning ... 149

3.1 Goals .. 149

3.2 Algorithms under Investigation ... 150

3.3 Subject Systems ... 151

3.3.1 System Description ... 151

3.3.2 Test Models ... 154

 x

3.4 Tasks .. 155

3.5 Hypotheses and Variables ... 157

3.6 Statistical Tests .. 159

4 Experiment Execution ... 160

4.1 Hyperparameter Tuning .. 160

UPO .. 161

4.2 Execution Process ... 162

5 Experiment Results ... 162

5.1 Effectiveness ... 162

5.2 Efficiency .. 165

5.3 Scalability .. 168

6 Discussion ... 170

6.1 Effectiveness ... 170

6.2 Efficiency .. 171

6.3 Scalability .. 172

6.4 Alternative Approaches ... 173

7 Threats to Validity ... 174

7.1 Construct Validity ... 174

7.2 Internal Validity .. 175

7.3 Conclusion Validity ... 176

7.4 External Validity ... 176

8 Related Work ... 177

8.1 Testing with Reinforcement Learning ... 177

8.2 Testing under Uncertainty ... 179

9 Conclusion ... 180

Acknowledgement ... 181

References ... 181

Appendix A Evaluation Results for Effectiveness .. 187

Appendix B Evaluation Results for Efficiency ... 189

Appendix C Time and Space Costs of Reinforcement Learning Algorithms 192

 xi

1

Part I

Summary

2

Summary

1 Introduction
Cyber-Physical Systems (CPSs) are integrations of computation and physical processes [1].

In CPSs, computing components monitor and control physical processes via sensors and

actuators, and cooperate with each other via network communication. The integration of

computation, communication, and control awards CPSs a higher level of intelligence,

which enables them to adapt and optimize their behaviors autonomously at runtime [2].

One of such autonomous features is self-healing, which endows CPSs with the ability to

detect and recover from errors caused by software or hardware faults at runtime. CPSs with

the self-healing feature are referred as Self-Healing CPSs (SH-CPSs).

Besides recovery, SH-CPSs have to deal with various uncertainties arising from

measurements acquired by sensors and actuations conducted by actuators. In reality, the

exact value of a measurement error or an actuation deviation is unknown, and the uncertain

value will affect the behaviors of SH-CPSs and may prohibit the systems from behaving as

expected. To assess the dependability of SH-CPSs, it is necessary to test if an SH-CPS can

still behave as expected under uncertainty.

To tackle this testing problem, we proposed an executable model-based testing approach.

In this approach, a test model is used to capture components and expected behaviors of the

SH-CPS under test. To test the system, the test model is executed together with the SH-

CPS and simulators of sensors, actuators, and environment. By introducing uncertainties

via the simulators, sending the same test inputs to the system and the test model, and

comparing their consequent states, we can therefore determine if the system behaves as

3

expected, and also evaluate how likely the system is going to behave differently from the

model. The likelihood is defined as fragility. It is used as a heuristic to effectively find test

inputs leading to an unexpected behavior. To realize such an executable model-based

testing approach, a series of model-based methodologies was proposed with respect to five

contributions, as shown in Figure 1.

Figure 1 Scope of Executable Model-Based Testing for Self-Healing Cyber-Physical Systems

Under Uncertainty

 First of all, a Conceptual Model of SH-CPS and Uncertainty (C1: CMSU in Figure 1)

was proposed [3]. CMSU captures key concepts and their relationships about CPS,

functional and self-healing behaviors, and uncertainty. The conceptual model forms a

common understanding of what an SH-CPS is and what the uncertainty means for it.

Based on CMSU, a Modeling framework Of SH-CPS (C2: MoSH in Figure 1) was

developed to facilitate the specification of an executable Test Model (TM) that captures the

expected behaviors and involved uncertainties of the SH-CPS under test [3]. A TM uses

UML1 class diagrams to capture system components and UML state machines to specify

expected behaviors of each component. To enable the TM execution, we restrict the

modeling notations to the executable subset of UML, which is defined by the standards of

Semantics of a Foundational Subset for Executable UML Models (fUML) [4] and Precise

Semantics of UML State Machines (PSSM). Several metaclasses in the subset were

extended by the stereotypes defined in MoSH to specify self-healing behaviors and

uncertainties. MoSH also provides a modeling methodology to guide how to use UML

class diagrams and state machines along with MoSH to create an executable TM.

1 Unified Modeling Language (UML): https://www.omg.org/spec/UML/2.5.1/PDF

Test Model SH-CPS

C2: MoSH C3: TM-Executor

C1: CMSU

Simulators

C4: FOT

used by

directs

specifies
interact(s)

with
compared

against

invokes operations introduces uncertainties

guided by

executed by

C5: Empirical Studyfinds the best
algorithms

4

To execute a TM together with the SH-CPS under test, we implemented a testing

framework (C3: TM-Executor in Figure 1), based on standards of fUML [4], PSSM [5],

Functional Mockup Interface (FMI) [6], and our extensions to fUML and PSSM [3]. fUML,

PSSM and the extensions provide execution semantics of model elements in a TM and the

semantics allow it to be executed in a deterministic manner. The FMI standard provides

standard interfaces to enable the co-execution of hybrid models, such as the TM and

simulation models that are constructed with diverse modeling paradigms. Based on the

FMI standard, we devised a co-execution algorithm [3]. By applying the algorithm, TM-

Executor orchestrates the execution of the SH-CPS, TM and simulators, and allows us to

dynamically test an SH-CPS against a TM under a set of identified uncertainties.

To effectively detect faults in SH-CPS under uncertainty, a Fragility Oriented Testing

(C4: FOT in Figure 1) method was proposed [7]. In FOT, we evaluated the likelihood that

the system under test is going to behave inconsistently with its TM. The likelihood is

defined as fragility. We devised two reinforcement learning based algorithms that take the

fragility as a reward to find optimal policies of invoking operations (i.e., interfaces of the

system) and introducing uncertainties, respectively. More specifically, the two algorithms

take the state of the system as input, and output an operation invocation and a value for

each uncertainty. After performing the invocation on the system or introducing the

uncertainties, the algorithms obtain the fragility of the system, provided by TM-Executor,

and use the fragility to learn how to choose the invocation and uncertainty values to reach

the highest fragility and detect faults.

Afterward, we conducted an empirical study (C5 in Figure 1) to find the best

reinforcement learning algorithms for the FOT approach. In this study, we evaluated the

performance of 14 combinations of reinforcement learning algorithms, on six SH-CPSs.

Results of the empirical study reveal that Q-learning [8] and Uncertainty Policy

Optimization [7] managed to detect the most faults. On average, this combination found

two times more faults and took 52% less time to find a fault than the others.

In summary, this thesis provides a complete model-based solution for testing SH-CPSs

under uncertainty. With the UML extensions and modeling methodology provided by

MoSH, testers can systematically specify a test model to capture components, expected

behaviors, and uncertainties of the SH-CPS under test. TM-Executor enables the test model

to be executed together with the SH-CPS in a simulated environment, and a Fragility

5

Oriented Testing (FOT) method and two reinforcement learning based algorithms were

devised to effectively detect faults in the SH-CPS under uncertainty.

The thesis is composed of two parts. The first part (Part I) summarizes all research

works covered by the thesis. Section 2 provides background information required to

understand the thesis. Section 3 presents the research methodology, followed by the

contributions of the thesis and key results in Section 4 and Section 5 respectively. Section

6 discusses possible future directions and Section 7 concludes the thesis. The second part

(Part II) presents the related papers with respect to the five contributions. Figure 2 shows the

mapping between the summary and the collection of papers.

Figure 2 Thesis Structure

Section 1. Introduction

Section 2. Background

Section 3. Research Methodology

Section 4. Executable Model Based Testing
Methodologies (Contributions)

Section 4.1. Moduling Foundations

Section 4.1.1. Conceptual Model of SH-
CPSs and Uncertainties (CMSU)

Section 4.1.2. Modeling Framework of
SH-CPS (MoSH)

Section 4.1.3. TM-Executor Testing
Framework (TM-Executor)

Section 4.2. Fragility-Oriented Testing

Section 4.3. Empirical Study

Section 5. Summary of Results

Section 6. Future Directions

Section7. Conclusion

Section 5.1. Results of CMSU,
MoSH, and TM-Executor

Section 5.2. Results of FOT

Section 5.3. Results of
Empirical Study

Paper A

Paper B

Paper C

Part I. Summary

Part II. Collection of Papers

Legends

next
conection
section

6

2 Background
This section briefly introduces SH-CPS and uncertainty in Section 2.1. Section 2.2

explains several standards that build the foundation for executing the SH-CPS under test

together with its test model. An overview and limitations of existing model-based testing

approaches are given in Section 2.3, and Section 2.4 introduces the general idea of

reinforcement learning.

2.1 Self-healing Cyber-Physical System and Uncertainty

An SH-CPS can be seen as a set of heterogeneous and distributed physical units. Each

physical unit has one or more controllers that use sensors and actuators to monitor and

control some physical processes, and the controllers are cooperating with each other via

network communication. Moreover, the SH-CPS is equipped with probes and effectors that

allow the system to monitor its internal state and to make runtime adaptations. Based on

the measurement generated by probes, the controllers employ fault detection algorithms to

determine if a software or hardware fault has occurred, and apply recovery policies to

adapt the system’s parameters, components, or behaviors via effectors, to recover the

system from the detected fault. The fault detection algorithms and recovery policies are the

self-healing behaviors of an SH-CPS.

As SH-CPSs typically operate in an uncontrolled environment, the behaviors of SH-

CPSs are affected by various uncertainties. For instance, the measurement from sensors

and the actuation performed by actuators are affected by uncertain measurement errors and

actuation deviations. These uncertainties may prevent them from behaving as expected.

This thesis provides a model-based solution for testing if an SH-CPS can still behave as

expected, under a set of identified uncertainties.

2.2 Executable Models and Hybrid Co-execution

Model-based system engineering has emerged as a standard approach for engineering

complex, interdisciplinary systems [9]. Model is the key to this approach. It provides a

systematic and precise way to capture and specify the system under development. To avoid

ambiguity and facilitate validation, the model is becoming executable, with execution

semantics of the model defined in standards. One example is the Unified Modeling

7

Language (UML). The standards of fUML [4] and PSSM [5] define the semantics of a

subset of UML elements. Such semantics enable UML activity diagrams and state

machines to be executed in a deterministic manner.

For complex, interdisciplinary systems, such as CPSs, it typically involves multiple

models created under diverse modeling paradigms. For example, the physical process of a

CPS could be represented as a continuous-time model, such as differential equations, while

computation logics are described as state machines or activity diagrams. As a continuous-

time model and a discrete model have different time semantics, a co-execution framework

is needed to orchestrate the executions of the hybrid models. Toward this direction, the

FMI (Functional Mockup Interface) standard [6] defines the interfaces that enable data

exchange among different models. A co-execution algorithm needs to be provided to

determine the order and interval of the data exchanges. In this thesis (Paper A), we have

devised such an algorithm to co-execute a test model with the SH-CPS under test.

2.3 Model-Based Testing

Model-Based Testing (MBT) is a sub-field of model-based system engineering. It uses a

test model to capture the expected behaviors of the system under test and/or the behaviors

of its environment. Pairs of input and output of the model can be automatically derived

from the model and used as test cases to test the system, i.e., the output of the model is the

expected output of the system.

In a traditional MBT approach, all test cases are generated from a test model, guided by

test selection criteria, such as covering all states and transitions. Afterward, the test cases

are run on the system under test, and test verdicts are generated by comparing the output of

the system and the expected one contained in the test case.

A challenge to apply this traditional MBT approach to test SH-CPS is how to choose the

proper test selection criteria. Aggressive criteria, such as covering all possible transition

sequences, will lead to too many or even infinite test cases that are impractical to run all of

them. Although fewer test cases can be obtained by conservative criteria, the fault

detection ability of the smaller test suite is limited.

To overcome this dilemma, an executable model-based testing approach is proposed in

this thesis. In this approach, the system under test is dynamically tested against a test

model. By learning the results of performed test cases, an intelligent testing algorithm can

8

identify the fragile parts of the system. By focusing on testing the fragile parts, the

algorithm is expected to reveal faults more effectively.

2.4 Reinforcement Learning

To detect faults in SH-CPS under uncertainty, we need to find the optimal policy of

choosing test inputs. Finding such an optimal policy is exactly the goal of reinforcement

learning. Via a trial-and-error approach, reinforcement learning algorithms learn the long-

term rewards of candidate actions. By choosing the action with the highest reward, they

can find the best policy of choosing actions and obtain the highest reward.

In the context of testing SH-CPS under uncertainty, the candidate actions are operation

invocations that can be performed on the system to control its behaviors, and uncertainty

values that are to be introduced via simulators to mimic the effect of uncertainties. The

reward of choosing an action is the likelihood that an unexpected behavior can be detected

after conducting the action. We define this likelihood as fragility. Its value is between zero

and one. When fragility equals one, it means an unexpected behavior is detected. Taking

the fragility as a reward, we have devised two reinforcement learning based algorithms to

find the optimal policies of choosing operation invocations and uncertainty values

respectively. Besides, we conducted an empirical study to compare the performance of

state-of-the-art reinforcement algorithms on testing SH-CPSs under uncertainty.

9

3 Research Methodology
This section presents the research methodology, including problem identification in

Section 3.1, problem formulation in Section 3.2, solution realization and implementations

in Section 3.3, and evaluation methods in Section 3.4.

3.1 Problem Identification

As SH-CPSs typically operate in an uncontrolled environment, they are affected by various

uncertainties that may prohibit them from behaving as expected. To assess their

dependability, it is necessary to test SH-CPSs under uncertainty. Based on the literature [1,

2, 10-12], we identified following challenges to solve this testing problem.

Challenge 1. Self-healing and uncertainty are not precisely defined. Due to lack of a

rigorous definition, the term self-healing is used mixed with self-adaptive, self-* properties,

fault tolerant and system dependability [13, 14]. However, the actual meaning of self-

healing is the ability to detect faults and apply proper adaptations to recover from the faults,

which are different from fault tolerance and the other self-* properties. The key

components of fault detection and recovery have to be identified prior to testing self-

healing systems. Regarding uncertainty, it can originate from numerous resources, such as

missing or ambiguous requirements, inadequate design due to incomplete knowledge, and

unpredictable environment [15, 16]. In this thesis, we focus on testing SH-CPSs under

uncertainty arising from the interaction between the systems and their environment. We

need to identify the uncertainties that impact the behaviors of SH-CPSs and explicitly

specify the uncertainties to enable the uncertainty-aware testing.

Challenge 2. Lacking a modeling methodology to enable model-based testing of SH-

CPSs under uncertainty. Model-based testing provides a systematic and automated

approach for testing complex systems [17]. A test model is the main artifact in this

approach. It needs a systematic modeling methodology to develop such a test model that

can capture the expected behaviors and uncertainties of the SH-CPS under test and solve

our testing problem.

Challenge 3. Difficult to generate test cases offline due to self-adaptability. The self-

healing behaviors of SH-CPSs enable the systems to autonomously adapt their behaviors at

runtime to recover from detected faults. As the expected behaviors could be adapted

10

dynamically, for a given input, the expected output depends on if one or more faults has

occurred and if self-healing behaviors have detected them. Consequently, it will be

challenging to generate test cases, i.e., pairs of input and expected output, for the complex

behaviors of SH-CPSs.

Challenge 4. Lacking a testing framework to test SH-CPSs under uncertainty. As it

could be too expensive or unsafe to test SH-CPSs in the real world, it is preferable to test

them in a simulated environment. Uncertainties, like measurement errors from sensors,

need to be introduced into the environment to simulate the effect of uncertainties and test if

an SH-CPS can still behave as expected under the uncertainties. Consequently, it needs a

testing framework to introduce the uncertainties and test SH-CPSs in an uncertainty-

introduced environment.

Challenge 5. Challenging to find the optimal testing policies. Two types of policies are

required to test SH-CPSs under a set of identified uncertainties. One is the policy for

selecting operation invocations that control the behavior of the SH-CPS under test. The

other is the policy used to choose the value of each identified uncertainty. The uncertainty

values instantiate a concrete, uncertainty-introduced environment condition, in which the

behavior of SH-CPS is to be tested. As the set of candidate operation invocations and

uncertainty values is huge, an effective algorithm is needed to find these optimal policies

to detect faults in the most effective manner.

3.2 Problem Formulation

After identifying the challenges, we formulate the following five research questions to

address each of them.

RQ1. What are self-healing and uncertainty? Key concepts about these terms and the

relations among the concepts need to be precisely defined to form a common

understanding of SH-CPS and uncertainty. The identified concepts could also help us to

capture the key components of SH-CPSs that have to be considered for testing.

RQ2. How to specify expected behaviors and involved uncertainties of SH-CPSs?

To test if an SH-CPS can behave as expected under a set of identified uncertainties, we

need to specify the expected behaviors and uncertainties first. As CPSs are hybrid and

distributed systems, their expected behaviors are composed of the behaviors of their hybrid

components. A systematic modeling methodology is required to capture the components

11

and their behaviors. Uncertainties that may affect any of the components also need to be

specified to enable the uncertainty-aware testing.

RQ3. How to test an SH-CPS against its expected behaviors? After capturing the

expected behaviors, we need to test if the SH-CPS can behave consistently with the

specified expected behaviors. As it is difficult to pre-generate test cases before test

execution (Challenge 3), ideally, an SH-CPS could be directly tested against its test model.

To do so, it needs a testing framework that can execute an SH-CPS together with its test

model and compare their behaviors during execution.

RQ4. How to introduce uncertainties in a simulated environment? In this thesis, we

focus on the uncertainties arising from the interactions between SH-CPSs and their

environment, like measurement errors and actuation deviations. To test if an SH-CPS can

behave as expected under the uncertainties, effects of the uncertainties have to be reflected

on the measurements from sensors and actions performed by actuators. Although

specialized simulation models could be developed to simulate the effects of uncertainties,

it will be cumbersome and error-prone to manually build the simulation model for each

sensor and actuator. To facilitate testing SH-CPSs under the uncertainties, it needs a testing

framework that can automatically introduce uncertainties during test executions, based on

the specifications of the uncertainties.

RQ5. How to find the optimal policies of selecting operation invocations and the

values of uncertainties to effectively detect faults? To detect a fault in an SH-CPS under

uncertainties, it needs to find a sequence of operation invocations and a sequence of

uncertainty values for each uncertainty that can work together to reveal the fault. As the

numbers of candidate operation invocations and possible combinations of uncertainty

values are huge, it is infeasible to cover all of them. It needs a novel approach that can

learn how to choose the operation invocations and uncertainty values to increase the

chance of detecting faults, and find faults in the most effective manner.

3.3 Solution Realization and Implementations

A conceptual model, a modeling framework, a testing framework, and a fragility-oriented

testing approach were proposed to address the five research questions. Table 1 gives an

overview of the solutions and implements.

12

Table 1 Solutions and Implementations

RQ Solution Techniques/tools/languages Implementations
1 CMSU UML, OCL, Eclipse Papyrus CMSU was implemented as UML class diagram with

OCL constraints. Details of the conceptual model can
be found in Paper A.

2 MoSH UML, OCL, MARTE, Eclipse
Papyrus

MoSH was implemented as four UML profiles with
dependency on MARTE model library. Detailed
specification and modeling methodology can be found
in Paper A.

3, 4 TM-
Executor

fUML, PSSM, FMI, Eclipse
Papyrus Moka

TM-Executor was implemented as a plugin of Eclipse
Papyrus based on Moka, a model execution engine for
UML models. Details about the framework are
introduced in Paper A.

5 FOT Reinforcement learning, Eclipse
Papyrus, JAVA, Python,
Tensorflow

FOT includes two reinforcement learning based testing
algorithms that are used to select operation invocations
and uncertainty values respectively. They were
implemented in JAVA and Python, and the algorithms
can be used by TM-Executor to find the operation
invocations and uncertainty values leading to
unexpected behaviors. Details of this approach is
explained in Paper B.

For RQ1, a conceptual model of SH-CPS and uncertainty (CMSU) was derived from the

literature. It captures key concepts about CPS, self-healing and uncertainty, as well as the

relations among the concepts. The definition of each concept is also provided along with

the model. These form the foundation of this thesis.

To facilitate the specification of expected behaviors of SH-CPSs and uncertainties

(RQ2), a modeling framework (MoSH) was proposed based on the conceptual model. The

framework provides four UML profiles and a modeling methodology to specify the

expected behaviors and uncertainties of SH-CPSs, using UML class diagrams and state

machines.

For RQ3 and RQ4, we proposed to test an SH-CPS by executing the system together

with its test model. Based on extended standards of fUML [4], PSSM [5], and FMI [6], a

testing framework (TM-Executor) was developed to enable the co-execution. Via

simulators of sensors and actuators, TM-Executor can also introduce uncertainties during

execution and enable the SH-CPS to be tested under uncertainties.

A fragility-oriented testing approach was devised to effectively find the operation

invocations and uncertainty values that can lead to unexpected behaviors of the SH-CPS

under test (RQ5). The approach includes two reinforcement learning based testing

algorithms to select the operation invocations and uncertainty values respectively. By

learning and focusing on operation invocations and uncertainty values that make an SH-

13

CPS more likely to behave differently from its test model, the algorithms can help TM-

Executor to effectively reveal faults in the SH-CPS under a set of identified uncertainties.

3.4 Solution Evaluation

We selected several representative SH-CPSs from real world projects and the literature as

case studies to empirically evaluate the applicability and performance of our proposed

frameworks and testing approach, including Radio-Frequency Identification Supply Chain

[18], Intelligent Service Robot [19], and ArduCopter [20], an autopilot system for aerial

vehicles. For the modeling and testing frameworks, we applied the frameworks to create

test models and test the selected SH-CPSs against the test models. By evaluating the

modeling effort and measuring the cost of applying the testing framework to perform the

executable model-based testing, we assessed if it is feasible to use the frameworks to test

SH-CPSs under uncertainties. Regarding the testing approach, we compared its

performance with the ones of state-of-the-art approaches, using broadly used evaluation

metrics, such as state and transition coverage [21], number of detected faults [22], and

time/space cost [23]. To reduce the effect of randomness and external factors, like the

amount of time an approach can take to test an SH-CPS, we chose several different settings

of the factors and conducted each testing task under each setting multiple times. Afterward,

we performed statistical tests, such as Kruskal-Wallis test [24] and the Dunn's test [25] in

conjunction with the Benjamini-Hochberg correction [26] and Vargha and Delaney

statistics [27] to determine statistical significance and measure effect size. At last, we

analyzed threats to validity of the evaluations and presented the measures we had taken to

reduce these threats.

14

4 Executable Model Based Testing Methodologies
To test SH-CPSs under uncertainty, a series of executable model-based testing

methodologies is presented in this thesis, including a modeling framework (MoSH) to

create executable test models, a testing framework (TM-Executor) to co-execute the test

model with the SH-CPS under test, and a fragility-oriented testing methodology (FOT) to

effectively detect faults. Figure 3 presents an overview of the series of methodologies. An

empirical study was also conducted to evaluate the performance of different reinforcement

learning algorithms that can be used by FOT to find faults. The following subsections give

a more detailed description of each work.

Figure 3 Overview of Executable Model-Based Testing Methodologies

4.1 Modeling Foundations

To realize the executable model-based testing, we first need to know how to specify the

expected behaviors of an SH-CPS as an executable model. As both SH-CPS and

uncertainty are complex concepts, we derived a conceptual model of SH-CPS and

uncertainties (Section 4.1.1) from the literature, to understand and capture key components

and their relations of SH-CPSs and uncertainties. Based on the conceptual model, a

modeling framework — MoSH (Section 4.1.2) was developed. It includes a set of UML

stereotypes, datatypes, and a modeling methodology for creating executable test models.

Furthermore, a testing framework — TM-Executor (Section 4.1.3) has been implemented

to execute the model and perform executable model-based testing.

15

4.1.1 Conceptual Model of SH-CPSs and Uncertainties (CMSU)
The conceptual model is composed of three parts: Components of Cyber-Physical Systems,

Self-Healing Behavior, and Uncertainty. Figure 4 presents the key concepts contained in the

first two parts. As shown in the figure, a Cyber Physical System can be seen as a collection

of heterogeneous, distributed Physical Units. Controllers are the cores of Physical Units.

They provide control logic and computation capabilities to Physical Units. Via Sensors and

Actuators, the Controllers monitor and control physical processes.

Figure 4 Concepts Relevant to Components of Cyber-Physical Systems and Self-Healing Behavior

For an SH-CPS, a Controller has two types of behaviors: 1) Functional Behaviors that

are designed to fulfill business requirements; and 2) Self-Healing Behaviors that use

Probes and Effectors to help Functional Behaviors to achieve their Goals even in the

presence of Faults. A Self-Healing Behavior consists of Self-Diagnosis and Self-Recovery.

Self-Diagnosis is for detecting, localizing, or identifying Faults based on the

Measurements from Probes. Self-Recovery uses Effectors to adapt system behaviors at

runtime to recover from detected Faults, directed by Recovery Policies.

Figure 5 presents the key concepts about Uncertainty. Uncertainty is defined as the lack

of knowledge of which value an Uncertain Feature will take at a given point in time (Time

Instance) during execution. Universe describes the set of all possible values that an

Uncertain Feature may take and each possible value is defined as a Datum. When we only

have qualitative knowledge, the set of possible values (Datums) has to be described

qualitatively. A qualitative term is defined as Category. A Membership Function can be

used to specify to what extent a Datum belongs to a Category. Depending on the available

knowledge about the Uncertainty, we can use Probability or Possibility Measure to specify

the likelihoods of Datums or Categories.

16

Figure 5 Concepts Relevant to Uncertainty

4.1.2 MoSH Modeling Framework
Based on the conceptual model, UML profile of Modeling and Analysis of Real-Time

Embedded Systems (MARTE) [28], and UML Testing Profile (UTP) [29], we

implemented a modeling framework — MoSH. It provides a set of stereotypes and

datatypes, organized in four UML profiles, to specify the expected behaviors and

uncertainties of SH-CPSs, as shown in Figure 6.

Figure 6 Overview of MoSH

SH-CPS Component profile provides six stereotypes, like «PhysicalUnit» and

«Controller», to annotate the role played by each system component. The component is

specified as a UML class, with its accessible state variables and testing interfaces captured

as class attributes and operations. The expected behaviors of each component are specified

as UML state machines. The SH-CPS Behavior profile offers «FunctionalBehavior» and

«SelfHealingBehavior» to distinguish the two types of behaviors. For a functional behavior,

a Change Event stereotyped with «Fault» can be used to specify how a fault is going to

affect the behavior, and a State stereotyped with «Error» can be used to define the

consequent, error state after the fault has occurred. For self-healing behaviors, three

stereotypes, «MonitoringState», «FaultIdentifiedState», and «AdaptatingState» were

defined to identify the key stages of an self-healing behavior, i.e., self-diagnosis and self-

17

recovery. For self-diagnosis, the logic of fault detection is specified via the transitions

between «MonitoringState»s and «FaultIdentifiedState»s. «MonitoringState» is defined to

annotate the states, where the self-healing behavior tries to detect faults based on

measurements from probes. «FaultIdentifiedState» denotes that the self-healing behavior

has detected, localized, or identified a fault. For self-recovery, the transitions between

«FaultIdentifiedState»s and «AdaptatingState»s capture its recovery policy.

«AdaptatingState» annotates the states where adaptations are to be performed by the self-

healing behavior to recover from the fault. The states defined in state machines should also

be precisely defined by state invariants, i.e., OCL constraints on class attributes. During

test execution, actual class attributes values can be obtained from the system under test and

be used to evaluate the invariants. If an invariant is violated, it means an unexpected

behavior is detected.

To precisely define an uncertainty, the SH-CPS Uncertainty profile provides seven

datatypes, U_Boolean, U_Integer, U_Real, U_UnlimitedNatural, U_Transition, U_String,

and U_Equation, to define the set of possible values (i.e., Universe) of an uncertainty.

Based on the MATLAB fuzzy library [30], the profile provides six kinds of Membership

Functions to define a qualitative term (i.e., Category). Probability Measure or Possibility

Measure datatypes are also defined in the profile to specify the measurement of uncertainty.

In the SH-CPS Testing profile, «TestItem» and «TestComponent» are provided to

identify the testing target, i.e., controllers of SH-CPSs, and simulated components like

sensors and actuators, respectively. «CreateStimulusAction» and «CheckPropertyAction»

are defined to capture testing interfaces used for controlling and monitoring systems.

«CheckPropertyAction» annotates operations that are used to query the values of state

variables, while «CreateStimulusAction» annotates operations that are used to control the

behaviors of a system.

With the MoSH modeling framework, we can specify the components, expected

behaviors, and uncertainties of an SH-CPS as a set of UML class diagrams and state

machines. It forms the test model of the SH-CPS. To make the test model executable, the

modeling notations are restricted to the executable subset of UML, defined by fUML [4]

and PSSM [5]. We also defined the execution semantics of MoSH stereotypes to enable a

stereotyped test model to be executed in a deterministic manner.

18

4.1.3 TM-Executor Framework
Based on existing standards of fUML [4], PSSM [5] and FMI [6], a testing framework —

TM-Executor was implemented. It takes charge of executing and testing a system against a

test model, simulating the effect of uncertainties, and orchestrating the execution of the test

model, the system, and simulators/emulators. Figure 7 shows the key components of TM-

Executor.

Figure 7 Overview of TM-Executor

The input of TM-Executor is an executable test model (TM), which is created with

MoSH modeling framework (Section 4.1.2). In TM-Executor, an Execution Engine

executes the TM, the SH-CPS under test and simulators of sensors and actuators together.

During execution, the Execution Engine periodically obtains the values of state variables

from the system under test, and a Constraint Checker uses the values to evaluate the

invariants defined in the model. If any invariant is evaluated to be false, it means the

system fails to behave consistently with the test model and a fault is detected.

To drive the execution, a Test Driver was implemented to generate operation invocations,

based on the triggers of outgoing transitions of the current active state. The invocations are

performed on both the system and the test model to trigger them switching their states.

Meanwhile, an Uncertainty Introducer generates a value for each specified uncertainty and

19

uses the value to modify sensor data measured by sensors or instructions sent to actuators

to mimic the effect of uncertainty.

The test model, SH-CPS, and simulators/emulators have to be executed coordinately to

fulfill the executable model-based testing. These three kinds of executable objects are

typically implemented with different modeling/programming paradigms. To orchestrate the

executions of the hybrid objects, an Orchestra was implemented based on the FMI standard

[6]. It takes charge of propagating values through the executable objects and synchronizing

their executions.

4.2 Fragility-Oriented Testing

With EM-Executor, we can dynamically test an SH-CPS against a test model by executing

them together, while a testing algorithm is needed to decide how to choose the operation

invocations and uncertainty values to drive the execution and detect faults effectively.

Particularly, two tasks have to be addressed to solve the testing problem. The first task is to

find the optimal sequence of operation invocations for a given test model to maximize the

chance of detecting faults. The second task is to find the optimal values of uncertainties

that can make the SH-CPS under test violate an invariant defined in the test model, when

the system is handling the selected optimal sequence of operation invocations.

To resolve the two tasks, a fragility-oriented testing approach was proposed. Here, the

fragility is defined as a distance indicating how likely an invariant is to be violated. By

taking the fragility as a reward, we devised two reinforcement learning based algorithms to

find the operation invocations and uncertainty values that can work together to reveal a

fault.

To resolve the first task, the first algorithm aims to find the optimal sequence of

transitions that can lead to the highest fragility, for a given set of state machines defined in

a test model. To achieve this objective, the algorithm applies Q-learning [8], a

reinforcement learning algorithm, to estimate the highest fragility that can be reached after

a given transition is triggered. By focusing on choosing the transitions with high estimated

fragility, the algorithm can gradually find the optimal sequence of transitions and generate

a sequence of operation invocations that can trigger the transitions and reach the highest

fragility.

20

To resolve the second task, the second algorithm uses an artificial neural network as the

policy of selecting uncertainty values. The neural network takes the state of the system

under test as input, and outputs a value for each uncertainty. The value is used as the mean

value of a truncated normal distribution, with its variance fixed at a constant positive value.

That is, the outputs of the neural network determine a probability distribution for each

uncertainty. By sampling from the distribution, uncertainty values can be selected to test an

SH-CPS. To effectively find faults, we need to optimize the policy so that the uncertainty

values generated from the policy can increase the fragility of the system under test and

make the system likely to fail. To do so, the algorithm keeps on selecting uncertainty

values following the policy. When it observes a sequence of uncertainty values reaches a

higher fragility, it takes the gradient descent algorithm [31] to update the neural network,

so as to increase the selection probability of this sequence of uncertainty values. The

algorithm keeps on this search process until reaching the maximum iterations.

4.3 Empirical Study

Several existing reinforcement learning algorithms [32] can be used in the fragility-

oriented testing approach. However, there is no sufficient evidence showing which

reinforcement learning algorithms are the best to be used for testing SH-CPS under

uncertainty. To this end, we conducted an empirical study to evaluate the performance of

14 combinations of reinforcement learning algorithms for testing six SH-CPSs under

dozens of identified uncertainties. As the task of selecting operation invocations is

different from the task of selecting uncertainty values, we selected two sets of algorithms

to perform them. Specifically, we applied two value function learning based algorithms,

Action-Reward-State-Action (SARSA) [8] and Q-learning [8] for selecting operation

invocations, and seven policy optimization based algorithms, Asynchronous Advantage

Actor-Critic (A3C) [33], Actor-Critic method with Experience Replay (ACER) [34],

Proximal Policy Optimization (PPO) [35], Trust Region Policy Optimization (TRPO) [36],

Actor-Critic method using Kronecker-factored Trust Region (ACKTR) [37], Deep

Deterministic Policy Gradient (DDPG) [38], and Uncertainty Policy Optimization (UPO)

[39], for learning the policy of selecting values for uncertainties.

In this empirical study, we first tuned the hyperparameters of these algorithms by

applying them to test three of the selected SH-CPSs with diverse complexities. Afterward,

21

we applied the 14 combinations of algorithms with the tuned hyperparameters to test all six

SH-CPSs. Based on the testing results, we evaluated the effectiveness, efficiency and

scalability of each combination, by testing coverage, number of detected faults, average

time spent to detect a fault, time and space cost used to perform the test.

5 Summary of Results
This section summarizes the key evaluation results of the modeling foundations, fragility-

oriented testing, and empirical study, corresponding to three papers submitted as a part of

this thesis.

5.1 Modeling Foundations (Paper A)

“Modeling Foundations for Executable Model-Based Testing of Self-Healing Cyber-

Physical Systems” T. Ma, S. Ali, and T. Yue. Journal of Software & Systems Modeling

(SOSYM). DOI: 10.1007/s10270-018-00703-y

In this paper, a modeling framework of SH-CPS (MoSH) was created based on a

conceptual model of SH-CPS and uncertainty (CMSU). Besides, it also provides a testing

framework (TM-Executor) to test an SH-CPS against a test model, specified with MoSH,

by co-executing them together.

First, the conceptual model of SH-CPS and uncertainty was evaluated to check if the

model can correctly cover the concepts and their relations identified from nine SH-CPSs,

obtained from the literature. Based on the specification of the nine systems, we first

identified their main components. For each component, we captured its behaviors and the

environmental uncertainties that may affect these behaviors. For self-healing behaviors, we

further identified their strategies to detect and recover from faults. The identified

components, behaviors and uncertainties were manually mapped to the concepts and

relationships in the conceptual model. Figure 8 presents the process, in which we verified

and improved the conceptual model by this mapping. Initially, we derived the conceptual

model (CMSU V.1) from the literature (Activity A1 in Figure 22). To evaluate its quality, we

identified SH-CPS related concepts as well as their relationships (Cons. & Rels. from CSs.

V.1), from the nine SH-CPSs’ specifications (Activity A2.1). Cons. & Rels. from CSs. V.1

contains necessary entities required to specify self-healing behaviors and uncertainties of

22

an SH-CPS. For each identified concept or relationship, we tried to manually find a

counterpart in CMSU V.1 (Activity A2.2). If the counterpart is missing, we further

investigated if the extracted concept or relationship is correctly identified. In case that it

was correct, CMSU V.1 was revised to cover the missing concept. Otherwise, the

incorrectly identified concept or relationship was fixed. After A2.2, we created a new

version of the extracted concepts and relationships, i.e., Cons. & Rels. from CSs. V.2. At

last, the refined conceptual model (CMSU V.2) was further refined by A3 via a mapping

from Cons. & Rels. from CSs. V.2 to CMSU V.2. The final obtained CMSU V.3 managed to

correctly cover all identified concepts and relations.

Figure 8 Process to Develop CMSU

Afterward, we assessed if MoSH provides a cost-effective way of creating executable

test models, by applying MoSH to create test models for three SH-CPSs. To measure the

extra modeling effort required for applying MoSH, we calculated the total number of

model elements and the percentage of stereotyped model elements. For the applicability,

we checked the numbers of functional behaviors, self-healing behaviors, self-diagnosis

behaviors, self-recovery behaviors, and uncertainties that can be specified with MoSH. On

average, 206 model elements were used to build an executable test model for an SH-CPS.

16 percent of the model elements were stereotyped with MoSH. This means that it needed

an additional 16% modeling effort to apply MoSH to create the executable test models, as

compared with applying standard UML notations, for the selected SH-CPSs. In total, 20

functional behaviors, 11 self-healing behaviors, 11 self-diagnosis behaviors, 17 self-

recovery behaviors and 17 uncertainties were specified for the three systems. This

23

demonstrates the applicability of MoSH to specify executable test models for three diverse

SH-CPSs. This effort gives us evidence that MoSH is capable of modeling different SH-

CPSs to support uncertainty-aware executable model-based testing.

Furthermore, the performance of TM-Executor was evaluated to determine if it is

feasible to apply the framework to test a complex SH-CPS. For this evaluation, we applied

TM-Executor to test an SH-CPS against its test model, with operation invocations and

uncertainty values randomly selected. We assessed how much time is required by TM-

Executor to execute a test model, generate test data, evaluate constraints, and introduce

uncertainties. On average, it took 5.6 seconds for traversing a transition, 39 milliseconds

for test data generation, and less than one millisecond for exiting or entering a state,

executing an operation, evaluating a constraint or generating an uncertainty value. The

result indicates the time taken by TM-Executor to perform testing activities was relatively

small, and thus it is practicable to apply TM-Executor to perform the executable model-

based testing.

5.2 Fragility-Oriented Testing (Paper B)

“Testing Self-Healing Cyber-Physical Systems under Uncertainty: A Fragility-Oriented

Approach” T. Ma, S. Ali, T. Yue, and M. Elaasar. Software Quality Journal (SQJ). DOI:

10.1007/s11219-018-9437-3

In this paper, a fragility-oriented testing approach was devised to effectively detect faults

in SH-CPSs under uncertainty. The approach is comprised of two reinforcement learning

based algorithms: Fragility-Oriented Operation Invocation (FOOI)2 for invoking operations

and Uncertainty Policy Optimization (UPO) for introducing uncertainties. The two

algorithms utilize the fragility, obtained from test executions, to learn the optimal policies

of invoking operations and introducing uncertainties, so as to detect faults in the most

effective manner.

To evaluate the effectiveness of the two proposed algorithms, we chose a coverage-

oriented testing algorithm (COT) as the benchmark for operation invocations, and a

2 The algorithm is named as Fragility-Oriented Testing in Paper B. To distinguish the overall fragility-
oriented testing approach and the algorithm for selecting operation invocations, the algorithm is named as
Fragility-Oriented Operation Invocation (FOOI) in this section.

24

random approach (R) for introducing uncertainties. In total, we obtained four approaches:

FOOI+UPO, FOOI+R, COT+UPO, COT+R. They were applied to test three SH-CPSs to

check which one detects more faults. The number of detected faults is not only determined

by the fault detection ability of the algorithms, but also affected by the amount of testing

time and the variation range of each uncertainty. To reduce the effect of testing time and

scale of uncertainty variation, we chose three settings for each of them. The three testing

times are 72, 144, and 216 hours. This allows each testing approach to approximately

execute an SH-CPS with its test model 500, 1000, and 1500 times to find faults.

Meanwhile, we chose three scales of uncertainty variation: 80%, 100%, and 120%. 100%

represents the standard variation ranges, obtained from the production specification of

sensors and actuators. 80% (120%) means reducing (increasing) the ranges by 20 percent.

For each case study and each test setting, we collected the number of faults detected by

each testing approach. It turns out FOOI+UPO detected more faults than the other three

approaches for all cases. We further conducted Mann-Whitney U test with a significant

level of 0.05 to determine the significance of the differences. Results of the statistic tests

show that FOOI+UPO significantly outperformed the others in most cases. Only when the

testing time is 72 hours and the uncertainty scale is 80%, there is no significant difference

among the four testing approaches. As the scale of uncertainty is low, the four testing

approaches only detected few faults within 72 hours.

5.3 Empirical Study (Paper C)

“Testing Self-Healing Cyber-Physical Systems under Uncertainty with Reinforcement

Learning: An Empirical Study” T. Ma, S. Ali, and T. Yue. Journal of Empirical Software

Engineering (EMSE). DOI: 10.1007/s10664-021-09941-z.

This paper presents an empirical study, in which the effectiveness, efficiency, and

scalability of 14 combinations of reinforcement learning algorithms were evaluated for

testing SH-CPSs under uncertainty. The 14 combinations are composed of two value

function learning based methods (Action-Reward-State-Action (SARSA) [8] and Q-

learning [8]) for operation invocations and seven policy optimization based algorithms

(Asynchronous Advantage Actor-Critic (A3C) [33], Actor-Critic method with Experience

Replay (ACER) [34], Proximal Policy Optimization (PPO) [35], Trust Region Policy

25

Optimization (TRPO) [36], Actor-Critic method using Kronecker-factored Trust Region

(ACKTR) [37], Deep Deterministic Policy Gradient (DDPG) [38], and Uncertainty Policy

Optimization (UPO) [39]) for introducing uncertainties. These algorithms were applied to

test six SH-CPSs. Three of them are real-world case studies, and the others are from the

literature.

For effectiveness, all 14 combinations of algorithms managed to cover all states and

transitions of most case studies, except the most complex one. The p-values of the Kruskal-

Wallis test in terms of the state and transition coverages for all the testing tasks are greater

than 0.1, therefore, indicating no significant difference among the 14 approaches regarding

the coverages. In total, 41 faults were detected in the six SH-CPSs. These 41 faults

correspond to 41 states in which the invariants of the states were violated when the six

systems were being tested with simulated sensors and actuators. Q-learning + UPO

managed to detect the most faults. On average, it detected 3.4 faults for each case study.

SARSA + UPO performed slightly worse, with 3.3 faults detected averagely. In contrast,

the other 12 approaches only detected 1.7 faults, on average. In over 239 (out of 300)

testing jobs, Q-learning + UPO significantly outperformed the other 12 testing approaches,

except SARSA + UPO. Q-learning + UPO and SARSA + UPO performed equally in 279

jobs; SARSA + UPO beat Q-learning + UPO in 2 jobs and Q-learning + UPO was superior

in the other 19 jobs.

Regarding efficiency, Q-learning + UPO took the least amount of time to detect a fault,

since all testing approaches took a similar amount of time and Q-learning + UPO detected

the most faults. Averagely, Q-learning + UPO took 64.5 hours to detect a fault, which is

less than half of the average time taken by Q-learning + A3C (the least efficient approach)

for fault detection. On average, Q-learning + UPO took 52% less time than the other

approaches to detect a fault.

Concerning scalability, we assessed the tendencies of time and space costs of the 14

testing approaches, as the number of states and transitions of the system under test

increases. It turns the more states and transitions an SH-CPS has, the more time and space

a testing approach took to learn the optimal policy of invoking operations. In contrast, the

time and space costs of learning the policy of selecting uncertainty values remain in the

same order of magnitude for testing SH-CPSs with diverse complexities. This is due to the

difference of the two types of reinforcement learning algorithms used to learn these two

26

policies. Value function learning based algorithms (SARSA and Q-learning) were used for

operation invocations and policy optimization based algorithms were used for introducing

uncertainties. For value function learning based algorithms, they have to save the highest

fragility that can be reached after triggering each transition. As the number of transitions

increases, such methods will take more space and time to store and process the fragility

values. Alternatively, policy optimization based algorithms use artificial neural networks to

approximate their policies and value functions, the computational costs of these algorithms

are determined by the architecture of the neural networks and the optimizer to improve the

neural networks.

27

6 Future Directions
This thesis provides a complete executable model-based testing solution for testing SH-

CPS under uncertainty, including a modeling framework (MoSH) to create executable test

models, a testing framework (TM-Executor) to test an SH-CPS against a test model, and a

fragility-oriented testing approach to effectively detect faults. This section discusses

possible future directions of these works to further refine the executable model-based

testing approach.

For the modeling framework, it has been designed to create executable test models for a

specific type of system, i.e., SH-CPS. A more general modeling framework could be

derived from MoSH to support modeling a broader range of systems. In addition, more

case studies and a larger scale of applications are needed to further validate and improve

the applicability of MoSH.

Regarding the testing framework, it has been implemented based on the standard of FMI

[6] to co-execute hybrid executable objects, like the test model, software of SH-CPSs, and

simulators of sensors and actuators. As SH-CPSs are complex, it is computationally

expensive and time-consuming to execute them. A distributed testing framework could be

built in the future to allocate more computation resources to perform the co-execution and

reduce the time spent on execution.

The proposed fragility-oriented testing approach makes it possible to apply various

reinforcement learning algorithms to perform testing. As reinforcement learning is still an

actively evolving field and more advanced reinforcement learning algorithms are emerging,

the newly devised algorithms can be tested in this approach to possibly further enhance the

fault detection ability.

28

7 Conclusion
Self-healing is becoming a critical feature of Cyber-Physical Systems (CPSs). It enables

CPSs to detect faults and apply proper adaptations to recover from the faults at runtime.

We refer CPSs with the self-healing features as Self-healing CPSs (SH-CPSs). Besides

recovery, SH-CPSs have to deal with various uncertainties, like measurement errors from

sensors and actuation deviations from actuators. To assess the dependability of SH-CPSs, it

is necessary to test if an SH-CPS can still behave as expected under these uncertainties.

This thesis provides an executable model-based testing approach to solve this testing

problem. The whole approach is composed of (1) CMSU, a conceptual model of SH-CPS

and uncertainty, (2) MoSH, a modeling framework of SH-CPS to create executable test

models, (3) TM-Executor, which enables co-execution of the test model and SH-CPS, (4)

Fragility-Oriented Testing, which takes fragility as the rewards of reinforcement learning

algorithms to effectively detect faults. At last, an empirical study was conducted to find the

optimal one among 14 combinations of reinforcement learning algorithms for testing SH-

CPSs under uncertainty.

By evaluating these works with diverse SH-CPSs, we demonstrated that (1) MoSH

provides sufficient modeling notations and methodology to specify executable test models

for SH-CPSs; (2) the overhead of applying TM-Executor to perform the executable model-

based testing is small, and it is practical to apply TM-Executor to test SH-CPSs; (3) the

fault detection ability of the fragility-oriented testing approach is significantly higher than

random testing and coverage-oriented testing. Reinforcement learning algorithms have

shown competence in detecting faults in SH-CPSs under uncertainty. Based on the results

of the empirical study, we found that the combination of Q-learning and Uncertainty Policy

Optimization algorithms managed to detect the most faults in six SH-CPSs. On average,

they managed to discover two times more faults than the other 13 combinations of

reinforcement learning algorithms.

29

8 References for Summary
[1] E. A. Lee, "Cyber physical systems: Design challenges," in 11th IEEE

International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), 2008 2008: IEEE, pp. 363-369.

[2] T. Bures et al., "Software Engineering for Smart Cyber-Physical Systems--Towards
a Research Agenda: Report on the First International Workshop on Software
Engineering for Smart CPS," ACM SIGSOFT Software Engineering Notes, vol. 40,
no. 6, pp. 28-32, 2015.

[3] T. Ma, S. Ali, and T. Yue, "Modeling foundations for executable model-based
testing of self-healing cyber-physical systems," Software and Systems Modeling,
2018. [Online]. Available: DOI: 10.1007/s10270-018-00703-y.

[4] Semantics Of A Foundational Subset For Executable UML Models V1.2.1, OMG,
2016.

[5] Precise Semantics Of UML State Machines (PSSM), OMG, 2017.
[6] T. Blochwitz et al., "Functional mockup interface 2.0: The standard for tool

independent exchange of simulation models," in Proceedings of the 9th
International MODELICA Conference, 2012, no. 076, pp. 173-184.

[7] T. Ma, S. Ali, T. Yue, and M. Elaasar, "Testing Self-Healing Cyber-Physical
Systems under Uncertainty: A Fragility-Oriented Approach," Software Quality
Journal, 2018.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction (no. 1). MIT
press Cambridge, 1998.

[9] A. L. Ramos, J. V. Ferreira, and J. Barceló, "Model-based systems engineering: An
emerging approach for modern systems," IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 42, no. 1, pp. 101-111, 2012.

[10] X. Zhou, X. Gou, T. Huang, and S. Yang, "Review on Testing of Cyber Physical
Systems: Methods and Testbeds," IEEE Access, vol. 6, pp. 52179-52194, 2018.

[11] X. Zheng and C. Julien, "Verification and validation in cyber physical systems:
research challenges and a way forward," in Proceedings of the First International
Workshop on Software Engineering for Smart Cyber-Physical Systems, 2015: IEEE
Press, 2015, pp. 15-18.

[12] S. Ali, H. Lu, S. Wang, T. Yue, and M. Zhang, "Uncertainty-Wise Testing of
Cyber-Physical Systems," in Advances in Computers, vol. 107: Elsevier, 2017, pp.
23-94.

[13] R. De Lemos et al., "Software engineering for self-adaptive systems: A second
research roadmap," in Software Engineering for Self-Adaptive Systems II: Springer,
2013, pp. 1-32.

[14] A. Computing, "An architectural blueprint for autonomic computing," IBM
Publication, 2003.

[15] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding
Uncertainty in Cyber-Physical Systems: A Conceptual Model," in Modelling
Foundations and Applications: 12th European Conference, ECMFA 2015: Springer
2015.

[16] A. J. Ramirez, A. C. Jensen, and B. H. Cheng, "A taxonomy of uncertainty for
dynamically adaptive systems," in ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS) 2012: IEEE, 2012, pp. 99-108.

30

[17] M. Utting and B. Legeard, Practical model-based testing: a tools approach.
Morgan Kaufmann, 2010.

[18] K. Gama and D. Donsez, "Deployment and activation of faulty components at
runtime for testing self-recovery mechanisms," ACM SIGAPP Applied Computing
Review, vol. 14, no. 3, pp. 44-54, 2014.

[19] J. Park, S. Lee, T. Yoon, and J. M. Kim, "An autonomic control system for high-
reliable CPS," Cluster Computing, vol. 18, no. 2, pp. 587-598, 2015.

[20] D. Drones, "ArduCopter," in http://ardupilot.org/copter/, ed, 2010.
[21] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, "Generating test data from state-

based specifications," Software testing, verification and reliability, vol. 13, no. 1,
pp. 25-53, 2003.

[22] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and B. Meyer, "On the number and
nature of faults found by random testing," Software Testing, Verification and
Reliability, vol. 21, no. 1, pp. 3-28, 2011.

[23] Q. Xie, "Developing cost-effective model-based techniques for GUI testing," in
Proceedings of the 28th international conference on Software engineering, 2006,
pp. 997-1000.

[24] W. H. Kruskal and W. A. Wallis, "Use of ranks in one-criterion variance analysis,"
Journal of the American statistical Association, vol. 47, no. 260, pp. 583-621,
1952.

[25] O. J. Dunn, "Multiple comparisons using rank sums," Technometrics, vol. 6, no. 3,
pp. 241-252, 1964.

[26] Y. Benjamini and Y. Hochberg, "Controlling the false discovery rate: a practical
and powerful approach to multiple testing," Journal of the royal statistical society.
Series B (Methodological), pp. 289-300, 1995.

[27] A. Vargha and H. D. Delaney, "A critique and improvement of the CL common
language effect size statistics of McGraw and Wong," Journal of Educational and
Behavioral Statistics, vol. 25, no. 2, pp. 101-132, 2000.

[28] Profile for modeling and analysis of real-time and embedded systems (MARTE),
OMG, 2011.

[29] UML Testing Profile, OMG, 2017. [Online]. Available:
https://www.omg.org/spec/UTP/About-UTP/

[30] S. Sivanandam, S. Sumathi, and S. Deepa, Introduction to fuzzy logic using
MATLAB. Springer, 2007.

[31] R. Pascanu and Y. Bengio, "Revisiting natural gradient for deep networks," arXiv
preprint arXiv:1301.3584, 2013.

[32] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, "A brief
survey of deep reinforcement learning," arXiv preprint arXiv:1708.05866, 2017.

[33] V. Mnih et al., "Asynchronous methods for deep reinforcement learning," in
International conference on machine learning, 2016, 2016, pp. 1928-1937.

[34] Z. Wang et al., "Sample efficient actor-critic with experience replay," arXiv
preprint arXiv:1611.01224, 2016.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy
optimization algorithms," arXiv preprint arXiv:1707.06347, 2017.

[36] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region policy
optimization," in Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), 2015: PMLR, 2015, pp. 1889-1897.

31

[37] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, "Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation,"
in Advances in neural information processing systems, 2017, 2017, pp. 5279-5288.

[38] T. P. Lillicrap et al., "Continuous control with deep reinforcement learning," arXiv
preprint arXiv:1509.02971, 2015.

[39] T. Ma, S. Ali, T. Yue, and M. Elaasar, "Testing self-healing cyber-physical systems
under uncertainty: a fragility-oriented approach," Software Quality Journal, vol. 27,
no. 2, pp. 615-649, 2019.

32

Part II

Papers

33

Paper A

Modeling Foundations for Executable
Model-Based Testing of Self-Healing

Cyber-Physical Systems

Tao Ma, Shaukat Ali, Tao Yue

Journal of Software & Systems Modeling (SOSYM). DOI: 10.1007/s10270-018-
00703-y

34

Abstract
Self-healing Cyber-Physical Systems (SH-CPSs) detect and recover from faults by

themselves at runtime. Testing such systems is challenging due to the complex

implementation of self-healing behaviors and their interaction with the physical

environment, both of which are uncertain. To this end, we propose an executable model-

based approach to test self-healing behaviors under environmental uncertainties. The

approach consists of a Modeling Framework of SH-CPSs (MoSH) and an accompanying

Test Model Executor (TM-Executor). MoSH provides a set of modeling constructs and a

methodology to specify executable test models, which capture expected system behaviors

and environmental uncertainties. TM-Executor executes the test models together with the

systems under test, to dynamically test their self-healing behaviors under uncertainties. We

demonstrated the successful application of MoSH to specify 11 self-healing behaviors and

17 uncertainties for three SH-CPSs. The time spent by TM-Executor to perform testing

activities was in the order of milliseconds, though the time spent was strongly correlated

with the complexity of test models.

Keywords: Cyber-Physical Systems, Self-healing, Uncertainty, Model Execution, Model-

Based Testing

1 Introduction
Self-healing3 is becoming an important feature of Cyber-Physical Systems (CPSs) [1]. A

Self-Healing Cyber-Physical System (SH-CPS) can perceive that it is not operating

correctly and, without human intervention, makes necessary changes to its architecture or

behaviors to restore itself to a normal state [2]. Despite the benefits offered by self-healing,

there is still a need for novel testing methods to gain confidence in decisions made by such

behaviors [3]. Since such systems often operate in an unpredictable environment [4], they

need to be tested under environmental uncertainties. Examples of such uncertainties

3 The term of self-healing originates from the IBM’s vision of autonomic computing [3] and self-healing is
one of the so-called self-* properties. Self-healing is tightly related to “fault-tolerant”, but not all fault-
tolerant mechanisms can be seen as self-healing behaviors.

35

include errors in data measured by sensors, actuation deviations from actuators, and

latency in networks.

To effectively detect faults in an SH-CPS under uncertainties, we propose to test the

system against an executable test model directly. By executing the system and the test

model together, testing stimuli are dynamically selected from the model at runtime,

directed by a test strategy and followed by executing the stimuli on the system and the

model. Meanwhile, uncertainties specified in the test model are introduced via

simulators/emulators of the environment. As the result of executing the stimuli, the test

model and the system switch to their subsequent states. These states are compared to

determine if the system behaves as expected. Such comparison also reveals how likely the

system’s behaviors are going to deviate from the modeled behaviors. The likelihood can be

used as a heuristic to find the optimal sequence of stimuli that can help to detect faults

efficiently.

Realizing such an executable model-based testing approach requires three enablers. First,

a modeling framework is required to facilitate the specification of executable test models.

Though there exist modeling solutions [5-9], it still lacks modeling notations and

methodologies for specifying self-healing behaviors and uncertainties. Second, a test

execution environment is needed to execute the test models, generate testing stimuli,

introduce uncertainties, and test systems against the models. Third, it requires a testing

strategy that can take advantage of the runtime information obtained from the execution to

find the optimal sequence of stimuli and effectively detect faults.

As the first step to realize the executable model-based approach, we propose a modeling

framework and an accompanying execution environment in this paper. We first developed

a conceptual model to capture necessary SH-CPS and uncertainty concepts, based on

which, we developed an uncertainty-aware Modeling framework of SH-CPSs (MoSH) to

assist the specification of executable test models. The modeling notations of MoSH are

restricted to the executable subset of UML, i.e., the Foundational UML Subset (fUML)

standard [10]. The fUML and Precise Semantics Of UML State Machines (PSSM)

standards [11] define the execution semantics for the subset of UML and thus enable the

test model to be directly executed without model transformation to executable test cases.

Based on the two standards, we developed a Test Model Executor (TM-Executor) as the

36

execution environment. Testing strategies are not covered in this paper, whereas they can

be found in our recently published paper [12].

We evaluated MoSH and TM-Executor from three aspects: 1) quality of the conceptual

model, based on which MoSH was implemented, 2) applicability of MoSH to build

executable test models, and 3) performance of TM-Executor regarding the time required to

perform test execution. The evaluation demonstrated that the conceptual model managed to

cover 832 instances of concepts identified in the nine SH-CPSs. We successfully applied

MoSH to specify 11 self-healing behaviors and 17 uncertainties, identified in three out of

the nine systems. On average, 16% of model elements were stereotyped with the MoSH

profiles. Regarding performance, the time spent by TM-Executor to perform testing

activities was in the order of milliseconds. The complexity of guards significantly affected

the time cost of TM-Executor for generating test data. For the most complex guard, TM-

Executor took a maximum of 0.27 seconds to generate test data. However, the time spent

by TM-Executor to evaluate an invariant or generate an uncertainty value was not

significantly affected by the complexity of invariants and different ways of generating

uncertainty values.

The rest of this paper is organized as follows: Section 2.2 introduces the background,

followed by a running example given in Section 3. Section 4 presents the conceptual model

of SH-CPSs and uncertainties. MoSH and its associated modeling methodology are

explained in Section 4.1.2. Section 0 presents the main components of TM-Executor.

Section 7 presents the evaluation. Related work is discussed in Section 8, and we

summarize the paper and future work in Section 9.

2 Background
As the proposed executable model-based testing is an extension of model-based testing, we

compare the two approaches in Section 2.1. In our work, we applied probability, possibility,

and fuzzy set theories to measure uncertainties. As the fuzzy set theory is not commonly

known, we introduce it in Section 2.2.

2.1 Model-Based Testing versus Executable Model-Based Testing

Figure 9 highlights the differences between the two testing approaches. In model-based

testing, a system is tested for checking its conformance to a test model capturing the

37

system’s expected behaviors. Guided by a testing strategy, test cases are generated to cover

a finite number of paths that traverse through the model. Afterward, the test cases are

executed on the system for detecting faults. In contrast, executable model-based testing

directly tests a system against an executable test model, by executing the model and the

system together, sending them the same stimuli and comparing their consequent states.

Based on the executable test model, a testing strategy is used to select the stimuli at

runtime to drive the execution. Information about the system’s actual behaviors can be

obtained from the execution and aids the testing strategy to find the optimal sequence of

stimuli for fault detection.

Figure 9 Model-Based Testing versus Executable Model-Based Testing

2.2 Fuzzy Set Theory

Uncertainty may originate from various sources in SH-CPSs, and not all sources of

uncertainty have the same characteristics. From the perspective of knowledge and the

range of uncertainty, uncertainty can be classified into reducible and irreducible

uncertainty. From another perspective, uncertainty can be classified as aleatory or

epistemic [4]. Aleatory uncertainty is caused by randomness and is usually measured by

the probability theory. However, epistemic uncertainty is due to a lack of knowledge and

fuzzy sets can be applied to quantify incomplete or imprecise knowledge. The members of

the fuzzy set are defined by a membership function, which assigns each possible member a

value between 0 and 1, representing the membership degree of the member to the fuzzy set.

For instance, the noise value of a GPS sensor can be expressed as Low, Medium, and High.

As the boundaries of the three types are not precisely defined, a noise value may partially

belong to multiple types. With membership functions, one can mathematically specify the

partial belongings. Thus, the fuzzy set theory provides a way to quantify uncertainty, in

case testers’ knowledge about the uncertainty is unclear.

38

3 Running Example
The running example is an unmanned aerial vehicle control system—Remotely operated

Aerial Model Autopilot (RAMA)4 [13]. RAMA consists of two main components (Figure

10): a Ground Control Station (GCS) and a Drone. A human pilot uses the GCS to

maneuver the Drone. Based on the position and terrain information provided by a

PositionLocationUnit and a TerrainDatabase, a NavigationUnit calculates a desired flight

orientation and controls Servos accordingly to perform a movement.

RAMA aims to prevent the Drone from crashing even if one or more components fail to

work. To achieve this objective, Holub et al. [13] realized a set of self-healing behaviors to

handle faults during the flight. For instance, if the connection between the Drone and GCS

is broken, the NavigationUnit detects this fault occurrence via the absence of heartbeats

and automatically directs the Drone to fly back to its launch position. Another example is

the self-healing behavior for a Servo fault; when one of the four Servos stops working, the

fault is identified by comparing expected and actual orientations of the Drone and then the

NavigationUnit switches to control three dimensions (pitch, roll, and throttle) with the

fourth dimension (yaw) uncontrolled, to maintain the flight.

Figure 10 UML Component Diagram of RAMA (Partial)

Besides component faults, environmental uncertainties are another factor that impacts

the operation of RAMA, such as measurement uncertainties from sensors and uncertain

4 The reason to select RAMA as the running example is that RAMA is an example of SH-CPS and contains a
set of self-healing behaviors that are affected by uncertainties.

39

actuation deviations from actuators. To keep the flight stable under such uncertainties, the

NavigationUnit uses an adaptive control strategy to constantly adjusts control signals for

the Servos based on the Drone’s position and orientation estimated by the

PositionLocationUnit.

4 Conceptual Model of SH-CPSs and Uncertainties

(CMSU)
To realize executable model-based testing, we need a modeling solution to create

executable test models. Since CPS, self-healing, and uncertainty are complex concepts, it is

important to identify and understand their main components to systematically derive the

modeling solution [14-17]. To fulfill this task, we derived a Conceptual Model of SH-

CPSs and Uncertainties (CMSU) from the literature. This section presents the three parts of

CMSU: Components of Cyber-Physical Systems (Section 4.1), Self-Healing Behavior

(Section 4.2), and Uncertainty (Section 4.3). Definition of each concept is provided in a

corresponding technical report [18].

4.1 Components of Cyber-Physical Systems

A CyberPhysicalSystem can be seen as a collection of heterogeneous, distributed

PhysicalUnits that work together to control or monitor PhysicalProcesses (Figure 11). For

example, the GCS

cooperates with

the Drone to

control the flight

process (Section

3). Controllers are the cores of PhysicalUnits (e.g., the control units in the running

example). They provide control logic and computation capabilities to PhysicalUnits and

communicate with each other via Networks. Relying on Sensors and Actuators, they

monitor and control the States of PhysicalProcesses.

4.2 Self-Healing Behavior

For an SH-CPS, a Controller has two types of behaviors: 1) FunctionalBehaviors that are

designed to fulfill business requirements (specified as Goals of the behaviors); and 2) Self-

Figure 11 Concepts Relevant to Cyber-Physical System

40

HealingBehaviors that use Probes and Effectors to help FunctionalBehaviors to achieve

their Goals even in the presence of Faults (Figure 12). Probes and Effectors are two types

of interfaces that are used to inquire a controller’s States and adjust its Behaviors

respectively. In the running example, RAMA is equipped with probes for checking

variations of speed and orientation, and effectors that are used to switch control modes. A

Self-HealingBehavior consists of Self-Diagnosis and Self-Recovery. Self-Diagnosis is for

detecting, localizing, or identifying Faults based on the Measurements from Probes. Self-

Recovery is for recovering from Faults, directed by RecoveryPolicies. The subsections

below elaborate the two phases in details.

Figure 12 Concepts Relevant to Self-Healing Behavior

4.2.1 Self-Diagnosis
Figure 13 presents the key concepts related to Self-Diagnosis, aiming to detect Faults from

Measurements. Its fault detection ability can be classified into three levels: FaultDetection,

FaultLocalization, and FaultIdentification [19]. The diagnosis at the FaultDetection level

can only detect the occurrence of faults; the FaultLocalization level diagnosis can

determine which kind of faults has happened, and the diagnosis at the FaultIdentification

level can further determine the severity of a fault. For instance, in the running example, the

diagnosis of the servo fault can identify the magnitude of lift loss of a servo, and thus it

belongs to the FaultIdentification level.

A Self-Diagnosis behavior can either be realized based on prior domain knowledge

(DomainKnowledgeBasedDiagnosis) or constructed by analyzing historical data

(ClassifierBased Diagnosis). For the former, there are two viable options. One is

Figure 13 Concepts Relevant to Self-Diagnosis

41

QuantitativeDiagnosis, in which domain knowledge is expressed as a quantitative model

specifying mathematical relations between the input and output of a system [20]. Faults are

detected by checking inconsistencies (residues) between the system’s actual and expected

output calculated from the model, via ResidualGenerator and ResidualEvaluator. The

other option is QualitativeDiagnosis, which expresses domain knowledge in a

QualitativeModel, i.e., qualitative relations between different system elements [20], such

as cause-effect relations or fault trees. During execution, SearchStrategies are used to

explore the QualitativeModel to detect faults.

For ClassifierBasedDiagnosis, it extracts Features from historical execution data

(Measurements) and mines relations between Features and different kinds of faulty states.

Based on extracted relations, FaultClassifiers are constructed and used to classify system

states as normal or faulty.

Probes provide Measurements required by Self-Diagnosis to detect faults. According to

the type of Measurements, Probes are classified into PerformanceProbes, EventProbes,

and PhysicalProcessProbes. PerformanceProbes are used to monitor a system’s

performance such as response time and throughput. EventProbes monitor Controllers’

behaviors described as a trace of events such as function calls and exceptions.

PhysicalProcessProbes supervise the State of PhysicalProcesses. In the running example,

all three kinds of Probes are utilized, including an interface for monitoring the latency of

radio control channel (PerformanceProbe), an interface for discovering unhealthy sensors

(EventProbe), and an interface for obtaining the vehicle’s position (PhysicalProcessProbe).

4.2.2 Self-Recovery
After fault diagnosis, a Self-Recovery behavior decides which AdaptationAction(s) to take

to handle the detected fault, directed by RecoveryPolicies, as shown in Figure 14. Effectors

provide Self-Recovery behaviors the ability to modify the system. According to the type of

modification, Effectors can be classified into three types: ParameterEffectors for adjusting

system components’ parameters [21], ArchitectureEffectors for adding, removing, or

replacing system components [22], and ControlEffectors for changing

Figure 14 Concepts Relevant to Self-Recovery

42

FunctionalBehavior(s) in response to faulty conditions. Since the Effects of

AdaptationActions are different and they may have different Overheads and Delays, a Self-

Recovery behavior has to find an optimal action to recover a system from a detected fault.

Because the effects, delays, and overheads are normally not observable from the outside of

systems, they cannot be directly used for testing and therefore are not mandatory to be

captured in test models.

In the literature, there are three types of Recovery Policy [23]: ActionPolicy, GoalPolicy,

and UtilityFunctionPolicy. ActionPolicy can be seen as a pair in the form of <condition,

action>. If the condition is satisfied, a corresponding action is executed [24], which is

applied in the running example. GoalPolicy specifies desired states, which requires a

sequence of modifications to be taken to make a system transit from a faulty state to a

desired one [25]. UtilityFunctionPolicy defines an objective function to guide a system to

desired states that have high utility values [26].

4.3 Uncertainty

During execution, Uncertainties may arise from interactions between SH-CPSs and their

environments.

Uncertainty is

defined as the

lack of

knowledge of

which value an

UncertainFeatu

re will take at a

given point in time (TimeInstance) during testing [27] (Figure 15). For instance, a sensor’s

measurement is affected by noise, and we cannot determine the value of noise for a given

point in time. Thus, the value of the noise is uncertain. Universe describes the set of all

possible values that an UncertainFeature may take and each possible value is defined as a

Datum. Taking the measurement noise as an example (Table 2), the Universe of the

uncertain feature is an interval from -50 to 50, and every value within this interval is a

Datum.

 Figure 15 Concepts Relevant to Uncertainty

43

When we only have a

qualitative knowledge,

the set of possible

values (Datums) has to

be described

qualitatively. As shown

in Table 2, the

measurement noise of

the GPS is described as

low, medium and high, which are conceptualized as Categories in the conceptual model. A

Category has one MembershipFunction, which determines to what extent a Datum belongs

to the Category. More specifically, a membership function of a Category takes one Datum

as input and outputs a real value between 0 and 1, representing the membership degree of

the Datum to the Category [28]. A Datum could partially belong to multiple Categories,

and in this case, each Category is a fuzzy set. IndicatorFunction is a specialized

membership function, which only outputs 1 or 0, meaning that a Datum either belongs or

does not belong to the Category associated with the IndicatorFunction. In this case, the

corresponding Category is a crisp set. Table 2 shows an example of both cases. When

using the IndicatorFunction, the boundaries of the three Categories (i.e., low, medium and

high) are crisp, i.e., a noise value only belongs to one of the three Categories. In contrast,

the boundaries defined by the MembershipFunction are fuzzy. In this case, for a noise

value of 10, its membership degree is 0.55 to Low, 0.38 to Medium, and 0.12 to High.

Uncertainty may be measured with

different Measures. From complete

certainty to total ignorance, there exist

five intermediate levels [27]. Table 3

shows these five levels along with

their relations to Measure, Datum, and

Category. For Level 1 Uncertainty, at a given point in time, the value of a feature is one

value with a margin of error, i.e., one is certain that the value falls within this margin. For

5 𝑀!"#(10) = 1 (1 +	𝑒$.&∙(|&$|*&$))⁄ = 0.5

Table 2 An Example of Uncertainty

Concepts Example
UncertainFeature Measurement noise of the GPS
Uncertainty Actual value of the noise at a given time instance
Universe The interval from -50 to 50
Datum ∀𝑥, 𝑥 ∈ [−50, 50]
Category Low, Medium, High
Membership
Function

𝑀!"#(𝑥) = 1 (1 +	𝑒$.&∙(|,|*&$))⁄
𝑀-./(𝑥) = 1 41 +	𝑒$.&∙(|,|*0$)5⁄ − 1 41 + 𝑒$.&∙(|,|*&$)5⁄
𝑀1234(𝑥) = 1 (1 +	𝑒$.&∙(0$*|,|))⁄

IndicatorFunction 𝑀!"#(𝑥) 						= 	1, 𝑖𝑓	|𝑥| ∈ [0,10); 			0, 𝑜𝑡ℎ𝑒𝑟𝑠	
𝑀-./256(𝑥) = 	1, 𝑖𝑓	|𝑥| ∈ [10,30); 	0, 𝑜𝑡ℎ𝑒𝑟𝑠	
𝑀1234(𝑥) 					= 	1, 𝑖𝑓	|𝑥| ∈ [30,50]; 	0, 𝑜𝑡ℎ𝑒𝑟𝑠

Table 3 Uncertainty Levels

Level Datum Measure Category
Level 1 A determined datum

with a margin of error
N/A N/A

Level 2 A set of data Probability Related
Level 3 A set of data Possibility Related
Level 4 A set of data N/A Related
Level 5 Known Unknowns N/A N/A

44

this reason, no qualitative specification (Category) or Measure is required for this level. In

the running example, a servo’s maximum thrust can be determined according to its product

specification. However, this value is not accurate, and a tolerance interval is given to

specify the range of possible values. Thus, the maximum thrust belongs to Level 1

Uncertainty.

Level 2 Uncertainty stands for the situation that a feature has alternate values with

Probabilities. Thus, ProbabilityMeasure is used at this level to specify the Probability of a

Datum or a Category to be true. For instance, the measurement noise of GPS conforms to a

normal distribution. Through statistical analyses, the distribution can be determined, and

thus it is a Level 2 Uncertainty.

For Level 3 Uncertainty, the probability of each possible value is unknown, but each

possible value is bound with a ranked likelihood, which can be specified via the Possibility

and Necessity of the PossibilityMeasure. Following the running example, due to the limited

knowledge, the probability distribution of wind speed cannot be determined, and we can

only compare the likelihoods of different potential values. Assume that the likelihood of

medium wind speed is high and the ones of low and high speed are low. Their possibilities

can be specified as 0.2, 0.7, and 0.2 to reflect their ranked likelihoods.

A Level 4 Uncertainty is the case when one can enumerate multiple alternative values of

a feature but cannot rank their likelihoods, due to lack of knowledge, or disagreements

among modelers [27]. Therefore, it is only possible to identify possible Categories, while

the likelihood of each possible value is unknown. At last, Level 5 Uncertainty represents

situations that the only thing known is that we do not know (i.e., known unknowns).

Neither Universe nor Measure of an Uncertainty at this level is known. The only thing

known is the existence of the uncertainty.

5 MoSH Modeling Framework
Based on the conceptual model (Section 4), UML profile of Modeling and Analysis of

Real-Time Embedded Systems (MARTE) [7] and UML Testing Profile (UTP) [29], we

implement a modeling framework — MoSH, which provides a set of UML stereotypes,

datatypes and a modeling methodology to facilitate the specification of executable test

models. To make the test model executable, we restrict the modeling notations to the

executable subset of UML, which is defined by fUML [10]. Several metaclasses in the

45

subset are extended by the stereotypes from MoSH to specify self-healing behaviors and

uncertainties. New data types are also provided to assist in setting the attributes of newly

defined stereotypes. The stereotypes and datatypes are organized into four profiles, as

shown in Figure 16. They are applied in four steps to create executable test models

(Section 5.1 to Section 5.4).

5.1 Model System Structures with the SH-CPS Component Profile

This section presents the SH-CPS Component profile (Section 5.1.1) and methodology

(Section 5.1.2).

5.1.1 SH-CPS Component Profile
Sensors, actuators, and controllers constitute the major components of a physical unit of an

SH-CPS. Hence, six stereotypes are provided (Table 4) to annotate the role played by each

component and to specify goals and uncertainties of the component, via the “goal” attribute

of «PhysicalUnit»/«Controller» and “uncertainty” attribute of

«PhysicalUnit»/«Sensor»/«Actuator»/ «Network». The “goal” is used as a test oracle, and

the “uncertainty” specifies the uncertainty that needs to be introduced during testing.
Table 4 Stereotypes in SH-CPS Component Profile

Stereotype Metaclass Attribute Stereotype Metaclass Attribute
«SelfHealingCPS» Package type:

ArchitectureType
«Sensor» Behaviored

Classifier

uncertainty: Uncertainty [*]

«Network» Behaviored
Classifier

uncertainty:
Uncertainty [*]

«Actuator» uncertainty: Uncertainty [*]

«PhysicalUnit» goal: Constraint [*]
uncertainty:
Uncertainty [*]

«Controller» goal: Constraint [*]

Figure 16 Overview of the MoSH Modeling Framework

46

5.1.2 Model System Structure
First, physical units and networks are identified and specified as separate classes. Physical

units can be further decomposed into sensors, actuators, and controllers. Figure 17 (A)

shows a partial structural model of the running example, which consists of two physical

units (GroundControlStation, Drone) connected through a network (MAVLink). Drone is

decomposed into a NavigationUnit, a GPS and four Servos.

All accessible state variables that can be queried via testing interfaces are specified as

class attributes, such as the mode of the NavigationUnit and the throttle of the Servo.

Operations capture the testing interfaces provided by corresponding components, including

Figure 17 Executable Test Model of RAMA (Partial)

47

check property actions for querying state variables, create stimulus actions for

manipulation, and fault injections for introducing faults to trigger self-healing behaviors.

As shown in Figure 17 (A), every class has one or more operations for monitoring or

controlling its corresponding component. Two fault injection operations, disconnect() and

disableGPS(), are also implemented to simulate the fault of disconnection and loss of GPS

signals.

Using the stereotypes’ attributes, testers can specify the goals of physical units and

controllers as OCL constraints. The constraints have to be defined on class attributes so

that they can be validated based on the attributes’ values obtained via testing interfaces. A

goal of the NavigationUnit is shown in Figure 17 (A), which is to avoid a crash on the

ground, i.e., when the Drone lands on the ground (self. currPosition.alt = 0), its vertical

velocity should be below 2 meters per second (self.ekf.zVelocity < 2).

5.2 Model Behaviors with SH-CPS Behavior Profile

This section presents the SH-CPS Behavior profile (Section 5.2.1) and the guidelines to

model functional behaviors, self-healing behaviors, and their interactions (Section 5.2.2 to

Section 5.2.4).

5.2.1 SH-CPS Behavior Profile
This profile is proposed to specify expected self-healing behaviors. Since the objective of

self-healing behaviors is to recover functional behaviors from faults, the expected

functional behaviors should also be captured to assess the utilities of self-healing behaviors.

As shown in Table 5, «FunctionalBehavior» is provided to annotate the behaviors, and to

specify potential faults and consequent faulty states that may appear in a functional

behavior via its “fault” and “error” attributes. A functional behavior is to be specified as a

UML state machine to capture its normal and faulty states. «Fault», extending UML

metaclass ChangeEvent, is provided to define a potential fault and specify a fault injection

operation (via its “injectionOperation” attribute) to trigger the self-healing behavior that is

to heal the fault. Its change expression defines the condition, under which a fault is

considered occurred. As shown in Figure 17 (C), the disconnection of the MAVLink is a

potential fault. It is specified as a ChangeEvent stereotyped with «Fault». Its change

expression (“latency > 3”) defines that the fault occurs if the latency exceeds 3 seconds and

the disconnect() operation can be used to introduce this fault. When a fault occurs, i.e., a

48

fault is injected, the state of a functional behavior switches from a normal state to a faulty

one stereotyped with «Error», which enables TM-Executor to directly identify the faulty

state and recognize when a self-healing behavior needs to be performed.
Table 5 Stereotypes in the SH-CPS Behavior Profile

Package Stereotype Metaclass Attribute
Fault «Fault» ChangeEvent name: String, injectionOperation:

FaultInjection [*]
«Error» State name: String

Functional
Behavior

«FunctionalBehavior» StateMachine, Region fault: Fault [*], error: Error [*]

SelfHealing
Behavior

«SelfHealingBehavior» StateMachine, Region fault: Fault [1..*]
«MonitoringState» State, StateMachine measurement : Property [1..*]
«FaultIdentifiedState» State, StateMachine fault: Fault [1..*]
«AdaptatingState» State, StateMachine name: String

To capture the logic of fault diagnosis and recovery, we choose to use UML state

machines to model self-healing behaviors. «SelfHealingBehavior» is provided to annotate

the behavior and specify which faults can be recovered by it via its “fault” attribute. Based

on the stereotype attribute, TM-Executor can decide if a correct self-healing behavior is

triggered by injecting a fault. If the behavior is not triggered, it means that the behavior

failed to detect the fault and a potential implementation fault is found.

To test if a self-healing behavior can correctly detect a fault and apply proper actions to

recover from the fault, testers need to specify one or more conditions, under which the

fault is to be detected, and the recovery policy, which determines the selection of recovery

actions. First, the logic of fault detection is specified via the transitions between

«MonitoringState»s and «FaultIdentifiedState»s. «MonitoringState» is defined to annotate

the states, where the self-healing behavior tries to detect faults based on measurements

from probes. «FaultIdentifiedState» denotes that the self-healing behavior has detected,

localized, or identified a fault. Second, the transitions between «FaultIdentifiedState»s and

«AdaptatingState»s capture the recovery policy. «AdaptatingState» annotates the actions

that are to be used by the self-healing behavior to recover from the fault. The following

sections explain how to use these stereotypes to model functional and self-healing

behaviors in details.

5.2.2 Model Functional Behaviors
For all identified classes (Section 5.1.2), testers need to specify their functional behaviors

first, and then specify self-healing behaviors, i.e., define how to restore the functional

behaviors to normal states in case of faults. The functional behaviors are modeled as UML

state machines. Each state in the state machines should be precisely defined by state

49

invariants, i.e., OCL constraints on class attributes (Section 5.1.2). During test execution,

any inconsistency between the system’s actual state and the active state of the state

machine indicates a potential implementation fault6.

In state machines, a transition between two states models a valid fragment of behavior

[30], which can be triggered by a CallEvent, SignalEvent, or ChangeEvent. CallEvents

represent invocations from external systems or users via operational calls such as the

transition between the Armed and Navigating states in Figure 17 (B). Along with a

CallEvent, a Guard (OCL constraint) can be specified to define valid ranges of inputs that

can be used to invoke an operation. SignalEvents capture interactions among different state

machines. Via sending signals in effects or state activities, firing a transition in one state

machine can lead to transitions in other state machines being triggered. ChangeEvents are

used to model internal changes such as the event “currPosition == targetPosition” shown

in Figure 17 (B).

Based on test requirements, the faults that are to be healed by self-healing behaviors are

specified as ChangeEvents stereotyped with «Fault». The ChangeEvents are used as

triggers of transitions from normal states to error states to specify how functional behaviors

are affected by the faults.

5.2.3 Model Self-Healing Behaviors
Self-healing behaviors are also modeled as UML state machines focusing on fault

diagnosis and recovery. The logic of fault diagnosis is specified via the transitions between

«MonitoringState»s and «FaultIdentifiedState»s. Triggers of the transitions are specified as

ChangeEvents, whose change expressions define criteria used to detect, localize or identify

faults, such as the transition from “Checking Connection” state to “GCS Disconnected”

state in Figure 17 (B), capturing the logic of fault detection for the disconnection fault.

For fault recovery, there are three kinds of recovery policies (Section 4.2.2). If the policy

is action, goal or utility based and the goal or utility is defined on state variables that are

accessible via testing interfaces, then the policy can be modeled as transitions from

«FaultIdentifiedState»s to «AdaptatingState»s. The triggers of the transitions are specified

as ChangeEvents whose change expressions describe which recovery action is to be used.

6In case a system behaves differently from a test model that is derived from an incomplete requirement, it
only indicates that a potential fault has been detected. Developers or designers who have more knowledge of
the requirement can determine whether it is indeed an implementation fault.

50

As shown in Figure 17 (B), there are two ways to handle the disconnection fault. When the

NavigationUnit’s mode is LAND or RTL, no manual control is required to control the flight,

and the Drone keeps on its current task. Otherwise, the mode is changed from GUIDED to

RTL under which the Drone flies back to its launch position. For a goal/utility based policy

whose goal/utility is not defined on accessible state variables, testers have to identify

invariants of the goal/utility, define them on accessible state variables, and specify them as

class or state invariants. By checking them during testing, TM-Executor can determine if a

wrong recovery action is performed.

The transition from an «AdaptatingState» to a «MonitoringState» is used to specify the

behavior after the fault has been successfully healed. As shown in Figure 17 (B), as soon as

the connection of MAVLink is rebuilt (i.e., heartbeatInterval < 3), the flight mode is

changed back to GUIDED to resume the flight.

5.2.4 Model Interaction Behaviors
Besides defining functional and self-healing behaviors in separate UML state machines,

testers also need to specify interactions among them to facilitate the overall execution.

In UML state machines, four model elements can be targeted for specifying an

interaction: the Entry, Exit, and doActivity of a state, and the Effect of a transition [11].

Their execution semantics are different, and testers can choose the one that suits the

context best. An Entry is executed synchronously before activating a state. When the

execution completes, the state’s doActivity (if exists) is invoked asynchronously. When the

state is to be exited and its doActivity is still running, the execution is aborted. An Exit

behavior is executed synchronously before exiting a state. When a transition is triggered,

its source state is exited first, and then its Effect is executed. As soon as the execution

completes, the transition’s target state is entered.

Interaction behaviors mainly involve sending SignalEvents from one state machine to

the others. According to the fUML standard [10], an interaction behavior can be specified

as either an activity diagram or an opaque behavior with its method defined in the Action

Language for fUML (ALF) [31]. For instance, BroadcastStartS is an effect of a transition

and defined as an activity diagram (Figure 17 (D)). Its execution semantics is to broadcast

a given signal to all classes that have a direct association with the current class. When the

transition is fired, the MAVLink will receive a StartS signal, triggering it to enter the

Connected state.

51

5.3 Specify Uncertainties using SH-CPS Uncertainty Profile

We present the SH-CPS Uncertainty profile in Section 5.3.1 and the guideline to use it in

Section 5.3.2.

5.3.1 SH-CPS Uncertainty Profile
For testing, uncertainty is the lack of knowledge of which value an uncertain feature will

take at a given point of time during testing. As explained in Section 4.3, an uncertainty is

specified by defining its universe, categories, and measure. Accordingly, «Uncertainty» is

defined, along with “universe”, “category”, and “measure” attributes (Figure 18), each of

which corresponds to a newly defined datatype.

Figure 18 SH-CPS Uncertainty Profile

The Universe represents a collection of values. According to the type of value contained

in a universe, we define seven subtypes: U_Boolean, U_Integer, U_Real,

U_UnlimitedNatural, U_Transition, U_String, and U_Equation. For non-numerical

datatypes (U_Transition, U_String, and U_Equation), the universe is specified as a

collection of listed values. For numerical ones (U_Integer, U_Real, U_UnlimitedNatural),

the universe can either be specified by enumeration or as an interval. Category is defined

to specify a qualitative description of an «Uncertainty». As explained in Section 4.3, the

elements of a Category are determined by a MembershipFunction. Based on the MATLAB

fuzzy library [32], we provide six kinds of MembershipFunction7. Measure is defined to

quantify uncertainty. According to testers’ knowledge, ProbabilityMeasure or

PossibilityMeasure can be used to specify the measurement of uncertainty;

ProbabilityMeasure uses a probability distribution to quantify the chance of possible

values, and PossibilityMeasure uses possibility and necessity distributions to map each

7 Include Gauss, Generalized bell, Triangular, Difference between two sigmoid, Pi-shaped, Sigmoid
functions.

52

possible value to a rankable likelihood. To specify the measurement of uncertainty, this

profile imports six discrete and five continuous distributions 8 from the probability

distribution library of MARTE [7].

5.3.2 Model Uncertainty
To test systems under uncertainties, testers need to define the uncertainties. For each

specified class (Section 5.1.2), testers have to identify uncertain features according to

testing specification and their domain knowledge. For instance, the measurement noise of

GPS cannot be determined at a given point of time during execution, and thus the noise is

identified as an uncertain feature, which is specified as a class attribute stereotyped with

«Uncertainty». Via the “universe”, “category”, and “measure” attributes of «Uncertainty»,

the uncertainty associated with the uncertain feature can be quantified9.

According to the type of an uncertain feature, a type of Universe is chosen to specify its

valid range. For a numerical feature, if its value varies within a range, an interval datatype

(U_IntegerInterval, U_RealInterval, U_UnlimitedNaturalInterval) should be assigned.

Otherwise, a vector can be used to list all possible values. Depending on the level of

uncertainty (Section 4.3), the uncertainty’s category and measure are specified differently.

For a Level 1 uncertainty, at a given point in time, the value of the uncertain feature is

determined with a margin of error. It is specified via “universe” attribute of «Uncertainty».

For Level 2 and Level 3 uncertainties, before quantifying the likelihood of each value,

testers should decide if their knowledge about the uncertain feature is qualitative or

quantitative. If it is qualitative, a membership function is used to define a category for each

descriptive term, such as the three categories: Low, Medium, and High, defined for the

measurement noise of GPS in Table 2.

After defining categories, testers need to specify the measurement of each uncertainty.

For Level 2 uncertainty, since the probability of each value is known, a probability

measure is used to describe the likelihood. Possibility measure is adopted for Level 3

uncertainty to state the rankable likelihood of each value. For both levels of uncertainties,

8Include Poisson, Bernoulli, Categorical, Logarithmic, Discrete Uniform, Exponential, Gamma, Normal,
Triangular, and Trapezoidal distributions.
9 If the value of an uncertain feature depends on the values of some other uncertain features, OCL constraints
can be used to specify the dependency.

53

appropriate probability, possibility, or necessity distributions can be chosen from the set of

distributions provided by the uncertainty profile (Section 5.3.1).

Since measures of Level 4 and Level 5 uncertainties are unknown, they cannot be

explicitly specified in the model. However, as testing proceeds, more knowledge about

such uncertainties may be obtained, which make them transform to Level 3, Level 2 or

even Level 1 uncertainties. Afterward, they can be precisely specified and used in the

testing approach.

5.4 Model Testing Utilities with SH-CPS Testing Profile

We present the SH-CPS Testing profile in Section 5.4.1 and guidelines to specify test

configurations and testing interfaces that are required to execute a test model together with

a system (Section 5.4.2).

5.4.1 SH-CPS Testing Profile
Figure 19 presents the SH-CPS Testing Profile. It imports five stereotypes from the Test

Architecture and Test Behavior packages of UTP v2 [29], as these stereotypes are

standardized and have been precisely defined by UTP v2. «TestItem» denotes the testing

target, i.e., controllers of SH-CPSs. The class stereotyped with «TestItem» signifies the

entry point of test execution. «CreateStimulusAction» and «CheckPropertyAction» extend

BehavioralFeature representing testing interfaces used for controlling and monitoring

systems. «CheckPropertyAction» annotates operations that are used to query the values of

state variables. «CreateStimulusAction» should be applied on operations that are used to

control the behaviors of a system. «FaultInjection» is a specialized

«CreateStimulusAction» for faults injections. «TestComponent» represents sensors,

actuators, networks, and external systems, which are simulated/emulated. Configurations

of simulators/emulators can be specified via “configuration” attribute of «TestComponent».

Figure 19 SH-CPS Testing Profile

5.4.2 Model Test Utilities
The final step of the modeling is to specify test configurations and bind the testing

interfaces with the defined operations to achieve an executable test model. First, the main

54

class, which contains the entry point of test execution, is stereotyped as «TestItem».

Second, sensors, actuators, and physical processes, which are to be simulated/emulated, are

annotated with «TestComponent». The “configuration” attribute of «TestComponent» is

used to specify the configuration parameters of simulators/emulators. Third, operations

defined in class diagrams need to be stereotyped with «CreateStimulusAction»,

«CheckPropertyAction» or «FaultInjection» to distinguish their functionalities. For

«CreateStimulusAction» and «FaultInjection», their input parameters capture the input of

corresponding testing interfaces, and they can optionally have an output parameter to

represent the result of an invocation, i.e., success or failure. For «CheckPropertyAction», it

has no input parameters, and its output parameters declare the state variables that can be

queried via the «CheckPropertyAction».

The method of «CreateStimulusAction», «CheckPropertyAction» or «FaultInjection»

can be specified using either an activity diagram or an opaque behavior with its method

defined in ALF [31]. Figure 17 (E) presents the method of a «CreateStimulusAction» —

setMode(). This operation is to set the NavigationUnit’s control mode and returns res to

signify the result. In the method, an OpaqueAction — InputTestAPIInvocation, is defined

to bind the operation with a corresponding testing interface, whose Uniform Resource

Identifier (URI) is specified in the body of the action.

6 TM-Executor Framework
TM-Executor was implemented based on existing standards of fUML [10], PSSM [11] and

FMI [33]. It takes charge of (1) executing and testing a system against a test model, (2)

simulating the effect of uncertainties, and (3) orchestrating the execution of test model,

system, and simulators/emulators. This section first gives an overview of TM-Executor and

then explains these functionalities in sequence.

6.1 Overview

Figure 20 presents an overview of TM-Executor and its relations with MoSH. The MoSH

modeling framework is implemented in Papyrus, a UML modeling environment [34]. With

MoSH, testers can create an executable test model, which is taken by TM-Executor as

input to perform uncertainty-aware executable model-based testing. In TM-Executor, the

test model is executed by an ETM Execution Engine, which is built on Moka [35] — a

55

UML model execution platform that realizes the standards of fUML [10] and PSSM [11].

During execution, the execution engine periodically obtains the values of state variables

from the system under test, and a Constraint Checker uses the values to evaluate the goals

of classes (Section 5.1.2) and the invariants of current active states (Section 5.2.2). If any

constraint is evaluated to be false, it means the system fails to behave consistently with the

test model.

Figure 20 TM-Executor Framework

To drive the execution of the test model and the system under test, a Test Driver is

implemented to generate testing stimuli during execution. Whenever the test model reaches

a stable state configuration, in which the active states of the model are not changing, the

Test Driver uses a testing strategy to select an outgoing transition of current active states,

parses its trigger and guard, and uses EsOCL [36] — an OCL constraint solver, to generate

a valid input for firing the transition.

Besides operation invocations, uncertainties need to be introduced in the testing

environment to test a system under uncertainties. When the system interacts with the

environment via sensors or actuators, an Uncertainty Introducer generates a value for each

specified uncertainty and introduces it into sensor data or actuator instructions to simulate

the effect of the environmental uncertainty.

Since the software of the SH-CPSs is to be tested with simulators/emulators, the test

model, system, and simulators/emulators have to be executed coordinately to fulfill the

56

executable model-based testing. Typically, these three kinds of executable objects are

implemented by distinct modeling/programming languages and from the perspectives of

diverse domains. For instance, the test model, modeled by state machines, exhibits discrete

behaviors. On the contrary, a simulator, modeled by differential equations, presents

continuous semantics. To orchestrate the executions of the diverse objects, an Orchestra is

implemented based on the Functional Mock-up Interface (FMI) standard [33]. It takes

charge of propagating values through the executable objects and synchronizing their

executions.

6.2 Executable Model-Based Testing

The ETM Execution Engine executes a test model according to an extended version of

fUML [10] and PSSM [11]. The execution process and the extensions are presented in the

following subsections.

6.2.1 Execution Process
When a test model is executed, the ETM Execution Engine first instantiates all class

objects (directly or indirectly) associated with the main class stereotyped with «TestItem»

(Section 5.4.2). Then, the engine starts the classifier behavior of each object, i.e., executing

UML state machines (Section 5.2). When all behaviors have been started, the engine

registers all events that can trigger the outgoing transitions of current active states. Next,

the engine synchronizes the execution of the model with the executions of the system

under test and simulators/emulators, to coordinate their executions.

After synchronization, the engine automatically invokes the check property actions

specified in the test model (Section 5.4.2) to update values of state variables. With the

updated values, the Constraint Checker verifies the invariant of current active states and

the goals of each class. If any constraint is violated, a potential fault is detected and the

execution terminates. Otherwise, the engine evaluates the ChangeExpressions of registered

ChangeEvents and sends those whose ChangeExpressions are true. The sent events are

matched with outgoing transitions of current active states. Each matched transition is

traversed via three steps. First, the source state of the transition is exited. If its doActivity

behavior is still running, the execution is aborted. If the source state has an Exit behavior, it

is executed before exiting the state. Second, the transition is traversed, and the Effect of the

transition, if exists, is synchronously executed. Third, the target state of the triggered

57

transition is entered. If it contains Entry and doActivity behaviors, the Entry behavior is

synchronously executed first, and then the doActivity is asynchronously executed. If any

Signal is sent by the Effect, Entry, doActivity, or Exit behavior, a corresponding

SignalEvent is generated and triggers other transitions.

When the active states of all state machines are not changing, the Test Driver invokes an

operation to trigger an outgoing transition that is selected by a testing strategy. Afterward,

the engine executes the method of the operation to call the corresponding testing interface.

Meanwhile, a CallEvent is generated to trigger the outgoing transition. In this way, the test

model and the system are being stimulated by the same invocation. The execution

continues until all state machines reaching a final state. Appendix A presents an activity

diagram of the execution process.

6.2.2 Extensions to fUML and PSSM
To facilitate test execution, TM-Executor extends fUML and PSSM in four ways. First,

TM-Executor extends fUML to execute the test model specified with MoSH. For instance,

operations stereotyped with «CreateStimulusAction» and «CheckPropertyAction» have

specific semantics in our case, and thus we extended the existing semantics of the

Operation defined in fUML. Second, for certain UML model elements (i.e.,

BroadcastSignalAction and ChangeEvent), neither fUML nor PSSM defines their

execution semantics. Thus, we defined their semantics and implemented them in the

execution engine. Third, there exist defined semantics in PSSM for certain UML

metaclasses, but they do not sufficiently serve our purpose. Thus, we extended them. For

instance, the execution semantics of State and Transition were extended to consider state

invariants. Fourth, we newly defined three types of OpaqueAction to facilitate the

specification of testing interfaces. The detailed implementations are presented in the

corresponding technical report [18], and Appendix B summarizes the extensions.

6.3 Introduce Uncertainties

In TM-Executor, environment changes are controlled by simulators/emulators. When a

system interacts with an environment via sensors or actuators, the data measured by

sensors or the actuations performed by actuators are potentially affected by uncertainties.

The uncertainties, captured in a test model, have to be introduced when the interaction

happens. The Uncertainty Introducer fulfills the task. It generates uncertainty values in

58

different ways for the three levels of uncertainties (Section 5.3.2). The values are used to

modify data generated by sensors for measurement uncertainties, alter instructions sent to

actuators for actuation deviations, and detain delivery of sensor data and actuation

instructions for network latency.

 For level 1 uncertainties, their possible uncertainty values are defined as an interval,

representing a determined value with a margin of error. By selecting a value from the

interval, the value of a level 1 uncertainty is generated. For level 2 and level 3

uncertainties, the knowledge of uncertainties can be quantitative or qualitative. For the

qualitative knowledge, several categories are defined for the uncertainty values (Section

5.3.2), and probability or possibility distributions define the likelihood of each category. In

this case, the Uncertainty Introducer first selects a category based on the probability or

possibility distribution, and then it generates an uncertainty value based on the membership

function of the category. If the knowledge is quantitative, probability or possibility

distribution is specified to measure the uncertainty. For a probability distribution,

Uncertainty Introducer directly generates uncertainty values according to the distribution.

For a possibility distribution, it is first transformed into an equivalent probability

distribution [37], which is used to generate an uncertainty value.

6.4 Orchestrate Execution

Based on the FMI standard10 [33], we implemented a co-execution algorithm in the ETM

Execution Engine to coordinate the execution of the test model, system, and

simulators/emulators. The following two subsections explain the FMI based co-execution

architecture and the algorithm respectively.

6.4.1 FMI Based Co-Execution
FMI is a standard to support co-execution of hybrid models [33] and is particularly suitable

for SH-CPSs, as they often contain subsystems designed with diverse modeling paradigms

[38]. In the architecture of FMI based co-execution (Figure 21), every executable model is

wrapped as a Functional Mock-up Unit (FMU). Each FMU can be implemented by its

10Though there are several other co-simulation standards, such as HLA (coming from military applications),
SMP (in the space domain), FMI gained the most attention from both research and industry. Thus, it is used
in our work.

59

simulation language, but its interfaces11 and its I/O dependence relations are defined by the

FMI standard. Via the standard interfaces and based on the I/O dependence relations, a

Master program orchestrates communications and executions of FMUs.

Figure 21 Architecture of the FMI Based Co-Execution

In TM-Executor, the executable test model, system, and simulators/emulators are all

executed as FMUs (Figure 21). Their standard interfaces are either directly implemented in

their dynamic models or indirectly realized by an FMI wrapper [33]. The ETM Execution

Engine plays the role of the Master program. It uses the standard interfaces of the FMUs to

orchestrate the co-execution. Because the FMI standard does not provide the algorithm

used by Master for co-execution, inspired by Broman et al. [38], we implemented a co-

execution algorithm, which is presented in the next section.

6.4.2 Co-Execution Algorithm
Our co-execution algorithm (Algorithm 1) takes three inputs. The first is a set of

interconnected FMUs, similar to the one shown in Figure 21. The connections between the

ports of the FMUs reflect their I/O dependencies. For instance, input port T1 depends on

output port S1, and input port M1 depends on output port T2. Note that although there is a

loop in Figure 21, port S1 does not depend on port S2. Thus, there is no cyclic dependency.

If there are cyclic dependencies among sensors or actuators, the Newton Raphson method

[39] has to be used to compute the interdependent port values iteratively. As the FMI

standard does not support the cyclic dependencies [33], we only focus on acyclic cases in

this paper.

The second input of the algorithm is a set of ordered I/O dependencies. Because of I/O

dependencies among ports, values of input and output ports have to be propagated in a

right order to assure a determinate and correct co-execution. As the I/O dependencies form

a directed graph (Figure 21) and the graph is acyclic, we can obtain a right propagation

order by following the graph [38].

11There are four kinds of standard interfaces defined in FMI: init, which initializes the execution time of a
FMU; set, which assigns a given value to a variable in a FMU; get, which queries the value of a variable in a
FMU; and doStep, which performs an execution step on a FMU, using a given step size ∆t.

60

Algorithm 1 Coexecute(List<FMU> FMUs, List<Dependence> orderedDeps, StepSize h):
Input FMUs is the set of FMUs that to be executed.

 orderedDeps are the ordered I/O dependencies among the FMUs.
 h is the maximum co-execution step size, acceptable for all the FMUs.

Output stepNum is the total number of steps performed in the co-execution
Begin

1 for each M in FMUs
2 M.init()
3 stepNum ← 0
4 while FMUs not terminate
5 for each relation (Msrc.src → Mtar.tar) in orderedDeps
6 Vsrc ← get(Msrc, src) //get the independent value from the source FMU
7 set(Mtar, tar, Vsrc) // set the dependent port value for the target FMU
8 for each M in FMUs
9 doStep(M, h)

10 stepNum ← stepNum + 1
11 return stepNum

End

The third input of the algorithm is the step size, which is to be used in each execution

step. Limited by its implementation, an FMU cannot perform an execution step with an

arbitrary step size. For example, assume that a numerical integration is used in an FMU.

The range of the integration restricts the maximum step size that FMU can perform.

Therefore, before the co-execution, testers have to determine the maximum step size that is

acceptable for all FMUs.

Taking the three inputs, the algorithm first initializes the time of each FMU to zero, i.e.,

the beginning time of the co-execution (L1, L2). After initializing the step number (L3),

the algorithm continuously performs two-phase execution steps until termination (L4 ~

L10). In the first phase, the algorithm propagates values of input and output ports,

according to the given I/O dependencies order (L5 ~ L7). Following that, it advances the

execution of each FMU by a given step size h (L8, L9) and then updates the step number

(L10). At last, the algorithm returns the number of steps that have been performed in the

co-execution. Since the time semantics of UML state machines is discrete events,

advancing the execution time of the test model only gives the model an opportunity to

process received events and fire transitions. This corresponds to the synchronization

mentioned in Section 6.2.1. Physical parts of SH-CPSs are simulated or emulated by

simulators/emulators, whose execution semantics are continuous. Advancing the execution

time of simulators/emulators means that they perform a simulation computation with a

constant step size.

61

The time complexity of Algorithm 1 is O((N+2P)*S), where N is the number of FMUs

that are used in the co-execution, P is the total number of ports of all FMUs, and S is the

average number of steps performed in each co-execution. The space complexity of

Algorithm 1 is O(N), i.e., the space complexity is linear with the number of FMUs.

7 Evaluation
Section 7.1 presents the experiment design, followed by the experiment execution (Section

7.2.2), and results (Section 7.3). Section 7.4 gives an overall discussion, and Section 7.5

presents threats to validity.

7.1 Experiment Design

The experiment was designed to answer three research questions (RQ1-RQ3), as shown in

Table 6.
Table 6 Experiment Design

RQ Task Metrics Systems Statistic
al Test

1 T1: Mapping concepts and
their relationships from
SH-CPSs to the ones in
CMSU

PerCov, PerCorr VCS, TMS,
RFID-SC,
DSRL, ISR,
APR, RAMA,
PeMS, VSS

N/A

2 T2: Creating executable test
models with MoSH

FunBeh, HealBeh, Diagnosis, Recovery,
Uncertainty, TotalElem, PerStereo

RAMA, PeMS,
VSS

3 T3: Applying TM-Executor
to test an SH-CPS with a
random strategy.

TraTime, ExitStateTime, EnterStateTime,
ExeOpTime, GenDataTime, EvalTime,
GenUncTime, DetectedFault, OpProcTime

RAMA Kruskal–
Wallis
test

RQ1: Can CMSU cover all relevant concepts and their relationships identified in selected

SH-CPSs?

With this RQ, we aim to assess if any concepts or relationships cannot be correctly

mapped to the conceptual model. Doing so helps us to find missing concepts and incorrect

relationships in CMSU. Note that we do not prove the completeness and correctness of

CMSU. Instead, we report empirical data to increase the confidence that CMSU is

complete and correct.

We, therefore, defined task T1 to answer RQ1. In the task, nine SH-CPSs were used to

assess the quality of CMSU: Video Conferencing System (VCS) [40], Traffic Monitoring

System (TMS) [41], Radio-Frequency IDentification Supply Chain (RFID-SC) [42],

Distributed Systems Research Lab (DSRL) [43], Intelligent Service Robot (ISR) [44],

Automatic Power Restoration System (APRS) [45], RAMA [13], freeway Performance

62

Measurement System (PeMS) [46], and Video Streaming System (VSS) [47]. Based on the

specification of the nine systems, we first identified their main components. For each

component, we captured its behaviors and the environmental uncertainties that may affect

these behaviors. For self-healing behaviors, we further identified their strategies to detect

and recover from faults. The identified components, behaviors and uncertainties were

manually mapped to the concepts and relationships in CMSU. Based on the mapping, we

calculated the Percentage of Covered Concepts and Relationships (PerCov) and the

Percentage of Correctly Covered elements (PerCorr).

RQ2: Does MoSH provide a cost-effective way of creating executable test models?

With this RQ, we want to assess 1) the additional modeling effort that is required to apply

MoSH to create executable test models, as compared with applying standard UML

notations, and 2) the applicability of MoSH to model self-healing behaviors and

uncertainties.

For this RQ, we defined task T2, which applies MoSH to build executable test models for

SH-CPSs. To measure the extra modeling effort required for applying MoSH, we

calculated the Total number of model Element (TotalElem) and the Percentage of

Stereotyped model elements (PerStereo). For the applicability, we checked the numbers of

Functional Behaviors (FunBeh), Self-Healing Behaviors (HealBeh), Self-Diagnosis

behaviors (Diagnosis), Self-Recovery behaviors (Recovery), and Uncertainties

(Uncertainty) that can be specified with MoSH. For RQ2, we used RAMA [13], PeMS

[46], and VSS [47] as we do not have sufficient specifications for the other six systems (for

RQ1).

RQ3: How is the performance of TM-Executor regarding test execution?

With this RQ, we are interested in assessing how much time is required by TM-Executor to

execute a test model, generate test data, evaluate constraints, and introduce uncertainties.

For RQ3, we defined task T3, which applies TM-Executor to test the RAMA system

against the executable test model created in task T212 under environmental uncertainties.

For the evaluation purpose, we implemented a random testing strategy, which randomly

selects an outgoing transition to generate a testing stimulus. To account for randomness,

we conducted 100 runs for the experiment. In each run, TM-Executor executed RAMA

12 We could not use PeMS and VSS to answer RQ3 as we didn’t have access to their implementations.

63

together with the test model 1000 times, directed by the random testing strategy. The 1000

times of executions allow TM-Executor to cover most transitions specified in the test

model.

We evaluated the performance of TM-Executor from four aspects. First, we measured

the time cost of TM-Executor for each execution step of the test model, i.e., Exiting a

State (ExitStateTime), Traversing a transition (TraTime), Entering a State

(EnterStateTime), and Executing an Operation (ExeOpTime).

Second, we measured the time taken by TM-Executor to Generate test Data

(GenDataTime). Because test data was obtained by solving guards specified in a test model,

the GenDataTime was affected by the complexity of the guards, i.e., the complexity of

OCL constraints on input parameters. Thus, we further assessed the effect of guard

complexity on the GenDataTime. In total, there are 52 guards in the test model. According

to three complexity metrics proposed in [48], we put the guards with the same complexity

in one group and obtained

four groups of guards

(Table 7). We measured

the GenDataTime for each

guard covered by the 100

runs of the experiment. On

average, each guard is

covered 29125 times. We

collected 196304, 175101,

371674, and 771395 samples of the GenDataTime for the four groups of guards,

respectively. To check the normality of the GenDataTimes, we conducted the Shapiro–

Wilk test for each group. The p-values of the tests are lower than 2 × 10!"#. Thus, the

samples of the four groups depart from normality. Hence, we applied the Kruskal–Wallis

test to check if the GenDataTimes of the four groups are significantly different.

Third, we measured the time cost of TM-Executor to Evaluate a class or state invariant

(EvalTime), which is also defined as an OCL constraint. As the same for the GenDataTime,

the EvalTime was also affected by the complexity of the invariant. The test model contains

99 invariants in total. We put the invariants with the same values of complexity metrics in

one group and obtained six groups (Table 7). We measured the EvalTime whenever an

Table 7 Descriptive Statistics of Guard and Invariant Groups

Groups #Types Types #Clauses Group Size
Guard Group 1

1

Enumeration 1 6
Guard Group 2

Real
1 6

Guard Group 3 2 13
Guard Group 4 6 27
Invariant Group 1

2 Enumeration & Real
2 12

Invariant Group 2 3 6
Invariant Group 3 7 27
Invariant Group 4

1
Enumeration 1 13

Invariant Group 5 Real 1 29
Invariant Group 6 2 12

#Types is the number of parameter types contained in a constraint.
Types are the parameter types contained in a constraint.
#Clauses is the number of clauses in a constraint.
Group Size is the number of constraints contained in each group

64

invariant is evaluated during the experiment. In total, we collected 650310, 300516,

1350723, 650501, 1449653, and 600632 samples of the EvalTime for the six groups of

invariants. Since the p-values of the Shapiro–Wilk tests for the six groups of samples are

lower than 0.05, the samples are not normally distributed. Thus, we conducted the

Kruskal–Wallis test to check if the EvalTimes of the six groups are significantly different.

Fourth, we evaluated the time spent by TM-Executor to Generate an Uncertainty value

(GenUncTime). As explained in Section 6.3, an uncertainty value is generated based on

universes, probability distributions, possibility distributions, or membership functions. To

assess the effect of different ways of generating uncertainty values on the GenUncTime, we

grouped uncertainties according to the methods of generating their uncertainty values. In

total, there are ten uncertainties specified in the test model. One of them is Level 1

uncertainty, whose values are generated based on its universe. Seven of them are Level 2

uncertainty, whose values are generated according to their probability distributions. One is

Level 3 uncertainty, whose values are generated based on its possibility distribution. The

last one is also a Level 3 uncertainty, while its values are generated based on its possibility

distribution and membership functions, as knowledge about this uncertainty is imprecise.

We measured the GenUncTime, whenever TM-Executor introduces an uncertainty during

the experiment. We collected 7445059, 52115413, 7445059 and 7445059 samples of the

GenUncTime for the four groups of uncertainties. The p-values of the Shapiro–Wilk tests

for the samples are lower than 0.05, and thus the samples depart from normality. Therefore,

we applied the Kruskal–Wallis test to check if the GenUncTimes of the four groups are

significantly different.

7.2 Experiment Execution

This section presents the execution processes for the three tasks defined in Section 7.1.

7.2.1 Identifying and Mapping Concepts (T1)
Based on the specification of the nine SH-CPSs, we evaluated and improved CMSU’s

quality, following the steps summarized in Figure 22. Initially, we derived the conceptual

model (CMSU V.1) from the literature (Activity A1 in Figure 22). To evaluate its quality,

we identified SH-CPS related concepts as well as their relationships (Cons. & Rels. from

CSs. V.1), from the nine SH-CPSs’ specifications (Activity A2.1). Cons. & Rels. from CSs.

V.1 contain necessary entities required to specify self-healing behaviors and uncertainties

65

of an SH-CPS. For each identified concept or relationship, we tried to manually find a

counterpart in CMSU V.1 (Activity A2.2). If the counterpart is missing, we further

investigated if the extracted concept or relationship is correctly identified. In case that it

was correct, CMSU V.1 was revised to cover the missing concept. Otherwise, the

incorrectly identified concept or relationship was fixed. After A2.2, we created a new

version of the extracted concepts and relationships, i.e., Cons. & Rels. from CSs. V.2. At

last, the refined conceptual model (CMSU V.2) was further refined by A3 via a mapping

from Cons. & Rels. from CSs. V.2 to CMSU V.2. The final obtained CMSU V.3 is

presented in Section 4 and was implemented as UML profiles (Section 4.1.2).

Figure 22 The Process of Developing CMSU

7.2.2 Modeling Executable Test Models with MoSH (T2)
To answer RQ2, the first author of this paper applied MoSH to specify executable test

models for RAMA [13], PeMS [46], and VSS [47], following the modeling methodology

presented in Section 4.1.2. First, the architecture of each system was specified as a UML

class diagram, with SH-CPS Component Profile applied. Second, the behaviors of each

class were captured as UML state machines, and SH-CPS Behavior Profile was applied to

model the potential faults and the logic of fault diagnosis and recovery. Third, SH-CPS

Uncertainty Profile was applied to define environmental uncertainties that may impact the

captured behaviors. To correctly define uncertainties, we used detailed product

specifications of sensors and actuators, provided by manufacturers13. The specifications

13 One example of the product specifications can be downloaded from:
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

66

specify the sensors’ and actuators’ characteristics, such as sensitivity, nonlinearity, and

noise level. Based on the information, we identified and modeled the uncertainties in the

test models. Fourth, UML activity diagrams were specified to bind testing interfaces with

operations defined in each class. Meanwhile, SH-CPS Testing profile was applied to the

class diagram to annotate the role played by a class or an operation in testing. The

specified UML class diagrams, state machines, and activity diagrams constitute the

executable test models. Based on them, we calculated the metrics (Section 7.1) to assess

the cost-effectiveness and applicability of MoSH.

7.2.3 Testing SH-CPS with TM-Executor (T3)
To answer RQ3, we applied TM-Executor to test a real SH-CPS (RAMA), based on the

test model built in T2. Section 7.3.2 gives a summary of the model. In total, ten functional

behaviors and four self-healing behaviors were tested with five simulators of sensors and

one simulator of an actuator. Via the simulators, ten environmental uncertainties (Table 12)

were introduced during executions.

We used a single PC, with a processor of Intel Core i7 2.6 GHz and 16 GB of RAM, to

run the experiment. During execution, timers were used to measure the time to execute the

model, generate test data, evaluate constraints, and generate uncertainty values. For each

guard, invariant, and uncertainty, we measured the GenDataTime, EvalTime, GenUncTime

(Section 7.1) and conducted the Kruskal–Wallis test to check the effects of guard

complexity, invariant complexity, and different ways of generating uncertainty values on

the performance of TM-Executor.

7.3 Experiment Results

This section presents the results of each research question.

7.3.1 Results for RQ1
In total, we identified 832 instances of concepts from the specifications of nine SH-CPSs.

After the two-steps refinement presented in Section 7.2.1, CMSU succeeded to cover all

the identified concepts and their relationships. Table 8 summarizes the statistics of

different concepts. As shown in the table, every system consists of one or more types of

PhysicalUnit, which are constituted by Sensors, Actuators, and Controllers. All systems

were designed for monitoring or controlling only one kind of PhysicalProcess, such as

videoconferencing for VCS and traffic for TMS.

67

Table 8 Descriptive Statistics of the SH-CPSs

Concept VCS TMS APRS RFID-SC DSRL ISR RAMA PeMS VSS
Self-Healing CPS 1 1 1 1 1 1 1 1 1
PhysicalProcess 2 1 1 1 2 1 1 1 1
Network 1 1 1 1 1 1 1 1 1
PhysicalUnit 7 5 5 4 8 2 2 4 2
Sensor 3 1 3 1 4 5 5 2 1
Controller 7 2 2 4 9 2 3 4 2
Actuator 2 0 5 0 4 1 1 0 0
Functional Behavior 4 1 1 1 4 1 10 7 3
Self-Healing Behavior 2 1 2 4 4 5 4 5 2
Goal 1 1 1 1 1 1 1 1 1
State 21 6 22 11 32 36 97 41 21
Probe 2 1 3 5 4 5 5 2 2
Effector 2 1 5 1 4 2 1 2 1
Measurement 2 1 5 5 7 4 4 5 2
Self-Diagnosis 2 1 5 4 4 5 4 5 2
Self-Recovery 4 3 3 4 4 5 9 5 3
Fault 2 1 3 4 4 5 4 5 2
Error 2 1 5 4 4 5 4 5 2
RecoveryPolicy 4 3 3 4 1 5 9 5 3
AdaptationAction 4 3 10 3 8 4 4 2 2
Uncertainty 3 1 4 4 5 6 10 6 1
Total 78 36 90 67 115 102 180 109 55

Table 9 presents the kinds of Probes, RecoveryPolicies, Effectors used by each system to

diagnose or recovery from faults. PhysicalProcessProbe and ControlEffector are the most

common Probe and Effector used by these SH-CPSs. With the respect of RecoveryPolicy,

ActionPolicy is dominating. Totally, 39 Uncertainties were identified, 35 of which belong

to Level 2 uncertainty. This reflects that the probability theory is the most common way to

measure uncertainty.
Table 9 Descriptive Statistics of Categories of Probe, RecoveryPolicy, Effector, and Uncertainty

Concept VCS TMS APRS RFID-
SC DSRL ISR RAMA PeMS VSS P

Probe
PerformanceProbe 2 0 0 3 0 0 0 2 2 31%
EventProbe 0 1 0 2 0 0 0 0 0 10%
PhysicalProcessProbe 0 0 3 0 4 5 5 0 0 59%

Recovery
Policy

ActionPolicy 4 3 2 4 0 5 9 5 3 94%
GoalPolicy 0 0 1 0 0 0 0 0 0 3%
UtilityFunctionPolicy 0 0 0 0 1 0 0 0 0 3%

Effector
ParameterEffector 2 0 0 0 0 0 0 0 0 11%
ArchitectureEffector 0 1 0 1 0 0 0 0 1 16%
ControlEffector 0 0 5 0 4 2 1 2 0 73%

Uncertainty

Level 1 0 0 0 2 0 0 0 0 0 5%
Level 2 3 1 3 2 5 6 8 6 1 87%
Level 3 0 0 1 0 0 0 2 0 0 8%
Level 4 0 0 0 0 0 0 0 0 0 0%
Level 5 0 0 0 0 0 0 0 0 0 0%

P = n / N, where n is the number of occurrences of a subclass and N is the total number of occurrences of all sub-classes,
e.g., PerformanceProbe, EventProbe, and PhysicalProcessProbe are subclasses of Probe.

68

7.3.2 Results for RQ2
To assess the additional effort required to apply MoSH to create executable test models,

we report results of the PerStereo metric in Table 10. We applied stereotypes from MoSH

to 15%, 15%, and 19% of model elements for RAMA, PeMS, and VSS. On average, 16%

of model elements were stereotyped. This number gives us a rough indication of additional

modeling effort required to use MoSH to create executable test models, as compared with

applying standard UML notations.

To evaluate the applicability of MoSH, we

first provide the statistics of model elements in

Table 11. The statistics reflect the complexity

of the test models for the three SH-CPSs.

Among the three systems, RAMA is the most

complicated one. It contains ten functional

behaviors and four self-healing behaviors. In

total, 377 model elements were used to specify the 14 behaviors. In contrast, PeMS and

VSS are relatively simple. In total, 144 model elements were used for specifying 12

behaviors of PeMS and 97 model elements were used for specifying five behaviors of VSS.

Second, we collected the

numbers of functional behaviors,

self-healing behaviors, fault

diagnoses, fault recoveries, and

uncertainties. As shown in Table

10 (the FunBeh and HealBeh rows)

and Table 8 (the Functional

Behavior and Self-Healing

Behavior rows), all the identified

functional and self-healing behaviors were captured in the test models. Moreover, self-

diagnosis and self-recovery, the two key steps of self-healing behaviors, were also

explicitly specified, as shown in the Diagnosis and Recovery rows in Table 10. They

enable self-healing behaviors to be rigorously tested.

We specified ten uncertainties for RAMA, six uncertainties for PeMS, and one

uncertainty for VSS, as shown in Table 12. With MoSH, we could define the universe,

Table 11 Descriptive Statistics of Model Elements
(RQ2)

Element RAMA PeMS VSS Avg.
Class 10 7 4 7
Attribute 42 12 11 21
Operation 29 14 11 18
Signal 10 10 4 8
Association 9 7 3 6
State Machine 14 12 5 10
State 97 41 21 53
Transition 166 41 38 81
Total 377 144 97 204

Table 10 MoSH Evaluation Results (RQ2)

Metric RAMA PeMS VSS Avg.
TotalElem 377 144 97 206
FunBeh 10 7 3 7
HealBeh 4 5 2 4
Diagnosis 4 5 2 4
Recovery 9 5 3 6
Uncertainty 10 6 1 6
PerStereo 15% 15% 19% 16%

69

categories, and measure for each uncertainty. Based on them, TM-Executor can introduce

uncertainties via simulators/emulators, which enables the systems to be tested under

uncertainties.
Table 12 Uncertainties in RAMA, PeMS and VSS (RQ2)

SH-CPS Uncertainty Level Universe Measure Categories
RAMA Wind Direction 3 0°	~	360° Possibility Null

Wind Velocity 3 0 ~ 30 m/s Possibility Low, Med, High
GPS Noise 2 -50 ~ 50 m Probability Null
Servo Deviation 2 -1 ~ 1 m/s2 Probability Null
Barometer Altitude Noise 1 -10 ~ 10 m N/A N/A
Barometer Climb Rate Noise 2 -0.5 ~ 0.5 m/s2 Probability Null
Accelerometer Noise 2 -1 ~ 1 m/s2 Probability Null
Gyro Noise 2 -0.1 ~ 0.1 rad/s Probability Null
Compass Noise 2 -0.04 ~ 0.04 gauss Probability Null
Compass Hysteresis 2 -0.01 ~ 0.01 gauss Probability Null

PeMS Vehicle Speed 3 10 ~ 120 km/h Possibility Null
Vehicle Size 3 2000 ~ 5000 L Possibility Mini, Compact, Mid,

Large
Loop Detector Impedance 2 5 ~ 10 Ω Probability Null
Loop Detector Voltage 2 3 ~ 4 V Probability Null
Loop Detector Sensitivity 2 0.1 ~ 1 𝜇H Probability Null
Loop Detector Latency 2 0 ~ 0.1 s Probability Null

VSS Latency of Channel 2 0 ~ 800 ms Probability Null

7.3.3 Results for RQ3
To answer RQ3, we summarize the time

spent by TM-Executor to perform

testing activities in Table 13. On

average, it took 5.6 seconds for

traversing a transition, 39 milliseconds

for test data generation, and less than

one millisecond for exiting or entering a

state, executing an operation, evaluating a constraint or generating an uncertainty value.

During test execution, most of the time was spent on traversing transitions. As shown in

Table 13, after sending a stimulus to the SH-CPS, the system maximally took 9.5 seconds

to perform an instructed operation and enter a target state. However, this time is

determined by the software and simulators/emulators of the system. Due to the high

computational cost of executing the software and the simulators/emulators, changing the

state of the software takes considerable time. To improve the efficiency of testing, a

Table 13 Evaluation Result (RQ3)

Metric Mean
(ms)

Minimum
(ms)

Maximum
(ms)

TraTime 5607 5260 9531
ExitStateTime <1 <1 <1
EnterStateTime <1 <1 <1
ExeOpTime <1 <1 1
GenDataTime 39 3 270
EvalTime <1 <1 1
GenUncTime <1 <1 <1

70

distributed testing framework can be developed in the future. It may reduce the time cost of

executions, by executing testing components in separate computational nodes.

 For the first Kruskal-Wallis test which aims to evaluate the effect of guard complexity

on the GenDataTime, the p-value is less than 2.2 × 10!"#. Thus, we conclude that the

GenDataTimes were significantly different for guards with different complexities. On

average, TM-Executor took 7.2, 9.3, 17.1, and 63.3 milliseconds to generate test data for

the four groups of guards. For the second Kruskal-Wallis test which aims to evaluate the

effect of invariant complexity on the EvalTime, its p-value is 0.6, implying that the

complexity of the invariants did not significantly affect the time taken for evaluation. For

the third Kruskal-Wallis test which aims to evaluate the effect of different ways of

generating uncertainty values on GenUncTime, its p-value equals to 0.6. It reflects that the

different ways of generating uncertainty values did not significantly influence the time

spent on uncertainty generation.

In the experiment, one fault (state invariant violation) was detected by TM-Executor.

This fault led to the collision of the drone. Though a self-healing behavior helped the drone

automatically avoid collisions with other vehicles, the drone failed to keep a safe distance

from an intruding vehicle because of uncertainties from the GPS, compass, barometer,

accelerometer, gyro, and servos. Note that we do not assume the system was correctly

implemented and we only aim to test whether the self-healing behaviors can successfully

recover systems from faults under uncertainties.

7.4 Overall Discussion

In this section, we provide an overall discussion based on the results presented in Section

7.3. Based on the results presented in Section 7.3.1, we conclude that our conceptual model

(CMSU) covered all concepts and their relations identified in nine SH-CPSs. This

increases our confidence that CMSU captures the main concepts of SH-CPSs and

uncertainties.

Based on the results presented in Section 7.3.2, we conclude that, on average, it needed

additional 16% of modeling effort to apply MoSH to create the executable test models, as

compared with applying standard UML notations, for the selected SH-CPSs. We

demonstrated the applicability of MoSH to specify executable test models for three diverse

SH-CPSs of varying complexities. This effort gives us evidence that MoSH is capable of

71

modeling different SH-CPSs to support uncertainty-aware executable model-based testing.

For the current evaluation, the first author of the paper created all the models. We

acknowledge that a better evaluation would be to conduct a controlled experiment with

more modelers to assess the applicability of MoSH. Conducting such controlled

experiments (even in an academic setting) requires resources and opportunities, whereas

we are actively pursuing such opportunities.

Test models developed with MoSH can be executed by TM-Executor to enable the

executable model-based testing. By applying TM-Executor to test a real-world SH-CPS,

we demonstrated that TM-Executor could automatically test the SH-CPS under

uncertainties. Moreover, TM-Executor could obtain runtime information about the

system’s actual behaviors from test execution. The information can be used by dedicated

testing strategies [12, 49] to find the optimal sequence of testing stimuli for fault detection.

However, devising such strategies is not covered in this paper. In the evaluation reported in

this paper, we applied a random strategy to guide the selection of stimuli, without

exploiting the runtime information provided by TM-Executor. Thus, the random strategy is

not optimal regarding fault detection. We have devised a more effective strategy and

applied it with TM-Executor to test three SH-CPSs reported in [12]. With the help of

runtime information provided by TM-Executor, the new strategy detected significantly

more faults than a traditional coverage based method [12]. Based on the results presented

in Section 7.3.3, we also conclude that the time taken by TM-Executor to perform testing

activities was relatively small, i.e., in the order of milliseconds. Thus, it is practicable to

apply TM-Executor to perform the executable model-based testing.

7.5 Threats to Validity

Conclusion validity threats are related to factors that can affect conclusions drawn from

experimental results. The random testing strategy implemented in TM-Executor leads to

different behaviors of a system being tested. For different behaviors, the amount of time

spent by TM-Executor to perform testing activities varies as well. To deal with such a

threat, we ran the experiment 100 runs.

External validity threats concern the generalization of the results. One external validity

threat is that we only applied nine SH-CPSs to evaluate CMSU and applied three of them

to evaluate MoSH. Although the nine systems are from different domains, they cannot

72

assure to cover all kinds of self-healing behaviors. Based on the specifications of the nine

systems, 40 uncertainties were identified. Among them, 17 and 10 uncertainties were used

to evaluate MoSH and TM-Executor respectively. Although the uncertainties cover the

three levels (Level 1 to Level 3) of uncertainties that are supported by MoSH and TM-

Executor, more uncertainties at each level are still needed to generalize the results further.

Another external validity threat is that only one system was employed to evaluate TM-

Executor’s performance. However, diverse uncertainties, state invariants, guards,

operations were exploited by TM-Executor to test a real SH-CPS. Nonetheless, additional

case studies are needed to generalize the results further.

Construct validity threats refer to the degree to which the experiment setting (including

two metrics for the CMSU evaluation, seven metrics for MoSH and eight metrics for TM-

Executor evaluation) reflects the construct under study (i.e., the quality of CMSU, the cost-

effectiveness of MoSH and the performance of TM-Executor). To reduce the threats, we

carefully selected and defined the metrics focusing on our overall objective of testing SH-

CPSs under uncertainties. Another construct validity threat is that the levels of

uncertainties used in the evaluation were manually classified. To avoid incorrect

classification, we did the classification based on detailed product specifications.

Nevertheless, additional metrics and other ways of evaluation are also possible.

8 Related work
In this section, we discuss related work concerning fault-tolerant computing (Section 8.1),

the conceptual model of SH-CPSs and uncertainties (Section 8.2), modeling methods for

SH-CPSs (Section 8.3), and testing approaches for SH-CPSs under uncertainties (Section

8.4). Section 8.5 summarizes how our work advances state of the art.

8.1 Fault-Tolerant Computing

A self-healing system can perceive that it is not operating correctly and, without human

intervention, make necessary changes to its architecture or behaviors to restore itself to a

normal state [2]. Since the goal of self-healing is to make system fault-tolerant, self-

healing can be seen as a kind of fault-tolerant mechanism. However, not all fault-tolerant

mechanisms can be considered as self-healing behaviors, as many fault-tolerant

73

mechanisms can only mask faults and they cannot dynamically change a system’s

architecture or behaviors to recover the system from faults [3].

Fault-tolerance is defined as “the ability of a system to continuously perform its intended

functions in the presence of a given number of faults” [50]. A certain amount of

redundancy has to be applied to achieve fault-tolerance, including time redundancy,

information redundancy, hardware redundancy, and software redundancy [51]. In time

redundancy, computation or data transition is performed multiple times to overcome

transient faults. Information redundancy uses error-detection code or error-correction code

to detect or mask faulty information caused by incorrect storage or transition. For hardware

redundancy, computation is performed on several instances of hardware components

simultaneously. By comparing their outputs and voting on the result, the fault can be

detected and masked. Similarly, multi-version software fault-tolerance techniques employ

redundant software modules to mask faults. As the aforementioned fault-tolerance

techniques cannot make runtime adaptation that aims to restore normal system operations,

they are not regarded as self-healing behaviors. In contrast, single-version software fault-

tolerance techniques enable the software to detect faults, diagnose causes and prevent the

propagation of their effect throughout the system. Thus, the single version techniques can

be considered as a kind of self-healing behaviors, whereas traditional single version

techniques mainly rely on checkpoints and roll-backward or roll-forward to handle a

detected fault [52]. In contrast, the self-healing behaviors, targeted in this paper, can also

modify a system’s architecture or behaviors in case of faults. Thus, the term “self-healing”

is used in this paper to represent the new kind of fault-tolerant mechanisms.

8.2 Concepts of CPS, Self-Healing, and Uncertainty

After a decade’s effort, key elements of CPSs and self-healing systems have been

identified by academic and industrial communities. Zhang et al. [53] defined a CPS as a set

of heterogeneous physical units communicating via heterogeneous networks, where

physical units are recognized as the first-class objects of CPSs and networks are also

considered important, as they enable communication among physical units. Lee et al. [54]

considered sensors and actuator as interfaces between computational and physical

components. CPSs were characterized by integrating computation and physical processes

[55], and their primary goal is to control physical processes efficiently [56]. For self-

74

healing, fault diagnosis and recovery are identified as its key steps by Psaier et al. [57].

Kephart et al. [23] and White et al. [58] introduced and evaluated three types of recovery

policies, particularly for self-healing behaviors. Moreover, inspired by goal-oriented self-

healing approaches [59], the goal of self-healing behaviors is also captured. We adopted

these key concepts in the components of CPSs (Section 4.1) and self-healing behavior

(Section 4.2) parts of our conceptual model.

How to cope with uncertainty is a grand challenge [1]. In the past, the effort was mostly

spent on identifying uncertainty sources in SH-CPSs. Ramirez et al. [60] proposed a

taxonomy of uncertainty sources in dynamically adaptive systems at the requirement,

design, and execution phases. The uncertainty taxonomy is given from a system designer’s

perspective, and it aims to help the designer to mitigate the effect of uncertainties. On the

contrary, we define the uncertainty from a tester’s perspective, and we concern more about

how to specify uncertainties and simulate their effect based on the specified uncertainties.

Esfahani et al. [4] proposed another nine uncertainty sources, which need to be considered

during design for self-adaptive systems. Although this paper introduces probability and

possibility theories to model uncertainties, it does not identify the key elements, i.e.,

probability, possibility, and necessity, that are required to be specified for modeling

uncertainties. Zhang et al. [53] developed a conceptual model of uncertainty for CPSs. The

conceptual model captures three kinds of measure, i.e., vagueness, probability, and

ambiguity. However, the key elements of the three kinds of measure are not provided, such

as the universe and membership function. Alternatively, in the uncertainty part of the

conceptual model (Section 4.3), we captured the concepts of Universe, Category,

MembershipFunction, Probability, Possibility, and Necessity to specify uncertainty.

8.3 UML-based Modeling for SH-CPSs

To tackle the complexity of CPSs, researchers proposed to adopt model-based engineering

[61], which uses models to facilitate system design, development, verification, and

validation. Since a CPS is an integration of computation and physical processes, it is

typically modeled as a hybrid system, where physical processes are specified as continuous

models, and computation parts are defined as discrete models [62]. For physical processes,

several modeling tools can be used to specify the continuous models such as Simulink [63],

Modelica [64], and SystemC [65]. For the computational part, UML is the most broadly

75

used modeling language, and several UML profiles have been developed to extend UML

for modeling CPSs, fault-tolerant mechanisms, or testing components.

Systems Modeling Language (SysML) [6] reduces UML's software-centric restrictions

and adds new notations and diagram types to model a broad range of components,

including hardware, software, data, and physical entities. However, SysML still lacks

support from standards to be executable, and model transformation is needed to make

SysML models executable [66]. Since our work aims to realize an executable model-based

testing approach, the test model has to be executable. Thus, we chose to use fUML as the

starting point to build our solution. xUML [67] is another choice for creating executable

models. However, the semantics of modeling notations used by xUML are quite different

than UML. As fUML is more broadly used [68], we chose to use fUML in our work.

The profile of MARTE [7] adds capabilities to UML for model-driven development of

real-time embedded systems. Particularly, it concerns how to model analyses and designs

of real-time and embedded systems. We, however, aim to test if an SH-CPS can

successfully detect and recover from faults under uncertainties. To fulfill the aim, we

provide additional modeling support for self-healing behaviors and uncertainties. MARTE

provides the capability of specifying probability distributions regarding frequencies, but

not for modeling uncertainties due to incomplete or imprecise knowledge (Section 2.2).

For instance, the measurement noise of a GPS could be described as Low, Medium, and

High, but the boundaries of the three types are not precisely defined. In this case, testers

can apply membership functions, provided by our modeling framework (Section 5.3.1) to

specify the uncertainties associated with the measurement noise. Our modeling framework

also reused the probability distribution library from MARTE, as the library provides well-

defined datatypes for modeling distributions.

The profile of Dependability Analysis Modeling (DAM) [8] extends MARTE for

dependability modeling and analysis. Regarding self-healing behaviors, the profile

provides «DaReplacementStep» and «DaReallocationStep» to model replacement and

reallocation performed by software components to recover from faults. Besides

replacement and reallocation, SH-CPSs can also use runtime reconfiguration and

adaptations to handle detected faults, directed by different kinds of recovery policies. To

support modeling these fault recovery mechanisms (identified in Section 4.2.2), we provide

the SH-CPS Behaviors Profile and an accompanying modeling methodology in Section 5.2.

76

Modeling Quality Of Service And Fault-Tolerance Characteristics And Mechanisms

Profile (QFTP) [9] extends UML to model fault-tolerant software architecture. This profile

focuses on modeling the redundancy used by the fault-tolerant mechanisms, including

policies to create, deploy, monitor, and activate replicas, whereas it cannot be used to

model self-healing behaviors that do not rely on replicas to detect and recover from faults.

Alternatively, we identified three kinds of approaches for fault detection (Section 4.2.1)

and three kinds of fault recovery policies (Section 4.2.2) that are not specifically associated

with replicas. In Section 5.2, we provide the SH-CPS Behaviors Profile and a guideline to

apply the profile to model the logic of fault detection and recovery.

UTP v2 [29] provides dedicated modeling support for model-based testing. It covers a

variety of concepts that are deemed mandatory for testing, such as test-specific actions, test

data, and test verdicts. Our modeling framework reuses the stereotypes from the Test

Architecture and Test Behavior packages of UTP to specify testing components, as these

stereotypes are standardized and have been precisely defined by UTP.

8.4 Testing SH-CPSs Under Uncertainties

This section discusses existing approaches for testing self-healing behaviors (Section 8.4.1)

and for testing systems under uncertainties (Section 8.4.2).

8.4.1 Testing Self-Healing Behaviors
Fault injection is a straightforward method to test the recovery mechanisms of self-healing

systems. By introducing faults, self-healing behaviors can be exercised; otherwise, they are

rarely triggered. A fault model can be used to capture the faults that are to be handled by

self-healing systems. Gama et al. [42] proposed a fault model that captures five types of

faults (i.e., application hang, component crash, stale service, denial of service and

excessive thread allocation). According to the model, faults are introduced by deploying

and activating faulty Java Beans to trigger self-healing behaviors. Huebscher et al. [69]

proposed to use context models to simulate sensor data and use the simulated data to

trigger and evaluate self-healing behaviors. Similarly, Hänsel et al. [70] used a simulated

architecture model as input to test the feedback loop of a self-healing system.

These testing approaches focus on the methods to trigger self-healing behaviors, whereas

they do not provide solutions to determine when to trigger the behaviors. Alternatively, we

propose to build an executable test model capturing both functional and self-healing

77

behaviors, together with uncertainties. By executing the model and the system under test

together, TM-Executor can dynamically decide how to exercise the system’s self-healing

behaviors under uncertainties.

8.4.2 Testing Systems Under Uncertainties
Uncertainty in CPSs is still immature [5], whereas researchers have realized the

importance to verify and validate SH-CPSs under uncertainties [1, 4, 60, 71]. A model

checking approach has been proposed by Yang et al. [72] to formally verify the correctness

of self-adaptation in the presence of uncertainties. However, formal verification

approaches suffer from the scalability issue for realistic, complex systems [54, 73]. Besides

formal verification, another option is testing. Fredericks et al. [74] proposed a runtime

feedback loop (MAPE-T) to test adaptive systems under runtime uncertainty. Based on the

feedback loop, they developed a runtime testing framework [75] that dynamically adapts

test cases to ensure that a system continues to behave correctly in uncertain environmental

conditions. However, this work does not concern how to generate initial test cases and how

to exercise system behaviors. Alternatively, our testing approach uses an executable test

model to capture expected system behaviors. By executing the model together with the

system under test, we dynamically test the system against the model.

As it is expensive to test SH-CPSs in a real environment, simulation becomes necessary.

Ramirez et al. [76] proposed to use noisy values from sensors in simulations to find the

combinations of noises that can reveal faults, whereas this approach supports only three

types of uncertainty (i.e., static, periodic, and sporadic noises). Similarly, Minnerup et al.

[77] presented an error model to capture inaccuracies of actuators that are specific for

autonomous vehicles. Based on the error model, samples of inaccurate actuation are used

in simulations to test the vehicles under uncertainties. Compared with these two works, we

present a more general approach to support a broader range of uncertainties. Particularly,

we provide SH-CPS Uncertainty Profile (Section 5.3) to specify uncertainties. Based on

the specified uncertainties, TM-Executor can automatically introduce uncertainties into

interactions between SH-CPSs and their environments to enable uncertainty-aware testing.

Model-based testing is another enabler for uncertainty-aware testing. Zhang et al. [5, 78,

79] recently proposed a complete model-based approach for uncertainty-aware testing of

CPSs. In this approach, a system’s uncertain, expected behaviors are specified as UML

state machines, based on which test cases are generated and executed. However, the

78

approach is not suitable to be applied to test SH-CPSs. First, for SH-CPSs, generating test

cases offline is challenging, as it is difficult to predict runtime adaptations performed by

self-healing behaviors. Second, it is hard to determine coverage criteria and choose a

proper set of paths that have to be covered by test cases. Alternatively, MoSH provides the

modeling constructs and methodology to specify executable test models. With TM-

Executor, a specified test model can be executed together with the system under test.

Meanwhile, uncertainties specified in the model are automatically introduced into the

testing environment, allowing the system to be dynamically tested against the model in the

presence of uncertainties.

8.5 Summary

Our work advances state of the art in several ways. First, though some works define self-

healing concepts [2, 57] and uncertainty related concepts [27, 60], there is no single work

that jointly captures concepts of self-healing and uncertainty in the context of CPSs. To

this end, we present the conceptual model of SH-CPSs and uncertainties. It is built on the

literature [23, 53-56, 58, 80-82] to conceptualize self-healing behaviors of CPSs and

uncertainty together. Second, though there exist several modeling notations for defining

self-healing behaviors such as [8, 9]; however, none of them provide a complete modeling

solution to create the executable test model for testing SH-CPSs under uncertainties. Based

on existing standards, MoSH provides an integrated modeling solution to provide such

supports. Third, although there exist adaptive test strategies [75, 83] to test self-healing

behaviors, there is no evidence that such strategies can be adapted to test SH-CPSs in the

presence of environmental uncertainties. TM-Executor provides an integrated testing

environment for testing the SH-CPSs under uncertainties. Finally, we extend existing

model-based testing [5, 78, 79] to executable model-based testing that is underpinned by

MoSH and TM-Executor. The new approach can provide information about a system’s

actual behaviors, obtained from execution. The information can be used to effectively

detects faults, which has been demonstrated by our recently published work [12].

9 Conclusion and Future Work
Self-Healing Cyber-Physical Systems (SH-CPSs) have the built-in capability to detect and

recover from faults by themselves at runtime. Since such systems are often operated in

79

highly unpredictable environments and affected by various uncertainties, these systems are

required to deal with such uncertainties even during the process of fault diagnosis and

recovery. To effectively test the SH-CPSs under uncertainties, we proposed an executable

model-based testing approach. As the first step towards realizing the approach, we present

a Modeling Framework of SH-CPSs (MoSH) and a Test Model Executor (TM-Executor)

in this paper. They provide the modeling support and execution environment for the new

testing approach. MoSH and TM-Executor were evaluated with several SH-CPSs. Based

on the evaluation, we can conclude that 1) executable test models could be successfully

created with MoSH to capture expected behaviors and uncertainties for the selected

systems and 2) TM-Executor could dynamically test the systems against the models, by

executing them together. Information about the system’s actual behaviors can be obtained

from the execution. However, to fully leverage the information, dedicated testing strategies

have to be devised. On the one hand, the testing strategies should use the information to

learn the optimal sequence of test actions that have the highest chance to reveal a fault. On

the other hand, the information should be used to effectively find a sequence of uncertainty

values that can work together with the test actions to make the system fail. Regarding the

first aspect, we have devised a fragility-oriented strategy [12] to find the optimal

invocations. However, the uncertainty values currently are only randomly generated. Thus,

a more advanced uncertainty generation strategy is required to detect faults under

uncertainties. When the strategy is devised, the proposed executable model-based testing

approach can be fully realized, and we will perform an extensive empirical study to assess

the fault detection ability of the whole approach.

References
[1]. Bures, T., Weyns, D., Berger, C., Biffl, S., Daun, M., Gabor, T., Garlan, D.,

Gerostathopoulos, I., Julien, C., Krikava, F.: Software Engineering for Smart Cyber-

Physical Systems--Towards a Research Agenda: Report on the First International

Workshop on Software Engineering for Smart CPS. ACM SIGSOFT Software

Engineering Notes, vol.40, pp.28-32 (2015)

[2]. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems—survey

and synthesis. Decision Support Systems, vol.42, pp.2164-2185 (2007)

80

[3]. Rodosek, G.D., Geihs, K., Schmeck, H., Stiller, B.: Self-Healing Systems:

Foundations and Challenges. Self-Healing and Self-Adaptive Systems, Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

[4]. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. Software

Engineering for Self-Adaptive Systems II, pp. 214-238. Springer (2013)

[5]. Zhang, M., Ali, S., Yue, T., Norgren, R., Okariz, O.: Uncertainty-Wise Cyber-

Physical System test modeling. Software & Systems Modeling,

https://doi.org/10.1007/s10270-017-0609-6 (2017)

[6]. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: the systems

modeling language. Morgan Kaufmann (2014)

[7]. OMG: Profile for modeling and analysis of real-time and embedded systems

(MARTE). formal/2011-06-02 (2011)

[8]. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.

Software & Systems Modeling, vol.10, pp.313-336 (2011)

[9]. OMG: Profile for modeling quality of service and fault tolerance characteristics and

mechanisms. formal/2008-04-05 (2008)

[10]. OMG: Semantics Of A Foundational Subset For Executable UML Models V1.2.1.

formal/2016-01-05 (2016)

[11]. OMG: Precise Semantics Of UML State Machines (PSSM). 1.0 - Beta 1 (2017)

[12]. Ma, T., Ali, S., Yue, T., Elaasar, M.: Fragility-oriented testing with model execution

and reinforcement learning. In: IFIP International Conference on Testing Software

and Systems, pp. 3-20 (2017)

[13]. Holub, O., Hanzálek, Z.: Low-cost reconfigurable control system for small UAVs.

IEEE Transactions on Industrial Electronics, vol.58, pp.880-889 (2011)

[14]. Selic, B.: A systematic approach to domain-specific language design using UML. In:

Object and Component-Oriented Real-Time Distributed Computing, 2007.

ISORC'07. 10th IEEE International Symposium on, pp. 2-9 (2007)

[15]. Giachetti, G., Marín, B., Pastor, O.: Integration of domain-specific modelling

languages and UML through UML profile extension mechanism. IJCSA, vol.6,

pp.145-174 (2009)

[16]. do Nascimento, L.M., Viana, D.L., Neto, P.A.S., Martins, D.A., Garcia, V.C., Meira,

S.R.: A systematic mapping study on domain-specific languages. In: Proceedings of

81

the 7th International Conference on Software Engineering Advances (ICSEA’12),

pp. 179-187 (2012)

[17]. Robert, S., Gérard, S., Terrier, F., Lagarde, F.: A lightweight approach for domain-

specific modeling languages design. In: Software Engineering and Advanced

Applications, 2009. SEAA'09. 35th Euromicro Conference on, pp. 155-161 (2009)

[18]. Ma, T., Ali, S., Yue, T.: Modeling Healing Behaviors of Cyber-Physical Systems

with Uncertainty to Support Automated Testing. Simula Research Lab (2016)

[19]. Blanke, M., Schröder, J.: Diagnosis and fault-tolerant control. Springer (2006)

[20]. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of

process fault detection and diagnosis: Part I: Quantitative model-based methods.

Computers & chemical engineering, vol.27, pp.293-311 (2003)

[21]. Siripongwutikorn, P., Banerjee, S., Tipper, D.: A survey of adaptive bandwidth

control algorithms. Communications Surveys & Tutorials, IEEE, vol.5, pp.14-26

(2003)

[22]. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In:

Proceedings of the first workshop on Self-healing systems, pp. 27-32 (2002)

[23]. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic

computing policies. In: Policies for Distributed Systems and Networks, 2004.

POLICY 2004. Proceedings. Fifth IEEE International Workshop on, pp. 3-12 (2004)

[24]. Koutsoumpas, V.: A model-based approach for the specification of a virtual power

plant operating in open context. In: Proceedings of the First International Workshop

on Software Engineering for Smart Cyber-Physical Systems, pp. 26-32 (2015)

[25]. Simmonds, J., Ben-David, S., Chechik, M.: Monitoring and recovery of web service

applications. The smart internet, pp. 250-288. Springer (2010)

[26]. Cheng, S.-W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the

presence of multiple objectives. In: Proceedings of the 2006 international workshop

on Self-adaptation and self-managing systems, pp. 2-8 (2006)

[27]. Walker, W.E., Lempert, R.J., Kwakkel, J.H.: Deep uncertainty. Encyclopedia of

operations research and management science, pp. 395-402. Springer (2013)

[28]. Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of

uncertainty. Springer Science & Business Media (2012)

[29]. OMG: UML Testing Profile. ptc/17-09-29 (2017)

82

[30]. OMG: Unified Modeling Language V2.5. formal/15-03-01 (2015)

[31]. (OMG), O.M.G.: Concrete Syntax For A UML Action Language: Action Language

For Foundational UML (ALF). (2013)

[32]. Sivanandam, S., Sumathi, S., Deepa, S.: Introduction to fuzzy logic using MATLAB.

Springer (2007)

[33]. Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H.,

Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D.: Functional mockup interface

2.0: The standard for tool independent exchange of simulation models. In:

Proceedings of the 9th International MODELICA Conference, pp. 173-184 (2012)

[34]. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P.,

Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset

for MDA. In: Proc. of the Fifth European Conference on Model-Driven Architecture

Foundations and Applications (ECMDA-FA 2009), pp. 1-4 (2009)

[35]. Tatibouet, J.: Moka – A simulation platform for Papyrus based on OMG

specifications for executable UML. In: EclipseCon, (2016)

[36]. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL

constraints with search techniques. IEEE Transactions on software engineering,

vol.39, pp.1376-1402 (2013)

[37]. Dubois, D., Prade, H., Sandri, S.: On possibility/probability transformations. Fuzzy

logic, pp. 103-112. Springer (1993)

[38]. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter,

M.: Determinate composition of FMUs for co-simulation. In: Proceedings of the

Eleventh ACM International Conference on Embedded Software, pp. 2 (2013)

[39]. Cellier, F.E., Kofman, E.: Continuous system simulation. Springer Science &

Business Media (2006)

[40]. Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior using aspect-

oriented modeling to support robustness testing of industrial systems. Software &

Systems Modeling, vol.11, pp.633-670 (2012)

[41]. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in

self-adaptive systems. In: Proceedings of the 6th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, pp. 202-207 (2011)

83

[42]. Gama, K., Donsez, D.: Deployment and activation of faulty components at runtime

for testing self-recovery mechanisms. ACM SIGAPP Applied Computing Review,

vol.14, pp.44-54 (2014)

[43]. Cioara, T., Anghel, I., Salomie, I., Dinsoreanu, M., Copil, G., Moldovan, D.: A

reinforcement learning based self-healing algorithm for managing context adaptation.

In: Proceedings of the 12th International Conference on Information Integration and

Web-based Applications & Services, pp. 859-862 (2010)

[44]. Park, J., Lee, S., Yoon, T., Kim, J.M.: An autonomic control system for high-reliable

CPS. Cluster Computing, vol.18, pp.587-598 (2015)

[45]. Staszesky, D., Craig, D., Befus, C.: Advanced feeder automation is here. IEEE

Power and Energy Magazine, vol.3, pp.56-63 (2005)

[46]. Lu, X.-Y., Varaiya, P., Horowitz, R., Palen, J.: Faulty loop data analysis/correction

and loop fault detection. In: 15th World Congress on Intelligent Transport Systems

and ITS America's 2008 Annual Meeting, (2008)

[47]. Ryu, B.-H., Jeon, D., Kim, D.-H.: A Robust Video Streaming Based on Primary-

Shadow Fault-Tolerance Mechanism. In: International Conference on Ubiquitous

Computing and Multimedia Applications, pp. 66-75 (2011)

[48]. Yue, T., Ali, S.: Empirically evaluating OCL and Java for specifying constraints on

UML models. Software & Systems Modeling, vol.15, pp.757-781 (2016)

[49]. Veanes, M., Roy, P., Campbell, C.: Online testing with reinforcement learning.

Formal Approaches to Software Testing and Runtime Verification, pp.240-253

(2006)

[50]. Nelson, V.P.: Fault-tolerant computing: Fundamental concepts. Computer, vol.23,

pp.19-25 (1990)

[51]. Dunrova, E.: Fault Tolerant Design: An Introduction. Department of

Microelectronics and Information Technology, Royal Institute of Technology,

Stockholm, Sweden, (2008)

[52]. Torres-Pomales, W.: Software fault tolerance: A tutorial. NASA Langley Research

Center; Hampton, VA United States (2000)

[53]. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding

Uncertainty in Cyber-Physical Systems: A Conceptual Model. In: Modelling

Foundations and Applications: 12th European Conference, ECMFA (2015)

84

[54]. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical

systems approach. Lee & Seshia (2011)

[55]. Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: Wireless

Communications and Signal Processing (WCSP), 2011 International Conference on,

pp. 1-6 (2011)

[56]. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber–physical system security for the

electric power grid. Proceedings of the IEEE, vol.100, pp.210-224 (2012)

[57]. Psaier, H., Dustdar, S.: A survey on self-healing systems: approaches and systems.

Computing, vol.91, pp.43-73 (2011)

[58]. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural

approach to autonomic computing. In: null, pp. 2-9 (2004)

[59]. Morandini, M., Penserini, L., Perini, A.: Automated mapping from goal models to

self-adaptive systems. In: Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, pp. 485-486 (2008)

[60]. Ramirez, A.J., Jensen, A.C., Cheng, B.H.: A taxonomy of uncertainty for

dynamically adaptive systems. In: ICSE Workshop on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS) pp. 99-108 (2012)

[61]. Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: An

emerging approach for modern systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol.42, pp.101-111 (2012)

[62]. Derler, P., Lee, E., Vincentelli, A.S.: Modeling cyber–physical systems. Proceedings

of the IEEE, vol.100, pp.13-28 (2012)

[63]. Dabney, J.B., Harman, T.L.: Mastering simulink. Pearson/Prentice Hall (2004)

[64]. Fritzson, P., Aronsson, P., Pop, A., Lundvall, H., Nystrom, K., Saldamli, L., Broman,

D., Sandholm, A.: OpenModelica-A free open-source environment for system

modeling, simulation, and teaching. In: IEEE International Symposium on

Computer-Aided Control Systems Design, pp. 1588-1595 (2006)

[65]. Black, D.C., Donovan, J., Bunton, B., Keist, A.: SystemC: From the ground up.

Springer Science & Business Media (2011)

[66]. Fritzson, P., Rouquette, N.F., Schamai, W.: An Overview of the SysML-Modelica

Transformation Specification. (2010)

[67]. Carter, K.: Executable UML (xUML). (2007)

85

[68]. Mayerhofer, T.: Testing and debugging UML models based on fUML. In: Software

Engineering (ICSE), 2012 34th International Conference on, pp. 1579-1582 (2012)

[69]. Huebscher, M.C., McCann, J.A.: Simulation model for self-adaptive applications in

pervasive computing. In: Database and Expert Systems Applications, 2004.

Proceedings. 15th International Workshop on, pp. 694-698 (2004)

[70]. Hänsel, J., Vogel, T., Giese, H.: A Testing Scheme for Self-Adaptive Software

Systems with Architectural Runtime Models. In: Self-Adaptive and Self-Organizing

Systems Workshops (SASOW), 2015 IEEE International Conference on, pp. 134-

139 (2015)

[71]. Ali, S., Lu, H., Wang, S., Yue, T., Zhang, M.: Uncertainty-Wise Testing of Cyber-

Physical Systems. Advances in Computers, vol. 107, pp. 23-94. Elsevier (2017)

[72]. Yang, W., Xu, C., Liu, Y., Cao, C., Ma, X., Lu, J.: Verifying self-adaptive

applications suffering uncertainty. In: Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering, pp. 199-210 (2014)

[73]. Zheng, X., Julien, C., Kim, M., Khurshid, S.: On the state of the art in verification

and validation in cyber physical systems. The University of Texas at Austin, The

Center for Advanced Research in Software Engineering, Tech. Rep. TR-ARiSE-

2014-001, vol.1485, (2014)

[74]. Fredericks, E.M., Ramirez, A.J., Cheng, B.H.: Towards run-time testing of dynamic

adaptive systems. In: Proceedings of the 8th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, pp. 169-174 (2013)

[75]. Fredericks, E.M., Cheng, B.H.: Automated generation of adaptive test plans for self-

adaptive systems. In: Appear in Proceedings of 10th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems. SEAMS, pp. 157-

168 (2015)

[76]. Ramirez, A.J., Jensen, A.C., Cheng, B.H., Knoester, D.B.: Automatically exploring

how uncertainty impacts behavior of dynamically adaptive systems. In: Proceedings

of the 2011 26th IEEE/ACM International Conference on Automated Software

Engineering, pp. 568-571 (2011)

[77]. Minnerup, P., Knoll, A.: Testing Automated Vehicles against Actuator Inaccuracies

in a Large State Space. IFAC-PapersOnLine, vol.49, pp.38-43 (2016)

86

[78]. Zhang, M., Li, Y., Ali, S., Yue, T.: Uncertainty-Wise and Time-Aware Test Case

Prioritization with Multi-Objective Search. Technical Report, 2017-03, Simula

Research Lab, Norway (2017) https://www.simula.no/publications/uncertainty-wise-

and-time-aware-test-case-prioritization-multi-objective-search

[79]. Zhang, M., Ali, S., Yue, T.: Uncertainty-wise Test Case Generation and

Minimization for Cyber-Physical Systems: A Multi-Objective Search-based

Approach. Technical Report 2016-13, Simula Research Lab, Norway (2017)

https://www.simula.no/publications/uncertainty-based-test-case-generation-and-

minimization-cyber-physical-systems-multi

[80]. NSF: Cyber Physical Systems. NSF 14-542 (2014)

[81]. Kim, K.-D., Kumar, P.R.: Cyber–physical systems: A perspective at the centennial.

Proceedings of the IEEE, vol.100, pp.1287-1308 (2012)

[82]. Avižienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy

of dependable and secure computing. Dependable and Secure Computing, IEEE

Transactions on, vol.1, pp.11-33 (2004)

[83]. Lahami, M., Krichen, M., Jmaiel, M.: Safe and efficient runtime testing framework

applied in dynamic and distributed systems. Science of Computer Programming,

vol.122, pp.1-28 (2016)

87

Appendix A. Execution Process of an Executable Test

Model
This appendix presents an activity diagram to illustrate the execution process of an

executable test model.

Figure 23 Execution Process of an Executable Test Model

88

Appendix B. Extensions to fUML and PSSM
To facilitate executable model-based testing, we made several extensions to fUML and

PSSM, and they are summarized below.
Table 14 Summary of the Extensions to fUML and PSSM

Extension UML Metaclass Execution Model Element Execution Semantics
Extensions for

stereotypes
Operation

stereotyped with
«CreateStimulus

Action»

CreateStimulusAction
Execution

Invoke the testing interface
corresponding to the URI defined
in the opaque behavior of the
operation, taking input parameter
values as inputs.

Operation
stereotyped with
«CheckProperty

Action»

CheckPropertyAction
Execution

Invoke the testing interface
corresponding to the URI defined
in the opaque behavior of the
operation. Update attributes
values using the outputs of the
testing interface.

Extensions for
additional

metaclasses

BroadcastSignal
Action

BroadcastSignalAction
Activation

Construct a signal using the
values from argument pins and
send the signal to all objects that
are associated with the object
from the source pin.

ChangeEvent ChangeEventOccurrence The change expression of the
change event is evaluated,
whenever related attributes’
values are updated. If the change
expression becomes true, the
change event occurs.

Extensions to
existing

semantics

State StateActivation Besides the semantics defined in
PSSM, when the state is entered,
the invariant of the state is
registered to the Constraint
Checker.

ExternalTransition ExternalTransitionActivation Besides the semantics defined in
PSSM, the target state of the
transition can only be entered
when the target state’s invariant
becomes true.

LocalTransition LocalTransitionActivation
InternalTransition InternalTransitionActivation

Extensions to
OpaqueAction

OpaqueAction InputTestAPIInvocation
Activation

Invoke the testing interface,
whose URI is specified in the
opaque expression of the
OpaqueAction, taking the values
from its input pins as input.

OutputTestAPIInvocation
Activation

Invoke the testing interface,
whose URI is specified in the
opaque expression of the
OpaqueAction. Parse the result
returned by the interface and
emits the parsed result via its
output pins.

ShellAction
Activation

Execute a shell command or an
executable shell file, whose
location is specified in the opaque
expression of the OpaqueAction.

89

Paper B

Testing Self-Healing Cyber-Physical
Systems under Uncertainty: A Fragility-

Oriented Approach

Tao Ma, Shaukat Ali, Tao Yue, and Maged Elaasar

Software Quality Journal (SQJ). DOI: 10.1007/s11219-018-9437-3

90

Abstract
As an essential feature of smart Cyber-Physical Systems (CPSs), self-healing behaviors

play a major role in maintaining the normality of CPSs in the presence of faults and

uncertainties. It is important to test whether self-healing behaviors can correctly heal faults

under uncertainties to ensure their reliability. However, the autonomy of self-healing

behaviors and impact of uncertainties make it challenging to conduct such testing. To this

end, we devise a fragility-oriented testing approach, which is comprised of two novel

algorithms: Fragility-Oriented Testing (FOT) and Uncertainty Policy Optimization (UPO).

The two algorithms utilize the fragility, obtained from test executions, to learn the optimal

policies for invoking operations and introducing uncertainties respectively, to effectively

detect faults. We evaluated their performance by comparing them against a Coverage-

Oriented Testing (COT) algorithm and a random uncertainty generation method (R). The

evaluation results showed that the fault detection ability of FOT+UPO was significantly

higher than the ones of FOT+R, COT+UPO, and COT+R, in 73 out of 81 cases. In the 73

cases, FOT+UPO detected more than 70% of faults, while the others detected 17% of

faults, at the most.

Keywords Cyber-Physical Systems, Uncertainty, Self-Healing, Model Execution,

Reinforcement Learning

1 Introduction
The integration of computation, communication, and control awards Cyber-Physical

Systems (CPSs) with a higher level of intelligence, which enables them to autonomously

adapt and optimize their behavior at runtime [1]. One of such autonomous characteristics is

self-healing, which endows CPSs with the ability to detect fault occurrences, diagnose

causes and recover. We refer to this kind of CPSs as Self-Healing CPSs (SH-CPSs).

Besides recuperation, the self-healing behaviors of SH-CPSs have to deal with

uncertainty gracefully. Due to intimate coupling between the cyber and physical

components, SH-CPSs are usually affected by various uncertainties. By uncertainty, we

mean “the lack of knowledge of which value an uncertain factor will take at a given point

91

in time during execution” [2]. In this paper, we limit our scope to environmental

uncertainty, namely measurement uncertainties from sensors and actuation deviations from

actuators.

Since self-healing behaviors play a key role in securing CPSs’ normal functionality, it is

important to check the correctness of self-healing behaviors in the presence of uncertainty.

However, achieving this task is non-trivial. Although formal verification can rigorously

prove the correctness, these technologies are still not applicable to large-scale applications,

due to high computational complexity particularly when many uncertainties need to be

considered [3]. Testing is another option. However, at the current stage, the state of

practice of testing CPSs is an ad hoc, trial and error testing approach, which cannot provide

sufficient rigor in fault detection [4]. For the state of art of testing CPSs, coverage-oriented

structural testing is dominating [5]. However, the high dimension of CPSs’ behaviors, the

tight integration of cyber and physical components, and the unpredictable operational

environment make the space of CPSs’ behaviors extremely large. It is difficult to find

faults in such huge space by just randomly searching or trying out each possibility. Note

that there are two kinds of faults: flaws in the SH-CPS under test (SUT) and faults targeted

by self-healing behaviors. Except particular explanation, a fault in the following

paragraphs refers to a flaw instead of a fault injected for testing self-healing behaviors.

To overcome the limitations of existing methods, we propose a fragility-oriented

approach. In this approach, we try to identify how likely the SUT is going to fail in a given

state, i.e., the fragility of the SUT. The fragility is used as a heuristic to guide the testing

process to spend more testing effort on the fragile states so that faults can be more

effectively detected.

To detect faults in the SUT under uncertainty, we have to apply fragility to select two

kinds of inputs. The first is operation invocation, which controls the behavior performed by

the SUT. Invoking different operations or calling the same set of operations with different

orders may both lead to distinct system states. The second is uncertainty values. They

define the uncertainty-introduced environment, where the SUT is executed. Both operation

invocations and uncertainty values need to be cautiously selected to find the most fragile

state, and detect faults.

For operation invocation, we have devised a Fragility-Oriented Testing (FOT) algorithm.

It employs a reinforcement learning approach to find the optimal sequence of operation

92

invocations concerning fault revelation. Regarding the generation of uncertainty values, we

proposed a distribution based generation method in our previous work [6]. In this method,

the variation of each uncertainty is expressed as a probability or possibility distribution.

Based on the distribution, uncertainty values are generated. Since this method merely

derives uncertainty values from fixed distributions, without utilizing any heuristic, it is

suboptimal regarding the effectiveness of generating uncertainties for fault revelation.

To overcome this weakness, we present an Uncertainty Policy Optimization (UPO)

algorithm in this paper. The algorithm uses a parameterized policy to address the

uncertainty generation problem. The policy takes state variable values of the SUT as input.

Based on the values, the policy decides the uncertainty values that should be introduced for

the current state to increase the fragility of the SUT. Directed by the fragility obtained from

executions, the UPO algorithm gradually optimizes the policy in terms of the fragility of

the SUT that can be achieved by following the policy. In such way, the UPO algorithm

manages to effectively find a sequence of uncertainty values that can work together with a

sequence of operation invocations to reveal a fault.

We compared the performance of UPO and FOT against Coverage-Oriented Testing

(COT) [7] and the random uncertainty generation method (R) by applying them to test nine

self-healing behaviors of three real-world case studies. Each self-healing behavior was

tested under eight uncertainties, with three settings of time budgets and three ranges of

uncertainty variation. In total, 81 testing jobs (nine self-healing behaviors × three testing

times × three uncertainty scales) were accomplished by each testing approach. The

experiment results showed that the fault detection ability of FOT+UPO is significantly

higher than the ones of FOT+R, COT+UPO, and COT+R, in 73 out of 81 cases. In the 73

cases, FOT+UPO detected more than 70% of faults, while merely less than 17% of faults

were detected by the other three approaches.

This paper is an extension of our previous conference paper [6]. The new contributions

of this paper are: 1) The Fragility Oriented Testing (FOT) algorithm has been improved

with the ability to detect multiple faults. 2) A new fragility-oriented algorithm —

Uncertainty Policy Optimization (UPO) has been devised for uncertainty generation. 3)

The performances of the two algorithms have been evaluated by comparing the numbers

and percentages of detected faults of four testing approaches, using nine self-healing

behaviors from three case studies.

93

We organize the paper as follows. Section 2.5 presents the background, followed by a

running example given in Section 3. Section 4 presents an overview of the fragility-

oriented testing approach. Section 5 and Section 6 present the FOT and UPO algorithms

respectively. Section 7 illustrates the implementation. Section 8 presents the evaluation,

Section 9 summarizes related work, and Section 10 concludes the paper.

2 Background
The proposed fragility-oriented testing approach is devised based on two fundamental

techniques. One is model execution and the other is reinforcement learning. This section

introduces two kinds of models used in the approach —Executable Test Model (ETM) and

Dynamic Flat State Machine (DFSM) in Section 2.1 and Section 2.2, respectively. Section

2.3 summarizes a test model execution framework – TM-Executor. Section 2.4 describes

the general idea of reinforcement learning and Section 2.5 explains how to use an Artificial

Neural Network (ANN) to facilitate reinforcement learning.

2.1 Executable Test Model (ETM)

A CPS can be seen as a set of networked physical units, working together to monitor and

control physical processes. A physical unit can be further decomposed into sensors,

actuators, and controllers. A controller monitors and controls physical processes via

sensors and actuators, which are functional behaviors. As a specific type of CPSs, SH-

CPSs can monitor fault occurrences and adapt its behavior to self-healing behaviors when

a fault occurs. As the objective of a self-healing behavior is to restore functional behaviors,

both expected functional, and self-healing behaviors need to be captured for testing.

Previously, we proposed a UML-based modeling framework, called MoSH [2], which

allows creating an ETM for the SH-CPS Under Test (SUT). The ETM consists of a set of

UML state machines annotated with dedicated stereotypes from the MoSH profiles.

The set of state machines captures expected functional and self-healing behaviors of the

SUT: 𝑆𝑀	 = 	 {𝑠𝑚", … , 𝑠𝑚$, … , 𝑠𝑚%}, where MoSH stereotypes are applied to annotate

the states in state machines. A 𝑠𝑚$ has a set of states 𝑆&'7 	=

{𝑠&'7", … , 𝑠&'7(, … , 𝑠&'7&}	and transitions 𝑇&'7 =	 {𝑡&'7", … , 𝑡&'7) , … , 𝑡&'7*}. A state 𝑠&'7(

94

(𝑠&'7(∈ 𝑆&'7) is defined by a state invariant 𝑂&'7(, which is specified as an OCL14

constraint, constraining one or more state variables. When 𝑠&'7(is active, its corresponding

state invariant has to be satisfied. A transition 𝑡&'7) (𝑡&'7) ∈ 𝑇&'7) is defined as a tuple

𝑡 ≔ 	 (𝑠&+, , 𝑠*-+ , 𝑜𝑝, 𝑔), where 𝑠&+, and 𝑠*-+ are the source and target states of 𝑡, 𝑜𝑝 denotes

an operation call event that can trigger the transition15 and the operation represents a

testing interface used to control the SUT. 𝑔 signifies the transition’s guard, an OCL

constraint. It restricts input parameter values that can be used to invoke the operation for

firing the transition. By conforming to the fUML16 and Precise Semantics Of UML State

Machines (PSSM)17 standards, the specified state machines are executable. Thus, the test

model is called an ETM.

2.2 Dynamic Flat State Machine (DFSM)

Test execution with concurrent and hierarchical state machines is computationally

expensive and complex. Since statically flattening state machines may lead to state

explosion, we implemented an algorithm to dynamically and incrementally flatten UML

state machines into a Dynamic Flat State Machine (DFSM) during test execution. A DFSM

has a set of states 𝕊 = 	 {𝕤", 𝕤., … , 𝕤/ … , 𝕤0} and a set of transitions 𝕋 =

{𝕥", 𝕥., … , 𝕥1 	… 𝕥2}. Each state 𝕤/in	𝕊 is constituted by states from each 𝑠𝑚$, denoted as

𝕤/ = 𝑠&'83⋀𝑠&'94⋀	…⋀𝑠&':5 . Accordingly, the conjunction of all constituents’ state

invariants [𝑜&'83; 	⋀	𝑜&'94; 	⋀…⋀	𝑜&':5;] forms the state invariant of 𝕤/, denoted as 𝕠/;.

Meanwhile, the set of transitions connecting the DFSM states is captured by 𝕋. In the test

model, the interactions among different state machines are modeled by transitions with

effects of sending signals [2]. When such a transition is triggered, it sends signals that

activate the transitions in other state machines. The set of activated transitions are

represented by the initially triggered transition in the flattened state machine. Consequently,

each transition 𝕥1 belonging to 	𝕋 is uniquely mapped to a transition 𝑡&'<* in a state

machine 𝑠𝑚3, expressed as 𝕥1 = 𝑡&'<*. While the Executable Test Model (ETM) is being

14 http://www.omg.org/spec/OCL/2.4
15 Though call, change and signal event occurrences can all be triggers to model expected behaviors, only transitions having call

event occurrences as triggers can be activated from the outside. A change event or a signal event is only for the SUT’s internal
behaviors, which cannot be controlled for testing.

16 http://www.omg.org/spec/FUML/1.2.1
17 http://www.omg.org/spec/PSSM/1.0/Beta1

95

executed, the DFSM is dynamically constructed. The Fragility Oriented Testing (FOT)

algorithm uses the DFSM to learn the value of firing each transition and find the optimal

transition selection policy to effectively find faults. Thus, we mainly use DFSM in the

following paragraphs.

2.3 Test Model Execution Framework

We developed a testing framework called TM-Executor in our previous work [2]. By

executing the test model and the SUT at the same time, the framework can dynamically

test the SUT against the model. Fig. 1 presents the execution process. According to the

execution semantics of UML state machines, TM-Executor executes the test model, i.e., a

set of UML state machines (S1). During the execution, TM-Executor dynamically and

incrementally derives a DFSM from the set of state machines (S2). The DFSM points out

the candidate transitions that can be triggered to drive the execution of the model. Directed

by an operation invocation policy, TM-Executor selects a transition and generates an

operation invocation to trigger the transition (S3 ~ S7). As aforementioned, a transition’s

trigger 𝑜𝑝 and guard 𝑔 specify the operation and the parameter values to be used to trigger

the transition. While an operation is invoked, an operation call event is generated, which

drives the execution of the test model. Meanwhile, the operation is executed to call a

corresponding testing interface, which makes the SUT enter the next state.

Two kinds of testing interfaces can be specified as a transition’s trigger 𝑜𝑝. One is

functional control operation, which instructs the SUT to execute a nominal functional

operation. Another is fault injection operation, which introduces a fault in the SUT, based

on which, TM-Executor controls when and which faults to be injected to the SUT to trigger

its self-healing behaviors.

Fig. 1 Test Execution Process

96

On the other hand, TM-Executor uses an uncertainty generation policy to generate the

uncertainty values and introduces the uncertainty values into the SUT to test the system

under uncertainty (S8 ~ S10). Via testing interfaces, state variable values are queried from

the SUT and used by TM-Executor to evaluate state invariants of the active state (S11). If

an invariant is evaluated false, it means that the SUT fails to behave consistently with the

ETM and a fault is detected.

2.4 Reinforcement Learning

To effectively detect faults in SH-CPSs under uncertainty, we aim to find the optimal

policy for invoking operations and introducing uncertainties. The policy helps us find the

sequence of operation invocations together with the sequence of uncertainty values that can

reveal faults. Finding such optimal policies is exactly the goal of reinforcement learning,

an automatic approach to learning the optimal policy from interactions [8]. Consequently,

we devise two reinforcement learning based algorithms to facilitate testing SH-CPSs under

uncertainty.

Fig. 2 presents the general idea of reinforcement learning in the context of testing. The

reinforcement-learning algorithm directs a testing agent to take testing actions on the SUT,

with the aim of maximizing the possibility for the SUT to fail, i.e., maximizing the

likelihood to detect faults. The agent tests the SUT in discrete time steps. At each time step

t, the agent uses testing interfaces to obtain the state of the SUT St, represented as a

collection of state variables. After that, it selects a testing action At from the set of

available actions in state St. Caused by the action, the state of the SUT changes from St to

St+1. The agent evaluates Ft+1 — the likelihood that the SUT is to fail in St+1, which is

defined as fragility in this paper. Taking the fragility as a heuristic, the reinforcement

algorithm continuously adjusts the agent’s action selection policy to achieve the highest

fragility and effectively detect faults.

Fig. 2 Testing with Reinforcement Learning [8]

97

2.5 Artificial Neural Network

The policy used in the reinforcement learning can be saved in two ways. One is tabular

form, which explicitly specifies the probability to take action in a given state. However,

when the number of potential states or the number of valid actions becomes huge, it is

intractable to store the probability for each pair of state and action. In this case, the policy

has to be stored in an approximate form. One well-known form is Artificial Neural

Network (ANN) [9], which has been successfully applied together with reinforcement

learning in many algorithms [10, 11].

An ANN consists of layers of interconnected neurons, as shown in Fig. 3. The first layer

is an input layer. Each neuron in the input layer represents one dimension of the input

space, and the activity of these neurons is just outputting the value of the corresponding

dimension. Via weighted connections, the value is scaled by the weights of connections

and transited to the neurons in the next layer, which is called the hidden layer. The neurons

in the hidden layer called hidden neurons, add a bias to the sum of received values. After

that, they input the result to an activation function and send the output of this function to

all their successors. The values pass through the network in this way until reaching the last

layer, the output layer. The neurons in the output layer are called output neurons. The

activity of output neurons is the same with hidden neurons, except that the output neurons

use an output function instead of the activation function to calculate the final outputs.

Via the network structure, the ANN can compactly save the mapping relations between

inputs and outputs. In the context of reinforcement learning-based testing, the input is the

state of the SUT, and the output is the testing action to be performed in that state. However,

this benefit of applying ANN is at the cost of lower accuracy. Since it is almost infeasible

to train an ANN with 100% accuracy [9], an estimation error will be introduced when the

ANN instead of a tabular form is used to estimate the output for a given input. Also,

training an ANN is computationally expensive. Compared with tabular form, applying

ANN to save the policy for reinforcement learning requires more computational resources,

and it takes an extra amount of time to train the ANN [8].

In this paper, we divide the testing task into two sub-tasks. One is responsible for

selecting operation invocations, and the other takes charge of introducing uncertainties. For

the first sub-task, the test model specifies the valid operation invocations for each state.

When introducing uncertainties, each uncertainty can arbitrarily take any value within its

98

variation range. Therefore, the search space of the second sub-task is significantly larger

than the one of the first sub-task. Due to this reason, we devise a tabular form based

algorithm for the first sub-task and apply ANN to address the second sub-task.

Fig. 3 Example of Artificial Neural Network

3 Running Example
We use an Unmanned Aerial Vehicle control system (ArduCopter18) as a running example

to illustrate the problem of testing SH-CPS under uncertainty. Fig. 4 presents a UML class

diagram, which captures a simplified architecture of the system. In the diagram, each class

represents a sensor, actuator, controller or physical unit, accessible state variables are

specified as class attributes, and the operations capture available testing interfaces.

As shown in Fig. 4, ArduCopter has two physical units, i.e., Copter and Ground Control

Station (GCS). With the GCS, users remotely control the Copter using some flight modes.

During the flight, the Copter is constantly affected by environmental uncertainties such as

measurements bias from the GPS. The uncertainties are specified via the «Uncertainty»

stereotype, provided in MoSH profile [2]. An example is shown in the upper right corner

of Fig. 4. The stereotype attribute universe specifies the variation range of the uncertainty,

and measure defines the uncertainty’s probability distribution. For the uncertainty posBias,

i.e., the measurement bias of position, its variation range is between -2.5 and 2.5, and the

value of the uncertainty follows a normal distribution with mean 0 and variance 0.9. These

are specified based on the product specification of the GPS.

Based on the class diagram, the expected behaviors of the classes are specified as an

ETM (shown in Fig. 11 in Appendix). The ETM captures both functional and self-healing

behaviors. The functional behaviors such as FlightControlBehavior and ADSBBehavior,

18 http://ardupilot.org/copter/

99

specify how the system should behave when an operation is invoked, and the self-healing

behaviors specify how a fault is to be healed.

Fig. 4 Simplified Architecture of ArduCopter

CollisionAvoidance is one of the self-healing behaviors. Due to improper flight control

(operational fault), the copter may approach another aircraft. In such case, the copter

automatically adapts the velocity and orientation (i.e., the angles of rotations in roll, pitch,

and yaw) of the flight to avoid a collision.

Fig. 5 presents a partial simplified DFSM corresponding to the ETM for ArduCopter.

We take one path (bold transitions in Fig. 4: 𝕥1à	𝕥2à	𝕥3à	𝕥4à	𝕥11à	𝕥12à	𝕥19à	𝕥21)

to explain test execution.

Starting from the Initial state, the DFSM directly enters Stopped, as no trigger is

required to enter the first state. From Stopped, TM-Executor fires 𝕥2 by calling the

functional control operation arm to launch the Copter. As a result, Started becomes active.

To make the system enter state Lift, TM-Executor invokes operation throttle with a valid

value of input parameter t obtained by solving guard constraint [t > 1500 and t < 2000] via

constraint solver EsOCL [12]. Then, the Copter takes off and reaches the Lift state. In the

Lift state, TM-Executor invokes throttle with t = 1500. This invocation triggers the Copter

100

to hover above the ground. In the Hovering state, TM-Executor either changes the Copter’s

movement (i.e., firing 𝕥5, 𝕥7, or 𝕥19) or invokes the fault injection operation setThreat,

which simulates that an aircraft is approaching from the left behind of the Copter to trigger

the collision avoidance behavior. Assume the second option is adopted. Triggered by this,

the collision avoidance behavior controls the Copter to fly away from the approaching

aircraft. When the distance between them (threatDis) is over 1000 meters (not shown in

Fig. 5), the collision threat is avoided and the Copter’s flight mode changes back to the

previous one. Hence, 𝕥12 is traversed 19 . Then TM-Executor chooses to trigger 𝕥19 ,

followed by firing 𝕥21, to stimulate the copter to pass through the Landing state and

reaches the final state.

Fig. 5 Simplified Partial DFSM for ArduCopter

In addition to operation invocations, a sequence of uncertainty values is required to

execute ArduCopter under uncertainty. Since the control loop frequency of the copter is

400 Hz, the copter’s controller reads sensor data and outputs actuation commands every

2.5 milliseconds. Each reading and controlling is potentially affected by uncertainties like

measurement noise from the GPS and actuation deviation from the motor. Therefore, every

2.5 milliseconds, the value of each uncertainty has to be generated and be used to impact

the copter’s sensing or actuating to simulate the effect of uncertainties.

In parallel to the execution, TM-Executor periodically obtains the values of the SUT’s

state variables through testing interfaces and repeatedly uses these values to evaluate the

19 When a collision is avoided, the copter is back to the flight mode. Hence, no testing interface needs to be invoked to trigger 𝕥12.

When the flight mode is changed back, a corresponding change event is generated by TM-Executor to activate the transition. As this
event is from inside, we do not capture it in DFSM.

101

active state’s invariant, using the constraint evaluator DresdenOCL [13]. If an invariant is

evaluated to be false, then a fault is detected.

The decisions of which operation to invoke and which uncertainty values to use

determine whether a fault can be found in an execution. From specifications, we know that

there is a fault in the collision avoidance behavior when an aircraft is approaching from -45°

and the copter is flying to the forward left, the collision avoidance behavior has to reverse

the copter’s orientation to make the two aerial vehicles fly away. Since reversing the

orientation takes more time than other orientation adjustments, the copter, in this case, flies

closer to the approaching aircraft. Due to noisy sensor data and inaccurate actuations, a

collision does have a chance to occur in this condition.

To detect the fault leading to the collision, the fault injection operation setThreat needs

to be invoked in state ForwardLeft, i.e., 𝕥17 must be activated. However, activating 𝕥17

once may not be sufficient to find the fault. On the one hand, a large number of input

parameter values could be used to invoke an operation for firing a transition, e.g., 𝕥3 (Fig.

5). Each input leads to a distinct flight orientation and only in a few specific orientations,

the collision is likely to happen. On the other hand, the copter’s orientation is also affected

by measurement uncertainties from sensors and actuation inaccuracy from actuators.

Therefore, it requires a specific sequence of operation invocations and a specific sequence

of uncertainty values to make the collision happen.

From numerous candidates, it is challenging to find the “right” operation invocations

and sequence of uncertainty values to reveal a fault. Motivated by this, we present a

fragility-oriented approach to find such cases to detect faults effectively.

4 Fragility-Oriented Testing under Uncertainty
Invoking operations and introducing uncertainty are the two tasks that have to be fulfilled

to detect faults in SH-CPS under uncertainty.

The task of operation invocation decides which operation to be invoked and which input

parameter values to be used to drive the execution of the SUT. A sequence of operation

invocations determines the path in the Dynamic Flat State Machine (DFSM) that the SUT

will follow in executions. Besides, the model regulates the operations that can be invoked

under each state.

102

The task of introducing uncertainty defines a concrete uncertainty-introduced

environment, in which the SUT is tested. Whenever the SUT interacts with its environment

via sensors or actuators, the environmental uncertainty may take effect, and thus

uncertainty values have to be generated and introduced into the SUT. For each uncertainty,

its value can vary within a valid range. The combination of multiple uncertainties at

different interaction points forms a great number of possible sequences of uncertainty

values. A specific sequence of operation invocations has to work together with a specific

sequence of uncertainty values to reveal a fault. To reduce the complexity of finding the

two kinds of input, we adopt a two-step approach, as presented in Fig. 6.

Fig. 6 Overview of Fragility-Oriented Testing under Uncertainty

The first step concentrates on finding a sequence of operation invocations that can make

the SUT reach the most fragile state. During the first step, uncertainty values are only

randomly generated. When an optimal sequence of invocations is found, it is used in the

second step to drive the execution of SUT and test model, during which a sequence of

uncertainty values will be found for fault revelation.

For the first step, we devise the Fragility-oriented Testing algorithm. By exploring

various transitions in the test model and evaluating its consequent fragilities with multiple

iterations, the algorithm identifies the most fragile state and learns the shortest path to

reach it. Accordingly, the sequence of operation invocations used to trigger the transitions

in this path is selected as the optimal one and used in the next step.

In the second step, the sequence of invocations is fixed, and the Uncertainty Policy

Optimization algorithm gradually optimizes a parameterized uncertainty generation policy

to find a corresponding sequence of uncertainty values that can reveal a fault. If a fault is

detected, the transitions directly connected with the current active state are marked “faulty,”

and it returns to the first step to find another invocation sequence without considering the

103

“faulty” transitions. Otherwise, if no faults are detected in a certain number of executions,

the fragilities corresponding to the states in the selected path are discounted by a discount

factor. Based on the updated fragility, the Fragility-oriented Testing algorithm will

recalculate the optimal sequence of invocations. Accordingly, the Uncertainty Policy

Optimization algorithm will try to find a corresponding sequence of uncertainty values

again to detect faults. The algorithms used in the two steps are presented in Section 5 and

Section 6 respectively.

5 Fragility-Oriented Operation Invocation
Definition 1. The fragility of the SUT in a given state 𝕤 is a real value between 0 and 1,

denoted as 𝐹(𝕤). It describes how close (distance wise) the state invariant of 𝕤 is to be false,

where 1 means that the state invariant is false and 0 means that it is far from being violated.

We therefore define 𝐹(𝕤) as follows:
𝐹(𝕤) = 		1 − 𝑑𝑖𝑠(¬𝕠)	 (1)

where ¬𝕠 is the negation of state 𝕤’s invariant 𝕠 and 𝑑𝑖𝑠(¬𝕠)	 is a distance function

(adopted from [12]) that returns a value between 0 and 1 indicating how close the

constraint ¬𝕠 is to be true. For instance, in the running example, if the SUT is currently in

state Avoiding2 and the value of state variable threatDis is 15, then the distance of

invariant “threatDis > 10” to be false can be calculated as 𝑑𝑖𝑠L¬(𝑡ℎ𝑟𝑒𝑎𝑡𝐷𝑖𝑠	 > 	10)S =
("7!"8):"
("7!"8):":"

= 0.86, according to the distance function20 defined in [12]. The closer the

distance is to zero, the higher the possibility the invariant is to be violated, i.e., the SUT

failing in the state. Hence, 1 − 𝑑𝑖𝑠(¬𝕠) is used to define the fragility of the SUT in state 𝕤.

Definition 2. The T-value of a transition expressed as 𝑇(𝕥), is a real value between 0 and 1.

It states the possibility that a fault can be revealed after firing the transition 𝕥. With an

assumption that the more fragile the SUT is, the higher the chance a fault can be revealed,

we define the T-value of a transition as the discounted highest fragility of the SUT after

firing the transition:

𝑇(𝕥) = max
𝕤∈𝕊:=<>

{𝛾% ∙ 𝐹(𝕤)} (2)

20 The distance function of greater operator is: 𝑑𝑖𝑠(𝑥 > 𝑦) = (𝑦 − 𝑥 + 𝑘) (𝑦 − 𝑥 + 𝑘 + 1)⁄ , 𝑤ℎ𝑒𝑛	𝑥 ≤ 𝑦, where k is an arbitrary

positive value. Here we set k=1. More details are in [12] .

104

where 𝛾 (0 ≤ 𝛾 < 1) is a discount rate; 𝕊%>3* is a set of states that can be reached from 𝕥’s

target state via a path in the DFSM, and 𝑛 is the number of transitions between 𝕤 and 𝕥’s

target state. As for testing, revealing faults via a short path is preferable, we penalize the

fragility of a state by multiplying 𝛾%, if traversing at least n transitions is required to reach

the state from 𝕥’s target state. For example, in Fig. 5, to obtain the T-value of 𝕥4, we

calculate the discounted fragility of the SUT in each state in 𝕊%>3* . For the fragility

corresponding to Avoiding1, it needs to be discounted by 𝛾., since two transitions 𝕥5 and

𝕥9 have to be traversed to reach Avoiding1 from 𝕥4’s target state Forward. Clearly, the

value of 𝛾 determines the importance of the state to be reached in the future.

5.1 Overview

The objective of the Fragility Oriented Testing (FOT) algorithm is to find the optimal

operation invocation policy to find faults effectively. To achieve this objective, FOT tries

to learn transitions’ T-values during the execution of the SUT. Each transition’s T-value

indicates the possibility that a fault will be revealed after firing the transition. When

transitions’ T-values are learned, by simply firing the transition with the highest T-value,

FOT can manage to find faults effectively. The pseudocode of FOT is presented below in

Algorithm 1 (L1-L16).

In the beginning, all transitions’ actual T-values are unknown. As every transition has a

possibility to reveal a fault, the estimated T-value of each transition is initialized with the

highest one (L1, L2). This encourages the algorithm to extensively explore uncovered

transitions [8]. After that, iterations of test execution and the learning process begin. At

each iteration, the execution of the test model as well as the SUT starts from the initial

state (L4) and terminates at a final state (L5). During the execution, a DFSM is

dynamically constructed (L6) to enable the learning of T-values. Whenever, the SUT

enters a state 𝕤 , FOT selects one of the outgoing transitions of 𝕤 according to their

estimated T-values (L7, L8) and makes TM-Executor trigger the selected transition (L9).

As the transition is fired, the system moves from 𝕤 to 𝕤′. If the state invariant of 𝕤′ is not

satisfied, then a fault is detected (L11 - L14). In this case, the current active state of the

DFSM will be marked “faulty”. Any transition connected with the faulty state will not

participate in the transition selection and T-value learning in the future.

105

If no invariant violation happens, the algorithm will evaluate the fragility of the SUT in

𝕤′ (L15), i.e., 𝔽(𝕤′), and use 𝔽(𝕤′) to update estimated T-values. Since it is possible to

reach 𝕤′ via numerous transitions, finding all these transitions and updating their T-values

are computationally impractical for a test model with hundreds of transitions. Thus FOT

only updates the estimated T-value of the last triggered transition (L16). For instance, in

the running example, when 𝕥11 is invoked and the state of the SUT changes to Avoiding2,

FOT evaluates the value of 𝔽(𝐴𝑣𝑜𝑖𝑑𝑖𝑛𝑔2) and uses the value to update the T-value of 𝕥11,

i.e., 𝑇(𝕥11). Since 𝔽(𝕤′) is not a constant value, the upper bound of 𝔽(𝕤′) is used to

update the T-value. As the iteration of the execution proceeds, the estimated T-values are

continuously updated and getting close to their actual values. In this way, the T-values are

learned from the execution and the learned T-values direct FOT to effectively find faults.

Note that testing budget determines the maximum number of iterations. If it is too small,

FOT may not be able to find faults. The details of T-value learning and transition selection

policy are explained in the next two subsections respectively.
Algorithm 1 FOT(TMExecutor executor, ETM etm, int maxIteration):

Input executor is TM-Executor, the testing framework
 etm is the Executable Test Model

 maxIteration is the maximum iteration number
Begin

1 for each transition in etm
2 transition.Tvalue ← 1 // initialize T-values of transitions
3 for i=1 to maxIteration
4 etm.Start()
5 while etm.ReachFinalState() is false
6 dfsm ← EnrichDFSM(etm) // dynamically construct the DFSM
7 reachedTransitions ← dfsm.activeState.outgoingTransitions
8 selectedTransition ← SoftmaxSelect(reachedTransitions) //select transition
9 executor.Trigger(selectedTransition)

10 stateInvariant ← selectedTransition.target.invariant
11 if executor.Evaluate(stateInvariant) is false
12 LogFaultDetected(selectedTransition)
13 dfsm.MarkFaultDetected(dfsm.activeState)
14 break
15 fragility ← 1- executor.DistanceToViolation(stateInvariant)

16 executor.UpdateTvalue(selectedTransition, fragility) // revise the T-value of
selectedTransition

End

5.2 T-value Learning

Before executing the SUT and the Executable Test Model (ETM), the T-value 𝑇(𝕥) of

every transition is unknown. We adopt a reinforcement learning approach to learn 𝑇(𝕥)

106

from execution. A fundamental property of 𝑇(𝕥) is that it satisfies a recursive relation,

which is called the Bellman Equation [8], as shown in the formula below:
𝑇(𝕥) = max	{𝐹(𝕤?@A), 𝛾 ∙ max

𝕥!"#∈𝕋!"#
𝑇(𝕥E5F)} (3)

where 𝕤*-+ is the target state of transition 𝕥; 𝕋&?, represents a set of direct successive

transitions whose source state is 𝕤*-+. This equation reveals the relation between the T-

values of a transition and its direct successive transitions. It states that the T-value of 𝕥

must be equal to the greater of two values: the fragility of 𝕥’s target state (𝐹(𝕤*-+)) and the

maximum discounted T-value of 𝕥 ’s direct successive transitions (𝛾 ∙ max
𝕥′∈𝕋GHI

𝑇(𝕥′)).

Given a DFSM, 𝑇(𝕥) is the unique solution to satisfy Equation (3). So, we try to update the

estimate of each T-value to make it get increasingly closer to satisfy Equation (3). When

Equation (3) is satisfied by the estimated T-values for all transitions, it implies that the true

𝑇(𝕥) is learned.

Inspired by Q-learning [8], a reinforcement learning method, FOT uses the estimated T-

value 𝐸𝑇(𝕥) to approximate 𝑇(𝕥), i.e., the true T-value. 𝐸𝑇(𝕥) is updated in the following

way to make it approach 𝑇(𝕥).

𝐸𝑇(𝕥)′ = 𝑚𝑎𝑥{ 𝐹(𝕤*-+) , 𝛾 ∙ max
𝕥GHI∈𝕋GHI

𝐸𝑇(𝕥&?,)} (4)

where 𝐸𝑇(𝕥)′ denotes the updated estimate of 𝕥’s T-value and 𝐸𝑇(𝕥&?,) represents the

current estimated T-value of a successive transition.

Equation (4) enables FOT to iteratively update 𝐸𝑇(𝕥). Once a transition 𝕥 is triggered,

the fragility of the SUT in 𝕥’s target state 𝐹(𝕤*-+) can be evaluated using Equation (1).

Using Equation (4), 𝐸𝑇(𝕥) can be updated whenever a fragility value is obtained. As

proved in [8], as long as the estimated T-values are continuously updated, 𝐸𝑇(𝕥) will

converge to the true T-value: 𝑇(𝕥).

However, the fragility of the SUT in a state dynamically changes, due to the variation of

test inputs and environmental uncertainty. To deal with this, we use the bootstrapping

technique [14] to predict the distribution of the fragility and select the upper bound of its 95%

interval as the value for 𝐹(𝕤*-+), to update the estimated T-value. Thus 𝐸𝑇(𝕥) is iteratively

updated by the following equation:

𝐸𝑇(𝕥)′ = 𝑚𝑎𝑥{𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤*-+)] , 𝛾 ∙ max
𝕥GHI∈𝕋GHI

𝐸𝑇(𝕥&?,)} (5)

where 𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤*-+)] is the upper bound of 𝐹(𝕤*-+)’s 95% confidence interval.

107

5.3 Softmax Transition Selection

To effectively find faults, FOT should extensively explore different paths in a DFSM.

Meanwhile, the covered high T-value transitions should be exploited (triggered) more

frequently to find faults, as a high T-value implies a high possibility to reveal faults. Hence,

in FOT, we use a softmax transition selection policy to address the dilemma of exploration

and exploitation [15] by assigning a selection probability to a transition proportional to the

transition’s T-value. The selection probability is given below (from [8]):

𝑃𝑟𝑜𝑏 W𝕥𝑜𝑢𝑡
′ X = 	𝑒JK(𝕥𝑜𝑢𝑡

′) OP 	Y 𝑒JK(𝕥$"%)/O
𝕥$"%∈𝕋$"%

Z 		 (6)

where 𝑃𝑟𝑜𝑏(𝕥E?*
′) denotes the selection probability of an outgoing transition 𝕥𝑜𝑢𝑡

′ ;

𝐸𝑇(𝕥E?*
′) is the estimated T-value; 𝕋E?* represents the set of all outgoing transitions under

the current DFSM state, and 𝜏 is a parameter, called temperature [16]. 𝜏 is a positive real

value from 0 to infinity. A large 𝜏 causes transitions to be equally selected, whereas, a

small 𝜏 causes high T-value transitions to be selected much more frequently than

transitions with lower T-values.

In the beginning, all transitions’ estimated T-values (𝐸𝑇(𝕥)) are initialized to 1, thus

initially transitions have equal probability to be selected. As testing proceeds, 𝐸𝑇(𝕥) is

continuously updated using Equation (5). Directed by 𝐸𝑇(𝕥), the softmax policy assigns a

high selection probability to transitions that lead to states with high fragilities. As a result,

more fragile states will be exercised more frequently. Note that this doesn’t preclude

covering the less fragile states. In addition, loops in the test model are also covered

depending on fragilities of states involved in a loop.

6 Uncertainty Policy Optimization
When a sequence of operation invocations is selected, the sequence determines the path in

the DFSM that the SUT will follow in test executions. Besides the operation invocations, a

sequence of uncertainty values is required to execute the SUT under uncertainty. Due to

the effect of uncertainty and the execution of the SUT, the state variables of the SUT

constantly vary within a range in each state. Consequently, every state 𝕤$ in the execution

path corresponds to a number of state instances {𝓈$", 𝓈$., … , 𝓈$)}.

108

Definition 3. A state instance, 𝓈$(, is an instance of an abstract state, 𝕤$, in a DFSM. The

state instance reflects the SUT’s actual state at a specific time point and the state instance

is represented by the values of the SUT’s all state variables, i.e., 𝓈$(= {𝑣", 𝑣., … , 𝑣%&F}.

Based on the definition of fragility, we define the fragility of the SUT in a given state

instance as follows:

𝐹4𝓈𝑖𝑗5 = 𝐹(𝕤𝑖) = 1 − 𝑑𝑖𝑠(¬𝕠2)		 (7)

Note that although the state invariant 𝕠$ of a state 𝕤$ constrains only a few state

variables, the other state variables may have impacts on the constrained variables.

Therefore, all state variables may have direct or indirect effects on the fragility. Due to this

reason, we employ the values of all state variables to represent the state instance 𝓈$(.

Fig. 7 illustrates the relationship between state and state instance. The number of state

instances corresponding to a state depends on the number of environmental interactions

that the SUT performs in the state. For instance, after the operation arm is invoked,

ArduCopter takes one second to enter the next state Started. Within one second, the Copter

reads sensor and controls actuators 400 times. Consequently, the state Stopped corresponds

to 400 state instances.

As the behavior of the SUT has been determined by the selected operation invocations,

the uncertainty values 𝑢$(decide the next state instance, 𝓈$(:", the SUT will switch to from

the previous instance, 𝓈$(. To effectively detect faults, the optimal uncertainty values

should be used to maximize the fragility of the SUT. To effectively find the optimal

uncertainty values, this section presents the UPO algorithm.

Fig. 7 Relations Between States and State Instances

6.1 Uncertainty Generation Policy

To effectively explore various uncertainty values, we propose to use a parameterized

policy 𝜋I(𝑢$(|𝓈$() to decide the uncertainty values. The policy 𝜋I(𝑢$(|𝓈$() determines the

𝑢RS*T

𝓈T&

𝓈&& 𝓈&T
𝑢&&

𝓈&0
 𝑢&T

… 𝓈TT

𝓈T0 …
𝑢&0

𝑢T&

𝑢TT

𝑢T0

𝓈RS*&

𝓈RS
 𝑢RS*&

𝓈RS*T

Initial Stopped 𝕥& Final … 𝕥T

109

probability distribution of 𝑢$(given the condition that 𝓈$(is the current state instance. The

conditional probability distribution can be changed, by adjusting policy parameters θ.

As Artificial Neural Network (ANN) has been demonstrated to be an effective decision-

making mechanism [17], we adopt ANN as the parameterized policy for uncertainty

generation.

An ANN, used for uncertainty generation, takes a state instance as input. Each neuron in

the input layer represents a state variable of the SUT. The input neurons make the values of

state variables traverse the ANN. Based on the received values, the output neurons

calculate the final output. Each output determines the probability distribution of one

uncertainty, under the condition that the current state instance is the one fed to the input

layer. Inspired by an existing algorithm [18], we use a truncated normal distribution as the

conditional probability distribution. The mean value of the distribution is the output value,

and the value of its variance is a constant positive value ε. By sampling from the

distribution, we can decide the uncertainty values to be used for each state instance. Fig. 8

presents an example of the ANN used for the running example. The ANN receives the

values of all state variables. The values are processed by the interconnected neurons and

are mapped to a truncated normal distribution for each uncertainty.

To effectively find faults, we need to optimize the parameterized policy so that the

uncertainty values generated from the policy can increase the fragility of the SUT and

make the system likely to fail. The parameters of the policy include the weights of

connections and bias values of neurons. Except them, the numbers of layers and the

neurons in hidden layers, the activation function, and the output function are all predefined.

Once being set up, they are fixed. The next section explains an iterative approach to

optimize the policy concerning these parameters.

Fig. 8 Example of Uncertainty Generation Policy

110

6.2 Policy Optimization

The goal of policy optimization is to tune the parameters of the uncertainty generation

policy, to maximize the fragility of the SUT. The policy 𝜋I(𝑢$(|𝓈$() determines the

uncertainty values to be introduced in each state instance. When the state instance 𝓈$(and

uncertainty values 𝑢$(are given, the next state instance 𝓈$(:" is determined, as shown in

Fig. 7. Since the execution of the SUT always starts from the same initial state instance,

when the sequence of operation invocations is fixed, the uncertainty generation policy

𝜋I(𝑢$(|𝓈$() also determines the probability distribution of the state instance. It means the

policy decides the probability that a state instance 𝓈$(can be reached by the SUT in an

execution. Based on this, we formally express the goal function as follow [18]:

𝜂(𝜋I) = 𝔼𝓈7U~LV,?7U~NV	n𝑇I(𝓈$(, 𝑢$()o (8)

where 𝔼 denotes the expectation of the highest discounted fragility, 𝑇I(𝓈$(, 𝑢$(), that can

be obtained by following a given policy 𝜋I. 𝜌I denotes the probability distribution of the

state instance, which is controlled by the parameters of the policy. 𝑇I(𝓈$(, 𝑢$() denotes the

highest discounted fragility that can be reached after introducing uncertainty values 𝑢$(in a

state instance 𝓈$(:

𝑇IL𝓈$(, 𝑢$(S = max
)∈[",:Q)

𝛾) ∙ 𝐹L𝓈$(:)S (9)

Since the value of 𝑇I(𝓈$(, 𝑢$() depends on the state instances that are to be covered after

𝓈$(and the policy determines the following states, the value of 𝑇IL𝓈$(, 𝑢$(S also relies on

the policy. As a result, both 𝜌I and 𝑇IL𝓈$(, 𝑢$(S depend on the parameters of the policy.

Suppose we have two policies: 𝜋I and 𝜋I;. To compare them, we have to apply both

policies to execute the SUT a number of times, and derive the distributions of state

instance and the values of highest discounted fragility from the execution. Since the cost to

execute the SUT is relatively high, it is difficult to find the direction for improvement

directly based on Equation (8).

To simplify the optimization problem, we choose to optimize an approximation of the

goal function [19]:

𝜂(𝜋I) ≈ 𝐿(𝜋I) = 𝔼𝓈7U~LV; ,?7U~NV	n𝑇I;𝓈$(, 𝑢$()o (10)

111

Note that 𝜌I is changed to 𝜌I; and 𝑇I(𝓈$(, 𝑢$() is changed to 𝑇I;(𝓈$(, 𝑢$(). This allows

us to directly find the optimal improvement direction based on the 𝜌I; and 𝑇I;(𝓈$(, 𝑢$()

obtained from an existing policy 𝜋I;, without extra executions. The general idea is that the

value of 𝑇I;(𝓈$(, 𝑢$() points out the expected reward of introducing uncertainty values 𝑢$(

in a given state 𝓈$(. To increase the total expectation, we just need to adjust the parameters

of the policy to increase the probability to generate 𝑢$(in 𝓈$(, if 𝑇I;(𝓈$(, 𝑢$() is high. As

proven in [18], as long as the Kullback–Leibler divergence, a distance measure, between

the two policy 𝜋I and 𝜋I; is bounded by a constant step size, the true reward function

𝜂(𝜋I) is guaranteed to be improved.

To further simplify the calculation of Equation (10), we replace the expectation over the

uncertainty values following 𝜋I by the expectation over the uncertainty values following

𝜋I;, according to importance sampling [20]:

𝐿(𝜋I) = 𝔼𝓈7U~LV; ,?7U~NV; 	 s
𝜋IL𝑢$(t𝓈$(S
𝜋I;L𝑢$(t𝓈$(S

	 ∙ 𝑇I;(𝓈$(, 𝑢$()u (11)

Based on this, we propose the following policy optimization algorithm, as given in

Algorithm 2. The general idea is that whenever we find a sequence of uncertainty values

u11, u12, … , unm that leads to a high fragility, i.e., their 𝑇I(𝓈$(, 𝑢$() is high, we adjust 𝜃R to

𝜃 to increase the probability to generate the uncertainty sequence.

Initially, an ANN, used as the uncertainty generation policy, is constructed (L1). After

initializing the vectors used for saving samples of states, uncertainty values, and

discounted fragilities, the iteration of execution begins (L7). During execution, uncertainty

values are generated by the policy (L10) and are introduced to the SUT (L11) to run it

under uncertainty. Affected by the uncertainty values, the state of the SUT switches to

another one. The fragility of the SUT in the new state is evaluated and discounted by a

discount factor (L13). If the discounted fragility exceeds the highest one that has been

found so far, it means that a better sequence of uncertainty values is found to make the

SUT more fragile (L17). In this case, we apply the conjugate gradient algorithm [21] to

adjust the parameter values of the policy to maximize the generation probability of the

sequence of uncertainty values (L20). After that, the updated policy is used in the

following execution to find an even better sequence of uncertainty values.

112

Algorithm 2 UPO(TMExecutor executor, UnGenerator generator, int numStateVar,
int numUncer, int maxIter):

Input executor is TM-Executor, the testing framework
 generator is the uncertainty generator
 numStateVar is the number of state variables
 numUncer is the number of uncertainties

 maxIteration is the maximum iteration number
Begin

1 policy.Init(numStateVar, numUncer)
2 highestDisFragility = 0
3 for i=1 to maxIteration
4 states ← []
5 uncertainties ← []
6 discountedFragilities ← []
7 executor.StartExecution()
8 while not executor.Finish()
9 s ← executor.CurrentSUTState()

10 u ← policy.Sample(s)
11 generator.IntroduceUncertainties(u)
12 s’ ← executor.CurrentSUTState()
13 f ← executor.ComputeDiscountedFragility(s’)
14 states.Append(s)
15 uncertainties.Append(u)
16 discountedFragilities.Append(f)
17 if f > highestDisFragility
18 highestDisFragility = f
19 if highestDisFragility is changed
20 policy.Update(states, uncertainties, discountedFragilities)

End

7 Implementation
We implemented the fragility oriented testing approach in TM-Executor. Fig. 9 presents its

three packages: software in the loop testing (light gray), uncertainty generation (dark gray),

and FOT (white).

TM-Executor tests the software of the SUT in a simulated environment. During testing,

sensor data is computed by simulation models in simulators. Based on the simulated data,

the software generates actuation instructions to control the system. Uncertainties are added

to simulators’ input and output to simulate the effects of uncertainties. Based on the valid

range of each uncertainty, the UPO algorithm generates uncertainty values whenever

sensor data or actuation instructions are transferred between the software and simulators.

By using the values to modify simulators’ inputs and outputs, the uncertainties are

introduced into the testing environment.

The SUT and its Executable Test Model (ETM) are executed together by an execution

engine, which is deployed in Moka [22], a UML model execution platform. During the

execution, the engine dynamically derives a DFSM from the test model and uses it to guide

113

the execution. Meanwhile, the active state’s state invariant is checked by a test inspector

(using DresdenOCL [13]). The inspector evaluates the invariant with the actual values of

the state variables, which are updated by the execution engine via testing interfaces

(Section 2.3). If the invariant is evaluated to be false, a fault is detected. Otherwise, the

inspector calculates the fragility of the SUT in the current state, using Equation (1). Taking

fragility as input, the FOT algorithm updates its estimate of T-value (Equation (5)) and

uses the softmax policy to select the next transition. Next, the test driver generates a valid

test input with EsOCL [12], a search-based test data generator, for firing the selected

transition. The execution engine takes this input to invoke the corresponding operation,

causing the ETM and the SUT to enter the next state. In this way, T-values are learned

from iterations of execution and the learned T-values direct FOT to effectively find faults.

Fig. 9 SH-CPS Testing Framework [2]

8 Evaluation
This section presents the performance evaluation of FOT and UPO, including experiment

design in Section 8.1, experiment execution in Section 8.2, experiment results in Section

8.3, the discussion in Section 8.4, and threats to validity in Section 8.5.

8.1 Experiment Design

This section presents the design of the experiment, by following three carefully defined

research questions.

114

8.1.1 Research Questions.
RQ1: Does FOT+UPO have the highest fault detection ability for testing SH-CPSs under

uncertainty?

Since testing SH-CPSs under uncertainties comprises two tasks, i.e., invoking operations

and introducing uncertainties, we devise FOT and UPO to address them respectively. To

assess their performance, we select a baseline algorithm for each of them. For FOT, we

choose a Coverage-Oriented Testing (COT) algorithm as the baseline since it is a prevalent

approach applied in the testing of CPSs [5]. This algorithm selects operation invocations

based on the coverage frequencies of transitions, and its aim is to evenly traverse each

transition. With respect to uncertainty generation, UPO is compared with a random

approach. In this approach, uncertainty values are just generated from probability or

possibility distributions. As a result, we have two algorithms, FOT and COT, for selecting

operation invocations, and two algorithms, UPO and Random (R), for generating

uncertainty values. In total, we obtain four approaches: FOT+UPO, FOT+R, COT+UPO,

COT+R. We apply them to test three SH-CPSs to check which approach can detect more

faults in SH-CPSs under uncertainties.

RQ2: To what extent the fault detection ability can be enhanced by FOT and UPO,

compared with the others?

With this research question, we aim to investigate the effectiveness of FOT+UPO, i.e.,

assess the percentage of improvement regarding fault detection ability achieved by FOT

and UPO compared with the other three approaches.

RQ3: Concerning the optimal testing approach, what are the correlations between fault

detection ability, testing time, and the scale of uncertainty variation?

The number of detected faults not only depends on the fault detection ability of a testing

approach but also relies on the variation ranges of uncertainties and the amount of time that

can be used by the testing approach. This research question helps us reveal whether more

faults can be detected as the testing time and the scale of uncertainty variation increase.

8.1.2 Case Studies.
We used three open source SH-CPSs for evaluation: 1) ArduCopter is a fully featured

copter control system supporting 18 flight modes to control a copter. It has five self-

115

healing behaviors to avoid crash and collision; 2) ArduRover21 is an autopilot system for

ground vehicles having two self-healing behaviors to avoid an obstacle and handle the

disruption of control link; 3) ArduPlane22 is an autonomous plane control system having

two self-healing behaviors to avoid collision and address network disruption. Test

execution was performed with software in the loop simulators, including GPS, barometer,

accelerometer, gyroscope, and motor simulators. Nine fault injection operations were

implemented in the simulators to trigger the nine self-healing behaviors to test them in the

presence of uncertainty.

The three SH-CPSs are affected by eight uncertainties related to the sensors and

actuators. Based on the product specifications of the sensors and actuators, we specified

their variation range, as presented in Table 15.

Table 15 Identified Uncertainties from the Three Case Studies

Hardware Uncertainty Range Hardware Uncertainty Range

Accelerometer
Noise (-9mg, +9mg)

GPS

Position
accuracy

(-2.5m, +2.5m)

Nonlinearity (-0.5%, +0.5%)
Velocity
accuracy (-0.05m/s, +0.05m/s)

Motor
Rotation Noise (-0.3°, +0.3°) Gyroscope Noise (-0.3°/s, +0.3°/s)
Acceleration Noise (-0.02m/s2, +0.02m/s2) Barometer Accuracy (-150 Pa, +150 Pa)

Before testing, we built the Executable Test Model (ETM) for each self-healing behavior

of the three case studies. Table 16 shows the statistics of the ETMs. Moreover, we

examined the average amount of time that the testing framework takes to execute the ETM

and the SUT from their initial state to a final state, as presented in the last row of Table 16.

Note that the average execution times are determined by the implementation of the SUTs,

and they are not affected by different testing approaches.
Table 16 Descriptive Statistics of ETMs

 ArduCopter ArduRover ArduPlane
 ETM1 ETM2 ETM3 ETM4 ETM5 ETM6 ETM7 ETM8 ETM9

#States 64 60 70 64 36 58 54 79 40
#Transitions 440 268 286 440 106 306 303 347 104

Avg. Exe. Time
(min.) 8 9 7 8 8 10 11 6 6

21 http://ardupilot.org/rover/
22 http://ardupilot.org/plane/

116

8.1.3 Experiment Tasks
Three tasks have to be performed to address the three research questions. Table 17 gives an

overview of the three tasks.

For RQ1, T1 is performed to investigate which testing approach can detect more faults in

the nine self-healing behaviors under the eight uncertainties. To reduce the impact of

testing time and the scale of uncertainty variation, we choose three settings for each of

them. The three testing times are 72, 144, and 216 hours. This allows each testing approach

to execute the ETM and the SUT approximately 500, 1000, and 1500 times to find faults.

Meanwhile, we choose three scales of uncertainty variation: 80%, 100%, and 120%. 100%

represents the standard variation ranges shown in Table 15. 80% (120%) means reducing

(increasing) the ranges by 20 percent. For instance, the 80%, 100%, and 120% variation

ranges of the uncertainty Noise from the accelerometer are (-7.2mg, +7.2mg), (-9mg,

+9mg), and (-10.8mg, +10.8mg) respectively. The ranges are only modified by 20% to

avoid making the uncertainty variation ranges deviate too far from the reality. The

differences in uncertainty scale help us reveal the fault detection ability of a testing

approach under different uncertainty scales.

Table 17 Overview of Experiment Design

R
Q

Task Metric Statistical Test Testing
Approach

Testing
Time(h

our)

Scale of
Uncertainty
Variation

Case Studies

1
T1: Compare the fault detection
ability of the selected testing
approaches

NDF

Mann-Whitney
U test
Vargha and
Delaney’s �̂�&T

1:
FOT+UPO
2: FOT+R
3:
COT+UPO
4: COT+R

1: 72
2: 144
3: 216

1: 80%
2: 100%
3: 120%

1: ArduCopter
(five SH
Behaviors)
2: ArduPlane
(two SH
Behaviors)
3: ArduRover
(two SH
Behaviors)

2

T2: Calculate the improvement
with respect to the percentage of
faults detected by the optimal
approach PDF

N/A

3

T3: Analyze the correlations
between the fault detection
ability, testing time, and
uncertainty scale

N/A
The
optimal
one

Consequently, the nine self-healing behaviors are tested with the four approaches in nine

different test settings. In total, 81 testing jobs are to be conducted by the four approaches.

Moreover, each testing job is performed 10 times to reduce the impact of randomness.

Regarding RQ2, T2 is performed to calculate the percentage of improvement in terms of

fault detection when the optimal testing approach is applied.

117

For RQ3, we conduct T3 to analyze the correlations among fault detection ability, testing

time, and the scale of uncertainty variation.

8.1.4 Evaluation Metrics and Statistics Tests
RQ1: We define the Number of Detected Faults (NDF) to quantify the fault detection

ability of each testing approach. NDF is the number of faults that are detected by an

approach in a self-healing behavior within limited testing time. As the first step of

analyzing the results, we applied Shapiro-Wilk test with a significance level of 0.05 to

check the normality of NDF values. Results show that the distribution of the NDF values

departs from normality. Therefore, we use non-parametric Mann-Whitney U test with the

significant level of 0.05 to determine the significance of differences between two testing

approaches. That is, a comparison result is statistically significant if the p-value is less than

0.05. Furthermore, following the guideline in [23], we apply Vargha and Delaney’s 𝐴w".

statistics to measure the effect size, i.e., measure the probability that a testing approach A

can detect more faults than another approach B. If A and B are equivalent, 𝐴w". equals 0.5.

If 𝐴w". is greater than 0.5, then A has higher chance to detect more faults than B.

RQ2: To calculate to what extent the fault detection ability can be enhanced by the

optimal testing approach, compared with the others, we define another metric: the

Percentage of Detected Faults (PDF), that is, the percentage of faults in one self-healing

behavior that can be detected by a testing approach. It is calculated as follows: 	

𝑃𝐷𝐹$ =
STU7
VE*-W7

, where 𝑁𝐷𝐹$ is the number of faults detected in one testing job for the ith

self-healing behavior, and 𝑇𝑜𝑡𝑎𝑙$ is the total number of faults detected in the behavior.

Because the number of actual faults cannot be determined, the total number of detected

faults is used instead. This metric normalizes the number of detected faults, which enables

us to compare the performance of each approach across different self-healing behaviors.

RQ3: We also use PDF as a measure of fault detection ability to analyze its relations

with testing time and the scale of uncertainty variation. Here, we are interested in assessing

the monotonic relations among them, i.e., whether more faults can be detected, as the

testing time and the scale of uncertainty increase. Consequently, we apply box plot to

present the distribution of PDF under each testing time and uncertainty scales, based on

five numbers: minimum, first quartile, median, third quartile, and maximum. In the plot, a

118

rectangle spans the first quartile to the third quartile. A mark inside the rectangle indicates

the median. The lines above and below the rectangle denote the maximum and minimum.

8.2 Experiment Execution
We implemented the proposed algorithms in the TM-Executor [2]. As explained in Section

4, each testing approach consists of two steps: selecting a sequence of operation

invocations and finding a sequence of uncertainty values. The number of iterations for the

first step is 200, and the maximum iteration number for the second step is 500. For FOT,

we set discount rate 𝛾 to 0.99 and temperature 𝜏 to 0.2. For UPO, the ANN used as

uncertainty generation policy contains three layers: an input layer, an output layer, and a

hidden layer. The number of input neurons is the number of state variables of each SUT,

and the number of hidden neurons is two times the number of input neurons. The number

of output neurons is equal to the number of uncertainties. The variance ε used by the

stochastic policy is 0.4. These are commonly used settings in reinforcement learning [24].

The experiment is executed on Abel, a computer cluster at the University of Oslo23. Each

testing job is run with eight cores and 32 GB RAM.

8.3 Experiment Results

RQ1: Table 18 presents the average number of faults detected by each testing approach

(Task T1). From the table, we can observe that FOT+UPO detected more faults than the

other three approaches for all the case studies and test settings. We further conducted a

statistical test to determine whether such results are statistically significant.

Table 19 summarizes the results of comparing the NDF achieved by FOT+UPO against

those achieved by FOT+R, COT+UPO, and COT+R. FOT+UPO significantly

outperformed the other approaches in 73 out of 81 testing jobs, as the values of 𝐴w". are

greater than 0.5 and 73 p-values are less than 0.05. For the other eight cases, since the scale

of uncertainty is low, the four testing approaches only detected few faults within 72 hours.

Thus, there is no significant difference among the four approaches.

23 http://www.uio.no/english/services/it/research/hpc/abel/

119

Table 18 Average Number of Faults Detected by Each Approach

Setting Approach ArduCopter ArduPlane ArduRover Avg. SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2

S1

FOT+UPO 0.3 0.4 0.3 0.3 0.2 0.7 0.4 0.3 0.2 0.3
FOT+R 0 0 0 0 0 0 0 0 0 0

COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S2

FOT+UPO 1.3 1.8 1.5 1.7 1.8 1.9 1 1 1 1.4
FOT+R 0.1 0 0 0 0 0 0 0.1 0.2 0

COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S3

FOT+UPO 2.1 2.4 2 2.2 2.1 1.9 1 1 1 1.7
FOT+R 0.1 0 0 0 0 0.1 0.1 0.2 0.4 0.1

COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S4

FOT+UPO 0.5 0.6 0.4 0.5 0.5 1.1 0.8 0.9 0.9 0.7
FOT+R 0 0 0 0 0 0 0 0 0 0

COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S5

FOT+UPO 1.2 1.9 1.9 2.1 2 2 1 1 1 1.6
FOT+R 0.1 0 0 0.1 0 0.2 0.1 0.1 0.3 0.1

COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S6

FOT+UPO 2.3 2.6 2.5 2.3 2.4 2 1 1 1 1.9
FOT+R 0.3 0 0.1 0.1 0 0.3 0.1 0.3 0.5 0.2

COT+UPO 0 0 0 0 0 0 0 0.1 0.1 0
COT+R 0 0 0 0 0 0 0 0 0 0

S7

FOT+UPO 0.9 0.6 0.5 0.5 0.6 1.3 0.9 1 1 0.8
FOT+R 0 0 0 0 0 0 0 0 0 0

COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S8

FOT+UPO 2 2.5 2.3 2.5 2.7 2 1 1 1 1.9
FOT+R 0.1 0 0.1 0 0.1 0.3 0.1 0.2 0.3 0.1

COT+UPO 0 0 0 0 0 0 0 0 0 0
COT+R 0 0 0 0 0 0 0 0 0 0

S9

FOT+UPO 2.8 2.9 3.1 2.8 3 2 1 1 1 2.1
FOT+R 0.3 0.1 0.2 0 0.1 0.4 0.2 0.4 0.5 0.2

COT+UPO 0 0.1 0 0 0 0.1 0 0.1 0.1 0
COT+R 0 0 0 0 0 0 0 0.1 0 0

*S1: Test 72 hours with 80% uncertainty range, S2: Test 144 hours with 80% uncertainty range, S3: Test
216 hours with 80% uncertainty range, S4: Test 72 hours with 100% uncertainty range, S5: Test 144 hours
with 100% uncertainty range, S6: Test 216 hours with 100% uncertainty range, S7: Test 72 hours with 120%
uncertainty range, S8: Test 144 hours with 120% uncertainty range, S9: Test 216 hours with 120%
uncertainty range

Therefore, the answer to RQ1 is that among the four testing approaches, FOT+UPO has

the highest fault detection ability for testing SH-CPSs under uncertainties. Compared with

the others, FOT+UPO detected significantly more faults in 73 out of 81 testing jobs.

120

Table 19 Results of Comparing the Approaches for Testing each Self-Healing Behavior

Setting Compared
with

ArduCopter ArduPlane ArduRover
SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2

𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p 𝐴"!" p

S1
FOT+R 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35

COT+UPO 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35
COT+R 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35

S2
FOT+R 0.97 0.006 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 0.95 0.003 0.9 0.006

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 1 0.002 1 0.002
COT+R 1 0.004 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 1 0.002 1 0.002

S3
FOT+R 0.99 0.005 1 0.004 1 0.004 1 0.003 1 0.003 0.99 0.004 0.95 0.003 0.9 0.006 0.8 0.019

COT+UPO 1 0.004 1 0.004 1 0.004 1 0.003 1 0.003 1 0.003 1 0.002 1 0.002 1 0.002
COT+R 1 0.004 1 0.004 1 0.004 1 0.003 1 0.003 1 0.003 1 0.002 1 0.002 1 0.002

S4
FOT+R 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003

COT+UPO 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003
COT+R 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003

S5
FOT+R 0.96 0.006 1 0.005 1 0.004 0.99 0.004 1 0.004 1 0.004 0.95 0.003 0.95 0.003 0.85 0.011

COT+UPO 1 0.004 1 0.005 1 0.004 1 0.004 1 0.004 1 0.002 1 0.002 1 0.002 1 0.002
COT+R 1 0.004 1 0.005 1 0.004 1 0.004 1 0.004 1 0.002 1 0.002 1 0.002 1 0.002

S6
FOT+R 1 0.005 1 0.005 1 0.005 1 0.004 1 0.005 1 0.004 0.95 0.003 0.85 0.011 0.75 0.037

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.004 1 0.005 1 0.002 1 0.002 0.95 0.003 0.95 0.003
COT+R 1 0.004 1 0.005 1 0.005 1 0.004 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002

S7

FOT+R 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002
COT+UPO 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002

COT+R 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002

S8
FOT+R 0.99 0.008 1 0.005 0.99 0.004 1 0.005 1 0.005 1 0.004 0.95 0.003 0.9 0.006 0.85 0.011

COT+UPO 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002
COT+R 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002

S9
FOT+R 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 0.9 0.006 0.8 0.019 0.75 0.037

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.005 1 0.005 1 0.003 1 0.002 0.95 0.003 0.95 0.003
COT+R 1 0.004 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 0.95 0.003 1 0.002

RQ2: To compare the fault detection ability of each testing approach across the nine self-

healing behaviors, we calculated the PDF by dividing the NDF by the total number of

faults detected in the experiment (Task T2). Table 20 presents the results. In most cases,

FOT+UPO detected more than 70% of faults, while FOT+R and COT+UPO merely

detected less than 17% of faults. For COT+R, it only detected one fault once in a self-

healing behavior of ArduRover.

Therefore, we answer RQ2 as compared with COT and random uncertainty generation,

FOT and UPO together can enhance the fault detection ability of a testing approach by at

least 50%. FOT+UPO detected over 70% faults in most cases. Whereas, FOT+R,

COT+UPO, and COT+R at most detected 17%, 3%, and 1% faults on average respectively.

121

RQ3: Using box plot, we investigated the correlations among the fault detection ability

(PDF) of FOT+UPO, testing time (TT), and the scale of uncertainty variation (SU). As

shown in Fig. 10, when SU is 0.8 or 1.0, PDF tends to increase as TT grows from 72 hours

to 216 hours. The tendency becomes less significant when SU is increased to 1.2. This

indicates that when SU is relatively low, the testing approach needs to take 216 hours to

detect all the faults. Whereas, when SU is high, 144 hours are sufficient for the testing

approach to find most faults.

Fig. 10 Box Plots of PDF under Each Testing Time and Uncertainty Scale

Regarding the correlation between PDF and SU, it exposes similar phenomena. When

TT is 72 hours, the median of PDF increases from 0 to 0.2, as SU grows from 0.8 to 1.2.

When TT is extended to 144 hours, their positive relation becomes less significant. As the

testing approach has sufficient time to detect most faults, there is no significant difference

in PDF for different SUs.

Therefore, we answer RQ3 as: PDF is positively correlated with both TT and SU. As TT

or SU increases, PDF tends to increase as well. However, when SU is high, or TT is long,

the positive correlations become less significant. Since PDF reaches a relatively high value

earlier, it cannot be further significantly promoted.

122

Table 20 Percentage of Faults Detected by Each Testing Approach

Setting Approach ArduCopter ArduPlane ArduRover Avg. SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2

S1

FOT+UPO 10% 10% 10% 8% 7% 35% 40% 30% 20% 19%
FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S2
FOT+UPO 43% 45% 50% 43% 60% 95% 100% 100% 100% 71%

FOT+R 3% 0% 0% 0% 0% 0% 0% 10% 20% 4%
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S3
FOT+UPO 70% 60% 67% 55% 70% 95% 100% 100% 100% 80%

FOT+R 3% 0% 0% 0% 0% 5% 10% 20% 40% 9%
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S4
FOT+UPO 17% 15% 10% 17% 17% 55% 80% 90% 90% 43%

FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S5
FOT+UPO 40% 48% 48% 70% 67% 100% 100% 100% 100% 75%

FOT+R 3% 0% 0% 3% 0% 10% 10% 10% 30% 7%
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S6
FOT+UPO 77% 65% 63% 77% 80% 100% 100% 100% 100% 85%

FOT+R 10% 0% 3% 3% 0% 15% 10% 30% 50% 13%
COT+UPO 0% 0% 0% 0% 0% 0% 0% 10% 10% 2%

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S7
FOT+UPO 30% 15% 13% 13% 15% 65% 90% 100% 100% 49%

FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S8
FOT+UPO 67% 63% 58% 63% 68% 100% 100% 100% 100% 80%

FOT+R 3% 0% 3% 0% 3% 15% 10% 20% 30% 9%
COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

S9
FOT+UPO 93% 73% 78% 70% 75% 100% 100% 100% 100% 88%

FOT+R 10% 3% 5% 0% 3% 20% 20% 40% 50% 17%
COT+UPO 0% 3% 0% 0% 0% 5% 0% 10% 10% 3%

COT+R 0% 0% 0% 0% 0% 0% 0% 10% 0% 1%

8.4 Discussion

Based on the results of the experiment, we have three key observations. First, due to the

effect of uncertainties, self-healing behaviors might fail to timely detect faults or

improperly adapt system behaviors. For instance, because of sensors’ measurement

uncertainties, the copter could not accurately capture its location, orientation, and velocity.

When the copter was about to collide with another vehicle, inaccurate measurements

sometimes caused the copter to incorrectly adjust its orientation, leading to a collision.

Therefore, it is necessary to test self-healing behaviors in the presence of environmental

uncertainties. To build such a testing environment, we adapt the software in the loop

approach. In this approach, uncertainties are explicitly introduced via sensor data and

123

actuation instructions. Second, it requires a specific sequence of operation invocations and

a specific sequence of uncertainty values to reveal a fault caused by the effect of

uncertainties. Invoking different operations or invoking the same operation with different

inputs can both lead to distinct system states. Moreover, the impacts of uncertainties cause

the states to diverge further. Since a fault may only be activated in a few special states,

specific operation invocations and uncertainty values need to be found to reveal the fault.

In this context, coverage-oriented testing, which aims to evenly explore each system state,

is ineffective to find faults. To address this issue, we present a fragility-oriented approach

in this paper. By focusing on the fragile states of the SUT, it managed to find faults more

effectively. Third, FOT and UPO have to cooperate to effectively detect faults under

uncertainties. Directed by the fragility obtained from execution, FOT and UPO can

gradually learn the optimal policy to select operation invocations and the optimal

uncertainty generation policy respectively. The experiment results demonstrated that

compared with the other approaches, FOT+UPO could enhance the fault detection ability

by at least 50%.

8.5 Threats to Validity

Conclusion validity is concerned with factors that affect the conclusion drawn from the

outcome of experiments [25]. Because of random transition selection and random

uncertainty generation used by the four testing approaches, randomness in the results is the

most probable conclusion validity threat. To reduce this threat, all the testing jobs were

repeated 10 times. We applied Mann-Whitney U test and Vargha and Delaney’s 𝐴w". to

evaluate the statistical difference and magnitude of improvement.

Internal validity threat refers to the influence that affects the causal relationship

between the treatment and outcome [25], i.e., the testing approach and its fault detection

ability. Since testing time and scale of uncertainty have impacts on the performance of a

testing approach, they could be the threat to internal validity. To reduce such threat, we

compared the performance of the four selected testing approaches under three testing times

and three uncertainty scales.

External validity threats concern the generalization of the experiment results [25]. We

employed nine self-healing behaviors from three real case studies to compare the

124

performance of four testing approaches. However, additional case studies are needed to

generalize the results further.

Construct validity is concerned with how well the metrics used in the experiment

reflect the construct [25] — fault detection ability of a testing approach. Because the

number of actual faults is unknown, we used the number of detected faults and the

percentage of detected a fault as the evaluation metrics, which are comparable across the

four testing approaches.

9 Related Work
This section presents the related work from three aspects: model-based testing in Section

9.1, testing with reinforcement learning in Section 9.2, and uncertainty-wise testing in

Section 9.3.

9.1 Model-Based Testing

Model-Based Testing (MBT) has shown good results of producing effective test suites to

reveal faults [26]. For a typical MBT approach, abstract test cases are generated from

models first, e.g., using structural coverage criteria (e.g., all state coverage) [27, 28].

Generated abstract test cases are then transformed into executable ones, which are

executed on the SUT. To reduce the overhead caused by test cases generation, researchers

proposed to combine test generation, selection, and execution into one process [29, 30]. De

Vries et al. [29] created a testing framework, with which the SUT is modeled as a labeled

transition system. By parsing this model, test inputs are generated on the fly to perform

conformance testing. This approach aims to test all paths belonging to this model.

However, if loops exist or the specified model is large, additional mechanisms are required

to reduce the state space. Larsen et al. [30] proposed a similar testing tool for embedded

real-time systems. It uses the timed I/O transition system as the test model, and test inputs

are randomly generated from the model on the fly for testing.

Different from the existing works, the proposed fragility-oriented testing approach relies

on the execution of ETMs to facilitate the testing of SH-CPSs under uncertainty. During

the execution, FOT and UPO apply reinforcement learning techniques to learn the optimal

policy of invoking operations and best policy of generating uncertainties respectively. In

125

addition, our work focuses on testing self-healing behaviors in the presence of

environmental uncertainty, which is not covered by existing works.

9.2 Testing with Reinforcement Learning

The first reinforcement learning based testing algorithm was proposed in [7]. It uses

frequencies of transitions’ coverage as the heuristics of reinforcement learning. Directed by

the frequencies, the algorithm tries to explore all transitions equally. However, a long-term

reward is not realized in this approach. Groce et al. [31] created a framework to simplify

the application of reinforcement learning for testing, which uses coverage as the heuristic

and relies on SARSA(λ) [8] for calculating long-term rewards. Similarly, Araiza-Illan et al

[32] used coverage as the reward function to test human-robot interactions with

reinforcement learning. Due to uncertainty, achieving the full transition coverage is

insufficient to find faults in self-healing behaviors. Thus, we propose to use fragility

instead of coverage as the heuristic. Moreover, we devised two novel algorithms, FOT and

UPO, for operation invocation and uncertainty generation respectively.

9.3 Uncertainty-wise Testing

Regarding uncertainty-wise testing, some taxonomies of uncertainty for self-adaptive

systems have been proposed in [33, 34], and a conceptual model of uncertainty for CPSs

has been built in [35]. To test systems in the presence of the uncertainty, Fredericks et al.

[36] developed a run-time testing framework. It dynamically adapts a set of predefined test

cases to test whether the SUT behaves correctly when adaptation is required to handle

changes in environmental conditions. However, the paper does not mention how to obtain

the initial test cases and how to construct an uncertainty-introduced testing environment.

Yang et al. [37] devised a formal approach to verify the correctness of self-adaptive

applications under uncertainty. While, the formal verification approach is computationally

expensive, and it requires extra effort to prove the SUT is consistent with the verified

model. Zhang et al. [38] proposed a multi-objective search-based approach for test case

generation and minimization, with the aim of discovering unknown uncertainties.

Different from the existing works, we aim to test whether the SUT can behave properly

in the presence of uncertainty. To effectively detect faults, we devise the UPO algorithm.

By utilizing the fragility to optimize the uncertainty generation policy (an ANN), it

126

manages to effectively find a sequence of uncertainty values that can cooperate with a

sequence of operation invocations to reveal faults.

10 Conclusion
This paper presents a fragility-oriented approach for testing Self-Healing Cyber-Physical

Systems (SH-CPSs) under uncertainty. The testing approach consists of two steps. One is

to select a sequence of operation invocations, which determines the behavior of the SH-

CPS Under Testing (SUT) in test execution. The other is to generate a sequence of

uncertainty values to make the SUT behave under uncertainty. For the two steps, we devise

two algorithms: Fragility-Oriented Testing (FOT) and Uncertainty Policy Optimization

(UPO). Both of them employ the fragility to learn the optimal policies for operation

invocations and uncertainty generation respectively. To evaluate their performance, we

compared them against three testing approaches: FOT+R, COT+UPO, and COT+R, where

COT represents a coverage-oriented algorithm for operation invocations and R represents a

random mechanism for uncertainty generation. The four testing approaches were applied to

test nine self-healing behaviors from three real-world case studies. The testing results

showed that FOT+UPO significantly detected more faults than the other three approaches,

in 73 out of 81 testing jobs. In the 73 jobs, FOT+UPO detected more than 70% of faults,

while the others detected 17% of faults, at the most.

Acknowledgement
This research is funded by the Research Council of Norway (RCN) under MBT4CPS

project (grant no. 240013/O70). Tao Yue and Shaukat Ali are also supported by the RCN

funded Zen-Configurator project (grant no. 240024/F20), RFF Hovedstaden funded MBE-

CR project (grant no number. 239063), Certus SFI and EU Horizon 2020 funded U-Test

project (grant no. 645463).

References
[1] T. Bures et al., "Software Engineering for Smart Cyber-Physical Systems--Towards a

Research Agenda: Report on the First International Workshop on Software

127

Engineering for Smart CPS," ACM SIGSOFT Software Engineering Notes, vol. 40,

no. 6, pp. 28-32, 2015.

[2] Ma, T., Ali, S., & Yue, T. (2019). Modeling foundations for executable model-based

testing of self-healing cyber-physical systems. Software & Systems Modeling, 18(5),

2843-2873.

[3] S. Schupp et al., "Current challenges in the verification of hybrid systems," in

International Workshop on Design, Modeling, and Evaluation of Cyber Physical

Systems, 2015: Springer, 2015, pp. 8-24.

[4] X. Zheng and C. Julien, "Verification and validation in cyber physical systems:

research challenges and a way forward," in Proceedings of the First International

Workshop on Software Engineering for Smart Cyber-Physical Systems, 2015: IEEE

Press, 2015, pp. 15-18.

[5] S. A. Asadollah, R. Inam, and H. Hansson, "A Survey on Testing for Cyber Physical

System," in IFIP International Conference on Testing Software and Systems, 2015:

Springer, 2015, pp. 194-207.

[6] T. Ma, S. Ali, T. Yue, and M. Elaasar, "Fragility-oriented testing with model

execution and reinforcement learning," in IFIP International Conference on Testing

Software and Systems, 2017: Springer, 2017, pp. 3-20.

[7] M. Veanes, P. Roy, and C. Campbell, "Online testing with reinforcement learning,"

Formal Approaches to Software Testing and Runtime Verification, pp. 240-253, 2006.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction (no. 1). MIT

press Cambridge, 1998.

[9] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[10] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, "A brief survey

of deep reinforcement learning," arXiv preprint arXiv:1708.05866, 2017.

[11] Y. Li, "Deep reinforcement learning: An overview," arXiv preprint arXiv:1701.07274,

2017.

[12] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, "Generating Test Data From OCL

Constraints With Search Techniques," IEEE Transactions on Software Engineering,

vol. 39, no. 10, pp. 1376-1402, 2013.

128

[13] B. Demuth and C. Wilke, "Model and object verification by using Dresden OCL," in

Proceedings of the Russian-German Workshop Innovation Information Technologies:

Theory and Practice, Ufa, Russia, 2009: Citeseer, 2009, pp. 687-690.

[14] C. Z. Mooney, R. D. Duval, and R. Duval, Bootstrapping: A nonparametric approach

to statistical inference (no. 94-95). Sage, 1993.

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: A

survey," Journal of artificial intelligence research, vol. 4, pp. 237-285, 1996.

[16] Y. Anzai, Pattern recognition and machine learning. Elsevier, 2012.

[17] J. E. Aronson, T.-P. Liang, and E. Turban, Decision support systems and intelligent

systems. Pearson Prentice-Hall, 2005.

[18] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region policy

optimization," in Proceedings of the 32nd International Conference on Machine

Learning (ICML-15), 2015: PMLR, 2015, pp. 1889-1897.

[19] S. Kakade and J. Langford, "Approximately optimal approximate reinforcement

learning," in The Nineteenth International Conference on Machine Learning (ICML),

2002, vol. 2: PMLR, 2002, pp. 267-274.

[20] P. W. Glynn and D. L. Iglehart, "Importance sampling for stochastic simulations,"

Management Science, vol. 35, no. 11, pp. 1367-1392, 1989.

[21] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear

systems (no. 1). NBS, 1952.

[22] J. Tatibouet, "Moka – A simulation platform for Papyrus based on OMG

specifications for executable UML," in EclipseCon, 2016: OSGI, 2016.

[23] A. Arcuri and L. Briand, "A practical guide for using statistical tests to assess

randomized algorithms in software engineering," in 33rd International Conference on

Software Engineering (ICSE), , 2011: IEEE, 2011, pp. 1-10.

[24] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, "Benchmarking deep

reinforcement learning for continuous control," in International Conference on

Machine Learning, 2016, 2016, pp. 1329-1338.

[25] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

Experimentation in software engineering. Springer Science & Business Media, 2012.

[26] E. P. Enoiu, A. Cauevic, D. Sundmark, and P. Pettersson, "A Controlled Experiment

in Testing of Safety-Critical Embedded Software," in 2016 IEEE International

129

Conference on Software Testing, Verification and Validation (ICST), 2016: IEEE,

2016, pp. 1-11.

[27] M. Utting, A. Pretschner, and B. Legeard, "A taxonomy of model‐based testing

approaches," Software Testing, Verification and Reliability, vol. 22, no. 5, pp. 297-

312, 2012.

[28] W. Grieskamp, R. M. Hierons, and A. Pretschner, "Model-Based Testing in Practice,"

in Dagstuhl Seminar Proceedings, 2011: Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2011.

[29] R. G. de Vries and J. Tretmans, "On-the-fly conformance testing using SPIN,"

International Journal on Software Tools for Technology Transfer (STTT), vol. 2, no.

4, pp. 382-393, 2000.

[30] K. G. Larsen, M. Mikucionis, and B. Nielsen, "Online testing of real-time systems

using uppaal," in International Workshop on Formal Approaches to Software Testing,

2004: Springer, 2004, pp. 79-94.

[31] A. Groce et al., "Lightweight automated testing with adaptation-based programming,"

in IEEE 23rd International Symposium on Software Reliability Engineering (ISSRE),

2012: IEEE, 2012, pp. 161-170.

[32] D. Araiza-Illan, A. G. Pipe, and K. Eder, "Intelligent agent-based stimulation for

testing robotic software in human-robot interactions," in Proceedings of the 3rd

Workshop on Model-Driven Robot Software Engineering, 2016: ACM, 2016.

[33] A. J. Ramirez, A. C. Jensen, and B. H. Cheng, "A taxonomy of uncertainty for

dynamically adaptive systems," in ICSE Workshop on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS) 2012: IEEE, 2012, pp. 99-108.

[34] N. Esfahani and S. Malek, "Uncertainty in self-adaptive software systems," in

Software Engineering for Self-Adaptive Systems II: Springer, 2013, pp. 214-238.

[35] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding

Uncertainty in Cyber-Physical Systems: A Conceptual Model," in Modelling

Foundations and Applications: 12th European Conference, ECMFA 2015: Springer

2015.

[36] E. M. Fredericks, B. DeVries, and B. H. Cheng, "Towards run-time adaptation of test

cases for self-adaptive systems in the face of uncertainty," in Proceedings of the 9th

130

International Symposium on Software Engineering for Adaptive and Self-Managing

Systems, 2014: ACM, 2014, pp. 17-26.

[37] W. Yang, C. Xu, Y. Liu, C. Cao, X. Ma, and J. Lu, "Verifying self-adaptive

applications suffering uncertainty," in Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering, 2014: ACM, 2014, pp.

199-210.

[38] Zhang, M., Ali, S., & Yue, T. (2019). Uncertainty-wise test case generation and

minimization for cyber-physical systems. Journal of Systems and Software, 153, 1-21.

Appendix
Fig. 11 presents a simplified ETM for ArduCopter. According to the ETM, a DFSM can be

constructed, and part of the DFSM is shown in Fig. 5.

Fig. 11 Simplified ETM for ArduCopter

131

Paper C

Testing Self-Healing Cyber-Physical
Systems under Uncertainty with

Reinforcement Learning: An Empirical
Study

Tao Ma, Shaukat Ali, and Tao Yue

Journal of Empirical Software Engineering (EMSE). DOI: 10.1007/s10664-021-

09941-z

132

Abstract
Self-healing is becoming an essential feature of Cyber-Physical Systems (CPSs). CPSs

with this feature are named Self-Healing CPSs (SH-CPSs). SH-CPSs detect and recover

from errors caused by hardware or software faults at runtime and handle uncertainties

arising from their interactions with environments. Therefore, it is critical to test if SH-

CPSs can still behave as expected under uncertainties. By testing an SH-CPS in various

conditions and learning from testing results, reinforcement learning algorithms can

gradually optimize their testing policies and apply the policies to detect failures, i.e., cases

that the SH-CPS fails to behave as expected. However, there is insufficient evidence to

know which reinforcement learning algorithms perform the best in terms of testing SH-

CPSs behaviors including their self-healing behaviors under uncertainties. To this end, we

conducted an empirical study to evaluate the performance of 14 combinations of

reinforcement learning algorithms, with two value function learning based methods for

operation invocations and seven policy optimization based algorithms for introducing

uncertainties. Experimental results reveal that the 14 combinations of the algorithms

achieved similar coverage of system states and transitions, and the combination of Q-

learning and Uncertainty Policy Optimization (UPO) detected the most failures among the

14 combinations. On average, the Q-Learning and UPO combination managed to discover

two times more failures than the others. Meanwhile, the combination took 52% less time to

find a failure. Regarding scalability, the time and space costs of the value function learning

based methods grow, as the number of states and transitions of the system under test

increases. In contrast, increasing the system’s complexity has little impact on policy

optimization based algorithms.

Keywords Cyber-Physical Systems, Uncertainty, Self-Healing, Model Execution,

Reinforcement Learning, Empirical Evaluation

133

1 Introduction
As an essential feature of Cyber-Physical Systems (CPSs), self-healing enables a CPS to

autonomously detect and recover from errors caused by software or hardware faults at

runtime. We refer to this kind of CPSs as Self-Healing CPSs (SH-CPSs). Besides recovery,

SH-CPSs have to address various uncertainties, which mean uncertain values that may

affect behaviors of an SH-CPS during execution, including measurement errors from

sensors and actuation deviations from actuators. In reality, uncertainties are uncontrollable

and exact values of errors are unknown for a given interaction between an SH-CPS and its

environment. To assess the reliability of SH-CPSs, we would like to test if an SH-CPS can

still behave as expected under uncertainties, with the range of each uncertainty given. As

SH-CPSs have two kinds of behaviors (i.e., functional behaviors for fulfilling business

requirements and self-healing behaviors for handling faults [1]) both affected by

uncertainties, we aim to test both kinds of behaviors of SH-CPSs under uncertainties.

To solve the testing problem, previously, we proposed a fragility-oriented approach [2].

In this approach, we evaluate how likely the system will fail in a given state, defined as

fragility, and use the fragility as a heuristic to find the optimal testing policies for detecting

failures, i.e., unexpected behaviors. Here, we need to find two policies. The first policy is

used to decide how to exercise the SH-CPS by invoking its testing interfaces. Meanwhile,

another policy is used to determine the value of each uncertainty that affects a

measurement or actuation when an SH-CPS uses a sensor or actuator to monitor or change

its environment. The value is then passed to simulators of sensors or actuators to replicate

the uncertainty’s effect. In our previous work [2], reinforcement learning has demonstrated

its effectiveness in learning these two policies. Compared with random testing and a

coverage-oriented testing approach, the fragility-oriented approach with reinforcement

learning discovered significantly more failures. However, as several reinforcement

learning algorithms are available [3], there is no sufficient evidence showing which

reinforcement learning algorithms are the best to be used for testing SH-CPS under

uncertainties.

To this end, we conducted this empirical study, in which the performance of 14

combinations of various reinforcement learning algorithms was evaluated together with the

fragility-oriented approach for testing six SH-CPSs. As aforementioned, to detect failures,

134

the algorithms need to learn the optimal policy for invoking testing interfaces (task 1) and

learn the best strategy to choose uncertainty values (task 2). As these two tasks are

different, we applied two sets of algorithms to perform them. Specifically, we applied two

value function learning based algorithms, Action-Reward-State-Action (SARSA) [4] and

Q-learning [4], for finding the policy of invoking testing interfaces, and seven policy

optimization based algorithms, Asynchronous Advantage Actor-Critic (A3C) [5], Actor-

Critic method with Experience Replay (ACER) [6], Proximal Policy Optimization (PPO)

[7], Trust Region Policy Optimization (TRPO) [8], Actor-Critic method using Kronecker-

factored Trust Region (ACKTR) [9], Deep Deterministic Policy Gradient (DDPG) [10],

and Uncertainty Policy Optimization (UPO) [2], for learning the policy of selecting values

for uncertainties.

Results of our empirical study reveal that Q-learning + UPO was the optimal

combination that discovered the most failures in the six SH-CPSs under uncertainties. On

average, the combination found two times more failures and took 52% less time to find a

failure than the others. Regarding the scalability of the applied algorithms, as the numbers

of states and transitions of the systems under test increased, the time and space costs of the

value function learning based algorithms (SARSA and Q-learning) grew as well, as they

had to save values of each state and transition and choose the optimal action based on the

values. In contrast, the policy optimization based algorithms were rarely affected by

varying complexities of the systems, as they used artificial neural networks to select

actions and estimate the values of states and transitions.

The remainder of this paper is organized as follows. Section 2 provides background

information, followed by the experiment design in Section 3. Section 0 and Section 5

present the experiment execution and results, with a discussion about the results and

alternative approaches given in Section 6. Section 7 analyzes threats to validity. After a

discussion about related work in Section 8, Section 9 concludes the paper.

2 Background
This section briefly introduces the test model used to capture components, expected

behaviors, and uncertainties of the SH-CPS under test in Section 2.1. Section 2.2 explains

how to test the SH-CPS against a test model. The problem is formulated in Section 2.3, and

135

Section 2.4 shows the reinforcement learning algorithms that can be used to solve the

testing problem. In this section, key concepts related to testing and reinforcement learning

are italicized.

2.1 Uncertainty-Wise Executable Test Model

To test SH-CPSs under uncertainty, in our previous work [1], we have proposed the

Executable Model-Based Testing approach (EMBT). In this approach, an executable test

model is used to capture components, uncertainties, and expected behaviors of an SH-CPS

under test. This section will use an example of an autonomous Copter system to introduce

the test model, a simplified which is given in Fig. 12.

An executable test model consists of a collection of UML24 class diagrams and state

machines. The class diagrams capture components of the SH-CPS under test as UML

classes. The components’ state variables that are accessible via testing interfaces are

specified as properties of the classes and the testing interfaces for controlling or monitoring

the components are defined as operations. For example, the Copter has a NavigationUnit

and a GPS, and they are specified as UML classes (Fig. 12 (A)). The properties of the

NavigationUnit capture its state variables, like “velocity” and “height”, that can be queried

by the testing interface status(). Besides status(), the NavigationUnit provides several

interfaces used to control the flight, including throttle(), pitch(), arm(), and land(). They are

all specified as operations of the NavigationUnit. When an SH-CPS uses sensors and

actuators to monitor and change its environment, the measurement and actuation

performed by the sensors and actuators are affected by uncertainties. Such uncertainties are

specified as stereotyped25 properties, with their ranges specified as stereotype attributes.

For instance, the measurement error of “ velocity” measured by GPS is an uncertainty. It is

specified as a property of the GPS class, “vError”, and its range is specified by the

stereotype attributes: “min” and “max”. Note that as the probability distributions of the

uncertainty may not be known, our testing approach does not test SH-CPSs with

uncertainties sampled from distributions. Instead, it applies effective algorithms to find the

24 UML: Unified Modeling Language (https://www.omg.org/spec/UML/)
25 Stereotype: it is an extension mechanism provided by UML. We defined a set of stereotypes, also called UML

profiles, to extend UML class diagram and state machine to specify components, uncertainties, and expected behaviors of
the SH-CPS under test.

136

values of uncertainties that can prohibit a system from behaving normally. Therefore, only

the valid range of each uncertainty is defined in the test model.

Fig. 12 Simplified Test Model of a Copter System

Expected behaviors of each component are specified as UML state machines. A state in

a state machine is defined together with a state invariant, which is an OCL26 constraint of

state variables. By evaluating the invariant, with the variables’ values accessed from the

system under test, we can check if the invariant is satisfied when a component is supposed

to be in a given state. For example, Fig. 12 (B) presents two expected behaviors of the

NavigationUnit. The first behavior specifies how the NavigationUnit controls a flight in

response to invocations of its operations. For example, the Copter starts to take off when

throttle() is invoked with its parameter “t” above 1500. Normally, the NavigationUnit

employs the GPS to monitor the flight. When the GPS loses its signal and fails to measure

the Copter’s position and velocity, a self-healing behavior (i.e., an adaptive control

algorithm) will detect the incorrect measurement, identify the cause (i.e., GPS fault) and

switch to other sensors27 until the GPS outage is over. During this period, the self-healing

behavior controls the Copter’s movement properly to avoid it crashing on the ground. The

second state machine in Fig. 12 (B) specifies this self-healing behavior. The state invariant

26 OCL: Object Constraint Language. https://www.omg.org/spec/OCL/
27 Other sensors include barometer, accelerometer and gyroscope. Limited by the space, they are not shown in Fig. 1.

137

of “Fallback” requires that the Copter should be above the ground, i.e., “height > 0”, when

the behavior takes effect.

Because the self-healing behavior is internal, it is controlled by the NavigationUnit,

instead of external instructions. Consequently, it needs a fault injection operation (e.g.,

stopGPSSignal() defined in the GPS class) to trigger such behavior. We also use UML

state machines to specify when a fault can be injected and how it will affect the state of a

corresponding component, with the stereotypes of «Fault» and «Error» provided by our

modeling framework [2]. For instance, Fig. 12 (C) presents the behavior of GPS. Initially,

GPS is in the “Normal” state. Then, stopGPSSignal() can be invoked, and it will trigger

GPS switching to the “Signal Lost” state, in which the GPS will stop measuring position

and velocity to mimic the fault of losing signal from GPS. After 10 seconds, GPS will

switch back to the “Normal” state and start measuring again. The state machine tells us that

this is a transient fault. In contrast, a permanent fault will keep a component in an error

state. Based on the UML state machines, an algorithm can inject the fault in various

conditions and learn when a fault should be injected to reveal an unexpected behavior.

In summary, a test model captures 1) components, 2) properties, operations, and

expected behaviors of each component, and 3) uncertainties that affect the behaviors and

ranges of the uncertainties, for an SH-CPS. We aim to test if the SH-CPS behaves

consistently with the test model under uncertainties. Note that the purpose of this testing is

to detect failures of SH-CPSs under uncertainties. A failure should be differentiated from a

fault that is to be healed by self-healing behaviors. The failure that is to be observed by

testing is an unexpected behavior, representing a case where an SH-CPS fails to behave

consistently with its test model. In contrast, the fault that is to be handled by self-healing

behaviors should have been identified at design time, and self-healing behaviors have been

implemented to detect errors, identify the faults causing the errors, and apply proper

adaptations to recover from the errors. For example, the self-healing behavior of the

NavigationUnit is designed to detect incorrect GPS measurement (error), caused by the

GPS signal loss (fault). If the system fails to detect the error during testing, a failure

(unexpected behavior) can be observed.

138

2.2 Uncertainty-Wise Executable Model-Based Testing

To efficiently test SH-CPSs, we proposed an executable model-based testing approach. In

this approach, an SH-CPS is tested against a test model, by executing the system and the

model together, sending them the same testing stimuli (e.g., operation invocations) and

comparing their consequent states. To realize the approach, we have developed a testing

framework. In this subsection, we briefly introduce the theoretical foundations of the

executable model-based testing approach in Section 2.2.1 and then present the testing

framework in Section 2.2.2. More details about the theoretical foundations and

implementation can be found in our previous work [1].

2.2.1 Theoretical Foundations
There are three theoretical foundations underlying this executable model-based testing

approach.

First, the standard of Semantics of a Foundational Subset for Executable UML Models

(fUML) [11], Precise Semantics of UML State Machines (PSSM) [12], and our extensions

[1] provide precise execution semantics of UML model elements that are used to specify a

test model. The semantics enables the test model to be executed in a deterministic manner.

Second, the Object Constraint Language (OCL) [13] standard gives us a standard way to

specify constraints that an SH-CPS has to satisfy during execution. As explained in the

previous section, each state in a test model is defined together with a state invariant, i.e., a

constraint on the values of state variables in OCL. By evaluating the invariant with actual

values of the state variables obtained from the system under test, we can rigorously check

if the system behaves as expected in a given state.

Third, the Functional Mockup Interface (FMI) standard has defined a way to co-execute

hybrid models. Based on the standard, we have devised a co-execution algorithm and

implemented a testing framework [1] to enable a test model to be executed together with

an SH-CPS, even though the test model and components of the SH-CPS are implemented

with diverse modeling paradigms.

These three theoretical foundations enable us to co-execute the test model and SH-CPS

in a deterministic manner, and also allow us to rigorously check if the system behave

consistently with the model.

139

2.2.2 Implementation (TM-Executor)
To realize the executable model-based testing, we have developed a testing framework,

TM-Executor. Fig. 13 presents an overview of the framework. As shown in the figure, a

test model is executed by an Execution Engine, together with the SH-CPS under test. To

drive the execution under uncertainties, a Test Driver has to invoke operations on the

system and the model to control their behaviors. Meanwhile, an Uncertainty Introducer

needs to introduce uncertainties in the environment to replicate the effects of measurement

errors and actuation deviations via simulators of sensors and actuators. The two parallel

processes determine how an SH-CPS is tested under uncertainties.

Fig. 13 Overview of the TM-Executor Testing Framework

For operation invocations, the Test Driver takes the current active state and its outgoing

transitions as input and outputs an operation invocation that is to be performed by the

Execution Engine to make the SH-CPS and test model switch to a consequent state. The

operation invocation is defined as follows:

Definition 1. An operation invocation is a combination of an operation and its input

parameter values that are used to call the operation and trigger a transition defined in a test

model.

For instance, when the active states of the NavigationUnit and GPS are (“Idle”,

“Checking GPS”, “Normal”) as shown in Fig. 12, the Test Driver needs to choose either to

invoke pitch() to let the NavigationUnit switch to state “Forward” or “Backward”, or to

call stopGPSSignal() to inject a GPS fault. When an operation is selected, and an operation

invocation is generated by the Test Driver, the Execution Engine will perform the

140

invocation to trigger an outgoing transition in the test model. Meanwhile, the Execution

Engine invokes the testing interface represented by the operation with the same input

parameter values, to make the system enter the target state of the outgoing transition as

well. To check if the consequent states of the SH-CPS and test model are the same, the

Execution Engine obtains state variables’ values from the SH-CPS via testing interfaces,

and passes the values to a Constraint Checker28 to evaluate the invariant of the target state.

If the invariant is not satisfied, it means that the SH-CPS failed to behave consistently with

the test model, and thus a failure is revealed. Otherwise, the Test Driver will keep on

generating operation invocations to drive the execution until a terminal state is reached.

On the other hand, the Uncertainty Introducer needs to select an uncertainty value for

each uncertainty and each measurement or actuation that the uncertainty may take effect.

The definition of uncertainty value is given below:

Definition 2. An uncertainty value is an exact value of a measurement error or actuation

deviation.

The uncertainty value is used to modify measurements performed by the sensors and

actions performed by actuators to simulate the effect of uncertainties. For example, an

uncertainty value is chosen for the measurement error of GPS, “vError” (shown in Fig. 12

(A)), for each velocity measured by the GPS. By adding the measurement error (“vError”)

to the true value of the velocity, derived from a simulation model, we can replicate the

effect of the uncertainty, and test if the system will violate any invariants with the selected

measurement errors.

With the help of TM-Executor, we can execute an SH-CPS together with its test model,

and check if they are behaving consistently under uncertainties, given the ranges of

uncertainties. The remaining problem is how to efficiently explore various sequences of

operation invocations and uncertainty values to find the ones that can reveal a failure. In

the next section, we will see how reinforcement learning can be used to solve this problem.

2.3 Problem Formulation

As explained in the previous section, testing an SH-CPS under uncertainties involves two

parallel processes: 1) invoking operations on the system to explore its behaviors and 2)

28 DresdenOCL (https://github.com/dresden-ocl/standalone) is used in TM-Executor to evaluate OCL constraints.

141

introducing uncertainties in the environment to simulate the effects of measurement errors

and actuation deviations. The two processes are independent from each other, since in the

real-world the uncertainties keep changing, independent of operation invocations

performed on the system.

To find a sequence of operation invocations, Si, and a sequence of uncertainty values, Su,

that can work together to make an SH-CPS violate an invariant, we can either find them

concurrently or find them sequentially, i.e., find a sequence of operation invocations first

and then find uncertainty values that make the SH-CPS violate an invariant during

handling the operation invocations. In case they are to be found concurrently, Si and Su are

to be found from 𝑂 ∗ 𝑈 candidate solutions, where O is the number of all possible

sequences of operation invocations and U is the number of all possible sequences of

uncertainty values. Alternatively, if we find them sequentially and Si is found as the nth

best solution, with uncertainty values only uniformly sampled from their ranges, then Su

can be found with the top n best sequences of operation invocations. Consequently, Si and

Su only need to be found from 𝑂 + 𝑛 ∗ 𝑈 candidate solutions. Under the assumption that Si

can still lead to a high chance of detecting a failure when uncertainty values are uniformly

sampled, the “n” will be small, and thus 𝑂 + 𝑛 ∗ 𝑈 will be much less than 𝑂 ∗ 𝑈. Therefore,

we chose to solve the testing problem by sequentially resolving two tasks:

Task 1. Given a test model, find the optimal sequence of operation invocations to

maximize the chance of detecting failures, with uncertainties uniformly sampled from their

ranges.

Task 2. Given a test model and a sequence of operation invocations, find the sequence of

uncertainty values that makes the SH-CPS under test violate an invariant during handling

the operation invocations.

Using the terms from reinforcement learning, the two tasks can be rephrased as finding

the optimal policy of choosing actions (i.e., operation invocations or uncertainty values)

for an agent (i.e., Test Driver or Uncertainty Introducer) to maximize a long-term reward

(i.e., fragility that indicates the chance to detect a failure). Formally, the fragility is defined

as follows.

Definition 3. Fragility is defined as a distance that indicates how likely a state invariant is

to be violated:

142

𝐹(𝑠*) = 		1 − 𝑑𝑖𝑠(¬𝑜* , 𝑉)	 (1)

where 𝑜* is a state invariant, i.e., a constraint on the values of a set of state variables in

OCL (Section 2.1), 𝑉 is the values of state variables, 𝑑𝑖𝑠(¬𝑜* , 𝑉)		is a distance function

that returns a value between 0 and 1 indicating how close the constraint ¬𝑜* is to be

satisfied by 𝑉. The distance functions for all types of OCL constraints can be found in [14].

Take the Copter shown in Fig. 12 as an example. Assume the Copter is in the “Fallback”

state. Its state invariant is “height > 0”, where height is a state variable, representing the

distance between the Copter and ground. This invariant requires that height must be larger

than zero to avoid crashing on the ground (i.e., “height=0” means crashing). If height

equals to 10, the fragility of the Copter equals to:1 − 𝑑𝑖𝑠[¬(ℎ𝑒𝑖𝑔ℎ𝑡		 > 0)] = 1 − "8
"8:"

=

0.09, according to the distance function given in [14]. If the height is reduced to 1, then the

fragility will be increased to 0.5, indicating the Copter is closer to crash on the ground.

When height is reduced to zero, and the invariant is violated, the fragility is increased to

one, its maximum value.

In the context of testing, the purpose of the agents is to discover failures, and thus they

are interested in finding actions that can lead to a violation of an invariant, i.e., making

fragility equal to 1, rather than increasing the sum of fragilities. For instance, one sequence

of actions makes an SH-CPS go through three states: 𝑠", 𝑠., and 𝑠X, with their fragilities

being 0.0, 0.0, and 0.9, respectively. Another sequence leads to states 𝑠"R , 𝑠.R , 𝑠XR , 𝑠YR , and 𝑠7R

with their fragilities being 0.1, 0.2, 0.1, 0.3, and 0.3, respectively. Though the later

sequence of actions obtains a higher sum of fragilities, it is less likely to detect a failure

than the first sequence. Therefore, we adapt the objective of reinforcement learning from

maximizing cumulative rewards to maximizing a future reward, i.e., increasing the

maximum fragility that can be reached in the future, as defined below:

𝐽(𝜃) = 𝔼N[max*∈[",Q)
(𝛾* ∙ 𝐹(𝑠*))] (2)

where 𝜋 denotes a policy used to choose actions, which can be either operation

invocations or uncertainty values; 𝔼N[…] means the expected value when 𝜋 is used to

select actions; 𝛾 is a discount factor, between 0 and 1. It determines the importance of

future fragilities. If 𝛾 equals to 1, the fragility that can be reached in the future is

considered equally important as the recent ones. On the contrary, if 𝛾 is 0, the algorithms

will consider only the next fragility after taking a selected action. Based on the adapted

143

objective, we also need to update two value functions that are broadly used by

reinforcement learning algorithms, as discussed below.

Definition 4. State value function represents the highest discounted fragility that can be

reached, starting from a given state 𝑠∗ and thereafter following policy 𝜋:

𝑉N(𝑠∗) = 𝔼N[max)∈[8,Q)
𝛾) ∙ 𝐹(𝑠*:))|𝑠* = 𝑠∗, 𝑎*:)~𝜋] (3)

where 𝔼N[…] denotes the expected value, 𝛾 is the discount factor, 𝐹(𝑠*:)) represents the

fragility, and 𝜋 is the policy of selecting actions. 𝑎*:)~𝜋 means choosing action, 𝑎*:), by

following the policy 𝜋.

Definition 5. Action value function, also called Q function, specifies the Q value — the

highest discounted fragility that can be obtained, when taking action 𝑎∗ in state 𝑠∗ and then

following policy 𝜋:

𝑄N(𝑠∗, 𝑎∗) = 𝔼N[max)∈[8,Q)
𝛾) ∙ 𝐹(𝑠*:))|𝑠* = 𝑠∗, 𝑎* = 𝑎∗, 𝑎*:)~𝜋] (4)

Based on the adapted objective, we can apply reinforcement learning algorithms to

address the two tasks sequentially. For Task 1, an algorithm takes the current active state

and its outgoing transitions as inputs. As a state only has finite outgoing transitions, the

input space of the algorithm is finite and discrete. The output of the algorithm is one of the

outgoing transitions. A test data generator, EsOCL [14], is used to generate an operation

invocation (including an operation and valid inputs of the operation) to activate the trigger

specified on the transition. Consequently, the algorithm only needs to choose one of the

outgoing transitions as output, and thus its output space is also discrete. After a number of

episodes29 , the sequence of operation invocations that leads to the highest fragility is

chosen to be the optimal one. It is used in Task 2 to find the uncertainty values that can

reveal a system failure. For the algorithms used to address Task 2, their inputs are the

ranges of uncertainty values and the state of the SH-CPS under test, reified as state

variables’ values of the system, like the velocity and position of the Copter. The output of

the algorithm is an uncertainty value for each uncertainty. As the state variables’ values

and uncertainty values are continuous, both input and output spaces of the algorithm are

continuous. As the two tasks have different characteristics, they pose different

29 An episode is to execute an SH-CPS from an initial state to a final state once.

144

requirements for reinforcement learning algorithms. The following section presents the

state-of-the-art algorithms for solving the tasks.

2.4 Reinforcement Learning Algorithms

In general, reinforcement learning algorithms can be classified into value function learning

based approaches and policy optimization based approaches [3]. Based on these two

categories and more detailed subcategories proposed in literature reviews [3, 15, 16] we

selected a benchmark reinforcement learning algorithm for each subcategory, summarized

in Table 22 and Table 21. More details are given in the following subsections.

2.4.1 Value Function Learning Methods
The essence of value function based reinforcement learning algorithms is temporal

difference learning, that is, to reduce the difference between the Q value estimated at time

step 𝑡 and the Q value estimated for the next time step 𝑡 + 1. The difference is also called

temporal difference error. When the error is reduced to zero for all state-action pairs, the

Q function is learned. By selecting the action with the highest Q value, we can obtain the

optimal policy.

State-Action-Reward-State-Action (SARSA) [4] SARSA uses the following equation to

learn 𝑄N for policy 𝜋.

𝑄N(𝑠* , 𝑎*) = 𝑄N(𝑠* , 𝑎*) + 𝛼 ∙ 𝐸𝑟𝑟N,* (5)

where 𝑄N	is estimated Q function for 𝜋;	𝛼 is a learning rate, which controls the step size of

each update; 𝐸𝑟𝑟N,* is the temporal difference error. Based on the adapted objective of

reinforcement learning (Section 2.3), 𝐸𝑟𝑟N,* is calculated by 𝑚𝑎𝑥	[𝐹(𝑠*), 𝛾 ∙

𝑄N(𝑠*:", 𝑎*:")] 	− 𝑄N(𝑠* , 𝑎*) . When a sample of (state, action, reward) is obtained,

SARSA takes Equation (5) to update 𝑄N(𝑠* , 𝑎*). To collect the sample, SARSA applies the

ε-greedy policy to select actions. That is, with a probability of ε, the policy randomly

selects from all possible actions, and with a probability of 1- ε, it selects the action with the

highest Q value. In theory, SARSA can converge to the Q function of the optimal policy,

as long as all state-action pairs are visited an infinite number of times, and the ε-greedy

converges in the limit to the greedy policy, i.e., reducing ε to zero [17].

Q-learning [4] Instead of learning the Q function of a given policy as SARSA does, Q-

learning tries to learn the Q function of the optimal policy directly, independent of the

policy being followed:

145

𝑄∗(𝑠* , 𝑎*) = 𝑄∗(𝑠* , 𝑎*) + 𝛼 ∙ 𝐸𝑟𝑟∗,* (6)

where 𝑄∗(𝑠* , 𝑎*) represents the estimated Q function of the optimal policy, and 𝐸𝑟𝑟∗,* is the

temporal difference error for 𝑄∗ , calculated by 𝑚𝑎𝑥	[𝐹(𝑠*), 𝛾 ∙ 𝑄∗(𝑠*:", 𝑎*:")] 	−

𝑄∗(𝑠* , 𝑎*). In this case, the policy, 𝜋, used by Q-learning only determines which state-

action pair is to be visited, while the state-action pair and observed reward are used to

update 𝑄∗, rather than 𝑄N. As all pairs of state-action continue to be visited, Q-learning

will gradually learn the Q function and find the corresponding optimal policy [4].
Table 21 Policy Optimization Based Reinforcement Learning Algorithms*

Algorithm Policy
Evaluation Gradient Used to Update Policy Method to Reuse Samples

A3C 𝐴W(𝑠? , 𝑎?) ∇X log 𝜋X(𝑎?|𝑠?) ∙ 𝐴W(𝑠? , 𝑎?) N/A
ACKTR ∇XY*Z[\ log 𝜋X(𝑎?|𝑠?) ∙ 𝐴W(𝑠? , 𝑎?)
DDPG 𝑄W(𝑠? , 𝑎?) ∇X log 𝜋X(𝑎?|𝑠?) ∙ 𝑄W(𝑠? , 𝑎?)
TRPO ∇XF"R log 𝜋X(𝑎?|𝑠?) ∙ 𝑄W(𝑠? , 𝑎?) ,

subject to 𝐷Y!(𝜋"]/|𝜋X) < 𝛿
Important sampling

PPO 𝐴W(𝑠? , 𝑎?) ∇X log 𝜋X(𝑎?|𝑠?) ∙ 𝐴W
F]2^(𝑠? , 𝑎?) Clipped important sampling

ACER min	{c, 𝑤?} ∙ ∇Xlog 𝜋X(𝑎?|𝑠?) ∙ [𝑄_.?(𝑠? , 𝑎?) −
𝑉W(𝑠?)] + 𝐶𝑜𝑟𝑟 2@E , subject to 𝐷Y!4𝜋@a3o𝜋X5 < 𝛿

Truncated important
sampling with bias
correction

UPO N/A ∇XF"R log 𝜋X(𝑎?|𝑠?) ∙ 𝑄`.E?(𝑠? , 𝑎?) N/A
*Policy optimization based algorithms maintain a policy network (an artificial neural network) to select actions. To

make the policy network converge to the optimal policy, the algorithms 1) collect samples of (state, action, reward) by
following the policy network, 2) optionally use the samples to evaluate the current policy, and 3) optimize the policy
network based on the samples or evaluation. 𝑨𝝅(𝒔𝒕, 𝒂𝒕) is the advantage function; 𝝅𝜽(𝒂𝒕|𝒔𝒕) is a policy controlled by
parameters 𝜽; 𝛁𝜽 is the gradient with respect to the parameters of the policy; 𝛁𝜽𝑲'𝑭𝑨𝑪 is an approximated natural gradient
by K-FACC; 𝛁𝜽𝒄𝒐𝒏 is another approximated natural gradient by conjugate gradient algorithm; 𝑫𝑲𝑳(𝝅𝒐𝒍𝒅|𝝅𝜽) is KL
divergence between 𝝅𝒐𝒍𝒅 and 𝝅𝜽; 𝑨𝝅

𝒄𝒍𝒊𝒑 is clipped advantage function; 𝒘𝒕 is importance weight; 𝑸𝑹𝒆𝒕(𝒔𝒕, 𝒂𝒕) is a Q
function estimated by Retrace; 𝑪𝒐𝒓𝒓𝒃𝒊𝒂𝒔 is a bias correction term used by ACER; 𝑸𝒃𝒆𝒔𝒕(𝒔𝒕, 𝒂𝒕) represents the Q values
of the optimal actions that have been found so far.

Table 22 Value Function Learning Based Reinforcement Learning Algorithms*

Algorithm Exploration Policy Value Function Learning
SARSA e-greedy 𝑄W(𝑠? , 𝑎?) = 𝑄W(𝑠? , 𝑎?) + 𝛼 ∙ 𝐸𝑟𝑟W,?
Q-learning 𝑄∗(𝑠? , 𝑎?) = 𝑄∗(𝑠? , 𝑎?) + 𝛼 ∙ 𝐸𝑟𝑟∗,?

*Value function learning based reinforcement learning algorithms apply an exploration policy, e.g., e-greedy, to select
actions based on their Q values. They try to learn Q values and select actions with the highest Q values, thus they do not
need to learn an explicit policy for selecting actions. 𝑸𝝅(𝒔𝒕, 𝒂𝒕) is estimated Q function for policy 𝝅; 𝑸∗(𝒔𝒕, 𝒂𝒕) is
estimated Q function for the optimal policy; 𝜶 is a learning rate; 𝑬𝒓𝒓 is temporal difference error.

2.4.2 Policy Optimization Methods
In contrast to value function based methods, policy-based reinforcement learning

algorithms maintain a policy network (an Artificial Neural Network (ANN)) to select

actions. The policy network takes the state of the environment as input and outputs an

action that is to be performed on the environment. By following the policy network, the

policy-based algorithms collect samples of (state, action, reward), optionally take the

146

samples to evaluate the policy determined by the policy network, and then optimize the

policy network based on the samples or evaluation. The main differences among the

policy-based algorithms lay in the method of policy evaluation, optimization, and

whether/how samples can be reused for the evaluation.

Asynchronous Advantage Actor-Critic (A3C) [5] In A3C, multiple threats are run in

parallel to collect samples of (state, action, reward) by following a threat dependent policy

network. The samples are used to train a critic (another ANN) that estimates an advantage

function for evaluating the policy. The advantage function, 𝐴N(𝑠* , 𝑎*) , equals to

𝑄N(𝑠* , 𝑎*) − 𝑉N(𝑠*). It reveals how good an action 𝑎* is to be taken in a given state 𝑠*,

compared with the average value of all candidate actions in state 𝑠*. Each threat updates its

policy network by the gradient of the “goodness” of actions with respect to the parameters

of its policy, i.e., ∇I log 𝜋I(𝑎*|𝑠*) ∙ 𝐴N(𝑠* , 𝑎*) . From time to time, the local policy

networks are synced with a global one, so that the threats can work together to learn the

optimal policy.

Actor-Critic method using Kronecker-factored Trust Region (ACKTR) [9] Compared

with the gradient taken by A3C, a natural gradient can give a better direction for

improvement. However, computing natural gradient is extremely expensive. To reduce the

computational complexity, ACKTR proposes to use Kronecker-Factored Approximated

Curvature (K-FAC) [18] to obtain an approximate natural gradient and take the

approximate gradient to optimize the policy network and critic.

Deep Deterministic Policy Gradient (DDPG) [10] From another perspective, DDPG uses

Q function instead of the advantage function to evaluate the goodness of actions. It

calculates the gradient of Q function with respect to the policy’s parameters, ∇->𝑄(𝑠* , 𝑎*) ∙

∇I𝜋I(𝑎*|𝑠*), and uses the gradient to update the policy network to make the network select

actions with the highest Q value.

Trust Region Policy Optimization (TRPO) [8] A shortcoming of aforementioned

algorithms is that they need to recollect samples of (state, action, reward) to evaluate the

policy network after each update. To improve the sample efficiency, importance sampling

can be used as an off-policy estimator to estimate the advantage function or Q function of a

given policy, using samples collected under other policies:

𝐴wNV(𝑠* , 𝑎*) =
𝜋I(𝑎*|𝑠*)
𝜋Idef(𝑎*|𝑠*)

𝐴NVdef(𝑠* , 𝑎*) (7)

147

𝑄�NV(𝑠* , 𝑎*) =
𝜋I(𝑎*|𝑠*)
𝜋Idef(𝑎*|𝑠*)

𝑄NVdef(𝑠* , 𝑎*) (8)

where NV[𝑎*\𝑠*]
NVdef[𝑎*\𝑠*]

 is called importance weight. However, if 𝜋I(𝑎*|𝑠*) deviates too much

from 𝜋Idef(𝑎*|𝑠*) , importance sampling will have high variance. Imagine that, if

𝜋Idef(𝑎*|𝑠*) is zero for a pair of (𝑠*, 𝑎*) and 𝜋I(𝑎*|𝑠*) is greater than zero, the importance

weight will become infinite. Therefore, to use importance sampling, it is necessary to

bound the difference between the two policies. To do so, TRPO adds a KL divergence [19]

constraint to each policy update, and it transforms the reinforcement learning problem into

a constrained optimization problem:

maximize 𝔼&>~LVdef ,->~NVdef[

NV[𝑎*\𝑠*]
NVdef[𝑎*\𝑠*]

𝑄Idef(𝑠* , 𝑎*)]

subject to 𝐷^_�����(𝜃EW`|𝜃) ≤ 𝛿
(9)

where 𝜌Idef is the state distribution determined by policy 𝜋Idef; 𝑄Idef is the Q function of

policy 𝜋Idef; 𝐷^_�����(𝜃EW`|𝜃) is average KL divergence between two policies; and 𝛿 controls

the maximum step size for one policy update. The KL divergence constraint defines a trust

region for a policy update. When the constraint is met, TRPO can guarantee a monotonic

improvement for the policy network. To efficiently solve the constrained optimization

problem, TRPO applies the Conjugate Gradient Algorithm [20] to approximately calculate

natural gradient and follows the direction of the gradient to find the solution of the

optimization problem.

Proximal Policy Optimization (PPO) [7] As TRPO is relatively complicated, PPO was

proposed to use a clip function as an alternative to the KL divergence constraint. The clip

function is:

𝑐𝑙𝑖𝑝(𝑤* , 1 − 𝜀, 1 + 𝜀) = �
1 + 𝜀,				𝑖𝑓		1 + 𝜀 ≤ 𝑤*															
𝑤* ,									𝑖𝑓	1 − 𝜀 ≤ 𝑤* < 1 + 𝜀
1 − 𝜀,				𝑖𝑓	𝑤* < 1 − 𝜀																

 (10)

where 𝑤* is the importance weight, NV[𝑎*\𝑠*]
NVdef[𝑎*\𝑠*]

. PPO uses the clip function to bound the

value of importance weight and takes the gradient, ∇I log 𝜋I(𝑎*|𝑠*) ∙ 𝐴N
,W$a(𝑠* , 𝑎*) =

𝛻I 𝑙𝑜𝑔 𝜋I(𝑎*|𝑠*) ∙ 𝑐𝑙𝑖𝑝(𝑤* , 1 − 𝜀, 1 + 𝜀) ∙ 𝐴NVdef(𝑠* , 𝑎*) , to update the policy network.

However, the clip function will introduce a bias to the estimation of the advantage function,

which could lead to a suboptimal policy learned by the algorithm.

148

Actor-Critic method with Experience Replay (ACER) [6] To improve sample efficiency

and stabilize the estimation of the value function, ACER was proposed with three

techniques. First, it uses Retrace [21] to estimate the Q function of the current policy, using

samples collected under past policies. As proven in [21], Retrace has low variance, and it

can converge to the Q function of a given policy, using samples collected from any policies.

Second, ACER truncates importance weights and adds a bias correction term to reduce

the bias caused by the truncation. Particularly, it takes the following gradient to update its

policy network:

𝑔$%&' = 𝑚𝑖𝑛{𝑐, 𝑤(} ∙ ∇) 𝑙𝑜𝑔 𝜋)(𝑎(|𝑠() ∙ 9𝑄*&((𝑠(, 𝑎() − 𝑉+&$'((𝑠()=

+ 𝔼$~+ @A
𝑤((𝑎) − 𝑐
𝑤((𝑎)

B
-
∙ ∇) 𝑙𝑜𝑔 𝜋)(𝑎(|𝑠() ∙ 9𝑄+&$'((𝑠(, 𝑎() − 𝑉+&$'((𝑠()=C

(11)

where 𝑤* is the importance weight; c is a threshold used to truncate the importance weight;

𝑄b>*(𝑠* , 𝑎*) is a Q function estimated by Retrace; 𝑉NVdef(𝑠*) and 𝑄NVdef are state value

function and Q function estimated by a critic, using samples collected under past policies;

�c>(-)!,
c>(-)

�
:

equals to c>(-)!,
c>(-)

 when 𝑤*(𝑎) is greater than c, and it is zero otherwise.

Intuitively, if the importance weight is less than the threshold, it means that the policy 𝜋I

does not deviate much from 𝜋Idef, and Retrace can give a relatively accurate estimation.

Consequently, 𝑄b>*(𝑠* , 𝑎*) is taken to calculate the gradient used for a policy update. In

contrast, when 𝑤* > 𝑐, as 𝜋I and 𝜋Idef are too different, the importance weight becomes

too large and the Retrace estimation is unreliable to be used alone. Therefore, the

importance weight is truncated, and the Q value estimated by the critic, i.e., 𝑄NVdef(𝑠* , 𝑎*),

is used to compensate for the truncation.

Third, to further stabilize the learning process, ACER adds a KL divergence constraint.

Different from TRPO that limits the KL divergence between updated and current policies,

ACER maintains an average policy, representing all past policies and constrains an

updated policy not deviating too much from the average.

Uncertainty Policy Optimization (UPO) [2] Different from the aforementioned methods,

which apply a critic to evaluate their policy, UPO directly searches the space of all

possible policies to find the optimal one. In UPO, the policy is decomposed into a

probability distribution and a policy network that outputs statistics of the distribution. For

example, if we choose to use the normal distribution, the outputs of the policy network will

149

be mean and variance of the distribution. Therefore, given a distribution, the policy

network determines the policy used to select actions. In the beginning, UPO starts with a

randomly initialized policy network, and it keeps on selecting actions by following the

policy determined by the network. When UPO observes a sequence of actions leading to a

higher fragility, it calculates the conjugate gradient [20] of the policy network, multiplied

with Q value, i.e., ∇I,E% log 𝜋I(𝑎*|𝑠*) ∙ 𝑄d>&*(𝑠* , 𝑎*) , where ∇I,E% log 𝜋I(𝑎*|𝑠*) is the

conjugate gradient and 𝑄d>&*(𝑠* , 𝑎*) is the Q value of a pair of state and action that has

been observed by performing the sequence of actions. Afterward, UPO takes the gradient

to update parameters of the policy network, so as to increase the selection probability of

this sequence of actions. UPO continues the search process until reaching the maximum

iterations.

3 Experiment Planning
Following the guidelines of conducting and reporting empirical studies [22] [23] [24], we

designed and conducted the experiment. Section 3.1 presents our research goals. Sections

3.2 to 3.4 describe the rationale of choosing candidate algorithms, subject systems, and

testing tasks performed by the algorithms. Hypotheses and related variables are described

in Section 3.5, and Section 0 explains the applied statistical tests.

3.1 Goals

The objective of the empirical study is to find the best reinforcement learning algorithms

for testing SH-CPSs under uncertainty. More specifically, we would like to identify the

optimal algorithm for choosing operation invocations and the optimal algorithm for

selecting uncertainty values, such that the two algorithms can work together to discover the

most failures, and preferably take the least amount of time. Meanwhile, we would also like

to investigate the scalability of the algorithms to assess the feasibility of applying them to

test complex SH-CPSs. Consequently, we defined two goals for the empirical study.

Goal 1. In the context of uncertainty-wise executable model-based testing, analyze the

effectiveness and efficiency of the reinforcement learning algorithms to determine the

optimal algorithms of invoking operations and introducing uncertainties, for discovering

failures of SH-CPSs under uncertainty.

150

Goal 2. In the context of uncertainty-wise executable model-based testing, analyze the

scalability of the reinforcement learning algorithms to examine their abilities to be applied

for testing complex SH-CPSs.

3.2 Algorithms under Investigation

As explained in Section 2.3, testing SH-CPSs under uncertainty is comprised of two tasks:

selecting a sequence of operation invocations and choosing a sequence of uncertainty

values. Because the two tasks have different requirements, which cannot be satisfied by all

the algorithms introduced in Section 2.4, we chose different sets of reinforcement learning

algorithms to address these two tasks.

For operation invocations, an algorithm has to select one of outgoing transitions of the

current active state, specified in a test model. As the set of outgoing transitions varies from

state to state, the algorithm has to choose a transition from an unfixed set of options.

However, for the reinforcement learning algorithms using Artificial Neural Networks

(ANN), the set of candidates has to be fixed, as an ANN has to have fixed numbers of

inputs and outputs. Hence, we only applied the remaining two algorithms (i.e., Q-learning

and SARSA) to solve the first task.

For the task of choosing uncertainty values, an algorithm has to select a value for each

uncertainty, whenever an SH-CPS interacts with its environment via sensors or actuators.

Assume an SH-CPS is affected by k uncertainties, each uncertainty has n possible values,

and the CPS interacts with its environment m times. In total, 𝑛) ×𝑚 combinations of

uncertainty values need to be selected. As value function learning based algorithms

(Section 2.4.1) have to learn the Q value for each combination and find the combination

with the highest Q value, it is too computationally expensive for them to handle such a

huge number of combinations. In contrast, policy optimization based algorithms (Section

2.4.2) explicitly maintain a policy network to select actions, instead of choosing actions

based on their Q values, and thus they can efficiently select an action from a huge set of

options. Therefore, we applied the policy optimization methods (i.e., A3C, ACER, PPO,

TRPO, ACKTR, DDPG, and UPO) for the second task.

In summary, two reinforcement learning algorithms were used for selecting operation

invocations, and seven algorithms were applied to choose uncertainty values. In total, there

are 14 combinations of the algorithms, also called 14 testing approaches (denoted as APP)

151

in the following. We implemented SARSA, Q-learning, and UPO by ourselves, and the

other algorithms were taken from OpenAI Baselines30.

3.3 Subject Systems

To evaluate the performance of the algorithms, we employed six SH-CPSs from different

domains, with diverse complexities, for the empirical evaluation. Three of them are real-

world systems, and the others are from the literature. Section 3.3.1 introduces their

functionalities, self-healing behaviors, and associated uncertainties. Section 3.3.2 explains

how test models were specified for the six SH-CPSs.

3.3.1 System Description
ArduCopter (AC) 31 is a full-featured, open-source control system for multicopters,

helicopters, and other motor vehicles. It can cater to a range of flight requirements, from

First Person View racing, to aerial photography and autonomous cruising. It is equipped

with five self-healing behaviors. Two of them are rule-based policies used to detect the

disconnection between a copter and its radio controller or ground control station, and guide

the copter to return and land. Another self-healing behavior is a quantitative model-based

method [25] for detecting measurement errors caused by a transient GPS fault. When such

an error is detected, the behavior will identify the fault and adapt the copter to use other

sensors. The other two self-healing behaviors are two control algorithms that are used in

the event of high vibration, e.g., strong wind, to stabilize the flight, and used to avoid

collision with an intruding aerial vehicle. In total, AC uses four sensors (one GPS, one

accelerometer, one gyroscope, and one barometer) and one actuator (a motor) to monitor

and control the flight. Table 23 shows the eight types of uncertainty related to these sensors

and the actuator. The ranges of the uncertainties are specified in their product specification.

Each type of uncertainty affects measurement errors or actuation deviations in three

dimensions, i.e., longitude, latitude, and altitude of the copter. Therefore, there are three

instances for each uncertainty type. In total, there are 24 uncertainty instances, affecting

the flight.

30 https://github.com/openai/baselines
31 http://ardupilot.org/copter/

152

ArduPlane (AP)32 is an autonomous control system for fixed-wing aircraft, and it is

instrumented with two self-healing behaviors. One is a rule-based policy for handling

network disruption between an aircraft and its ground controller. When the response time

from the controller is over a threshold, the aircraft is considered as disconnected with the

controller, and then the behavior will control the aircraft to fly back and land on the

launching place. The other self-healing behavior is a control algorithm used to avoid

collision with a nearby aerial vehicle. AP uses four sensors and one actuator, the same with

ArduCopter, to locate and manipulate an aircraft. Thus, its behaviors are also affected by

24 uncertainty instances.

Table 23 Uncertainties in the Subject Systems

Sys. Hardware Uncertainty Range #Instance
s Sys. Hardwar

e Uncertainty Range #Instan
ces

AC,
AP, AR

Accelerometer

Acceleration
Accuracy

(-9mg,
+9mg)

3 for AC,
AP

2 for AR

RC

Speed
Sensor

Velocity
Accuracy

(-0.1m/s,
0.1m/s) 2

Nonlinearity (-0.5%,
+0.5%)

Eddy
Current
Sensor

Current
Accuracy (-1A, 1A) 8

Motor

Rotation
Deviation

(-0.3°,
+0.3°)

Cab GPS

Position
accuracy

(-2.5m,
+2.5m) 2

Acceleration
Deviation

(-
0.02m/s2,

+0.02m/s2)
Velocity
accuracy

(-0.05m/s,
+0.05m/s) 2

GPS
Position

Accuracy
(-2.5m,
+2.5m) Cab

Engine

Acceleration
Deviation

(-0.1m/s2,
0.1m/s2) 2

Velocity
Accuracy

(-0.05m/s,
+0.05m/s)

Rotation
Deviation (-1°, +1°) 2

AC, AP
Gyroscope

Angular
Velocity
Accuracy

(-0.3°/s,
+0.3°/s) 3

MR

Laser
Scanner

Direction
Accuracy (-5°, +5°) 2 Barometer Accuracy (-150 Pa,

+150 Pa)
AR Rangefinder Accuracy (-10cm,

+10cm) 2

APC

Cart Position
Deviation

(-0.1m,
+0.1m) 9

Sonar
Range
Finder

Distance
Accuracy

(-0.01m,
0.01m) 2

Cell Monitor Position
Accuracy

(-0.05m,
0.05m) 9 Robot

Motor

Rotation
Deviation (-3°, +3°) 2

Acceleration
Deviation

(-0.01m/s2,
+0.01m/s2) 2

ArduRover (AR)33 is an open-source autopilot system for ground vehicles. It has two

self-healing behaviors. One is a control algorithm for avoiding collisions. The other is a

rule-based policy that helps a vehicle to drive back when it is disconnected with its radio

controller. Totally, ArduRover employs three sensors (one accelerometer, one GPS, and

one rangefinder) and one actuator (a motor) to control a vehicle. Since a ground vehicle

runs on the ground, ArduRover only monitors and controls two dimensions of the vehicle,

32 http://ardupilot.org/plane/
33 http://ardupilot.org/rover/

153

i.e., longitude and latitude. Thus, there are two instances for each type of uncertainty of the

sensors and actuator. In total, ArduRover is affected by 14 uncertainty instances.

Adaptive Production Cell (APC) [26] is an autonomous manufacturing unit, which is

comprised of three robots and three carts that deliver workpieces among the robots. A

workpiece is to be processed in three steps, referred as three tasks for the robots. Every

robot is equipped with three tools for accomplishing the three tasks. As it takes time for a

robot to switch its tools, the three robots are configured to work together, and each of them

only performs one of the tasks. APS is equipped with one self-healing behavior: a rule-

based policy that reassigns tasks among robots to maintain the normal function of the

production cell, in case one or multiple tools of a robot break. Due to inaccurate positions,

delivered by the carts, and measured by the robots’ sensors, APC is affected by 18

uncertainty instances: 3 carts × 3 instances of Position Deviation + 3 robots × 3 instances

of Position Accuracy.

RailCab (RC) [27] is an autonomous railway system, whose function is to make rail

vehicles drive in convoy to reduce energy consumptions. Driving in convoy requires the

vehicles to maintain a small distance between each other, and thus it is crucial to keep a

correct speed and direction of all vehicles in convoy. RC employs two speed sensors and

eight eddy current sensors to measure the speed and steering direction of a vehicle. The

self-healing behavior of RC is a quantitative model-based algorithm, used to detects errors

caused by malfunction of the speed sensors used by a vehicle. In case the errors are

detected, the behavior will identify the fault and adapt the vehicle to use GPS rather than

speed sensors to measure its speed. As shown in Table 23, the movement is affected by 18

uncertainty instances, arising from the 11 sensors and one actuator.

Mobile Robot (MB) [28] [29] is an autonomous robot control system for directing a

robot to play soccer. In normal operation mode, MB controls three omnidirectional wheels

to move the robot. Three self-healing behaviors are implemented in MB. Two of the

behaviors are control algorithms that are used to detect the incorrect movement caused by

the fault that a wheel becomes stuck or a wheel rotates freely, and make the robot still

follow a desired trajectory in case the fault happens. The remaining self-healing behavior is

a rule-based policy used to detect and restart malfunctioning software services. As there

are strong dependencies among the services, the self-healing behavior has to find a correct

order to stop and start involved services. In the system, a robot is equipped with a laser

154

scanner to locate a soccer, a sonar range finder to measure the distance to the soccer, and a

motor for movement. In total, eight uncertainty instances are impacting the behaviors of a

robot, with two instances of Direction Accuracy from the scanner, two instances of

Distance Accuracy from the range finder, and four uncertainty instances from the motor.

Testing these self-healing behaviors is challenging, as it is needed to decide when and

which fault is to be introduced to test the self-healing behavior. As a fault may occur at any

time during execution, the set of all possible test cases is huge. It could be infeasible to

cover all cases. To effectively find cases in which a self-healing behavior will fail, we have

proposed the executable model-based testing in our previous work [1]. In this approach, we

test an SH-CPS against a test model, by executing them together, sending them the same

testing stimuli, and comparing their consequent states. In this way, no test cases need to be

generated before test execution. Additionally, by learning from the results of performed

stimuli, reinforcement learning algorithms can be applied to learn the best policies of

choosing stimulus to more effectively detect unexpected behaviors.

3.3.2 Test Models
By applying MoSH (a modeling framework for testing SH-CPS under uncertainty) [1], the

first author of this paper built the test models34 for the selected six SH-CPSs. For each

system, we first captured its main components (e.g., sensors, actuators, and controllers) as

UML classes, and then specified the components’ state variables and testing interfaces as

properties and operations. For each component, we further specified its expected behaviors

as state machines. Based on the requirement of each system (summarized in Table 24), we

defined state invariants for all the states in the state machines.

Note that the state of an SH-CPS comprises the states of its components, and the

behaviors of all components form the SH-CPS behavior. With a flattening algorithm [2],

the components’ behaviors can be combined into a single state machine, representing the

behavior of the SH-CPS. Table 25 presents descriptive statistics of the combined state

machine for the six SH-CPSs.

34 The test models are available at http://zen-tools.com/journal/TSHCPS_RL.html

155

Table 24 Requirements of the Subject Systems Used for Deriving State Invariants

Subject
System Requirement Exemplary Invariant

ArduCopter
(AC) To avoid crash and collision, the distance

between a copter/plan/rover and another object
(e.g., intruding aircraft or obstacle) should
always be greater than zero.

dis > 0
where dis represents the distance
between a vehicle and an obstacle

ArduPlane
(AP)
ArduRover
(AR)
Adaptive
Production
Cell (APC)

Keep the normal function of the production
cell, and ensure produced workpiece is valid.

validity = 1
where validity is a state variable used
to measure if a produced workpiece is

valid

RailCab (RC)
To avoid collision, the distance between two
adjacent vehicles must be greater than braking
distance.

𝑑𝑖𝑠	 > 	𝑣&T − 𝑣TT 2𝑎⁄
Where dis is the distance between two
adjacent vehicles; 𝑣& and 𝑣T are their

velocities; 𝑎 is acceleration

Mobile Robot
(MR)

Ensure a robot follow a desired trajectory, i.e.,
ensure the distance between a robot’s desired
position and actual position is within d
centimeters. d is the size of the robot.

|𝑃@F?5@] − 𝑃?@A3.?|/2E < 𝑑
where 𝑃@F?5@] and 𝑃?@A3.? are actual

and expected positions of a robot

Table 25 Descriptive Statistics of Behaviors of the Subject Systems

Category Subject
System

States

Transitions

Uncertainties

Average Model
Execution Time

(second)

Average System
Execution Time

(min)

Real-world
Systems

ArduCopter
(AC) 432 1396 24 12 8
ArduPlane
(AP) 96 270 24 3 6
ArduRover
(AR) 140 650 12 8 10

Systems
from
literature

Adaptive
Production
Cell (APC)

1016 8512 18 15 3

RailCab (RC) 2160 13310 18 18 5
Mobile Robot
(MR) 1080 4656 8 15 3

As explained in Section 2, the specified test models are executable, and they are

executed together with the SH-CPSs for testing. The last two columns of Table 25 show

the average time taken to execute a test model alone and the time taken to execute an SH-

CPS (software part) with simulators of sensors, actuators, and environment, for one

episode. As the software of the system and the simulation models used by the simulators

are complex, executing an SH-CPS is computationally expensive. Consequently, compared

with executing a test model, it is much slower to execute an SH-CPS.

3.4 Tasks

To assess the failure detection abilities and scalabilities of the reinforcement learning

algorithms, we apply them to test the six SH-CPSs, check the effectiveness and efficiency

of the algorithms, and calculate their time and space cost. An algorithm’s performance

depends on its capability of learning, while it also relies on the number of episodes (i.e.,

156

testing runs) that an algorithm can take to detect failures, as well as the range of each

uncertainty.

On the one hand, the number of episodes determines the number of opportunities that an

algorithm can take to try different operation invocations or uncertainty values. The more

episodes an algorithm can take, the more samples of fragility the algorithm can obtain to

learn the optimal policy, and thus the higher the probability it can detect a failure. Ideally,

we should not limit the number of episodes an algorithm can take to find failures. However,

testing an SH-CPS is computationally costly and time-consuming, as many simulators are

involved in simulating its sensors, actuators, and environment. With eight CPU cores and

16 GB of memory, it takes a few minutes to perform one episode. Limited by current

available computational resources, we evaluated the performance of the algorithms for

1000, 2000, 3000, 4000, and 5000 episodes.

On the other hand, the range of each uncertainty will affect its impact on an SH-CPS.

For instance, if the range of an measurement error is extremely small, it will have little

impact on the measurement. In contrast, if the measurement error is sufficiently large, it

may lead to an incorrect measurement, which may increase the risk of abnormal behavior.

The ranges presented in Table 23 were defined based on the product specifications of the

sensors and actuators, whereas the actual ranges of measurement errors and actuation

deviations could differ from the specifications. To account for the effect of the ranges, we

chose to test each SH-CPS with 10 sets of ranges, which includes the set of ranges shown

in Table 23 as the standard ranges, and nine sets of ranges derived by increasing or

reducing the standard ranges by 10, 20, 30, 40, and 50 percent. We use 10 scales, i.e., 60%,

70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, to represents these 10 sets of

ranges. The scale of 100% represents the standard range, 60% denotes the ranges reduced

by 40%, and 150% means the ranges increased by 50%.

In summary, we applied 14 combinations of reinforcement learning algorithms to test six

SH-CPSs with 10 uncertainty scales and five numbers of episodes ranging from 1000 to

5000. In total, there are 300 testing tasks (6 SH-CPSs × 10 uncertainty scales × 5 numbers

of episodes). Due to the probabilistic policies used by the reinforcement learning

algorithms, even for the same testing task, an algorithm may generate different results. To

account for this randomness, each of the 300 testing tasks was performed 10 times by each

combination of reinforcement learning algorithms.

157

3.5 Hypotheses and Variables

For Goal 1, we aim to evaluate the effectiveness and efficiency of reinforcement learning

algorithms in the context of testing. For effectiveness, as the purpose of testing is to find

failures in the system under test, we chose to use the Number of Detected Failures (NDF)

as the metric. In addition, as it is preferable to cover more behaviors of the system under

test, we selected State Coverage (SCov) and Transition Coverage (TCov) as two additional

metrics for assessing the effectiveness. Regarding efficiency, it is related to effectiveness

and cost. As time cost is the main concern for testing, we chose to use the average amount

of time spent to detect a failure as the metric.

Based on the selected metrics, we formulate two kinds of null hypotheses:

1. Null hypothesis: given a maximum number of episodes (ENUM) and an uncertainty

scale (SCALE), there is no significant difference in effectiveness (measured by State

Coverage (SCov), Transition Coverage (TCov), and the Number of Detected Failures

(NDF)) among the combinations of reinforcement learning algorithms.

H0: ∀𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∀𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∀𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇:

𝐸𝑓𝑓𝑒𝑐𝑡(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) = 𝐸𝑓𝑓𝑒𝑐𝑡7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8

Alternative hypothesis,

H1: ∃𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∃𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∃𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇:

𝐸𝑓𝑓𝑒𝑐𝑡(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) ≠ 𝐸𝑓𝑓𝑒𝑐𝑡7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8

• APPi: one of the 14 testing approaches

• APP_SET: the set of the 14 testing approaches, {APPQ_A3C, APPQ_TRPO,

APPQ_UPO, APPQ_PPO, APPQ_DDPG, APPS_ACKTR, APPS_DDPG, APPS_A3C,

APPS_ACER, APPS_PPO, APPS_TRPO, APPS_UPO, APPQ_ACKTR,

APPQ_ACER}35

• SCALE_SET: the set of uncertainty scales, {60%, 70%, 80%, 90%, 100%, 110%,

120%, 130%, 140%, 150%}

• ENUM_SET: the set of numbers of episodes, {1000, 2000, 3000, 4000, 5000}

• Effect represents an effectiveness metric, which could be SCov, TCov, or NDF

35 Q represents Q-learning and S represents SARSA.

158

• SCov is the percentage of states that are covered by a number of episodes. It is

calculated by: 𝑆𝐶𝑜𝑣(𝐴𝑃𝑃$, 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
e⋃ gg,hii7,jkhlmG

mnop=
gq8 e

|gree|
, where

𝑆),ijj7,gki_lG represents the set of states, visited by 𝐴𝑃𝑃$ in the kth episode, under

uncertainty scale 𝑆𝐶𝐴𝐿𝐸&; 𝑆-WW represents the set of all states in a test model.

• TCov is the percentage of covered transitions. Similar with SCov, TCov is calculated

by 𝑇𝐶𝑜𝑣(𝐴𝑃𝑃$, 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
e⋃ Vg,hii7,jkhlmG

mnop=
gq8 e

|Vree|
, where 𝑇),ijj7,gki_lG is the

set of transitions, visited by 𝐴𝑃𝑃$ in the kth episode, under uncertainty scale 𝑆𝐶𝐴𝐿𝐸&;

𝑇-WW represents the set of all transitions.

• NDF is calculated by:𝑁𝐷𝐹(𝐴𝑃𝑃$, 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) = ∑ 𝐹𝐷),ijj7,gki_lG
lSmn=
)o" , where

𝐹𝐷$,ijj7,gki_lG denotes whether a failure is detected by 𝐴𝑃𝑃$ in the kth episode, under

uncertainty scale 𝑆𝐶𝐴𝐿𝐸&. 𝐹𝐷$,ijj7,gki_lG equals 1 if a failure is detected, otherwise, 0.

2. Null hypothesis: given an ENUM and a SCALE, there is no significant difference in

efficiency (measured by an efficiency measure EFF), among the combinations of

reinforcement learning algorithms.

H0: ∀𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∀𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∀𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇:

𝐸𝐹𝐹(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) = 𝐸𝐹𝐹7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8

Alternative hypothesis,

H1: ∃𝐴𝑃𝑃9 , 𝐴𝑃𝑃: ∈ 𝐴𝑃𝑃_𝑆𝐸𝑇, ∃𝑆𝐶𝐴𝐿𝐸; ∈ 𝑆𝐶𝐴𝐿𝐸_𝑆𝐸𝑇, ∃𝐸𝑁𝑈𝑀< ∈ 𝐸𝑁𝑈𝑀_𝑆𝐸𝑇:

𝐸𝐹𝐹(𝐴𝑃𝑃9 , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<) ≠ 𝐸𝐹𝐹7𝐴𝑃𝑃: , 𝑆𝐶𝐴𝐿𝐸;, 𝐸𝑁𝑈𝑀<8

• EFF is calculated by: 𝐸𝐹𝐹(𝐴𝑃𝑃$, 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
∑ VkE&*g,hii7,jkhlmG
mnop=
gq8

STU(ijj7,gki_lG,lSmn=)
, where

∑ 𝑇𝐶𝑜𝑠𝑡),ijj7,gki_lG
lSmn=
)o" is the total amount of time taken by APPq for the number of

episodes of 𝐸𝑁𝑈𝑀>.

For Goal 2, we evaluated the time and space costs of each combination of reinforcement

learning algorithms. For each testing task, we measured the following two variables:

• Time Cost (TCost): 𝑇𝐶𝑜𝑠𝑡(𝐴𝑃𝑃$, 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) =
∑ VkdG>g,hii7,jkhlmG
mnop=
gq8

lSmn=

• Space Cost (SCost): 𝑆𝐶𝑜𝑠𝑡(𝐴𝑃𝑃$, 𝑆𝐶𝐴𝐿𝐸&, 𝐸𝑁𝑈𝑀>) = 𝑚𝑎𝑥
"r)rlSmn=

𝑆𝐶𝑜𝑠𝑡),ijj7,gki_lG ,

where 𝑆𝐶𝑜𝑠𝑡),ijj7,gki_lG denotes the memory usage of 𝐴𝑃𝑃$ for the kth episode, under

uncertainty scale 𝑆𝐶𝐴𝐿𝐸&.

159

In summary, the empirical study involves three independent variables and six dependent

variables. Table 26 summarizes their values and mapping to the goals.
Table 26 Independent and Dependent Variables

Variable
Type

Variable
Name Value Mapping to

Goals

Independent
Variable

APP
APPQ_A3C, APPQ_TRPO, APPQ_UPO, APPQ_PPO, APPQ_DDPG,
APPS_ACKTR, APPS_DDPG, APPS_A3C, APPS_ACER, APPS_PPO,
APPS_TRPO, APPS_UPO, APPQ_ACKTR, APPQ_ACER Goal 1, Goal

2 SCALE 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%,
150%

ENUM 1000, 2000, 3000, 4000, 5000

Dependent
Variable

SCov Real Number

Goal 1 TCov Real Number
NDF Integer Number
EFF Real Number
TCost Real Number Goal 2 SCost Real Number

3.6 Statistical Tests

Table 27 summarizes the statistical tests and related variables used to evaluate the

effectiveness, efficiency, time cost, and space cost of the 14 combinations of reinforcement

learning algorithms. We first tested the normality of the samples of dependent variables

(SCov, TCov, NDF, and EFF), using the Shapiro-Wilk test [30] with a significance level of

0.05. Test results showed that the samples are not normally distributed. Therefore, we

chose to use non-parametric statistics, the Kruskal-Wallis test [31] and the Dunn's test [32]

in conjunction with the Benjamini-Hochberg correction [33], to check statistical

significances, and applied the Vargha and Delaney statistics [34] to measure effect sizes.

For the samples of dependent variables, we first applied the Kruskal-Wallis test to check

whether there are significant differences in these variables among the 14 combinations of

algorithms. If the Kruskal-Wallis test indicates there are significant differences (i.e., a p-

value is less than 0.05), we further performed the Dunn's test in conjunction with the

Benjamini-Hochberg correction to evaluate the significance of the difference of each pair

of data groups.

For each data groups pair, we also applied the Vargha and Delaney statistics 𝐴w". to

measure the effect size, which reveals the probability that an approach A has higher SCov,

TCov, NDF, or EFF than the other approach B. If 𝐴w". equals to 0.5, then the two

approaches perform equally well. If 𝐴w". is greater than 0.5, then A has a higher chance to

perform better, and vice versa.

160

Table 27 Overview of Statistical Tests with Goals

Goal Description Dependen
t Variable Statistical Test

1

G1.1. For each pair of approaches, compare their
SCov, TCov, and NDFs

SCov,
TCov,
NDF

The Kruskal-Wallis test
The Dunn's test
The Vargha and Delaney
statistics G1.2. For each pair of approaches, compare their

EFFs EFF

2 T2.1. Evaluate TCost for each approach TCost N/A T2.2. Evaluate SCost for each approach SCost

4 Experiment Execution
We introduce the hyperparameter settings of the reinforcement learning algorithms in

Section 4.1 and the experiments' execution process in Section 0.

4.1 Hyperparameter Tuning

Although reinforcement learning algorithms have demonstrated great learning abilities in

multiple fields [10, 35, 36], the success of a particular learning algorithm depends upon the

joint tuning of the model structure and optimization procedure [37]. Both of them are

controlled by several hyperparameters, such as a neural network’s structure, learning rate,

loss function, and the number of episodes. The hyperparameters impact the whole learning

process, and must be tuned to fully unlock an algorithm’s potential. However,

hyperparameter tuning is computationally expensive and time-consuming. In the context of

software testing, testers may not have a sufficient time budget to tune an algorithm for

every system under test. It will be helpful to have a hyperparameter setting that can achieve

relatively good performance for a wide range of systems.

Reinforcement learning researchers have recommended several default hyperparameter

settings [38]. However, these settings were tuned for playing computer games, which are

different from the testing problem. Due to the high computational cost of hyperparameter

tuning and limited computational resources we have, we could not afford to use all systems

with all variables’ settings to tune the hyperparameter. Among the six selected SH-CPSs,

AP is the simplest, with the least number of states and transitions, while RC is the most

complex one, and AC is a moderate one. We chose to use these three systems with diverse

complexities to do the tuning, to make the selected systems more representative. For the

value of the uncertainty scale and the number of episodes, we chose a moderate setting for

161

tuning, i.e., the uncertainty scale of 100% and the number of 3000, so as to avoid achieving

a hyperparameter setting performing well only in extreme cases.

We applied the Population-Based Training (PBT) method [37] for tuning. Compared

with sequential optimization or parallel grid/random search, PBT can focus on the

hyperparameter space that has a higher chance of producing good results, and thus more

efficiently find a better hyperparameter setting. For each reinforcement learning algorithm

used in the experiment (Section 3.2), PBT was allowed to take maximally 1000 iterations

to find the optimal hyperparameter setting. During the search, the three systems (AC, AP,

and RC) were used to evaluate the performance of a setting, with the uncertainty scale of

100% and the number of episodes of 3000. The setting that leads to the highest fragility

was regarded as the optimal solution. Table 28 presents the optimal hyperparameter setting

we found for each algorithm.
Table 28 Overview of Hyperparameter Settings

Algorithm Hyperparameter Value Algorithm Hyperparameter Value

Q-learning
Learning Rate 0.1

SARSA
Learning Rate 0.1

Discount Rate 0.98 Discount Rate 0.98
ε-greedy 0.2 ε-greedy 0.2

A3C

Discount Rate 0.99

ACER

Discount Rate 0.99
#Hidden Layers 3 #Hidden Layers 2
#Hidden Neurons 32 #Hidden Neurons 96
Activation
Function ReLU Activation Function ReLU
Optimizer RMSProp Optimizer RMSProp
Learning Rate 0.1 Learning Rate 0.001
Batch Size 1000 Batch Size 500
#Epochs 1 #Epochs 1

PPO

Discount Rate 0.9

TRPO

Discount Rate 0.9
#Hidden Layers 3 #Hidden Layers 3
#Hidden Neurons 32 #Hidden Neurons 96
Activation
Function Tanh Activation Function Tanh
Optimizer Adam Optimizer Adam
Learning Rate 0.001 Learning Rate 0.001
Clip 0.3 Max KL 0.05
Batch Size 500 Batch Size 2000
#Epochs 10 #Epochs 50

ACKTR

Discount Rate 0.9

DDPG

Discount Rate 0.9
#Hidden Layers 2 #Hidden Layers 3
#Hidden Neurons 32 #Hidden Neurons 32
Activation
Function Tanh Activation Function ReLU
Optimizer Kfac Optimizer Adam
Learning Rate 0.01 Learning Rate 0.0001
Max KL 0.01 Batch Size 1000
Batch Size 2500 #Epochs 50 #Epochs 1

UPO

Discount Rate 0.99
Activation
Function Tanh
#Hidden Layers 3
#Hidden Neurons 96

162

4.2 Execution Process

As explained in Section 3, we applied 14 combinations of reinforcement learning

algorithms to test six SH-CPSs with 10 uncertainty scales and five settings of episodes

numbers. The experiment was conducted on Abel, a cluster at the University of Oslo36.

Each testing job was run on eight nodes with 32 GB RAM. The whole empirical study took

more than six months’ worth of execution time.

We measured the state coverage (SCov), transition coverage (TCov), number of detected

failures (NDF), time cost (TCost), and space cost (SCost) for each approach and each

testing task. The approaches’ efficiencies (EFFs) were further calculated, using NDF and

TCost. At last, we applied statistical tests to assess the differences of the measurements

among the 14 approaches.

5 Experiment Results
This section shows the results of the empirical study. Sections 5.1 and 5.2 present the

effectiveness and efficiency of the 14 combinations of reinforcement learning algorithms,

and Section 5.3 analyses their time and space costs.

5.1 Effectiveness

For most of the testing tasks, the 14 testing approaches managed to cover all the states and

transitions of the SH-CPS under test, i.e., the state coverage (SCov) and transition coverage

(TCov) equal to 100%. The exceptions are the tasks for testing RC, APC, and MR. For

testing APC and MR with 1000 episodes, only 74.2% and 69.4% transitions were covered,

on average. When the number of episodes increased to above 2000, all of the approaches

managed to cover all transitions. For testing RC, none of the 14 approaches achieved 100%

transition coverage, and only a few approaches got 100% state coverage in very few cases,

as RC has huge sets of states and transitions (Table 25). As an example, Fig. 14 presents

the box plots of the state and transition coverages of the approaches for testing RC. The p-

values of the Kruskal-Wallis test in terms of the state and transition coverages for all the

testing tasks are greater than 0.1, thereby indicating no significant difference among the 14

approaches regarding the coverages.

36 http://www.uio.no/english/services/it/research/hpc/abel/

163

Fig. 14 State and Transition Coverages for RC

Next, we assess the actual failure detection ability of the approaches. There are 41

failures detected in the six SH-CPSs, with seven failures detected in AC, eight failures

detected in AR, eight failures detected in AP, five failures detected in APC, eight failures

detected in RC, and five failures detected in MR. These 41 failures correspond to 41 states

in which their invariants were violated when the six systems were being tested with

simulated sensors and actuators. Examples of these failures include a collision between a

copter and an intruding vehicle, a crash of a plane on the ground, and a collision between a

rover and an obstacle. Table 29 presents the average number of detected failures (NDF) for

the 14 testing approaches, under 10 uncertainty scales and five numbers of episodes.

As shown in the table, 𝐴𝑃𝑃s_mju managed to detect the most failures. On average, it

detected 3.4 failures in a testing task. 𝐴𝑃𝑃g_mju performed slightly worse, with 3.3 failures

0.7

0.8

0.9

1.0

1000 2000 3000 4000 5000
Number of Episodes

St
at

e
C

ov
er

ag
e

Testing Approach App. with Q−learning App. with SARSA

0.3

0.4

0.5

0.6

0.7

0.8

1000 2000 3000 4000 5000
Number of Episodes

Tr
an

si
tio

n
C

ov
er

ag
e

Testing Approach App. with Q−learning App. with SARSA

164

detected averagely. In contrast, the other 12 approaches only detected 1.7 failures, on

average, and only detected three failures or less in most of the testing tasks.
Table 29 Average Numbers of Detected Failures (NDF) by the 14 testing Approaches

* #1: APPQ_A3C, #2: APPQ_TRPO, #3: APPQ_UPO, #4: APPQ_PPO, #5: APPQ_DDPG, #6: APPS_ACKTR, #7: APPS_DDPG, #8:
APPS_A3C, #9: APPS_ACER, #10: APPS_PPO, #11: APPS_TRPO, #12: APPS_UPO, #13: APPQ_ACKTR, #14: APPQ_ACER

We first conducted the Kruskal-Wallis test to determine whether there are significant

differences in the NDFs among the 14 approaches. The p-value of the Kruskal-Wallis test

is less than 10!"X, and thus significant differences do exist. Afterward, we applied the

Dunn's test together with the Benjamini-Hochberg correction to check the significance of

SCALE ENUM #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

60%

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.7 1.8 3.6 1.6 1.7 1.7 1.7 1.7 1.7 1.5 1.7 3.5 1.7 1.7
4000 1.9 2.0 4.8 2.0 1.9 2.0 2.0 2.1 2.1 2.1 2.0 4.7 1.9 2.0
5000 2.8 2.8 6.0 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.9 5.9 2.8 2.8

70%

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.7 1.6 3.4 1.6 1.7 1.7 1.7 1.7 1.6 1.5 1.6 3.5 1.7 1.8
4000 1.9 2.0 4.9 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 4.6 2.0 2.0
5000 2.8 2.8 5.9 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.8 5.8 2.8 2.8

80%

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.8 1.8 3.6 1.8 1.7 1.5 1.7 1.7 1.7 1.7 1.6 3.4 1.7 1.6
4000 2.0 2.0 4.8 2.0 2.0 2.1 2.0 2.1 2.0 2.0 2.0 4.6 2.0 2.0
5000 2.8 2.8 5.9 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.8 6.0 2.8 2.8

90%

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.1 1.0 1.0
3000 1.7 1.7 3.6 1.7 1.7 1.7 1.7 1.6 1.6 1.6 1.6 3.3 1.7 1.6
4000 2.0 2.0 4.7 2.1 2.0 2.0 1.9 2.0 2.0 2.0 1.9 4.7 2.0 2.0
5000 2.8 2.8 6.0 2.8 2.8 2.8 2.9 2.9 2.8 2.9 2.8 5.9 2.8 2.8

100%

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.2 1.0 1.0
3000 1.6 1.6 3.4 1.7 1.8 1.7 1.6 1.6 1.5 1.7 1.8 3.3 1.7 1.7
4000 1.9 2.0 4.7 2.0 1.9 2.1 2.1 2.0 2.0 2.1 2.0 4.4 1.9 1.9
5000 2.8 2.8 5.6 2.8 2.8 2.8 2.9 2.8 2.8 2.8 2.8 5.5 2.8 2.8

110%

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.8 1.7 3.5 1.7 1.7 1.5 1.6 1.5 1.6 1.7 1.6 3.3 1.7 1.6
4000 1.9 2.0 4.6 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.0 4.4 2.0 1.9
5000 2.8 2.8 5.6 2.8 2.8 2.8 2.9 2.8 2.8 2.8 2.8 5.5 2.8 2.7

120%

1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.1 1.0 1.0
3000 1.6 1.7 3.4 1.6 1.7 1.7 1.6 1.6 1.7 1.5 1.6 3.2 1.6 1.6
4000 2.0 2.1 4.6 2.1 2.0 1.9 2.0 1.9 2.0 2.0 2.1 4.3 2.0 1.9
5000 2.7 2.8 5.6 2.8 2.8 2.8 2.9 2.7 2.7 2.8 2.8 5.4 2.8 2.6

130%

1000 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 0.9 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 2.0 1.0 1.0
3000 1.6 1.6 3.5 1.7 1.6 1.5 1.7 1.7 1.7 1.7 1.6 3.1 1.6 1.7
4000 1.9 2.0 4.5 2.0 2.0 1.8 2.0 2.0 2.0 2.0 2.1 4.2 2.0 1.9
5000 2.6 2.8 5.7 2.8 2.8 2.7 2.9 2.7 2.7 2.8 2.9 5.2 2.7 2.6

140%

1000 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 1.9 1.0 1.0
3000 1.5 1.7 3.5 1.7 1.7 1.6 1.7 1.6 1.6 1.6 1.6 3.1 1.7 1.5
4000 1.9 2.0 4.6 1.9 2.0 1.9 2.1 1.9 2.0 2.0 2.0 4.2 1.8 1.9
5000 2.6 2.8 5.7 2.7 2.8 2.6 2.9 2.7 2.6 2.7 2.9 5.1 2.7 2.6

150%

1000 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 2.0 1.0 1.0
3000 1.6 1.6 3.4 1.6 1.7 1.6 1.6 1.6 1.7 1.6 1.7 3.1 1.7 1.6
4000 1.9 2.0 4.7 1.9 2.0 1.9 2.0 1.9 1.9 2.0 2.0 4.1 1.9 1.9
5000 2.6 2.8 5.6 2.7 2.8 2.6 2.8 2.6 2.6 2.7 2.9 5.2 2.6 2.6

Average 1.7 1.7 3.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 3.3 1.7 1.7

165

the difference in NDFs between each pair of approaches. The effect size of the difference

was also evaluated, using the Vargha and Delaney statistics 𝐴w".. Since 𝐴𝑃𝑃s_mju detected

the most failures, we focused on checking if this superiority is statistically significant.

For each of the other 13 testing approaches, denoted as APPc, we checked the p-value of

the Dunn's test, corresponding to the pair of 𝐴𝑃𝑃s_mju and APPc. If the p-value is over

0.05, the two testing approaches are considered to be performing equally well. Otherwise,

we further examined the Vargha and Delaney statistics 𝐴w"., using the NDFs of the two

approaches. If 𝐴w". is above 0.5 for the pair of 𝐴𝑃𝑃s_mju and APPc, it means 𝐴𝑃𝑃s_mju has

a higher chance to detect more failures, and thus 𝐴𝑃𝑃s_mju is considered to be superior to

APPc. Otherwise, 𝐴𝑃𝑃s_mju is considered to be worse.

In over 239 (out of 300) testing jobs, 𝐴𝑃𝑃s_mju significantly outperformed the other 12

testing approaches, except 𝐴𝑃𝑃g_mju . 𝐴𝑃𝑃s_mju and 𝐴𝑃𝑃g_mju performed equally in 279

jobs; 𝐴𝑃𝑃g_mju beat 𝐴𝑃𝑃s_mju in 2 jobs and 𝐴𝑃𝑃s_mju was superior in the other 19 jobs.

Table 30 in Appendix A presents detailed results. When the maximum number of episodes

(ENUM) is 1000, all testing approaches performed almost the same, while, as ENUM

increases, 𝐴𝑃𝑃s_mju and 𝐴𝑃𝑃g_mju exceeded the others. When the uncertainty scale

(SCALE) is above 120%, 𝐴𝑃𝑃s_mju detected more failures than 𝐴𝑃𝑃g_mju did in nine jobs,

and they performed almost on the same level in other cases.

5.2 Efficiency

We evaluate the efficiency of the reinforcement learning algorithms, to find the

combination of algorithms that takes the shortest time to detect failures. Fig. 15 shows the

time taken by the algorithms to execute an SH-CPS from its initial state to a final state

once. Particularly, the time cost includes the time taken to select operations and uncertainty

values, generate test input, invoke corresponding testing interfaces, execute the system,

evaluate the fragility of the consequent states, and use the fragility to update the Q function

and uncertainty policy. On average, the testing approaches took less than 150 seconds to

complete one episode. The differences among the average execution times of the different

testing approaches are small, within 10 seconds. However, for different SH-CPSs, SCALEs,

and ENUMs, the execution time varies a lot, ranging from 53 seconds to 480 seconds.

166

Compared with the approaches using SARSA, the approaches with Q-learning took less

time to perform one episode.

Fig. 15 Total Time Cost for One Episode

As the time taken to execute the system depends on the system’s implementation, rather

than the performance of the algorithms, Fig. 16 presents the time cost, excluding the time

spent for executing the system. On average, the algorithms took about 12 seconds in one

episode. Consistent with the trend revealed by Fig. 15, Fig. 16 also shows that SARSA

related approaches took a longer time to perform an episode. In general, 𝐴𝑃𝑃s_iXk incurred

the least time cost, though the differences are within 5 seconds.

Based on the time costs and the number of detected failures (NDF), shown in Section 5.1,

we calculated the efficiency measure (EFF), shown in Fig. 17. Unsurprisingly, 𝐴𝑃𝑃s_mju

took the least amount of time to detect a failure, since all testing approaches took a similar

amount of time and 𝐴𝑃𝑃s_mju detected the most failures within this time. Averagely,

𝐴𝑃𝑃s_mju took 64.5 hours to detect a failure, which is less than half of the average time

taken by 𝐴𝑃𝑃s_iXk (the least efficient approach) for failure detection. On average,

𝐴𝑃𝑃s_mju took 52% less time than the other approaches to detect a failure.

167

Fig. 16 Algorithm Related Time Cost for One Episode

Fig. 17 Testing Approaches’ Efficiencies for 300 Testing Jobs

To evaluate the significance of the differences, we conducted the Kruskal-Wallis test.

The p-value of the test is less than 10!"8, and thus there are significant differences in the

EFFs among different testing approaches. We further applied the Dunn's test together with

the Benjamini-Hochberg correction to examine if EFFs of 𝐴𝑃𝑃s_mju are significantly

smaller than EFFs of the other approaches. The Vargha and Delaney statistics 𝐴w". was

used to assess the effect size. Compared with 𝐴𝑃𝑃g_mju, 𝐴𝑃𝑃s_mju took significantly less

time for failure detection in 98 jobs, more time in one job, and performed equally well in

201 jobs. For the other testing approaches, 𝐴𝑃𝑃s_mju was significantly more efficient in

over 238 jobs. Table 31 in Appendix B presents more details.

Q_A3C

Q_ACER

Q_ACKTR

Q_DDPG

Q_PPO

Q_TRPO

Q_UPO

S_A3C

S_ACER

S_ACKTR

S_DDPG

S_PPO

S_TRPO

S_UPO

0 50 100 150 200
Time Cost (s)

Te
st

in
g

Ap
pr

oa
ch

Q_A3C

Q_ACER

Q_ACKTR

Q_DDPG

Q_PPO

Q_TRPO

Q_UPO

S_A3C

S_ACER

S_ACKTR

S_DDPG

S_PPO

S_TRPO

S_UPO

100 200 300 400
Efficiency Measure (h)

Te
st

in
g

Ap
pr

oa
ch

168

5.3 Scalability

We first assess the tendencies of time and space costs of the 14 testing approaches for

learning the policy of choosing operation invocations, i.e., learning how to trigger the

outgoing transitions of each state defined in a test model to maximize the fragility of the

SH-CPS under test. Fig. 18 shows the average time cost of each testing approach per

episode, and Fig. 19 presents their average space costs. In the figures, the systems are

shown in the increasing order of numbers of states and transitions, i.e., AP has the least

states and transitions, and RC has the most. As shown in the figures, all costs exhibit the

same tendency: the more states and transitions an SH-CPS has, the more time and space a

testing approach took to learn the optimal policy of invoking operations for failure

detection. For the simplest subject system, AP, which contains 96 states and 270 transitions,

the 14 testing approaches took about 10 seconds to perform one episode, and used 5 GB

memory space on average. In contrast, for the most complex system, RC, with 2160 states

and 13310 transitions, the testing approaches’ time and space costs raised to about 70

seconds and 15 GB respectively.

Fig. 18 Average Time Cost for Choosing and Invoking Operations

Fig. 19 Average Space Cost for Choosing and Invoking Operations

0

40

80

120

AP AR AC APC MR RC
System Under Test

Ti
m

e
C

os
t (

s)

Testing Approach
Q_A3C
Q_ACER
Q_ACKTR
Q_DDPG
Q_PPO
Q_TRPO
Q_UPO
S_A3C
S_ACER
S_ACKTR
S_DDPG
S_PPO
S_TRPO
S_UPO

6

9

12

15

AP AR AC APC MR RC
System Under Test

Sp
ac

e
C

os
t (

G
B)

Testing Approach
Q_A3C
Q_ACER
Q_ACKTR
Q_DDPG
Q_PPO
Q_TRPO
Q_UPO
S_A3C
S_ACER
S_ACKTR
S_DDPG
S_PPO
S_TRPO
S_UPO

169

For the second task, the algorithms need to learn the policy of choosing uncertainty

values that can impede the SH-CPSs and lead to failures. Fig. 20 and Fig. 21 present

tendencies of their time and space costs as the number of involved uncertainties increase,

where the systems are shown in the increasing order of the number of uncertainties. As one

can see from the figures, the time and space costs remained at the same level for the six

SH-CPSs with varying numbers of uncertainties. Because the policy based algorithms

employ Artificial Neural Network (ANN) to select actions, they do not need to store the Q

values of all actions for each state. Consequently, their time and space costs are fixed as

long as the architectures of the ANNs are not changed. In Appendix C, Table 32 presents

the detailed time and space cost of each testing approach for each SH-CPS.

Fig. 20 Average Time Cost for Selecting and Introducing Uncertainties

Fig. 21 Average Space Cost for Selecting and Introducing Uncertainties

170

6 Discussion
This section discusses the experiment results about effectiveness in Section 6.1, efficiency

in Section 6.2, scalability in Section 6.3 and alternative approaches in Section 6.4.

6.1 Effectiveness

Based on the results of the effectiveness, we can conclude that the combination of Q-

learning and UPO is the most effective approach that detected the most failures in the six

SH-CPSs, even though the 14 testing approaches achieved similar state and transition

coverages. As shown in Fig. 22, when ENUM equals 1000, the 14 combinations of the

algorithms performed at the same level. When the algorithms only had 1000 episodes to

find failures, they could not collect sufficient experience from the executions, and just

detected one failure on average. As the ENUM increased, the algorithms had more chances

to explore the states of the system under test, with diverse operation invocations and

uncertainty values. Consequently, the algorithms had more data to optimize their policies,

and applied them to detect more failures. However, the increasing tendencies of NDF are

different for the 14 testing approaches. The approaches with UPO tend to detect more

failures than the approaches using A3C, ACER, ACKTR, DDPG, PPO, and TROP.

Because the algorithms, like A3C and ACER, have to learn a value function to evaluate

their policies and then update the policies based on the value function, many episodes were

needed to obtain data for learning the value function, whenever the policy is updated. In

contrast, UPO explores the space of policy directly using a probabilistic policy, which

keeps UPO on trying different sequences of uncertainty values. Whenever it finds an

uncertainty sequence that leads to a higher return, it updates its policy to increase the

probability of selecting such a sequence. Therefore, UPO eliminates the cost of learning

value functions, and potentially covers more promising sequences of uncertainty values for

failure detection.

171

Fig. 22 Average Number of Detected Failures with Different ENUMs

Compared with ENUM, SCALE has less effect on the NDF. As shown in Fig. 23, the

average NDFs of the different testing approaches decrease slightly, as SCALE increases. A

higher SCALE leads to larger uncertainty values, which may cause a greater impact on

system behaviors and make them more likely to fail. However, a large SCALE also

broadens the space of uncertainty values, which makes it more difficult to find the optimal

sequence of uncertainty values. Due to these two reasons, SCALE is only slightly affected

by the NDF. It should also note that the ranges of uncertainty values have great impact on

the performance of the testing approaches. Sufficient knowledge is required to specify the

ranges correctly prior to applying the testing approaches.

Fig. 23 Average Number of Detected Failures with Different SCALEs

6.2 Efficiency

Based on the results of the efficiency (Section 5.2), we know that the combination of Q-

learning and UPO took the least amount of time to detect a failure. As shown in Fig. 16, on

172

average, the algorithms took about 12 seconds to perform one episode. The difference in

the average time costs among different algorithms is within 5 seconds. For operation

invocations, both SARSA and Q-learning aim to learn the optimal Q function, based on

which the algorithms find the optimal policy. While the Q function is being updated,

SARSA has to follow its current policy (Equation (4)), whereas Q-learning only needs to

find the maximum Q value of consequent states (Equation (5)). Therefore, the

computational complexity of Q-learning is less than SARSA’s. For introducing uncertainty,

all of the policy optimization algorithms calculate a standard gradient or natural gradient,

and apply gradient descent methods to optimize their policies. Consequently, their

computational complexities are similar and mainly determined by the architecture of

ANNs, used as the policy and value function in these algorithms. Since, in this experiment,

the ANNs used by the algorithms have almost the same number of layers and the same

number of neurons in each layer (Table 28), the algorithms had very similar time costs.

6.3 Scalability

The results in Section 5.3 reveal that the time and space costs of learning the policy of

selecting uncertainty values remain in the same order of magnitude for testing SH-CPSs

with diverse complexities. In contrast, the costs of learning the policy of invoking

operations are rising as the numbers of states and transitions of the system under test

increase. Since the policy optimization methods were used for uncertainties and they take

advantage of ANNs to approximate their policies and value functions, the computational

costs of these algorithms are determined by the architecture of the ANNs and the optimizer

to improve the ANNs. Alternatively, value function methods, i.e., Q-learning and SARSA

used for operation invocations, have to store the Q value for each pair of state and

transition explicitly. As the number of states and transitions increases, such methods will

take more space and time to store and process the Q values. This could be a potential

scalability issue that limits the maximum numbers of states and transitions of the SH-CPS

under test. One approach to resolve this issue is to use ANNs to approximate the Q value.

However, as explained in Section 3.2, for testing an SH-CPS, the candidate operation

invocations are not fixed. They will change when the system switch from one state to

another. As the inputs of ANNs have to be fixed, we have to train an ANN for each

operation to predict its Q value. Further study is needed to determine whether multiple

173

ANNs could be trained together efficiently to find the optimal policy for operation

invocations.

6.4 Alternative Approaches

The objective of testing an SH-CPS under uncertainty is to find a sequence of operation

invocations and a sequence of uncertainty values that can work together to make an SH-

CPS fails to behave as expected. We formulate this testing problem as an optimization

problem, that is to find the optimal policies of choosing operation invocations and

uncertainty values to maximize the chance of detecting failures. Through a trial and error

process, reinforcement learning can learn how to select testing stimuli to reach the highest

fragility and reveal a failure. Results from our previous work also demonstrated the

effectiveness of RL in solving this testing problem [2].

As explained in Section 2.3, since the number of possible combinations of uncertainty

values is huge, we chose to decompose the testing problem into two tasks and addressed

them sequentially to find the optimal operation invocations and uncertainty values.

Alternatively, one can try to reduce possible combinations of uncertainty values by, for

instance choosing the minimum and maximum possible values of uncertainties or sample

uncertainty values at a big interval. By taking such measures, a single-step algorithm might

be devised. However, dedicated experiments are needed to compare our current approach

with these alternatives.

In our empirical study, we applied seven policy-based reinforcement learning algorithms

to find optimal uncertainty values. However, we acknowledge that evolutionary algorithms

could also be applied together with reinforcement learning as demonstrated in [39, 40].

Due to limited resources, these algorithms were not included in this empirical study. It will

be valuable to evaluate the performance of these algorithms in the future. Evolutionary

algorithms can also be used alone to solve this testing problem. However, to test a system

based on state machines, evolutionary algorithms have to find valid transition paths first,

which has already been proven as a challenging task [41, 42]. A walkaround solution is to

generate all valid transition paths first, according to some coverage criteria, such as all

transitions, and then apply evolutionary algorithms to select a subset of paths as a test suite

[43]. Nevertheless, our previous experiment results demonstrate that covering all states and

174

transitions is not sufficient for detecting failures in the SH-CPSs problem [2].

Consequently, we did not choose evolutionary algorithms to solve the testing problem.

A* is another popular algorithm that can be used to find the optimal path from a source

to a destination, i.e., a transition path leading to the highest fragility in the context of our

testing problem. However, to use the fragility as the heuristic of A* to find the optimal

path, we have to know the fragility for each state. However, it is difficult (if not infeasible)

to collect the fragilities for all states, since the number of possible states of an SH-CPS is

huge. Moreover, each fragility has to be obtained from executions, which are

computationally expensive and time-consuming. In contrast, reinforcement learning

algorithms use an explore strategy (e.g., e-greedy) to explore the space of all possible

states. Guided by the estimated value function (state value function or Q function),

reinforcement learning algorithms can gradually find the path leading to the highest

fragility

Model checking is another approach that can be used to formally prove the correctness

of a system. However, as we take the SH-CPS under test as a black box, it is unknown how

the system’s state variables’ values are to be changed by an operation invocation or

uncertainty value. Therefore, we could not use model checking to prove the correctness of

an SH-CPS.

Due to these reasons, we only focused on evaluating the performance of different

reinforcement learning algorithms in this empirical study. Fourteen combinations of

reinforcement learning algorithms were applied to test six SH-CPSs, while more

experiments are still needed to further address the threats to validity, explained in the next

section.

7 Threats to Validity
This section analyzes the threats to validity from four aspects.

7.1 Construct Validity

To evaluate the failure detection ability of the 14 combinations of reinforcement learning

algorithms, we took the percentages of covered states (SCov) and transitions (TCov) and

the number of detected failures (NDF) as the metrics. In addition, we further defined

efficiency measure (EFF), time cost (TCost), and space cost (SCost), to investigate the

175

efficiency and scalability of the algorithms. The metrics are comparable across the 14

combinations of algorithms, and they can directly reflect the effectiveness, efficiency, and

cost of each combination.

One threat to construct validity is that the failures detected by the algorithms could be

caused by potential flaws in test models rather than system defects. To mitigate the threats,

first, we have defined four UML profiles to extend UML class diagrams and state

machines [1]. Stereotypes defined in the profiles enable us to precisely specify expected

functional behaviors, abnormal behaviors due to faults that occurred at runtime, self-

healing behaviors for handling faults, and uncertainties that will affect these behaviors.

Meanwhile, state invariants were used to define the valid ranges of state variables. The

invariants enable us to rigorously define what behaviors are expected for a given state.

In addition to the above-mentioned rigorousness of the modeling notations, the modeling

framework strictly enforces compliance with the UML standard and ensures syntactic

correctness for the model. Moreover, we applied the framework to execute the models

together with the SH-CPSs under test. As explained in Section 2.1, the framework could

automatically compare the SH-CPSs’ behaviors against the ones specified in the models.

When a conflict was detected, we further examined whether this conflict was due to

incorrectly specified models, including improper state invariants, wrong triggers or guards

of transitions, and mismatched operations and testing interfaces. Consequently, we not

only tested the SH-CPSs against the models, but also utilized the SH-CPSs to validate the

models. In this way, we boosted the quality of the models and increased the credibility of

the testing results.

7.2 Internal Validity

As explained in Section 2.3, we chose to test SH-CPSs in a two-steps approach, as it can

reduce the search space an algorithm has to explore to find the optimal solution.

Nevertheless, additional experiments are still needed to verify if the two-steps approach is

the best choice. Based on this two-steps approach, we evaluated the performance of 14

combinations of algorithms. The effectiveness and efficiency of a combination of

reinforcement learning algorithms depend on the complexity of the system under test, the

ranges of uncertainties that impact the system, the number of episodes the algorithms can

take to detect failures, and hyperparameter settings of the algorithms.

176

In the experiment, we only compared the failure detection abilities of the algorithms for

testing six subject systems with ten scales of uncertainty range and five settings of the

number of episodes. The optimal combination of reinforcement learning algorithms found

in this experiment may not perform the best in other settings, and thus more experiment

results are needed to further confirm the conclusion.

Tuning the hyperparameters of the reinforcement learning algorithms is costly in terms

of the time and computational devices that are required to conduct this task. Consequently,

it is impractical and inefficient for testers to tune the hyperparameters every time before

applying the algorithms to test a system. In this work, we only tuned the hyperparameters

of each algorithm for three SH-CPSs with varying complexities. Although the tuned

hyperparameters might not be the optimal one for all cases, they form a baseline and can

be used as a starting point for future work.

7.3 Conclusion Validity

Due to the indeterminate policy used by the reinforcement learning algorithms to explore

different operation invocations or uncertainty values, the number of detected failures and

space/time costs are affected by randomness, threatening the conclusion validity. To

reduce the threat, we repeated each testing job 10 times and applied statistical tests to

evaluate the significance of the experiment result. We conducted the Kruskal-Wallis test

[31] and Dunn's test [32] in conjunction with the Benjamini-Hochberg correction [33] to

check statistical significance, and Vargha and Delaney statistics [34] to measure effect size.

Finally, we acknowledge that more repetitions are needed to increase the trust on the

results further.

7.4 External Validity

External validity concerns the generalization of the experiment results. In this experiment,

we only tested three real-world systems, and three systems from the literature. They have

96 to 2160 states, and 270 to 2432 transitions. Each system is affected by a number of

uncertainties, varying from 8 to 24. Although the results obtained from the six subject

systems provide the evidence to support the conclusion, results from more SH-CPSs are

still desired to validate the conclusion further.

177

8 Related Work
This section discusses related works on testing with reinforcement learning (Section 8.1)

and testing under uncertainty (Section 8.2).

8.1 Testing with Reinforcement Learning

As a machine learning approach to solve sequential decision problems, reinforcement

learning algorithms have been applied by a few researchers to solve several testing

problems, as described below.

In a pioneering work, Veanes et al. devised an ad hoc reinforcement learning algorithm

for online testing [44]. With the aim of covering more system behaviors, the algorithm

keeps track of the number of times a transition has been triggered, and chooses a transition

that has been triggered with the least of times. In their experiments, the ad hoc algorithm

was compared with a random testing algorithm, and the proposed algorithms managed to

cover more states than the random one, with much less time. However, the ad hoc

algorithm does not consider the long-term reward, that is, the coverage of future transitions.

Thus, the policy learned by this algorithm may be suboptimal.

In another work, Groce et al. proposed a light-weight automated testing framework for

container-like classes [45]. In their framework, SARSA (a value function learning

algorithm, see Section 2.4.1) was used to learn the policy of generating test cases, i.e.,

sequences of method calls on container objects. In the evaluation, the SARSA based

approach was compared with random testing and a modeling checking approach for 15

container classes. Their evaluation results show that the new approach performed better in

7 out of the 15 classes. As no other reinforcement learning algorithms were evaluated in

the experiment, it is unknown whether other algorithms will perform better.

Mariani et al. and Reichstaller et al. applied Q-learning for GUI [46] and interoperability

testing [47]. In the first work, Q-learning was used to select the testing action that

maximizes the changes of displayed GUI widgets, to cover functions of a system under test.

In their empirical evaluation, the Q-learning based approach was compared with GUITAR,

an open-source GUI testing tool, for four GUI applications. For all of these applications,

the Q-learning based approach achieved a higher code coverage, and detected more faults

than GUITAR. In the second work, Q-learning was applied to find implementation faults

178

that can lead to the most critical failures, so that the riskiest implementation faults can be

tested. The proposed testing approach was only evaluated by applying it for one case study,

without comparing it with other methods.

Spieker et al. proposed a value function learning based reinforcement learning algorithm,

similar to Q-learning, for test case prioritization [48]. In the evaluation, the reinforcement

learning-based approach was compared with a random and two static test case

prioritization approaches. Evaluation results demonstrated that the reinforcement learning-

based approach could effectively learn to prioritize test cases that have a high chance to

detect faults, with performance comparable with the two static methods, within 60

iterations.

More recently, Reichstaller and Knapp proposed a model-based reinforcement learning

algorithm for testing self-adaptive systems [49]. Different from the reinforcement learning

algorithms evaluated in this empirical study, the model-based algorithm tries to learn a

Markov Decision Process (MDP) model of the system under test. An MDP model is

defined by 1) a set of states of the system, 2) a set actions that can be performed on the

system, 3) the transition probability that the system switches from one state to another

when an action is conducted, and 4) the reward of performing an action under a state.

When the MDP model is learned, it can be used to find the optimal policy of taking actions

to maximize cumulative rewards. In the evaluation, the model-based algorithm was

compared with Q-learning and a random method for testing a smart vacuum system.

Testing results reveal that the model-based algorithm performed the best, and both model-

based algorithm and Q-learning outperformed the random method. However, sufficient

domain knowledge is needed to obtain the MDP model, and the current algorithm only

supports learning the transition probability for a low-dimensional state space. These

limitations restrict the applicability of the model-based reinforcement learning algorithm,

and it needs further research to enhance the generalizability and learning capability.

In summary, existing works mainly evaluated the performance of value function learning

based reinforcement learning algorithms for test case generation, prioritization, and risk-

based testing. Besides, the hyperparameter settings used in these works, and how the

hyperparameter settings were selected, were rarely mentioned in these papers. To find the

optimal reinforcement learning algorithms for testing SH-CPSs under uncertainty, we

conducted this empirical study and evaluated the performance of 14 combinations of

179

reinforcement learning algorithms. By tuning these algorithms and applying them to test

six SH-CPSs, we found the optimal reinforcement learning algorithms that detected the

most failures in these systems, and with the least time cost.

8.2 Testing under Uncertainty

As uncertainty has been becoming prevalent in nowadays complex software systems,

researchers have proposed approaches to either mitigate the uncertainty or test a system

with uncertainties explicitly captured and introduced.

For uncertainty mitigation, Zhang et al. and Ji et al. both proposed to use Model-Based

Testing (MBT) to discover unknown system behaviors due to indeterminate environmental

conditions [50] or uncertain networks [51]. In another work [52], Camilli et al. also applied

MBT to collect actual system responses at runtime, and then the responses are fed to a

Bayesian inference process that updates beliefs on uncertain parameters of system

behaviors, modeled as a Markov Decision Process (MDP). Based on the result of the

Bayesian inference process, values of the uncertain parameters are calibrated, and the

calibrated MBP model can be used to support future development. From another

perspective, Walkinshaw and Fraser proposed an uncertainty-driven Learning Based

Testing (LBT) approach for unit testing [53]. In this approach, Walkinshaw and Fraser

apply genetic programming to learn multiple inference models of the program under test,

based on previous testing results. Then, an active learning technique (Query By Committee)

is used to select a test input, for which the inference models are the most uncertain about

the outputs. The test input is then used to test the program, and the actual output of the

program is used to further update the inference models, which are used to choose the next

test input. Unlike these works that aim to discover unknown system behaviors or mitigate

uncertainty, our work aims to find failures in SH-CPSs under a set of already identified

uncertainties (measurement errors and actuation deviations), with the range of each

uncertainty given.

To enable testing under uncertainty, Menghi et al. proposed an approach to generate test

oracles for testing Simulink models with uncertain parameter values and white noises. In

this approach, functional requirements are specified as Restricted Signals First Order Logic

(RFOL) formulas and the formulas are transformed to Simulink blocks to calculate a

quantitative measure, representing the degree of satisfaction of the requirements.

180

Alternatively, in our work, we use a test model to capture the requirements of the system

under test, and the constraints defined in the test model serve as test oracles. Simulation is

also a common approach used to test systems under uncertainty. Ramirez et al. proposed to

use simulators of sensors to test a goal model used by an adaptive system, with the

measurement of sensors affected by noises and failures [54]. Similarly, Minnerup and

Knoll proposed to use simulators of actuators to test automated vehicles against a set of

actuator inaccuracies [55]. In these two works, the options of uncertainty are limited to

either a few types, durations and severities of noises [54] or several samples of actuator

inaccuracies, sampled from their ranges [55]. On the contrary, our work aims to find a

value within a valid range for each uncertainty and for each measurement or actuation, the

uncertainty may take effect. Since the solution space of our testing problem is huge, we

proposed to use reinforcement learning to effectively find the sequence of uncertainty

values that can reveal a failure.

In summary, our work aims to find sequences of operation invocations and uncertainty

values that make an SH-CPS failed to behave as expected, with the expected system

behaviors captured as a test model and the range of each uncertainty given. This testing

problem is different from the ones of the works mentioned above. We conducted this

empirical study to find the optimal reinforcement learning algorithms for solving this test

problem.

9 Conclusion
This paper presents an empirical study of applying reinforcement learning algorithms to

test SH-CPSs under uncertainty, to find the optimal algorithms for failure detection. In this

work, we applied 14 combinations of reinforcement learning algorithms to test six SH-

CPSs, including two algorithms (State-Action-Reward-State-Action and Q-learning) for

operation invocations, and seven algorithms (Asynchronous Advantage Actor-Critic,

Actor-Critic method using Kronecker-factored Trust Region, Deep Deterministic Policy

Gradient, Trust Region Policy Optimization, Proximal Policy Optimization, Actor-Critic

method with Experience Replay, and Uncertainty Policy Optimization) for introducing

uncertainties. Testing results reveal that the combination of Q-learning and Uncertainty

Policy Optimization managed to detect the most failures, and on average, they took the

least amount of time to detect a failure. Regarding the scalability of the algorithms,

181

increasing the numbers of states and transitions of the system under test will incur extra

space and time costs for SARSA and Q-learning, which were used for operation

invocations. Whereas increasing the number of uncertainties has little effect on the costs of

the other algorithms, which were used for introducing uncertainties.

Acknowledgement
This work was supported by the Research Council of Norway funded MBT4CPS (grant no.

240013/O70) project. Tao Yue and Shaukat Ali are also supported by the Co-evolver

project funded by the Research Council of Norway (grant no. 286898/LIS) under the

category of Researcher Projects of the FRIPO funding scheme. Tao Yue is also supported

by the National Nature Science Foundation of China (grant no. 61872182).

References
[1] T. Ma, S. Ali, and T. Yue, "Modeling foundations for executable model-based testing

of self-healing cyber-physical systems," Software & Systems Modeling, vol. 18, no. 5,

pp. 2843-2873, 2019.

[2] T. Ma, S. Ali, T. Yue, and M. Elaasar, "Testing self-healing cyber-physical systems

under uncertainty: a fragility-oriented approach," Software Quality Journal, vol. 27,

no. 2, pp. 615-649, 2019.

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, "A brief survey

of deep reinforcement learning," arXiv preprint arXiv:1708.05866, 2017.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction (no. 1). MIT

press Cambridge, 1998.

[5] V. Mnih et al., "Asynchronous methods for deep reinforcement learning," in

International conference on machine learning, 2016, 2016, pp. 1928-1937.

[6] Z. Wang et al., "Sample efficient actor-critic with experience replay," arXiv preprint

arXiv:1611.01224, 2016.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy

optimization algorithms," arXiv preprint arXiv:1707.06347, 2017.

[8] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region policy

optimization," in Proceedings of the 32nd International Conference on Machine

Learning (ICML-15), 2015: PMLR, 2015, pp. 1889-1897.

182

[9] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, "Scalable trust-region method

for deep reinforcement learning using kronecker-factored approximation," in

Advances in neural information processing systems, 2017, 2017, pp. 5279-5288.

[10] T. P. Lillicrap et al., "Continuous control with deep reinforcement learning," arXiv

preprint arXiv:1509.02971, 2015.

[11] Semantics Of A Foundational Subset For Executable UML Models V1.2.1, OMG,

2016.

[12] Precise Semantics Of UML State Machines (PSSM), OMG, 2017.

[13] Object constraint language V2.0, OMG, 2006.

[14] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, "Generating Test Data From OCL

Constraints With Search Techniques," IEEE Transactions on Software Engineering,

vol. 39, no. 10, pp. 1376-1402, 2013.

[15] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, "Benchmarking deep

reinforcement learning for continuous control," in International Conference on

Machine Learning, 2016, 2016, pp. 1329-1338.

[16] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, "Optimal and

autonomous control using reinforcement learning: A survey," IEEE transactions on

neural networks and learning systems, vol. 29, no. 6, pp. 2042-2062, 2017.

[17] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, "Convergence results for

single-step on-policy reinforcement-learning algorithms," Machine learning, vol. 38,

no. 3, pp. 287-308, 2000.

[18] J. Martens and R. Grosse, "Optimizing neural networks with kronecker-factored

approximate curvature," in International conference on machine learning, 2015, 2015,

pp. 2408-2417.

[19] D. Pollard, "Asymptopia: an exposition of statistical asymptotic theory," ed, 2000.

[20] R. Pascanu and Y. Bengio, "Revisiting natural gradient for deep networks," arXiv

preprint arXiv:1301.3584, 2013.

[21] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, "Safe and efficient off-

policy reinforcement learning," in Advances in Neural Information Processing

Systems, 2016, 2016, pp. 1054-1062.

[22] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

Experimentation in software engineering. Springer Science & Business Media, 2012.

183

[23] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, "Reporting experiments in software

engineering," in Guide to advanced empirical software engineering: Springer, 2008,

pp. 201-228.

[24] B. A. Kitchenham et al., "Preliminary guidelines for empirical research in software

engineering," IEEE Transactions on software engineering, vol. 28, no. 8, pp. 721-734,

2002.

[25] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, "A review of

process fault detection and diagnosis: Part I: Quantitative model-based methods,"

Computers & chemical engineering, vol. 27, no. 3, pp. 293-311, 2003.

[26] M. Güdemann, F. Ortmeier, and W. Reif, "Safety and dependability analysis of self-

adaptive systems," in Leveraging Applications of Formal Methods, Verification and

Validation. ISoLA 2006. Second International Symposium on, 2006: IEEE, 2006, pp.

177-184.

[27] C. Priesterjahn, D. Steenken, and M. Tichy, "Timed hazard analysis of self-healing

systems," in Assurances for Self-Adaptive Systems: Springer, 2013, pp. 112-151.

[28] G. Steinbauer, M. Mörth, and F. Wotawa, "Real-time diagnosis and repair of faults

of robot control software," in Robot Soccer World Cup, 2005: Springer, 2005, pp. 13-

23.

[29] M. Brandstotter, M. W. Hofbaur, G. Steinbauer, and F. Wotawa, "Model-based fault

diagnosis and reconfiguration of robot drives," in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2007: IEEE, 2007, pp. 1203-1209.

[30] P. Royston, "Remark AS R94: A remark on algorithm AS 181: The W-test for

normality," Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.

44, no. 4, pp. 547-551, 1995.

[31] W. H. Kruskal and W. A. Wallis, "Use of ranks in one-criterion variance analysis,"

Journal of the American statistical Association, vol. 47, no. 260, pp. 583-621, 1952.

[32] O. J. Dunn, "Multiple comparisons using rank sums," Technometrics, vol. 6, no. 3,

pp. 241-252, 1964.

[33] Y. Benjamini and Y. Hochberg, "Controlling the false discovery rate: a practical and

powerful approach to multiple testing," Journal of the royal statistical society. Series

B (Methodological), pp. 289-300, 1995.

184

[34] A. Vargha and H. D. Delaney, "A critique and improvement of the CL common

language effect size statistics of McGraw and Wong," Journal of Educational and

Behavioral Statistics, vol. 25, no. 2, pp. 101-132, 2000.

[35] V. Mnih et al., "Human-level control through deep reinforcement learning," Nature,

vol. 518, no. 7540, p. 529, 2015.

[36] J. Kober, J. A. Bagnell, and J. Peters, "Reinforcement learning in robotics: A survey,"

The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238-1274, 2013.

[37] M. Jaderberg et al., "Population based training of neural networks," arXiv preprint

arXiv:1711.09846, 2017.

[38] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, "Deep

reinforcement learning that matters," in Thirty-Second AAAI Conference on

Artificial Intelligence, 2018, 2018.

[39] S. Khadka and K. Tumer, "Evolution-guided policy gradient in reinforcement

learning," in Advances in Neural Information Processing Systems, 2018, pp. 1188-

1200.

[40] S. Whiteson and P. Stone, "Evolutionary function approximation for reinforcement

learning," Journal of Machine Learning Research, vol. 7, no. May, pp. 877-917, 2006.

[41] K. A. Derderian, "Automated test sequence generation for finite state machines using

genetic algorithms," Brunel University, School of Information Systems, Computing

and Mathematics, 2006.

[42] P. K. Lehre and X. Yao, "Runtime analysis of the (1+ 1) EA on computing unique

input output sequences," Information Sciences, vol. 259, pp. 510-531, 2014.

[43] R. Lefticaru and F. Ipate, "Automatic state-based test generation using genetic

algorithms," in Ninth international symposium on symbolic and numeric algorithms

for scientific computing (synasc 2007), 2007: IEEE, pp. 188-195.

[44] M. Veanes, P. Roy, and C. Campbell, "Online testing with reinforcement learning,"

Formal Approaches to Software Testing and Runtime Verification, pp. 240-253,

2006.

[45] A. Groce et al., "Lightweight automated testing with adaptation-based

programming," in IEEE 23rd International Symposium on Software Reliability

Engineering (ISSRE), 2012: IEEE, 2012, pp. 161-170.

185

[46] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, "Autoblacktest: Automatic

black-box testing of interactive applications," in Software Testing, Verification and

Validation (ICST), IEEE Fifth International Conference on, 2012: IEEE, 2012, pp.

81-90.

[47] A. Reichstaller, B. Eberhardinger, A. Knapp, W. Reif, and M. Gehlen, "Risk-Based

Interoperability Testing Using Reinforcement Learning," in IFIP International

Conference on Testing Software and Systems, 2016: Springer, 2016, pp. 52-69.

[48] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, "Reinforcement learning for

automatic test case prioritization and selection in continuous integration," in

Proceedings of the 26th ACM SIGSOFT International Symposium on Software

Testing and Analysis, 2017: ACM, 2017, pp. 12-22.

[49] A. Reichstaller and A. Knapp, "Risk-based Testing of Self-Adaptive Systems using

Run-Time Predictions," in IEEE 12th International Conference on Self-Adaptive and

Self-Organizing Systems (SASO), 2018: IEEE, 2018, pp. 80-89.

[50] M. Zhang, S. Ali, and T. Yue, "Uncertainty-wise Test Case Generation and

Minimization for Cyber-Physical Systems: A Multi-Objective Search-based

Approach," Journal of Systems and Software, 2019.

[51] R. Ji et al., "Uncovering unknown system behaviors in uncertain networks with

model and search-based testing," in 2018 IEEE 11th International Conference on

Software Testing, Verification and Validation (ICST), 2018: IEEE, pp. 204-214.

[52] M. Camilli, A. Gargantini, and P. Scandurra, "Model-based hypothesis testing of

uncertain software systems," Software Testing, Verification and Reliability, vol. 30,

no. 2, p. e1730, 2020.

[53] N. Walkinshaw and G. Fraser, "Uncertainty-driven black-box test data generation,"

in 2017 IEEE International Conference on Software Testing, Verification and

Validation (ICST), 2017: IEEE, pp. 253-263.

[54] A. J. Ramirez, A. C. Jensen, B. H. Cheng, and D. B. Knoester, "Automatically

exploring how uncertainty impacts behavior of dynamically adaptive systems," in

Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering, 2011: IEEE Computer Society, pp. 568-571.

186

[55] P. Minnerup and A. Knoll, "Testing Automated Vehicles against Actuator

Inaccuracies in a Large State Space," IFAC-PapersOnLine, vol. 49, no. 15, pp. 38-43,

2016.

187

Appendix A Evaluation Results for Effectiveness
Table 30 presents the statistical test results for the Number of Detected Faults (NDF). As

𝐴𝑃𝑃s_mju detected the most faults, we focus on comparing 𝐴𝑃𝑃s_mju with the other

approaches. For each of the other 13 testing approaches, denoted as APPc, we checked the

p-value of the Dunn's test, corresponding to the pair of 𝐴𝑃𝑃s_mju and APPc. If the p-value

is over 0.05, the two testing approaches are considered to perform equally well, denoted as

“=” in Table 30. Otherwise, we further computed the Vargha and Delaney statistics 𝐴w".,

using the NDFs of the two approaches. If 𝐴w". is above 0.5 for the pair of 𝐴𝑃𝑃s_mju and

APPc, it means 𝐴𝑃𝑃s_mju has a higher chance to detect more faults, and thus 𝐴𝑃𝑃s_mju is

considered to be superior to APPc, signified as “>”. Otherwise, 𝐴𝑃𝑃s_mju is considered to

be worse, signified as “<”.
Table 30 Statistical Test Results for Effectiveness

SCALE ENUM

APPQ_UPO
vs.

APPQ_A3C APPQ_ACER APPQ_PPO APPQ_TRPO APPQ_ACKTR APPQ_DDPG
> < = > < = > < = > < = > < = > < =

60%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

70%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

80%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

90%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

100%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

110% 1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6

188

2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

120%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

130%

1000 1 0 5 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

140%

1000 1 0 5 1 0 5 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

150%

1000 1 0 5 1 0 5 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

Sum 243 0 57 242 0 58 240 0 60 240 0 60 240 0 60 239 0 61

Table 10 Statistical Test Results for Effectiveness (continued)

SCALE ENUM

APPQ_UPO
vs.

APPS_A3C APPS_ACER APPS_PPO APPS_TRPO APPS_ACKTR APPS_DDPG APPS_UPO
> < = > < = > < = > < = > < = > < = > < =

60%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 1 5
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

70%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

80%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

90%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

100% 1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 1 0 5
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

189

3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

110%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

120%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6

130%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 1 0 5
2000 5 0 1 5 0 1 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 1 4
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5

140%

1000 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6
2000 4 0 2 4 0 2 6 0 0 6 0 0 6 0 0 6 0 0 0 0 6
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5

150%

1000 1 0 5 0 0 6 0 0 6 0 0 6 1 0 5 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
3000 6 0 0 5 0 1 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5

SUM 238 0 62 236 0 64 240 0 60 240 0 60 241 0 59 240 0 60 19 2 279

Appendix B Evaluation Results for Efficiency
Table 31 summarizes the evaluation results for efficiency. We focus on comparing

𝐴𝑃𝑃s_mju with the other approaches. If an approach 𝐴𝑃𝑃, took significantly more (less)

time than 𝐴𝑃𝑃s_mju to detect a fault, 𝐴𝑃𝑃, is inferior (superior) to 𝐴𝑃𝑃s_mju in terms of

efficiency, denoted as “>” (“<”) in Table 31.

Table 31 Statistical Results for Efficiency

SCALE ENUM

APPQ_UPO
vs.

APPQ_A3C APPQ_ACER APPQ_PPO APPQ_TRPO APPQ_ACKTR APPQ_DDPG
> < = > < = > < = > < = > < = > < =

60%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

70%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

190

80%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

90%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

100%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

110%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

120%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

130%

1000 1 0 5 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 5 0 1 5 0 1 5 1 0 5 0 1 5 0 1 5 0 1
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

140%

1000 0 0 6 1 0 5 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 5 0 1 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

150%

1000 0 0 6 0 0 6 0 6 0 0 0 6 0 0 6 0 0 6
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0

Sum 240 0 60 239 0 61 239 61 0 239 0 61 238 0 62 238 0 62

Table 11 Statistical Results for Efficiency (continued)

SCALE ENUM

APPQ_UPO
vs.

APPS_A3C APPS_ACER APPS_PPO APPS_TRPO APPS_ACKTR APPS_DDPG APPS_UPO
> < = > < = > < = > < = > < = > < = > < =

60%

1000 2 0 4 2 0 4 2 0 4 1 0 5 2 0 4 2 0 4 1 0 5
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4

70% 1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4

191

2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4

80%

1000 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4

90%

1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5

100%

1000 1 0 5 1 0 5 2 0 4 1 0 5 1 0 5 1 0 5 2 0 4
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5

110%

1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 4 0 2 2 0 4
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4

120%

1000 2 0 4 2 0 4 1 0 5 2 0 4 2 0 4 2 0 4 2 0 4
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 1 0 5

130%

1000 3 0 3 2 0 4 2 0 4 3 0 3 2 0 4 2 0 4 2 0 4
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 1 2
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4

140%

1000 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4 2 0 4
2000 6 0 0 6 0 0 6 0 0 6 0 0 5 0 1 6 0 0 2 0 4
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3

150%

1000 1 0 5 1 0 5 1 0 5 1 0 5 2 0 4 1 0 5 3 0 3
2000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
3000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 2 0 4
4000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3
5000 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 6 0 0 3 0 3

SUM 258 0 42 257 0 43 257 0 43 257 0 43 257 0 43 259 0 41 98 1 201

192

Appendix C Time and Space Costs of Reinforcement

Learning Algorithms
Table 32 presents quantiles of time and space costs of each testing approach for the six SH-

CPSs.
Table 32 Time and Space Costs of Each Testing Approach for Six SUTs

APP SUT #States #Transitions #Unc.
Time Cost (s) Space Cost (G)

1st
Qu. Median 3rd

Qu.
1st
Qu. Median 3rd

Qu.
Q_A3C

AC 432 432 24 15.6 25.3 39.0 5.7 6.8 7.6
AR 140 360 12 6.9 9.2 11.6 5.3 5.7 6.1
AP 96 270 24 6.1 7.9 10.6 4.6 5.0 5.9
APC 1000 1008 18 22.6 37.1 56.2 6.6 7.8 9.2
RC 2160 2432 18 52.6 65.4 87.0 13.2 15.3 17.0
MR 1080 1656 8 35.6 46.2 63.1 8.2 9.2 9.9

Q_TRPO

AC 432 432 24 15.9 22.8 38.4 5.7 6.7 7.7
AR 140 360 12 6.6 8.8 11.6 5.3 5.7 6.1
AP 96 270 24 6.4 8.1 10.4 4.6 5.0 5.9
APC 1000 1008 18 22.8 36.5 60.8 6.5 8.0 9.2
RC 2160 2432 18 54.4 67.8 84.8 13.2 15.4 17.1
MR 1080 1656 8 35.4 45.2 62.4 8.0 9.3 10.0

Q_UPO

AC 432 432 24 14.7 23.6 39.1 5.8 6.8 7.6
AR 140 360 12 6.7 9.0 11.4 5.3 5.6 6.1
AP 96 270 24 6.0 7.7 10.4 4.6 5.1 5.9
APC 1000 1008 18 22.4 37.8 61.5 6.6 7.8 9.1
RC 2160 2432 18 49.4 62.7 84.1 13.1 15.3 17.1
MR 1080 1656 8 34.1 43.4 60.6 8.2 9.2 10.0

Q_PPO

AC 432 432 24 15.0 24.6 38.3 5.8 6.8 7.6
AR 140 360 12 7.1 9.4 12.1 5.2 5.6 6.1
AP 96 270 24 6.1 7.9 10.5 4.6 5.1 5.9
APC 1000 1008 18 21.5 35.5 61.3 6.6 7.9 9.2
RC 2160 2432 18 54.4 68.5 88.1 13.1 15.3 17.1
MR 1080 1656 8 35.4 45.4 60.6 8.1 9.2 9.9

Q_DDPG

AC 432 432 24 15.3 22.4 37.7 5.8 6.8 7.6
AR 140 360 12 6.8 9.1 11.8 5.3 5.7 6.1
AP 96 270 24 6.2 7.8 10.8 4.6 5.0 5.9
APC 1000 1008 18 21.3 33.6 59.8 6.5 8.0 9.2
RC 2160 2432 18 52.8 67.2 85.6 13.2 15.3 17.0
MR 1080 1656 8 34.5 43.5 58.7 8.2 9.2 9.9

S_ACKTR

AC 432 432 24 18.4 27.2 39.6 6.6 7.3 7.9
AR 140 360 12 6.8 9.0 11.7 5.3 5.9 6.4
AP 96 270 24 8.3 10.9 14.7 4.8 5.2 6.0
APC 1000 1008 18 37.5 62.9 94.8 8.0 9.2 10.3
RC 2160 2432 18 64.2 80.7 96.9 14.1 15.1 16.5
MR 1080 1656 8 41.8 53.9 66.6 9.4 10.0 10.8

S_DDPG

AC 432 432 24 17.3 27.4 38.9 6.6 7.3 8.0
AR 140 360 12 6.5 8.7 11.1 5.3 5.9 6.4
AP 96 270 24 8.1 11.0 14.1 4.8 5.2 5.9
APC 1000 1008 18 35.5 63.6 98.2 8.0 9.3 10.5

193

RC 2160 2432 18 56.6 70.5 85.7 14.0 15.2 16.5
MR 1080 1656 8 39.4 50.9 64.1 9.3 10.0 10.8

S_A3C

AC 432 432 24 19.5 28.2 39.2 6.6 7.3 7.9
AR 140 360 12 6.3 8.3 10.8 5.3 5.8 6.4
AP 96 270 24 8.0 10.4 13.9 4.8 5.2 5.9
APC 1000 1008 18 30.7 52.3 88.6 8.0 9.2 10.6
RC 2160 2432 18 57.4 69.9 85.5 13.9 15.1 16.5
MR 1080 1656 8 39.1 51.1 65.0 9.3 9.9 10.9

S_ACER

AC 432 432 24 19.8 30.1 40.7 6.6 7.3 8.0
AR 140 360 12 7.1 9.3 11.9 5.3 5.8 6.4
AP 96 270 24 8.7 11.6 14.9 4.8 5.3 6.0
APC 1000 1008 18 34.6 51.9 91.6 8.0 9.2 10.4
RC 2160 2432 18 64.9 79.0 96.9 14.0 15.2 16.4
MR 1080 1656 8 43.5 55.3 68.5 9.3 9.9 10.8

S_PPO

AC 432 432 24 18.0 26.9 38.3 6.6 7.3 7.9
AR 140 360 12 6.3 8.6 11.1 5.3 5.8 6.4
AP 96 270 24 7.8 10.4 13.6 4.8 5.2 6.0
APC 1000 1008 18 34.5 57.7 91.8 8.0 9.3 10.4
RC 2160 2432 18 58.4 72.3 88.4 13.9 15.1 16.4
MR 1080 1656 8 39.3 50.7 64.4 9.3 10.0 10.8

S_TRPO

AC 432 432 24 19.1 27.3 38.8 6.7 7.3 8.0
AR 140 360 12 6.3 8.5 10.9 5.3 5.8 6.4
AP 96 270 24 7.8 10.9 14.1 4.8 5.2 6.0
APC 1000 1008 18 31.0 54.8 95.9 8.0 9.3 10.5
RC 2160 2432 18 57.6 69.0 89.0 14.0 15.3 16.4
MR 1080 1656 8 40.2 51.0 65.4 9.3 9.9 10.8

Q_ACKTR

AC 432 432 24 16.2 22.9 35.0 5.8 6.8 7.6
AR 140 360 12 7.0 9.1 11.6 5.3 5.7 6.1
AP 96 270 24 6.6 8.4 10.8 4.6 5.0 5.9
APC 1000 1008 18 23.8 39.6 67.7 6.6 7.9 9.3
RC 2160 2432 18 59.0 72.3 94.4 13.1 15.3 17.0
MR 1080 1656 8 36.5 45.1 63.5 8.2 9.3 9.9

S_UPO

AC 432 432 24 18.0 26.8 39.2 6.7 7.3 7.9
AR 140 360 12 6.2 8.4 10.7 5.3 5.9 6.4
AP 96 270 24 8.1 10.8 13.7 4.8 5.2 6.0
APC 1000 1008 18 35.5 56.7 95.6 7.9 9.3 10.4
RC 2160 2432 18 52.8 66.7 81.3 14.0 15.1 16.5
MR 1080 1656 8 36.6 47.4 61.7 9.4 10.0 10.8

Q_ACER

AC 432 432 24 16.1 25.0 39.1 5.8 6.8 7.7
AR 140 360 12 7.3 9.8 12.2 5.3 5.7 6.1
AP 96 270 24 6.5 8.7 11.2 4.6 5.0 5.9
APC 1000 1008 18 22.1 37.3 59.7 6.6 7.8 9.2
RC 2160 2432 18 58.6 72.4 96.0 13.3 15.2 17.3
MR 1080 1656 8 38.8 50.1 67.2 8.2 9.2 9.9

* #Unc: Number of uncertainty instances

