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Abstract—In large InfiniBand subnets the Subnet Manager
(SM) is a potential bottleneck. When an InfiniBand subnet grows
in size, the number of paths between hosts increases polynomially
and the SM may not be able to serve the network in a timely
manner when many concurrent path resolution requests are re-
ceived. This scalability challenge is further amplified in a dynamic
virtualized cloud environment. When a Virtual Machine (VM)
with InfiniBand interconnect live migrates, the VM addresses
change. These address changes result in additional load to the SM
as communicating peers send Subnet Administration (SA) path
record queries to the SM to resolve new path characteristics.

In this paper we benchmark OpenSM to empirically demon-
strate the SM scalability problems. Then we show that our novel
SA Path Record Query caching scheme significantly reduces the
load towards the SM. In particular, we show by using the Reliable
Datagram Socket protocol that only a single initial SA path
query is needed per communicating peer, independent of any
subsequent (re)connection attempts.

I. INTRODUCTION

There is a lot of work going on, both in academia and

the industry, to make cloud computing capable of offering

High Performance Computing (HPC). With HPC-as-a-Service,

traditional HPC users can save capital expenditure, while new

user groups that cannot afford to own a private HPC cluster,

can get on-demand access. However, the overhead imposed by

virtualization combined with the extreme performance demands

of HPC kept this idea immaterialized for a long time. During

the last ten years, the situation has improved considerably as

CPU overhead has been practically removed through hardware

virtualization support [1], [2]; memory overhead significantly

reduced by virtualizing the Memory Management Unit; storage

overhead reduced by the use of fast SAN storages or distributed

networked file systems; and network I/O overhead reduced by

the use of device passthrough techniques like Single Root I/O

Virtualization (SR-IOV) [3]. It is now possible for clouds

to accommodate virtual HPC (vHPC) clusters using high

performance interconnect solutions and deliver the necessary

performance [4], [5], [6].

InfiniBand (IB) [7], the underlying network technology we

focus on in this paper, is an HPC interconnection network

technology offering high bandwidth and low latency. IB

accelerates 224 HPC systems in the TOP500 supercomputers

list as of November 2014 [8], 44.8% of the list. Each IB subnet

requires a Subnet Manager (SM) which is responsible for the

network initialization, topology discovery, path computation,

and configuration of IB ports on switches and Host Channel

Adapters (HCAs). In large subnets, the available paths between

nodes grow polynomially and the SM becomes a potential

bottleneck when many concurrent requests for path resolution

are received. This scalability challenge is further amplified

in a dynamic virtualized cloud environment, when a Virtual

Machine (VM) with IB interconnect live migrates.

To ensure efficient virtualization, while maintaining high

bandwidth and low latency, modern IB Host Channel

Adapters (HCAs) support SR-IOV. However, it is challenging

to support transparent live migration of VMs assigned to

IB HCAs using SR-IOV [5], [6], [9]. Each IB connected

node has three different addresses (LID, GUID, GID), that

are further discussed in section II. When a live migration

happens, regardless of the downtime attributed to the detaching

of the passed through interface, that most of the existing works

are focusing on, one or more of the IB addresses changes.

Other nodes communicating with the VM-in-migration lose

connectivity and try to find the new address to reconnect to by

sending Subnet Administration (SA) path record1 queries to

the SM. The resulting futile communication in the underlying

network towards the SM can be significant. In a large network,

this message flooding towards the SM, caused by VMs

migrating, will increase the overall network latency as the

load on the SM increases.

In this paper, we first demonstrate the scalability challenges

of the SM as the amount of SA queries increases. Next, our

focus is to reduce the amount of SA queries in an IB subnet. We

use the particular case of VM live migration, because many SA

queries are generated by the peer nodes when a VM migrates

and the IB addresses change. We implement a prototype and

show that if we keep the same IB addresses after the migration,

connections can be reestablished by sending less SA queries.

Furthermore, we introduce a local SA path caching mechanism

at the end nodes and show that subsequent SA queries after

the initial connection is established, can be eliminated. The

caching scheme is generic and when enabled, can alleviate the

load of the SM with or without live migrations taking place.

Our testbed is based on the OpenStack cloud platform and

the caching scheme is implemented on the Reliable Datagram

Socket (RDS) protocol [10] (version 3.1).

The rest of the paper is organized as follows: Section II

gives background information on I/O Virtualization (IOV) and

IB addressing schemes. In Section III we benchmark OpenSM

to show the potential scalability issues of an SM that motivates

our work further, while Section IV describes the design and

1A path record contains path characteristics like service level, MTU, etc.
of a path between two communicating peers.



implementation of the given solution. The experiments and

results are located in Section V, followed by the related work

in Section VI. We conclude and add some future work in

section VII.

II. BACKGROUND

In this section we describe different Input/Output (I/O)

Virtualization techniques with a particular focus on SR-IOV.

The IB addressing schemes are presented, and the challenges

leading to the increased amount of SA queries as a result of

live migrations are discussed.

A. Network I/O Virtualization

I/O Virtualization (IOV) is needed to share I/O resources

and provide protected access to them from the VMs. IOV

decouples the logical device, which is exposed to a VM, from

its physical implementation [11], [12]. Currently, there are two

widespread approaches to IOV, both having their advantages

and disadvantages:

a) Software emulation is a decoupled front-end/back-end

software architecture. The front-end is a device driver

placed in the VM, communicating with the back-end

implemented by the hypervisor to provide I/O access.

Two well known implementations of software emulation

IOV are 1) Emulation of real devices and 2) Paravirtu-

alization. When emulating real devices, a VM can run

unmodified drivers of the emulated device, and the guest

OS behaves as if it was running on real hardware. However,

emulating real devices suffer from poor performance and

adds overhead to the hypervisor2, because CPU cycles

have to be dedicated to emulate non-existing hardware.

Paravirtualization exposes a lightweight optimized virtual

hardware to the guest OS, that improves performance and

reduces the overhead compared to the emulation of real

devices method. The disadvantage is that special drivers

for the virtual hardware need to be installed in the guest

OS. With the software emulated techniques, the physical

device sharing ratio is high and live migration is possible

with just a few milliseconds of network downtime.

b) Direct device assignment involves a coupling of I/O

devices to VMs, with no device sharing between VMs.

Direct assignment or device passthrough provides near to

native performance with minimum overhead. The physical

device is directly attached to the VM, bypassing the

hypervisor, and the guest OS can use unmodified drivers.

The downside is limited scalability, as there is no sharing;

one physical network card is coupled with one VM. Single

Root IOV (SR-IOV) allows a physical device to appear

through hardware virtualization as multiple independent

lightweight instances of the same device. These instances

can be assigned to VMs as passthrough devices, and

accessed as Virtual Functions (VFs) [3]. SR-IOV eases the

scalability issue of pure direct assignment. Unfortunately,

2The software component responsible for managing VMs, is called Virtual
Machine Monitor (VMM) or hypervisor [11].

there is currently no easy way to live-migrate VMs without

a network downtime in the order of seconds when using

direct device assignment [13].

B. The InfiniBand Addressing Schemes

InfiniBand uses three different types of addresses [7], [14],

[9]. First is the 16 bits Local Identifier (LID). At least one

unique LID is assigned to each HCA port and each switch by

the SM. The LIDs are used to route traffic within a subnet. Since

the LID is 16 bits long, 65536 unique address combinations can

be made, of which only 49151 (0x0001-0xBFFF) can be used

as unicast addresses. Consequently, the number of available

unicast addresses defines the maximum size of an IB subnet.

Second is the 64 bits Global Unique Identifier (GUID)

assigned by the manufacturer to each device (e.g. HCAs and

switches) and each HCA port. The SM may assign additional

subnet unique GUIDs to an HCA port, which is particularly

useful when SR-IOV VFs are enabled.

Third is the 128 bits Global Identifier (GID). The GID

is a valid IPv6 unicast address, and at least one is assigned

to each HCA port and each switch. The GID is formed by

combining a globally unique 64 bits prefix assigned by the

fabric administrator, and the GUID address of each HCA port.

C. SR-IOV, InfiniBand and Live Migrations

Providing HPC as an elastic and efficient cloud service is

challenging due to the added overhead of virtualization. When

it comes to the interconnection network, none of the software

emulation approaches from section II-A are suitable. HPC

interconnection networks rely heavily on hardware offloading

and bypassing of the protocol stack and the OS kernel to

efficiently reduce latency and increase performance [15]. Thus,

the only viable option to provide high performance networking

in VMs, is to use a direct device assignment technique. To still

be scalable, we, as others working with IB and virtualization [4],

[6], [9], chose to use SR-IOV for our experiments.

Unfortunately, direct device assignment techniques pose a

barrier for cloud providers if they want to use transparent live

migrations for data center optimization. The essence of live

migration is that the memory contents of a virtual machine are

copied over to a remote hypervisor. Then the virtual machine

is paused at the source hypervisor, and its operation resumed

at the destination. When using software emulation methods,

the network interfaces are virtual so their internal states are

stored into the memory and gets copied as well. Thus, the

downtime is in the order of a few milliseconds [16]. In the case

of direct device assignment like SR-IOV VFs, the complete

internal state of the network interface cannot be copied as it is

tied to the hardware [5]. The SR-IOV VFs assigned to a VM

will need to be detached, the live migration will run, and a

new VF will be attached at the destination. This process will

introduce downtime in the order of seconds.

In the case of InfiniBand and SR-IOV, the downtime

associated with live migrations has been discussed by Guay

et al [9], [17]. However, there is no related work discussing

the imposed scalability challenges faced by the SM. When a



VM using an IB VF is live migrated, a clear impact on the

underlying network fabric and the SM will be introduced, due

to a change of all the three addresses of the VM [9]; The LID

will change because the VM is moved to a different physical

host with a different LID. The virtual GUID (vGUID) that is

assigned by the SM to the source VF will change as well, as a

different VF will be attached at the destination. Subsequently,

since the vGUID is used to form the GID, the GID will change

too. As a result, the migrated VM will suddenly be associated

with a new set of addresses, and all communicating peers of the

VM will start sending concurrent SA path record query bursts

to the SM, trying to reestablish lost connections. These queries

are causing extra overhead to the SM, and supplementary

downtime as a side effect. If the migrated nodes communicate

with many other nodes in the network, the SM can become a

bottleneck and hamper overall network performance.

III. MOTIVATION

In large IB subnets the SM is in general a potential bottleneck

due to its centralized design [18]. A main concern is the amount

of SA queries the SM needs to handle, and particularly the

number of path record requests. The amount of SA queries

increases polynomially as the number of nodes in the network

increases. As the scalability issues of the SM are not very

well documented in the literature, we benchmark OpenSM to

empirically demonstrate how the SM is challenged even by a

relatively low amount of SA queries.

A. Testbed

Our testbed consists of 3 SUN Fire X2270 servers with 4

cores and 6 GB RAM each; 4 HP ProLiant DL360p Gen8

servers with 8 cores (two CPU sockets) and 32 GB RAM

each; 2 HP ProLiant DL360p Gen8 servers with 4 cores

and 32 GB RAM each; and 2 InfiniBand SUN DCS 36

QDR switches. The OpenStack Grizzly cloud environment

is deployed on Ubuntu 12.04, and a CentOS 6.4 image is

used for the virtual machines. The three SUN Fire servers

are used as the OpenStack Controller, Network and Storage

nodes. The HP machines that serve as OpenStack compute

nodes, are referred to as flooder nodes while benchmarking.

The OpenStack management network is based on Ethernet,

while IB is used for the VMs. All compute nodes are equipped

with the Mellanox ConnectX®-3 VPI adapters [19] and SR-

IOV enabled Mellanox OFED V2.0 drivers. The same version

of Mellanox OFED is also installed on the CentOS virtual

machines. A reference summary of the hardware can be found

in Table I.

B. Benchmarking Procedure

Considering the size of our testbed, we run OpenSM

in one of the IB switches, using opensm-3.2.6 20130819-

0.1 oracle patch 11.9 with SR-IOV support.

An application, SA Flooder (SAF), was written to flood

the SM with SA path record queries. The application sends

SA queries synchronously, meaning that for each query sent,

SAF waits for the reply, or a timeout, before sending the next

Qty Hardware Usage

3x
SUN Fire X2270

6GB RAM
4 CPU Cores

Openstack Controller,
Network, Storage.

2x

HP ProLiant DL360p
32GB RAM
4 CPU Cores

Mellanox ConnectX®-3 VPI HCA

OpenStack Compute.
One of the nodes is
running the SM and

LIDtracker in section IV.

4x

HP ProLiant DL360p
32GB RAM

2x4 (8) CPU Cores
Mellanox ConnectX®-3 VPI HCA

OpenStack Compute
(Used independently for
the SM benchmarking

in section III).

2x
SUN DCS 36 QDR
InfiniBand switches

InfiniBand interconnection.
Running the SM in

section III.

TABLE I
TESTBED HARDWARE

Algorithm 1 Experiment Template

1: procedure EXPERIMENTTEMPLATE(m, n, k)
2: Spawn SAF Instance On SIF
3: Collect Data for 20 seconds
4: for r = 2; r <= m; r++ do //for each new round
5: for x = 1; x <= n; x++ do //...and each MIF
6: for i = 1; i <= k; i++ do //spawn flooders
7: Spawn SAF Instance i On MIFx

8: end for
9: end for

10: Collect Data for 20 seconds
11: end for
12: end procedure

one. For each query, the response time is logged. As the SM

becomes saturated, the response time is expected to increase,

and the amount of SA queries served reach an upper limit.

Because SAF is synchronous, we spawn multiple instances in

the flooder nodes to increase the concurrency.

Because multiple threads introduce local interference as they

compete for local resources, the response time logged by the

local instances might deviate from the actual response time

of the SM. To avoid unreliable measurements due to local

interference, in all of the experiments, one of the flooder hosts

is running only a single SAF instance at all times. This flooder

host, the Single Instance Flooder (SIF), is used to measure

response time and generate plots, while the remaining flooder

hosts, the Multiple Instance Flooders (MIFs), are used to push

the SM to its limits as an increasing number of SAF instances

are spawned on the MIFs.

We ran experiments using the template in Algorithm 1, and

varied the following parameters:

1) The number of MIFs (n): The number of MIF hosts

participating in a given experiment influences the amount of

SA queries we can potentially push towards the SM. n ∈
{0, 1, ..., 5}, as one out of six flooder nodes is always acting

as the SIF.

2) The instance spawn number (k): Each MIF in the

experiment will spawn k new SAF instances each round (see

below) to increase the load on the SM.
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Fig. 1. Experiment Setup

SAF

running on

Single thread

Max SA Queries/sec

Multiple threads

Max SA Queries/sec

physical node, 4 cores ∼250 ∼1000

physical node, 8 cores ∼250 ∼2100

virtual node, 4 cores ∼440 ∼1150

virtual node, 8 cores ∼440 ∼1100

TABLE II
SAF PERFORMANCE ON SINGLE NODES

3) The number of rounds (m): Each round starts with an

initial phase where each of the n MIFs spawn k new SAF

instances. Subsequently, measurements are collected for 20

seconds to ensure proper statistical significance, before a new

round starts. Note that the SIF is always left untouched, and

in particular, that during the first round, only the SIF is active.

The m rounds define the length of an experiment.

C. Node Roles in the Benchmark

As shown in section III-A, two flooder nodes are equipped

with a quad core CPU, while four nodes are equipped with two

quad core CPUs. The CPU model, as the rest of the hardware,

is identical. After preliminary experiments we observed that a

physical machine equipped with eight CPU cores has slightly

more than twice the capability of a four core machine to push

SA queries. Interestingly, when we pushed SA queries from a

four core VM with an IB VF attached, the VM outperformed

its physical counterpart, the host machine. However, when

comparing an eight core VM with its physical counterpart, the

dual-socket eight cores host, the VM performance drops even

below that of a four core VM. This performance reduction may

be attributed to the virtual-to-physical CPU affinities [20].

Table II shows the results of the preliminary experiments. The

numbers in the second column show the max performance when

SAF Node name Real host mapping

SIF
Running on VM on top of a

Physical machine with 4 cores

MIF1-MIF4
Running on Physical
machine with 8 cores

MIF5
Running on VM on top of a

Physical machine with 4 cores

TABLE III
FLOODER HOST NAME MAPPINGS TO PHYSICAL HOSTS

only a single undisturbed SAF instance is running on a host.

The numbers in the third column show the max performance

a single host can achieve when multiple SAF instances run on

the host. We refer to as max performance, the max SA queries

generation capability of a flooder node. According to Table

II and the SIF/MIF concept we introduced in section III-B,

to maximize the number of total SA queries per second, the

flooder hosts were assigned the roles given in Table III. The

four physical machines with eight physical cores ran the SAF

natively. The two physical machines with four physical cores

ran the SAF in a VM, since the VMs with the SR-IOV VFs

deliver higher flooding rate in the four core machines. The SIF

host is running in one of the two VMs while the remaining

hosts are used as MIF hosts (MIF1-MIF5). Fig. 1 shows the

experiment setup and the type of hardware assigned on each

flooder node (SIF/MIFs) when all flooder nodes participate in

the experiment.

D. Benchmarking Results

By combining Table II and Table III we can induce the max

SA queries per second generation capability for each of the

flooder hosts, as given in Table IV. Moreover, the expected

theoretical maximum when all of the SIF and MIF hosts send

SA queries simultaneously, should be the summation of all



SAF Node name Max SA Queries/sec

SIF ∼440

MIF1-MIF4 ∼2100

MIF5 ∼1150

TABLE IV
SIF/MIF HOSTS MAX SA QUERIES/SEC CAPABILITY

flooder hosts’ SA queries per second generation capabilities,

as given by the equation 1.

SIFmax+
5∑

x=1

MIFxmax ≈ 440+1150+2100·4 ≈ 9990 (1)

A scalable SM should be able to handle all SA queries, and

the response time should be kept low, even as the number

of total SA queries/sec in the subnet increases. To observe

the behavior of the SM, we ran experiments while we slowly

increased the total amount of SA queries by increasing the

sending concurrency on each flooder host, and the number of

flooder hosts participating in the experiment. Then we observed

when the SM was saturated. In the first experiment only the

SIF host and one MIF host (n = 1) was participating, while

on each subsequent experiment, one more MIF host was added

to increase the total amount of SA queries towards the SM. In

the last experiment with one SIF and five MIF (n = 5) hosts

the SM should be able to serve around 10000 SA queries per

second according to equation 1.

We present the results after running each experiment for m =
25 rounds and k = 8 instances per round for n ∈ {1, 2, ..., 5}
MIFs. Recall that all of the n participating MIFs spawn k new

SAF instances at the beginning of each round. Note that in

all experiments, although n ∈ {1, 2, ..., 5}, n = 0 always and

only for round one (refer to Algorithm 1 and Fig. 1). In the

final round (25th) of the last experiment with n = 5 MIFs, 961

total instances are sending SA queries with these settings (high

concurrency). For the experiment that the SIF and all MIFs

(n = 5) are participating, we also ran a test when only one

SAF instance per round (k = 1) is spawned on each of the MIF

hosts to show the difference when the concurrency changes. In

this case, the final round (25th) has 121 total instances running

(reduced concurrency).

In Fig. 2 the results from three of the experiments showing

the SM performance trends on different rounds are illustrated,

and on Table V the numbers acquired and the expected

theoretical values are presented for all six of the experiments.

The average response time, the median response time and the

standard deviation recorded from the SIF host are plotted on

the left y axis of Fig. 2. The queries per second that the SIF

and MIF hosts send, as well as the sum of these values (that

gives the total serving capability of the SM), are plotted on

the right y axis. The noise-like dots on the plots are individual

SA query requests, which are the source of the calculation

for the rest of the statistics plotted. In all of the plots, at the

first round only the SIF host is running, and the first round

of instance spawning at the MIF hosts starts on round two.

The solid vertical lines separate the different rounds of the

SIF & 3 MIFs, 25 rounds, 8 SA flooder instance(s)/round
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Fig. 2. OpenSM benchmarking results

SAF instance spawning. The short gaps between rounds of

SAF instance spawning, where no dots are plotted at all, is

the time that it takes to spawn all the SAF instances in all

of the participating hosts. This is the reason why the gap is

larger when more MIF hosts n with increased concurrency k



1st round SIF results 25th (final) round SIF results 25th round total SA Queries/s

Participating

flooder nodes
Q/s

Mean

resp.time

Median

resp.time
Std.dev. Q/s

Mean

resp.time

Median

resp.time
Std.dev. Measured

Expected

theoretical max

SIF & 1 MIFs 396 0.45ms 0.22ms 1.20ms 435 0.50ms 0.22ms 2.20ms 2605 ∼2540

SIF & 2 MIFs 405 0.47ms 0.22ms 1.70ms 174 1.65ms 0.24ms 5.76ms 4555 ∼4640

SIF & 3 MIFs (Fig. 2a) 398 0.48ms 0.22ms 1.36ms 161 4.27ms 2.89ms 9.03ms 5900 ∼6740

SIF & 4 MIFs 406 0.48ms 0.22ms 1.47ms 98 8.04ms 4.10ms 10.60ms 6285 ∼8840

SIF & 5 MIFs (Fig. 2b) 417 0.45ms 0.22ms 1.24ms 92 8.80ms 4.79ms 11.40ms 6561 ∼9990

SIF & 5 MIFs (Fig. 2c) 397 0.49ms 0.22ms 1.41ms 167 3.99ms 0.53ms 8.87ms 6017 ∼9990

TABLE V
OVERALL SYSTEM PERFORMANCE

participate on each experiment. It takes more time to deploy

the SAF instances in all of the hosts on each round. The gaps

are not included in the calculations, since they are interim, not

fully populated round states.

The test where n = 1, k = 8 and only the SIF and MIF1

hosts participate in the experiment is not plotted, but the SM

can easily handle 2605 SA queries per second as seen in

Table V. The performance of the SIF host is stable from the

beginning until the end of the experiment and the observed

value follows the theoretical max value as expected. Similarly,

when n = 2, k = 8 the MIF2 host is added in the experiment

as well, and the SM can handle 4555 SA queries per second.

The response times are still not changing much until the end of

the experiment, but the rate that the SIF host is served on final

round is already much lower, 174 Q/s, showing some first signs

of saturation. The observed value still follows the theoretical

max value. In Fig. 2a, n = 3, k = 8 and MIF3 host is added

in the list of flooder hosts that participate in the experiment.

This is the first time that the measured value for the total SA

queries served per second, 5900, does not follow the theoretical

value, 6740. Also the mean, median and standard deviation of

the response times are substantially increasing. Still, as seen

in Fig. 2a, on each subsequent round that the concurrency is

increased as more SAFs are spawned, the total number of SA

queries served is increased as well. When MIF4 and MIF5

(n = 5, k = 8) are added in the experiment as seen in Fig. 2b

(row five in Table V), the SM cannot keep up on serving more

SA queries and the median, average, and standard deviation

values are increasing while the SA queries pushed by the SIF

host are decreasing to 92 Q/s. The peak serving performance

of the SM is also fluctuating, showing signs of instability as

shown by the standard deviation. In Fig. 2c we demonstrate

what happens when there are less SAF instances in the system

since only one new instance is spawned on all 5 MIF hosts

per round (n = 5, k = 1). Less SAF instances means reduced

concurrency in the SA query requests. The SM is still saturated,

but the overall system is more stable and responds faster in

Fig. 2c even when compared with Fig. 2a. In particular, the

median response value, 0.53ms, is significantly lower.

We conclude that the maximum capacity of OpenSM when

running on our IB switch is around 6000 SA queries per

second, and that its behavior can get highly unstable even

before reaching this saturation point if the concurrency of the

received requests is high. Of course, the CPU and memory of

the switch are not so powerful (1.10GHz Z510 Intel Atom CPU

and 512 MB RAM), and consequently OpenSM’s performance

is affected. However, even in a large subnet with a powerful

SM node, when tenths of thousands of nodes are present, the

amount of SA queries will increase polynomially when nodes

try to communicate with each other. Moreover, in a large subnet

the SA path query responses take more time, because the paths

between hosts are longer with more intermediate hops and

links. The SM has to traverse the path between the two nodes

to get information such as the minimum supported MTU and

link speed for both the forward and reverse paths.

It is reasonable to anticipate that if we had more MIF nodes

or a large and busy subnet, the performance of the SIF would

drop even more in our experiments. If the SIF was a real

application with certain time-bounded Quality of Service (QoS)

requirements, the SM would pose a potential bottleneck for

the application. In the context of virtualization if a server with

thousands of connected peers is migrated, a burst of thousands

of SA Queries will be generated towards the SM on top of the

already existing load as explained in section II-C, and analyzed

with experiments in the rest of the paper.

IV. DESIGN AND IMPLEMENTATION

In this section we discuss in detail our SA path record

caching mechanism. Furthermore, we describe the implemented

prototype that allows us to migrate VMs with their associated

IB addresses, in order to make use of our novel caching scheme

before and after the migration.

A. Prototype Design

The testbed used for our experiments is described in

section III-A. In our prototype, we use OpenStack to perform

VM live migrations of VMs with IB SR-IOV VFs attached. We

use Remote Direct Memory Access (RDMA) over the RDS

protocol to reestablish the communication after the migration.

For the prototype we changed OpenStack, OpenSM and the

RDS Linux kernel module. In addition, we created a program

that we called LIDtracker. LIDtracker keeps track of the

IB addresses associated with each VM and orchestrates the

migration process. The current prototype work flow is as

follows:

i) LIDtracker enables OpenSM’s option honor guid2lid file.

ii) The file guid2lid, generated by OpenSM, is then parsed

by LIDtracker and sorted by GUID in ascending order.



LIDs are assigned to the GUIDs starting from one. We

call these LIDs base LIDs for the physical hosts.

iii) All of the IB enabled OpenStack compute nodes are

scanned for running VMs. Each VM is assigned a LID in

decreasing order, starting from 49151 (the topmost unicast

LID). We call these VM LIDs floating LIDs.

iv) The floating LIDs replace the base LIDs in the OpenStack

compute nodes where VMs are running. Because Mellanox

CX3 adapters use the SR-IOV Shared Port model [21],

the hypervisor shares the LID with the VMs. Due to this

limitation in the Shared Port model, we only support one

VM running per hypervisor in the current prototype, and

a VM can only be migrated to a hypervisor where no

other VM is currently running.

v) When a migration for VMx is ordered from the OpenStack

API, the SR-IOV VF will be detached from the VM,

otherwise the migration cannot start. When the device

removal is completed and the migration is in progress,

OpenStack will notify LIDtracker that VMx is moving

from Hypervisory to Hypervisorz . LIDtracker will then

change the LID of Hypervisory back to its Base LID

and Hypervisorz will get the floating LID associated

with VMx. LIDtracker will also assign the vGUID

associated with VMx to the next available SR-IOV VF

at Hypervisorz . During the migration, the VM has no

network connectivity.

vi) LIDtracker will restart OpenSM to apply the changes.

vii) When the migration is completed, OpenStack will add the

next available SR-IOV VF to VMx on hypervisorz and

the VM will get back its network connectivity. The VM

is exposed to the same IB addresses (LID, vGUID and

GID) that it had before the move. From the perspective

of the VM, it appears like the IB adapter was detached

for the time needed to migrate and the same IB adapter

was reattached since the addresses did not change.

B. SA Path Record Caching

The SA Path Record caching mechanism has been imple-

mented in the RDS Linux kernel module and OpenSM.

1) OpenSM Modifications: OpenSM has been modified in

order to signal the clients if the SA path caching should be

enabled in the IB subnet or not. If caching is enabled the

SA path record requests will be greatly reduced in the IB

subnet. However, we have to make sure that when a live

migration happens the migrated VMs will get their IB addresses

migrated as well, so LIDtracker should be running in the

network. If LIDtracker is not running and caching is enabled,

after the live migration of a VM has finished, the peers will

not be able to reconnect because the migrated VM will get

a different set of addresses but the peers will still be trying

to reconnect to the old cached addresses. A boolean option

subnet supports sa path caching was introduced in OpenSM

to configure a subnet that supports address caching. When we

run OpenSM with the option subnet supports sa path caching,

the reserved field (with bit offset 353 [7]) in the SA Path Record

Response is used to raise the caching flag.
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Fig. 3. RDS initializing connection

2) RDS Protocol Operation: Since our implementation is

using RDS to demonstrate our findings, it is necessary to

explain how the original RDS protocol establishes a connection

between two hosts. First, IP over IB (IPoIB) needs to be set up

in all of the communicating peers. At the beginning, RDS will

use the IPoIB IP address of a specific IB port to determine the

GID address of the port. After the GID address is resolved,

RDS has enough information to perform the necessary path

record lookups and establish the IB communication.

In Fig. 3, the client side of an upper layer application

runs in Node N1 and the server side of the application

runs in Node N2. The client side of the application creates

an RDS socket and tries to communicate with the server

(Fig 3. 1 ). RDS will send an SA Path Record request to

the SM from Node N1 (Fig 3. 2 ), get a response (Fig 3. 3 ),

and try to initiate a connection with Node N2 by sending a

connection request (Fig 3. 4 ). If the connection is successful,

RDS will establish a communication channel (Fig 3. 5 ) with

an RDMA CM EVENT ESTABLISHED event in both sides

and the upper layer application can communicate (Fig 3. 6 ). If

anything goes wrong at the time of the initial connection, RDS

on the client side (Node N1) will retry to establish a connection

with a random backoff mechanism. The server is not yet aware

of the intention of the client to communicate. If anything

goes wrong after the connection has been established, both of

the RDS sides (the client and the server from an application

perspective) will actively engage a reconnection with the peer.

The random backoff mechanism in the connection process is

useful to avoid race conditions when both sides are engaging

a connection, as illustrated in Fig. 4.

In Fig. 4, there is an ongoing communication between

Node N1 and Node N2 (Fig. 4. 1 ) when the connection drops

(Fig. 4. 2 ). Both RDS ends realize that the connection is down

and wait for some random time (Fig. 4. 3 ) before they try

to reconnect by sending an SA path record request to the

SM (Fig. 4. 4 ). After the SA path record response is received

(Fig. 4. 5 ), a connection request will be sent (Fig. 4. 6 ).

In the illustrated case in Fig 4, the random backoff time

chosen by the two nodes in step 3 was almost the same. Thus,

even though Node N2 got the SA path record response slightly

faster than Node N1 and tried to initiate the connection first
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on step 6 , the connection request did not reach N1 before N1

sent a connection request itself. In this case, both of the RDS

ends have an outstanding connection request. Then, when they

receive the connection request from their peer, they reject

it, as seen in step 7 . In step 8 , the two nodes chose a

random delay time once more before they retry to reconnect.

This time the random backoff time chosen by Node N2, is

significantly larger than the one chosen by Node N1. N1 gets the

priority and repeats the connection establishment process; sends

an SA path record request (Fig. 4. 9 ), gets back a response

(Fig. 4. 10 ), sends a connection request (Fig. 4. 11 ), and the

connection request reaches Node N2 before N2 tries to initiate

a connection itself. N2 accepts the incoming connection as

shown in Fig. 4. 12 . The communication then resumes for the

upper layer application in steps 13 and 14 .

Note that RDS will not create a communication pair for each

upper layer application. Instead, it will create a communication

pair between any two nodes in a network that communicates,

and it will actively try to reconnect if the connection drops.

All upper layer RDS applications at a node communicating

with a given peer node, share the same communication pair.

3) RDS Protocol Modifications: Our novel SA Path Record

Caching mechanism is implemented in the RDS protocol and

the caching table is stored in the memory of each node. The

algorithm used for the caching is presented in Algorithm 2.

The first time a source host (SHost) tries to communicate with

a destination host (DHost), the SHost will send an SA Path

Record Request to the SM. If the response has the caching flag

raised (explained in section IV-B1), the SHost will use a local

caching table to store the path characteristics associated with

the given GID address of the DHost (DGID). Moreover, the

SHost now knows that caching is supported by the SM, so the

next time the SHost will try to (re)connect with any DHost, it

will lookup in the caching table first. If the path information

for the given DHost is found, there will be no SA query sent

to the SM, and SHost can instantly attempt to connect with

the DHost.

Algorithm 2 SA Path Caching on RDS

1: private bool SA PathCachingEnabled
2: private list SA PathRecordCacheTable
3:

4: procedure RDSMODULEINITIALIZATION

5: // The Caching table is initialized
6: SA PathRecordCacheTable = empty
7:

8: // We do not know yet if SA Path Caching is
9: // enabled by the SM, so we assume not.

10: SA PathCachingEnabled = False
11: end procedure
12:

13: procedure (RE-)CONNECTIONESTABLISHMENT(DGID)
14: struct PathRecord DST Path = NULL
15:

16: // Use the cache only if the SA Path Caching is
17: // enabled by the SM
18: if SA PathCachingEnabled then
19: if DGID in SA PathRecordCacheTable.
20: DGIDs then
21: DST Path = Cached PathRecord
22: end if
23: end if
24:

25: // If DST Path is NULL at this point, either the
26: // cache is disabled by the SM, or the path
27: // characteristics for the host with the given DGID
28: // have never been retrieved. In any case, we need to
29: // send a PathRecord Query to the SM.
30: if DST Path == NULL then
31: SendAnewSA PathRecordQueryToTheSM
32: WaitForTheReply
33: DST Path = PathRecordResponse
34:

35: // If caching is enabled by the SM the reply will
36: // have the reserved field in the PathRecord set
37: // to 1. If not, the reserved field is 0
38: if DST Path → Reserved F ield != 0 then
39: SA PathCachingEnabled = True
40:

41: // Insert the DST Path in the caching table
42: SA PathRecordCacheTable.append(
43: DST Path)
44: end if
45: end if
46: connect to(DST Path)
47: end procedure

If compared with the original RDS protocol, the initial

connection attempt described in Fig. 3 is not changing. That

is, initially the path characteristics are not known, so one Path

Record query is unavoidable. However, with reference to the

interrupted connection in Fig. 4, no SA queries need to be sent

to the SM. In the case described in Fig. 4, the steps 4 , 5 , 9

and 10 are eliminated, thus, the connection re-establishment

is faster and the load towards the SM is lower.

The overhead of the caching scheme is small, as 568 bits3

(71 bytes —the size of the struct ib sa path rec—) are needed

3The size of a PathRecord query response is 512 bits (and 51 bits are
reserved), but in the implementation some elements that are defined as e.g. 1
bit, are encoded in 8 or 32 bit long variables.



for each cache entry on each node. In the worst case scenario

where a node in a fully populated IB subnet with 49151 nodes

is communicating with all other nodes (49150 nodes), 49150 ·
71bytes = 3489650 ≈ 3.33MiB of extra memory is needed

on this node.

V. EXPERIMENT RESULTS AND EVALUATION

In this section we present and evaluate the experimental

results. We show the increased amount of SA queries as a result

of the IB addresses change when live migrating. By using our

prototype, we demonstrate the improvements achieved when

the addresses are kept and the cache is used after the migration.

A. Experiment Process

After the benchmark we performed in section III, it becomes

evident that in an IB subnet, increased interaction with the

SM can substantially decrease the performance of the network.

In a large subnet with thousands of nodes, even if only one

additional SA query is sent from each node, the SM will

end up being flooded with thousands of messages. When live

migrations take place in a dynamic IB-based cloud, many

excessive SA queries will be sent, as explained in section II-C.

The amount of SA queries per second per node that is sent

as a result of a live migration is an application and workload

specific parameter, and in our case we use RDS to demonstrate

how significant the issue can become in a large subnet.

In our experiments, first, we show the additional amount

of SA queries generated when a VM is migrated and the IB

addresses change at the destination. In this scenario, the peers

that communicate with the migrated VM need to send SA path

record queries to the SM to acquire the new addresses and

path characteristics in order to reestablish the communication.

Then, we apply our modifications that allows us to keep the

same IB address after the migration, and we perform the same

experiment. The cache is not enabled yet. We show that much

less SA queries need to be sent to the SM in the connection

reestablishment process. Last, we enable our novel caching

mechanism and we migrate a VM again to demonstrate that

peers can reestablish the connection without performing new

SA path record lookups, since we know that the IB addresses

will be the same after the migration.

B. Results

The RDS protocol and the RDS-stress test utility were

used to demonstrate an application that communicates and

tries to reconnect when the connection drops. The reason

for the connection drop in our work is that one of the hosts

participating in the communication is migrated, and the SR-

IOV VF needs to be detached. RDS-stress has the notion of a

server/client application only at the beginning of a test. The

server is at the side waiting for the initial connection, while

the client is the one initiating the connection. However, after

the initial communication, there is no notion of server/client,

as both sides actively send data. For the rest of the results,

whenever server is mentioned, we refer to the node that waits

for an incoming RDS-stress connection at the beginning of each
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Fig. 5. Default behavior

experiment. We refer to the node that initiates the connection

as the client. Three cases were studied:

1) Migrate a VM and do not keep the IB addresses: In Fig. 5

the server is migrated and the IB addresses change as part

of the migration. The server was using LIDi and vGUIDk

when located at the source hypervisory, and got LIDj and

vGUIDm after moved to the destination hypervisorz . This

is the default behavior with the Shared Port SR-IOV model,

and the worst case scenario as it is expected that participating

nodes will send SA Path Record queries to the SM in order to

find the new addresses and path characteristics to reconnect.

There are four vertical lines in Fig. 5. The first vertical line

(orange) marks the moment the SR-IOV VF detach call was

issued by OpenStack, right before the migration started. A

device removal event is raised in the VM and the guest OS is

freeing the resources using the device. The second vertical line

(purple) marks the completion of the SR-IOV VF detachment.

At this moment the SR-IOV VF was removed from the VM

and the live migration started. The third vertical line (cyan)

indicates that the live migration has finished, and the SR-IOV

VF attachment procedure started at the destination hypervisor.

The fourth line (green) marks the moment that the SR-IOV

attachment has been completed from an OpenStack perspective.

The guest OS needs some more time to load the drivers and

reestablish communication. The solid measurement line shows

the bandwidth consumed by the RDS-stress utility as measured

at the client side. The thick dashed line and the thin dotted

line show the number of the accumulated SA queries sent by

the client and server sides respectively.

After four seconds, we see that both the client and the server

send ∼10 SA queries each, and two seconds later, the RDS-

stress utility starts sending data. RDS-stress is responsible for

this strange initial behavior, as RDS-stress first communicates

by using TCP/IP to exchange the stress test parameters, then

sleeps for two seconds, before both sides start sending traffic to

maximize the throughput. Due to the fixed two seconds initial

delay at both sides, both sides try to initiate a connection

with the remote side simultaneously. Then, the RDS protocol

experiences a race condition such as the one described in

section IV-B2, Fig. 4, and the random backoff mechanism is

used until the connection is established.



Around the 13th second, the SR-IOV VF detach is initiated

at the server side that is going to be migrated. We see that

at this moment, the client sends eight SA queries until the

SR-IOV VF is detached at the server. These SA queries are

sent by the client because the server is breaking the connection

in order to detach the IB interface, and the underlying RDS

protocol is trying to reconnect. However, until the IB interface

is detached at the server, rejection messages are sent back

to the client and the client retries. Then the migration starts

and the client has an outstanding connection request that has

not gotten a rejection back. At around the 39th second the

migration has finished, the interface has been reattached and the

drivers have been fully loaded at the server. Nevertheless, the

RDS protocol on the server sends SA queries while trying to

reconnect with the client, but all of the connection requests are

rejected by the client. It is not until the 111th second —almost

70 seconds after the migration has been completed— that the

connection is restored with a new connection establishment

request from the client side. This behavior is observed because

the client was trying to connect to the server at LIDi and

vGUIDk when the migration started. When the server came

up again at the destination hypervisorz with a different LIDj

and vGUIDm and tried to connect back to the client, the

client was rejecting the connection requests because the client

already had an outstanding connection request towards LIDi

and vGUIDk. At the 111th second, the client receives an

RDMA CM EVENT UNREACHABLE (timeout event) notifi-

cation for its previous outstanding connection request and uses

IPoIB to find the new GID address which is then the basis for

the SA path record lookups. Eventually, RDS is using the GID

address to send an SA Path Record query, gets the new path

information and manages to establish the connection. Note that

IPoIB uses ARP requests (via IB multicasts) to determine IP

to GID mappings. If a re-ARP results in a new destination

GID, or an IPoIB IP address becomes unreachable, then there

is need for an additional SA path record lookup by the IPoIB

protocol residing at all peer nodes.

It takes nearly 98 seconds to raise an unreachable event on

an IB subnet with the default settings. The formula to calculate

the response timeout as specified by the IB specs [7] is:

RESP = 4.096µsec · (2 · 2PLT + 2RTV ) (2)

In equation 2, where PLT = Packet LifeTime and RTV =

Response Time Value. The subnet PLT value can be changed

by the SM and the default value in opensm.conf is 18. The

RTV value is hardcoded in the driver (cma.c source file) and its

value is 20. Consequently, the timeout value is ∼6.44 seconds

as shown in equation 3.

RESP = 4.096 · 10−6sec · (2 · 218 + 220) = 6.44sec (3)

There is also a hardcoded Number of Retries (NoR) value that

is set to 15. The time needed before raising an unreachable

event is RESP · NoR = 6.44sec · 15 = 96.6sec. As we

can see, the observed time of 98 seconds that was needed

for the connection to be reestablished is ruled by the default

timeout values in the subnet. Moreover, in this prolonged
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Fig. 6. LIDtracker enabled

period of inactivity, and because the server was operational

at a much earlier stage before the actual connection was able

to be reestablished, there was 140 excessive SA queries sent

by the server while the server was trying to reconnect to the

client. If more clients were connected to this server this number

would be multiplied by the number of clients.

2) Migrate a VM and keep the IB addresses with LIDtracker:

In Fig. 6 the server is migrated together with the IB addresses

by using LIDtracker. From the perspective of the migrated

VM, the used addresses are LIDi and vGUIDk when located

at the source hypervisory and the same LIDi and vGUIDk

are used after having moved to the destination hypervisorz .

The initial RDS-stress behavior is as before (see V-B1). At

around the 20th second the client sends 14 SA queries until

the SR-IOV VF is detached at the server, but the situation is

noticeably improved after the migration has been completed.

In the previous case, when the LID and GUID changed at

the destination, the client who had an outstanding connection

establishment request waited for an unreachable event (∼98

seconds) before accepting the next connection request. This

behavior was inevitable because the client was trying to connect

to the old address where the server is no longer present. In

this case, where we keep the same destination address, the

client does not have to wait for an unreachable event, as it can

find the server even after the migration has been completed.

Furthermore, the server is not flooding the network with SA

queries; just a single one is needed to reestablish the connection.

3) Migrate a VM with LIDtracker and SA Path Record

caching enabled: Although we reduced the amount of SA

queries by keeping the IB addresses in section V-B2, there

are still quite a few SA queries sent when the interface is

detached, and at least one more is sent before the connection

is reestablished after the migration has been completed. One

additional observation is that the SA queries are sent in bursts

when a disconnection event happens. For example, at the

moment when the SR-IOV VF is detached from the VM that

is going to be migrated, the remote nodes communicating with

the VM-to-be-migrated will send a few SA queries each, in

their attempt to reconnect as quickly as possible (explained in

section V-B1). Consider the case that we migrate a VM that

acts as a server, and that 2000 client nodes are communicating
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with it. If each of these clients sends an average of 10 SA

queries in a single second when the migration of the server

begins, the SM will be flooded with 20000 SA queries in a

sub-second interval in addition to the normal load, which may

be high already. As one can see, it is not necessary to have

many concurrent live migrations in order to flood the SM with

a significantly large load, but one migration of a popular node

is enough. To alleviate the load towards the SM, we use the

SA path caching mechanism introduced in section IV-B.

In Fig. 7 we demonstrate that connections can be made

by using the local cache without sending any SA queries at

all. Since we keep the IB addresses after the migration, the

VMs can reconnect and communicate without introducing any

additional load to the SM. We also introduce two more metrics

in Fig. 7: SA Queries saved by client and SA Queries saved

by server. These two metrics show the number of connection

attempts from either the server or the client, that would have

resulted in additional SA queries to be sent to the SM if our

caching scheme was not enabled. As illustrated in Fig. 7, with

our caching scheme enabled, only a single SA query is sent by

the server and by the client. The connection attempts follow

the trends presented in section V-B2, Fig. 6, but there are no

subsequent SA queries sent to the SM after the initial one.

The caching mechanism does not only reduce the SA queries

sent as a result of live migrations, but also the total time it

takes for one node to connect with another since there are less

transactions. Looking back to the connection reestablishment

procedure of RDS in Fig. 4, steps 4 , 5 , 9 and 10 are no

longer needed, meaning that the connection reestablishment

would complete quicker. If a similar caching mechanism was

implemented in the drivers, applications in a single node would

be able to share SA path records, resulting in much reduced

overhead for the SM.

VI. RELATED WORK

There is not much work done in the field of IB SA scalability

in the context of cloud environments. Guay et al in [9] migrate

VMs with SR-IOV VFs. They migrate the vGUID of the SR-

IOV VF together with the VM, but the LID address changes.

The main goal of their work is to reestablish the communication

after a VM has been migrated and the LID address has changed,

with the intention to reduce VM migration downtime. They

implement a signaling mechanism based on the repath trap [7],

to notify peers of the migrated VM to update their hardware

address mappings, allowing the communication to be resumed.

In this paper we take a different perspective and we show that

no signaling or SM contact is required if we manage to migrate

both the LID and GUID addresses together with the VM.

There is also an ongoing work in the OpenFabrics commu-

nity, with the intention to create a distributed Scalable SA [18].

At the time of writing, there is not much information about

this work other than a couple of presentations available online.

Nevertheless, the Scalable SA project is focusing on providing

a scalable implementation of the SM in order to solve the

scalability challenges of the centralized nature of OpenSM,

described in section III. Still, our work can be applied even in

a more scalable implementation of the SM and reduce the load

in the network. Furthermore, our work shows that a scalable

SA path host caching mechanism can be even used in dynamic

IB subnets where VMs can migrate and keep their associated

addresses.

Other work related to the broader scope of scalable man-

agement of HPC network interconnects includes the path

computation and distribution of routes on the switches. When

an HPC network interconnet like IB grows in size, path com-

putation and distribution on the switches is a time consuming

process that ranges from a few seconds and can reach in

the order of minutes4 [22]. When faults occur, the network

needs to be reconfigured and the path computation operation

has to be repeated. The operational environment will perform

suboptimally, or in the worst case suspended, until the new

path computations complete and the reconfiguration applied.

Gómez et al [23] propose a mechanism for distributed path

computation to address the scalability issue of centralized path

computation. Bermúdez et al [24], [25] use a set of suboptimal,

but quickly calculated set of routes to bring the network in an

operational state as quickly as possible. Then, the optimized set

of routes is calculated offline and applied. Lysne and Duato [26]

propose the Skyline, a method to identify the minimum part of

the network affected by the fault and needs to be reconfigured.

Bogdański et al [27] suggest segmentation of the network

into manageable sections with the utilization of subnets, and

propose two inter-subnet routing algorithms for IB.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented evidence of the scalability

challenges faced by the SM in an IB subnet. We also showed

that VM live migrations contribute negatively to the scalability

of the SM as the VM addresses change after the migration. Our

novel SA Path Record caching mechanism was implemented

in the RDS protocol, and the ability to (re)establish subsequent

communication without sending SA Path Record queries was

manifested — improving the scalability of the SM accordingly.

For now, and for the particular case of VM live migration,

our prototype only supports IB subnets where the actual

4Network topology and chosen routing algorithm provide very diverse
results.



path characteristics like service level and MTU, are the same

before and after migration. To handle situations where live

migration implies that the path characteristics may change (in

heterogeneous subnets), is left for future work.

Our current prototype restarts the SM in order to migrate

the IB addresses. However, the SM restart does not affect our

experimental results because in our small cluster, the restart

is quick and it is happening during the migration when the

migrated VM has no IB network attached. Still, as future work

we would like to identify how to migrate the IB addresses and

update the Linear Forwarding Tables (LFTs) of the switches

without restarting the SM.

Since we are using SR-IOV VFs, it is needed to detach/re-

attach the VF in order to live migrate. This process currently

contributes significantly to the downtime of a migrating VM.

Even with the late detach migration technique used by Guay

et al. [17], the downtime is in the order of seconds. Also,

highly active VMs with large amounts of memory will have

longer downtime. In our experiments, we observed downtime

variations in the range of 15 to 30 seconds for VMs with 4 GB

of RAM. Here, downtime refers to the time needed for the SR-

IOV VF to be detached, until the SR-IOV VF is reattached and

the drivers are loaded after the migration has been completed.

Clearly, more work needs to be done to reduce the downtime

of live migration in combination with IB and SR-IOV.

To demonstrate our caching scheme, we used RDS. However,

if a similar caching mechanism is implemented at the driver

level, all of the applications running in a node could benefit

from the cache. The caching scheme does not only reduce the

load towards the SM, but also the connection latency between

two applications since there is less communication overhead.

If no path record request and response are needed because the

local cache is used, less packets need to traverse the network

before the actual connection attempt takes place.
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