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Chapter 4 e
Smittestopp analytics: Analysis of position data

Vajira Thambawita, Steven A. Hicks, Ewan Jaouen, Pal Halvorsen, and Michael A.
Riegler

Abstract Contact tracing applications generally rely on Bluetooth data. This type
of data works well to determine whether a contact occurred (smartphones were
close to each other) but cannot offer the contextual information GPS data can offer.
Did the contact happen on a bus? In a building? And of which type? Are some
places recurrent contact locations? By answering such questions, GPS data can help
develop more accurate and better-informed contact tracing applications. This chapter
describes the ideas and approaches implemented for GPS data within the Smittestopp
contact tracing application. We will present the pipeline used and the contribution of
GPS data for contextual information, using inferred transport modes and surrounding
POIs, showcasing the opportunities in the use of GPS information. Finally, we discuss
ethical and privacy considerations, as well as some lessons learned.
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Fig. 4.1: Examples of map prototypes used during the development process. We can
see different metadata plotted, such as pathways, buildings, and GPS data points.
To create the maps, we used the Kepler library (kepler.gl). Maps created for this
pipeline were only used for development and not provided in the final build, due to
resource consumption and privacy concerns.

4.1 Introduction

One of the information sources that Smittestopp was supposed to rely on for contact
tracing was the position data collected from people’s smartphones. Such position
data can help determine if people crossed paths and can provide information about
the places they visited, such as if someone was in a store or used public transport.
Position data, often also referred to as Global Positioning System (GPS) data, usually
consist of the position as a longitude and a latitude, as well as a timestamp. Suppose
the position data are collected via smartphones. In that case, one can also obtain
additional information, such as speed (from one GPS data point to the next), altitude,
and accuracy (an approximation of how accurate the obtained position data might
be). On the other hand, some GPS data sets contain manually collected data, such as
transport modes. For example, the GeoLife GPS Trajectories [11] data set contains
annotated trajectories, with labels for the transportation mode (bus, train, walking,
and car), latitude, longitude, altitude, and timestamp.

To render raw position data usable for tasks such as contact tracing, pre-processing
and pre-analysis are required. First, one needs to extract trajectories from the raw
GPS data. These trajectories can be used to find possible intersections and travel
paths, among other things. Trajectories and GPS point data are essential for map
matching, that is, to connect the GPS information to information obtained from a
map. For example, was a person at a bus stop waiting for a bus, was a person in a store,
did people walk together, and so on. In addition to map matching and trajectories,
identifying a contact also requires analysing which mode of transportation was used
(walking, driving, biking, public transportation, etc.) [7]. Moreover, necessary but
straightforward pre-processing methods such as bounding box and polygon creation
based on GPS points are required. One final challenge that needs to be addressed is
that the amount of GPS data is usually massive, with huge numbers of data points
(also depending on the granularity of time). Thus, one needs efficient methods to
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Fig. 4.2: Overview of Smittestopp’s GPS analysis pipeline. Raw GPS data are first
transformed into trajectories and then combined with metadata from public maps
and classified into different transport modes. The processed and enriched data are
then used in the contact tracing algorithm.

process the data, especially if nationwide contact tracing is a final goal. Figure 4.1
shows some of the maps used during the development process. The maps contain
different types of information, including possible walk paths (left), buildings and
GPS data points, (middle), and a more detailed view of certain buildings that shows
metadata information such as the name of the school (last).

Based on these general requirements for GPS data analysis, several main objec-
tives arose that needed to be addressed to make the position data useful and usable
for the Smittestopp application. These are as follows:

» Trajectory pre-processing.
* Stop point and mode of transport detection.
* Map matching and map visualization.

Figure 4.2 depicts the complete pipeline for the GPS analytics part of Smittestopp.
The whole pipeline is implemented in Python and uses different libraries. Details
about the libraries used are provided in the respective sections. The pipeline starts
with the user data queried from the database. The data can be queried by user, groups
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of users, or geographical area. Once the raw GPS data are in the pipeline, they pass
through the different building blocks.

Trajectory pre-processing: In this part of the pipeline, the raw GPS data are
transformed into trajectories. The transformation depends on the selected method
(fixed length, time interval, or stop and transport mode).

Stop point and mode of transport detection: The stop point and transport mode
part is responsible for detecting whether a person has stopped (e.g. at a bus stop)
and the mode of transport (walking, driving, etc.).

Map matching and map visualization: The map matching and visualization part
connects the GPS trajectories and point data to meta-information obtained from
public maps, including methods to create bounding boxes and polygons for the
trajectories for GPS points.

In the following sections, we describe these different components in more detail.

4.2 Trajectory pre-processing

A GPS trajectory is a collection of GPS points describing an object’s movement
along a specific path. No clear definition is available on how long a trajectory is
and what it should contain, and these often depend on the use case. For example,
in an application used to track running, different trajectories could be segments of
1 kilometre or specific times, such as a new trajectory every 10 minutes. Another
approach could involve a new trajectory for every trip, resulting in a collection of
runs. For Smittestopp, we experimented with different ways of creating trajectories
from GPS data. The experiments were inspired by related work by [9, 8, 12, 4].
Unlike the related work, we did not have labelled data for our trajectories, so we
decided to develop methods that could work unsupervised. The main goal was to
keep the methods simple, understandable, and explainable.

From the raw GPS data, we extracted GPS trajectories that could then be used in
other analysis steps, such as to find intersections, points of interest (POIs), visited
buildings, travel paths, and so forth. Looking at existing systems and the literature,
we saw no clear way to extract trajectories that worked the best, but there were
different suggestions. For our pipeline, we decided on three different methods:

1. Trajectories with a fixed length of GPS data points.
2. Trajectories with fixed time intervals (hours, minutes, seconds).
3. Trajectories obtained from stop points and transport modes.

The input data for the trajectory pre-processing are GPS data obtained from smart-
phones per user per time or region. The outputs are the trajectories per user, as a
collection of GPS data points.



4 Smittestopp analytics: Analysis of position data 67

Fig. 4.3: Comparison of changes in a fixed number of GPS points. The green box
shows 12 fast-moving GPS points and the red box shows 12 slow-moving GPS points.

4.2.1 Trajectories with a fixed length of GPS data points

In this approach, we divide a long series of GPS data points into trajectories based
on a given fixed length. Here, the fixed length is the number of GPS points to be
extracted as a single trajectory. Simplicity in handling and processing the trajectories
are the main advantages of this method. However, this method’s main drawback is
that some subtrajectories cover small geographical areas, while others cover large
ones. For example, a number N of GPS points for a walking trajectory can be within
1 kilometre, while the same number of GPS points for the trajectory of a fast car can
cover around 10 kilometres. To understand this phenomenon, see the illustrations in
Figure 4.3. Therefore, when analysing POIs around a trajectory, a large geographical
area causes problems in extracting a large amount of additional metadata.

4.2.2 Trajectories with fixed time intervals

In this method, we use predefined time intervals, such as two hours, one hour, half an
hour, a minute, and a second to create trajectories. These time intervals are calculated
using timestamps, which are part of the metadata of each GPS point collected by
the mobile application. The main advantage of this method is its ability to find
trajectories for a given time interval. However, similar to the method of extracting
a fixed number of points, the resulting trajectories can have an area so large that
extracting metadata from the map servers would be too computationally expensive.
This function works as a support function to extract POIs from long trajectories,
because extracting POIs around a long trajectory is time and resource intensive. The
pseudocode of this function is presented in Algorithm 1.
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Algorithm 1: Extracting trajectories with fixed time intervals

Data: GPSData — A series of GPS points of a trajectory
Result: A list of subtrajectories

timeMode « SelectTimeMode from (2H, H, HAH, M, S) ;
timeModelnSeconds < convert timeMode to seconds ;
dividedTimestamp «— GPSdata[timestamp] / timeModeInSeconds ;
uniqueTimestamp «— FindUniqueValues(dividedTimestamp) ;

for timestamp; € uniqueTimestamp do
subTrajectory « GPSdata[timestamp == timestamp;] ;
Append subTrajectory to Result ;

end

4.2.3 Trajectories based on trips and stop points

A natural way of thinking about a trajectory is in terms of different modes of transport.
This approach splits a long GPS trajectory into smaller chunk-based trips and stop
points. In this case, a trip is defined as moving some distance over some time, such
as a person driving to work or walking a dog. Stop points are points where a person
is still for a longer period within a predefined radius. The approach is based on the
work of Cich et al. [2]. The advantage of this method is that we obtain a clean set
of trajectories pertaining to either stop points or trips that can be further classified
into a mode of transport. A disadvantage of this method is that we must ensure
that the trajectories obtained are stable enough to detect stop points properly and to
distinguish between different trips. Furthermore, this method produces trajectories
of various lengths. For example, the trajectory of a person going to the post box
would be much shorter than that of a person walking to work.

4.3 Predicting the mode of transport

Even if the physical distance between two people is close enough for infection, it
does not necessarily mean they were in contact. For example, one person could be
driving a car, while the other one is running on the sidewalk. Furthermore, two
people can be a safe distance apart but sitting on the same bus, raising the likelihood
of infection. Therefore, it was important to assign a mode of transport to the GPS
trajectories generated by the users. For this purpose, we defined seven different types
of transport modes: being still, walking, running, on a bus, in a car, on a train, and on
a plane (see Table 4.1). These categories were selected based on the most common
forms of transportation in Oslo, Norway.
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Since we were, for the most part, interested in determining whether or not two
people were in direct contact with each other, we generalized these groups further to
only include still, on foot, and in a vehicle The group still covers the case in which
a person is standing still, or, in other words, has no speed; on foot encompasses all
instances of a person moving on foot, such as walking, jogging, or running; and
in a vehicle contains all cases in which a person is in a vehicle, including seated
inside a car, bus, tram, train, or airplane. Despite being a less precise estimation of
the transport mode than in using the seven categories above, these categories still
achieved our target of being able to more accurately differentiate between in-person
contacts. For example, if contact between individuals is determined, but one is on
foot while the other is in a vehicle, we can rule out the possibility of infection. As
development continued, we planned to gradually increase the level of precision of
the predicted modes of transport, but this was not achieved before the project was
shut down.

Research on deriving transport modes from GPS data relies mostly on supervised
learning methods that use a large training data set of labelled trajectories to learn the
nuances between the different modes of transport automatically (eg, [10, 13, 6, 3]).
Since we did not have access to an extensive training data set or time to collect one,
we had to settle for a simpler approach using heuristics. We decided to use the speed
of a given GPS point to predict its transport mode. This means that we assigned
a mode of transport for each point in a given trajectory. Initially, we planned to
assign one transport mode per GPS trajectory, but we found that giving each point a
transport mode would provide greater flexibility further down the pipeline.

There were two advantages to this method. First, speed was calculated on the
smartphones, such that we obtained this information for free, without the need for
any additional computations. Second, assigning a transport mode for each point gave
us more flexibility in comparing contacts at specific periods of time. The lookup
table used to determine transport modes is shown in Table 4.1, where we also show
the conjectured speed of the more precise modes of transport. These speed values
were selected by taking the average speed of the transport mode in question and
adding a small upper buffer to allow for some variability. Since the accuracy of the
collected GPS points varied, the assigned transport modes underwent cleaning and
post-processing. This involved looking at the individual points within a given time
frame and assigning all points within that frame to the majority transport mode.

The evaluation was carried out by comparing the predicted transport modes
against a set of manually annotated points collected by members of the development
team. Overall, we had approximately 35 test cases for evaluation, all from Simula
employees who gave explicit permission to use their data for testing purposes. Each
entry consisted of a start time, an end time, and a mode of transport for that duration.
The results were evaluated against this test data set continuously through a series
of unit tests that ran every time the analytics pipeline was started. Furthermore, we
performed a qualitative evaluation of the predicted transport modes using interactive
maps generated by kepler.gl.! Based on this visual analysis, we made specific changes

1 See https://kepler.gl/.
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to the transport mode prediction algorithm, such as the speed thresholds used for
the individual transport modes and fixing bugs that were not caught by the unit
tests. Despite being very useful in creating a more robust and stable transport mode
prediction approach, we had to be careful when making changes, since we were
using a small subset of data that might not have represented the overall population.
It is important to note that these interactive maps were only used in the development
phase of Smittestopp, and not in production.

Mode of Transport Minimum Speed Maximum Speed

(km/h) (km/h)
Standing Still - 1
Walking 1 6
Running 6 14
Car | Bus | Tram | Train 14 80
Car | Train 80 150
Train 150 220
Plane 220 -
Standing Still - 1
Running 1 14
In a Vehicle | Public Transportation 14 -

Table 4.1: The lookup table used to determine the transport modes for a given GPS
point. The upper half of the table shows the more precise modes of transport, while
the lower half shows the modes of transport used in the final version of Smittestopp.

4.4 Map matching and map visualization

Map matching involves combining GPS data with metadata from publicly avail-
able maps. For the Smittestopp project, we tested Google Maps, Azure Maps, and
OpenStreetMap?2. Based on the performance we needed and the amount of metadata
available for Norway, we decided to use OpenStreetMap. The methods implemented
were partially inspired by other work (a good overview can be found in [1]). Never-
theless, we basically started from scratch, to develop methods specifically designed
for contact tracing that could provide the information needed and, at the same time,
respect the privacy of users. More details on the OpenStreetMap backend we used
to query the information are available in the part describing the backend.

Our goal for the map matching was to understand whether a contact had occurred
in a closed environment (e.g. a building or a bus), since this could impact the risk
level. Contacts are split into three categories: inside, which can be inside a given
building or a vehicle or public transportation, outside, and uncertain, when we lack

2 See https://www.openstreetmap.org.
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@ Bounding box 1

Fig. 4.4: A comparison of two bounding boxes and the areas they cover. Note the
differences between the green and red boxes, which both cover the area corresponding
to two GPS points.

relevant information or when the data are inconsistent (e.g. one person is detected
as being in a car while the other is walking).

4.4.1 Extract POIs from dilated areas

Our main goal is to find POIs around the given trajectories that are associated with
positive cases or identified as a trajectory to be analysed. Initially, we considered
bounding boxes around trajectories as an area around which to extract POIs. However,
the bounding boxes cover a large geographical space than we wanted to analyse to
find POIs. The maximum number of unnecessary POI extractions arises when two
GPS coordinates are located at two ends of a bounding box’s diagonal. Figure 4.4
illustrates this phenomenon. Therefore, we were looking for alternatives, such as
extracting POIs using dilated areas.

The main purpose of extracting POIs using a dilated area is to minimize the
number of POIs returned for a given trajectory. In this method, we replace the
bounding box with a narrowed polygon. The polygon’s width (the maximum distance
to the polygon boundary from a given point) is defined as an input parameter (a given
fixed value). A sample trajectory, a corresponding dilated area, and the extracted POIs
within the area are illustrated in Figures 4.5a, 4.5b, and 4.5c, respectively.
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(a) Trajectory. (b) Dilated area. (c) Extracted POIs.

Fig. 4.5: An example of a trajectory and its POI extractions using a dilated area.

4.4.2 Obtaining contacted POIs with points

Identifying POIs around a specific GPS coordinate is essential when determining
the contacted POIs of a given trajectory. To extract POIs from each GPS point,
we consider a circular area around every GPS point of a trajectory, because we
did not have access to indoor positioning systems [5]. Practically, when we extract
POIs around a point using the radius of a circle, we observe several POIs per point.
However, we know that this point could only be in contact with one POI. Therefore,
there should be a reliable method to identify the most appropriate POI with a high
chance of having contacted a given point.

In this functionality, we can select two options for the value of the radius of the
circle, which will be considered the area for extracting POIs. The first option is a fixed
radius passed to the algorithm. In this case, we can carry out a heuristic analysis to
find the most suitable radius. The second option is to use the accuracy radius, which
is part of every GPS coordinate collected by our mobile application. Considering
the accuracy value (radius of the accuracy circle) as the radius to extract POIs is
logically more related to our goal than the fixed radius, because, when a mobile
phone has a poor GPS signal, the radius of the accuracy circle is bigger to extract
POIs around it. On the other hand, a large error (when the GPS signal is poor) can
lead to a large radius. Then, the POIs cannot be extracted because of there being
too much data. To overcome this problem, we defined a threshold for the maximum
radius.

Within a single circle, we can sometimes observe several POIs, as mentioned
earlier. However, we have to select one of them. We do so by maintaining a ranking
score for every POI extracted for a given trajectory. In this scoring method, we
increment a counter (starting from zero) when a POI is detected as a contacted
POI for a given GPS point. For example, assume that R GPS points intersect with
a building B. Then, the rank of building B is R. Ultimately, each and every POI
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around a given trajectory is assigned a rank based on the number of intersected GPS
points. If we detect a single POI for a given point, we consider that POI as contacted.
If we have more than one contacted POI, we use the POI with the highest rank.
However, if we have numbers of equal rank, we select the first POI detected as the
point contacted. The pseudocode for this algorithm is given in Algorithm 2.

Algorithm 2: Obtain the POIs of contacted points.

Data: GPSData, amenities, paddings, maxPadding, columnName,
OverpassAPI
Result: OutputPerPoint, POIsInfo, POIsCount

GPSOutput «[];
POIsInfo « [ ];
POIsCount « [ | ;

if padding is not given then
paddings « List[Minimum(accuracy, maxPadding) for all GPS records];
end

Output « CallingToOverPassServer(GPSData, amenities, paddings);
OutputPerPoint < split Output to length of GPSData;
for POIs in OutputPerPoint do
if POIs is not Null then
| append POISs to POIsInfo;
end
end

if POlIsInfo is not empty then
‘ POIsCount «— CountUniquePOIs(POIslInfo);

end

for ContactedPOI in POIInfo do
ranks « calculate ranks of ContactedPOI;
POIMaxRank « selectMax(ranks);
append POIMaxRank to POIsInfo;

end

4.4.3 Relation between POIs and transport modes

Transport modes and POIs are closely related, since both indicate whether the contact
could have happened in a closed environment. We describe this interaction in a few
points below.

First, POIs are only queried at instants when the trajectories in contact are associ-
ated with transport modes indicating that the contact could indeed have happened. In
a nutshell, we will not check whether people considered to be in a car were inside a
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building. More precisely, we will query POIs for trajectories satisfying the condition
that either (i) both are considered to be on foot (which covers walking and running)
or still or (ii) one of the trajectories is considered so and we do not have data for
the other (transport mode N/A). The result of querying the POIs will lead to their
classification as either outside or inside.

Second, parts of trajectories for which either (i) both are considered inside trans-
port or (ii) one of them is and we lack data for the other will be considered as inside a
transport, which means the contact will be classified as inside. Table 4.2 summarizes
how we first infer the contact transport modes from the transport modes of each
trajectory. A contact inside transport is considered to occur inside, and looking for
POIs will lead to contacts occurring either outside or inside.

Trajectory | Still On Foot  Public Transport ~ Vehicle N/A
Still | Out/Inside  Out/Inside Uncertain Uncertain  Out/Inside
On Foot | Out/Inside  Out/Inside Uncertain Uncertain ~ Out/Inside
Public Transport | Uncertain ~ Uncertain Inside Inside Inside
Vehicle | Uncertain ~ Uncertain Inside Inside Inside
N/A | Out/Inside Out/Inside Inside Inside Uncertain

Table 4.2: This table describes how the different contact modes (inside, outside, or
uncertain) are informed by the transport modes of the trajectories. For example, if
two users who meet have vehicle as the transport mode in the same location, the
contact is defined as happening inside.

We also apply a smoothing function to the trajectories’ transport modes, to detect
suspicious transport modes, which involve data we assume to be spurious and due to
incorrect transport mode attributions. More precisely, we initially compute whether
the different points of the trajectories are those for which we should query POIs
or ones judged to be inside transport. Afterwards, we smooth this prediction by
re-attributing the predicted value for points of contact whose prediction differs from
those both before and after. More specifically, we look for points of contact #; such
that contact at ¢; is considered inside a vehicle, but contacts at t;,_», t;_1, tj+1, and ;4>
(where the length of this interval is a parameter) are considered to be walking/still.
Such points, if below a certain duration threshold, are transformed into the opposite
prediction, which is, in this case, not inside transport.

Once this smoothing has been applied to the contact’s transport modes, the points
are classified as (i) inside a transport (e.g. contact happening inside a car); (ii) points
for which people are walking/still and we would like to know if they met outside or,
for example, inside a school or a shop; and (iii) points with inconsistent transport
modes, whose contact location/context will be considered uncertain.

Lastly, the radius of search of POIs depends on the transport mode detected.
The reason we generally use a nonzero radius — that is, a point need not strictly be
within a polygon, but only very close to it — is to handle GPS imprecision, which
can typically be high inside a building. On the other hand, keeping a high radius can
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lead to trajectories on the pavement being perceived as happening in nearby shops
alongside that pavement. A compromise is to first compute a search radius based on
the GPS inaccuracy and to apply a coefficient based on the transport mode detected
(e.g. equal to 1.0 if both trajectories are still, but reduced to half if both are on foot).

4.4.4 Querying POIs

Once the transport modes are analysed, the last step of our method to obtain the
context of a contact (see Algorithm 3) is to query points of interest for parts of the
trajectories. First, we feed chunks3 of these trajectories to the functions mentioned
above that query contacted POIs. Second, we apply smoothing to these detected
points, very similarly to smoothing we applied to the transport modes. Since we use
a nonzero radius to search for POIs, the role of this filtering is to eliminate contact
points that actually might not have happened in a closed environment. Such scenarios
— isolated trajectory points being attributed to a POI for a short duration — could
involve, for example, nearby shops when walking on the pavement.

When querying POIs from OpenStreetMap Overpass, we receive specific infor-
mation with very precise names*. Therefore, we design a dictionary converting the
information detected into simple categories names (e.g. we extract the value dormi-
tory and convert it into the general term residential). We used the following list of
(generalized) POIs: hospitals, nursing homes, schools, kindergartens, universities,
bars and restaurants, sports facilities, culture and entertainment facilities, residential,
religious buildings, shops, other education facilities, other healthcare facilities, and
others.

Information returned to reports include the duration of contact within each of the
three categories (inside, outside, and uncertain), as well as the types of inside contact
(inside a mode of transport or one of the POIs following the aforementioned list)
and their respective durations. Moreover, we returned a filtered version of the POlIs,
keeping only locations above a certain duration and/or relative duration threshold.

The data obtained from the POIs are then part of the information of a given contact.
More specifically, the POIs are an attribute of the contacts, and the aforementioned
information (duration inside and outside, locations of contacts, transport modes) are
stored within dictionaries describing a contact’s properties. These dictionaries are
used to display results when executing specific code or are sent as JSON objects
to the frontend. When producing the reports, one can then retrieve the particular

3 It became progressively clear that, to handle the data we received, we had to compute the nonzero
duration of single timestamps. In other words, we interpreted the duration of the segment [#;, ¢; |
as roughly (#j41/2 — ti—1/2), With #j,12, ;-1 > defined using previous and subsequent timestamps.
This allows single timestamps to have a nonzero duration. To ensure that we are not capturing
excessively long durations (e.g. where the phone stops recording so that #;,1 > ¢;), we cut up the
trajectories into chunks of typically two hours.

4 See https://wiki.openstreetmap.org/wiki/Points_of_interest.
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locations if contacts between two users occurred, as well as obtain a summarized
description of the most important of all the users’ contact locations.

4.4.5 Accuracy of the identified POIs

The quality evaluation of the predicted POIs was carried out using data for which we
had ground truth generated by members of the Smittestopp development team to test
different scenarios and edge cases. Thus, different parts of the code were changed
based on these tests (e.g. varying the accuracy with transport modes, asking for one
or both individuals to share a specific type of transport mode).

In their definitive form, the POIs seemed accurate and coherent with the ground
truth available. However, we have no quantitative figures to more precisely judge
their accuracy. Besides, one should bear in mind that several steps filter out potential
errors (if they account for a negligible part of the predictions). Such cleaning steps
include the generalization of the detected points of entities (a step related to privacy
concerns) into more general categories — for example, the algorithm can detect a
‘apartment’ instead of a ‘cabin’ and, since both are displayed as being ‘residential’,
the error would be invisible in the reports — as well as the filtering of POIs accounting
for a short duration and the relative duration of the contact — for example, if one
identifies a ‘shop’ for a few seconds that was not in the ground truth data, it could
be filtered out and again become invisible in the reports.

Algorithm 3: Computing POIs for a contact.

Data: Contact details, incl. locations, timestamps, accuracy. ;
Transport modes of each trajectory.
Result: POIs, duration of contact inside, outside, uncertain.

Get types of transport modes (inside transport, on foot or still, uncertain) for the contact
from each trajectory’s transport modes. ;

Get the radius of search for POIs based on transport modes and accuracy of the contact. ;

Split the contact into chunks of shorter duration (2 hours). ;

for chunk of trajectory in full trajectory do
Call ’Get POIs of contacted points’ to attribute a POI or none to each trajectory point. ;
Eliminate ‘suspicious Pols’ i.e., indices whose labels are isolated (surrounding
instants not related to the same POI) and of short duration are filtered out. ;
Keep only Pols for which the contact’s transport modes are consistent (on foot/still). ;
Extract building/Pol type and convert it into more general categories.
for label type, i.e., some Pol, inside transport, outside, uncertain do
Get the duration of contact related to that label (e.g. inside transport) by
computing the duration of consecutive indices of identical label. ;
Update the total duration of contact inside, outside, uncertain. ;
end

end
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4.5 Challenges, experiences, and lessons learned

The treatment of GPS data led to multiple challenges, as well as being time-
consuming and resource intensive. GPS signals often being very imprecise, we
had to reconsider early plans to adapt them to typical levels of inaccuracy or issues
in the real data gathered. These issues include difficulties in determining transport
modes (since successive inaccurate positions can lead to incorrect speed computa-
tions) or POIs (forcing us to relax the strict requirement that a point must be within
a building’s OpenStreetMap polygon to be considered inside it). In addition, we
considered leveraging these very difficulties to our advantage, such as attempting
to deduce being inside from more inaccurate measurements, which did not perform
satisfactorily. Great opportunities are associated with the use of GPS data in combi-
nation with external resources such as public maps and metadata, which constitute
a powerful tool to infer much information. Many functionalities were eventually left
out, not used, or not finished before Smittestopp was shut down, including street
map analysis using pathways and distinguishing public transportation use from other
personal transportation, among many others. Proper followup studies and more de-
velopment time would be needed to observe the effects and value of such features
for contact tracing.

4.6 Ethical considerations

The use of GPS data raises many questions about data privacy. Since our analysis
can trace a person’s locations, it allows us to access much personal information.
For example, using the collected data, we can determine where a person went to
work, when the person left for the gym, and what restaurant the person went to for
dinner. Had one kept the raw information from OpenStreetMap, even more sensitive
information would have been displayed. We intended to use the minimal amount of
informative data, leaving out all that seems unnecessary or ethically questionable.
Following that principle, we returned rather general terms (e.g. the residential label
instead of an address), protecting more sensitive information (e.g. addresses, names,
and the type of apartment a person was visiting). Moreover, one should keep in mind
that the personal information mentioned is intrinsic to GPS data, in the sense that we
did not add any information sources (e.g. public telephone book entries) that would
have allowed for the easy identification of the person, simply using OpenStreetMap,
which can be accessed as soon as one acquires GPS data.

To protect privacy, we also exclusively used the data of Simula employees who
were part of the Smittestopp application development team and who agreed to being
part of the testing. Information from these test subjects and the resulting maps were
not made public or shared with anyone besides project management, and then only
during the development stage. The data collection and analysis were kept separate.
Additionally, later on, we decided to hide sensitive information by not providing
the interactive maps created for the development stage in the presentation of the
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results (since visualizing the movements of users further raised privacy issues), as
well as combining relevant information in summary form (e.g. communicating the
most common transport modes of a contact, rather than the transport modes for all
instances of that contact). No interactive maps were used in the production system,
but static maps were implemented within the analysis pipeline.

4.7 Summary and conclusions

We presented and discussed the GPS data analysis pipeline and methods developed
for Smittestopp. In addition, we discussed lessons learned and ethical considera-
tions. Overall, we can summarize that GPS data hold a great deal of potential for
contact tracing, especially if combined with metadata from public maps and related
databases. Nevertheless, this information can be seen as optional and might not be
relevant in determining close contacts. This information is also associated with sub-
stantial ethical and privacy-related concerns, and one needs to weigh the usefulness
and added value against these. For Smittestopp, we implemented the features that
we found most useful with the smallest privacy impact, and omitted functionalities
such as geomapping/tracking and person identification (which is possible to a certain
degree of accuracy with the data at hand, public maps, and the person’s registration
information).

References

[1] P. Chao, W. Hua, R. Mao, J. Xu, and X. Zhou. A survey and quantitative
study on map inference algorithms from gps trajectories. IEEE Transactions
on Knowledge and Data Engineering, 2020.

[2] G. Cich, L. Knapen, T. Bellemans, D. Janssens, and G. Wets. TRIP/STOP
Detection in GPS Traces to Feed Prompted Recall Survey. Procedia Computer
Science, 52:262 — 269, 2015.

[3] M. Etemad, A. S. Junior, and S. Matwin. Predicting transportation modes
of GPS trajectories using feature engineering and noise removal. CoRR,
abs/1802.10164, 2018.

[4] R. Mariescu-Istodor, A. Tabarcea, R. Saeidi, and P. Frinti. Low complexity
spatial similarity measure of gps trajectories. In WEBIST (1), pages 62—69,
2014.

[5] R. Mautz. Overview of current indoor positioning systems. Geodezija ir
Kartografija, 35(1):18-22, 2009.

[6] H. Omrani. Predicting travel mode of individuals by machine learning. Trans-
portation Research Procedia, 10:840 — 849, 2015. 18th Euro Working Group
on Transportation, EWGT 2015, 14-16 July 2015, Delft, The Netherlands.



4 Smittestopp analytics: Analysis of position data 79

[7]

[12]

[13]

A. C. Prelipcean, G. Giddfalvi, and Y. O. Susilo. Transportation mode detec-
tion — an in-depth review of applicability and reliability. Transport Reviews,
37(4):442-464, 2017.

X. Yang, K. Stewart, L. Tang, Z. Xie, and Q. Li. A review of gps trajectories
classification based on transportation mode. Sensors, 18(11):3741, 2018.

Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 6(3):1-41, 2015.

Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding Transportation
Based on GPS Data for Web Applications. ACM Trans. Web, 4(1), 2010.

Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li. Geolife GPS trajectory dataset
- User Guide, geolife gps trajectories 1.1 edition, July 2011. Geolife GPS
trajectories 1.1.

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and
travel sequences from gps trajectories. In Proceedings of the 18th international
conference on World wide web, pages 791-800, 2009.

F. Zong, Y. Bai, X. Wang, Y. Yuan, and Y. He. Identifying travel mode with
GPS data using support vector machines and genetic algorithm. Information,
6(2):212-227, 2015.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	Chapter 4 Smittestopp analytics: Analysis of position data
	4.1 Introduction
	4.2 Trajectory pre-processing
	4.2.1 Trajectories with a fixed length of GPS data points
	4.2.2 Trajectories with fixed time intervals
	4.2.3 Trajectories based on trips and stop points

	4.3 Predicting the mode of transport
	4.4 Map matching and map visualization
	4.4.1 Extract POIs from dilated areas
	4.4.2 Obtaining contacted POIs with points
	4.4.3 Relation between POIs and transport modes
	4.4.4 Querying POIs
	4.4.5 Accuracy of the identified POIs

	4.5 Challenges, experiences, and lessons learned
	4.6 Ethical considerations
	4.7 Summary and conclusions
	References




