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Abstract—As the complexity of a software system grows, it
becomes increasingly difficult for developers to be aware of all the
dependencies that exist between artifacts (e.g., files or methods)
of the system. Change impact analysis helps to overcome this
problem, as it recommends to a developer relevant source-code
artifacts related to her current changes. Association rule mining
has shown promise in determining change impact by uncovering
relevant patterns in the system’s change history.

State-of-the-art change impact mining algorithms typically
make use of a change history of tens of thousands of transactions.
For efficiency, targeted association rule mining focuses on only
those transactions potentially relevant to answering a particular
query. However, even targeted algorithms must consider the
complete set of relevant transactions in the history.

This paper presents ATARI, a new adaptive approach to
association rule mining that considers a dynamic selection of the
relevant transactions. It can be viewed as a further constrained
version of targeted association rule mining, in which as few
as a single transaction might be considered when determining
change impact. Our investigation of adaptive change impact
mining empirically studies seven algorithm variants. We show
that adaptive algorithms are viable, can be just as applicable
as the start-of-the-art complete-history algorithms, and even
outperform them for certain queries. However, more important
than the direct comparison, our investigation lays necessary
groundwork for the future study of adaptive techniques and their
application to challenges such as the on-the-fly style of impact
analysis that is needed at the GitHub-scale.

I. INTRODUCTION

When software systems evolve, the interactions in the source

code grow in number and complexity. As a result, it becomes

increasingly challenging for developers to predict the overall

effect of making a change to the system. Aimed at identifying

software artifacts (e.g., files, methods, classes) affected by a

given change, Change Impact Analysis [1] has been proposed as

a solution to this problem. Traditionally, techniques for change

impact analysis have been based on static or dynamic analysis,

which identifies dependencies, for example, methods calling

or called by a changed method [2–4]. However, static and

dynamic analysis are generally language-specific, making them

hard to apply to modern heterogeneous software systems [5]. In

addition, dynamic analysis can involve considerable overhead

(e.g., from code instrumentation), while static analysis tends

to over-approximate the impact of a change [6].

To address these challenges, alternative techniques have

been proposed that identify dependencies through evolutionary
coupling [7–10]. In essence, these techniques exploit a devel-

oper’s inherent knowledge of dependencies in the system, which

manifests itself through, e.g., commits and their comments [11],

bug reports and their fixes [12], and IDE activity [13].

This paper uses historical co-change between artifacts as

the basis for uncovering evolutionary coupling. It does this

using variations of targeted association rule mining [14]. We

refer to the process of using mined evolutionary couplings for

change impact analysis as change impact mining.
Existing algorithms for change impact mining [10, 15–18]

consider the complete set of transactions in the change history.

Recent work with TARMAQ on the impact of history length

on analysis quality [19] shows that short histories limit the

algorithm’s ability to give answers, but when it can, the average

quality of those answers is high. This suggests the potential

value of adaptively deciding how much history to use.
This paper proposes and explores a new approach, ATARI

(Adaptive Targeted Association Rule mIning), and empirically

investigates several variants of adaptive change impact mining

algorithms that vary in how they determine the amount of

history to consider. Our hypothesis is that the reduced number

of transactions considered by adaptive targeted association rule

mining has the potential to improve on targeted association

rule mining [14] akin to how targeted association rule mining

improved on association rule mining [20].
Our motivation for studying adaptive techniques is two-

fold: first, we seek to better understand the interplay between

the transaction history and the mining result. In its classical

applications (e.g., shopping cart data), association rule mining

typically requires a large amount of data. To date, all existing

applications of association rule mining to change recommenda-

tion have blindly assumed that the same is true in the software

context. However, our experiments suggest that software is

somehow fundamentally different and thus warrants future

work on software-specific mining variants. To be clear, our

goal is more subtle than a straight-forward attempt to “provide

a better recommendation.” While better clearly brings value,

a new approach that produces 80% of the answer using only

20% of the resources is also of great interest because of its

potential to lead to even better algorithms down the road.
Second, adaptive techniques open up the possibility for inte-

gration of (within-project) change impact mining with online

services such as GitHub. In general, making a recommendation

is fast, even when using the entire relevant history. However,

extracting the required history takes considerably longer. For

a service like GitHub, the space and time required to keep up-

to-date extracted histories for all active projects is prohibitive,

making the alternative of on-the-fly adaptive analysis preferable.
This paper makes the following contributions:

• it introduces the concept of adaptive targeted association
rule mining,
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• it proposes several adaptive algorithms for change impact

mining,

• it studies the implementation of these algorithms in the

prototype tool, ATARI, and finally

• it compares the new algorithms to each other and to the

state-of-the-art, TARMAQ [10].

The remainder of the paper provides background on association

rule mining and its application to change impact mining in

Sections II and III. The newly devised adaptive techniques are

presented in Section IV, followed by their study in Sections V

through VII. The paper concludes with a discussion of related

work in Section VIII and a summary in Section IX.

II. ASSOCIATION RULE MINING

This section provides the basic definitions used to frame the

problem of change impact analysis using association rule
mining, an unsupervised learning technique used to discover

relations between the artifacts of a dataset [20]. Association
rules are implications of the form A→ B, where A is referred

to as the antecedent, B as the consequent, and A and B are

disjoint sets. For example, consider the classic application of

analyzing shopping-cart data: if multiple transactions include

bread and butter then a potential association rule is bread →
butter, which can be read as “if you buy bread, then you are
likely to buy butter.”

In our application, the input to the algorithm is a history
of transactions, denoted T , where each transaction originates

with a commit from a versioning system. More specifically, a

transaction T ∈ T is the set of artifacts (files or functions) that

were either changed or added while addressing a given bug or

feature addition, hence creating a logical dependence between

the artifacts [21]. In contrast to applications outside of software

engineering, where the history is treated as a set, we treat the

history as an age ordered list and define two transactions as

adjacent if they occur one right after the other in the history.

Targeted association rule mining [14] restricts the generation

of rules using a constraint, which dramatically improves rule

generation time. In change impact mining, rule generation

is constrained by a change set, also known as a query. An

example change set would be the set of artifacts modified since

the last commit. In this case, only transactions that share one

of these artifacts would need to be considered.

Definition 1 (Relevant Transaction): Given a query q, a

transaction t ∈ T is relevant iff t ∩ q �= ∅ and t− q �= ∅.
(the second requirement ensures that the transaction contains

at least one artifact to recommend).

It is possible that a mining algorithm is unable to determine

the impact of a change (e.g., given a query of artifacts not found

in the history). When it is possible, we define the algorithm to

be applicable to the query. Otherwise, we say that the algorithm

is not applicable to the query. Other things being equal, higher

applicability is preferred.

When a query is applicable, the impacted artifacts are found

in the consequents of the mined rules. In other words, the

list of artifacts that historically changed alongside elements

of the query. This list can be ranked based on support and

confidence [20]. The support of a rule is the percentage of

transactions in the history containing both its antecedent and

its consequent. Intuitively, high support suggests that a rule is

more likely to hold because there is more historical evidence

for it. On the other hand, the confidence of a rule is the number

of historical transactions containing both the antecedent and the

consequent, divided by the number of transactions containing

only the antecedent. Intuitively, the higher the confidence, the

higher the chance that when items in the antecedent change,

then items in the consequent also change. Rules are ranked

based on support, breaking ties using confidence.

Finally, transactions do not record the order of the individual

changes involved. Hence, in the evaluation we empirically

assess the quality of an impact mining algorithm by repeatedly

selecting a transaction t from its change history and randomly

splitting the transaction into a non-empty query, q, and a non-

empty expected outcome, Eq that will serve as the ground truth.

This splitting approach, which yields a uniform distribution of

query and expected-outcome sizes, is standard in the evaluation

of change impact mining techniques [10, 15–18]. The query

q is then used to mine a ranked impact list Iq using only

transactions from the history that are older than t. This mimics

a developer in the process of making the change covered by t,
but forgetting one or more artifacts (those of Eq). The quality

of the mined impact Iq is assessed using its Average Precision

(AP) [22], while the quality of an algorithm is assessed by its

mean AP (MAP) over a collection of queries. AP is computed

as the average of Precision@k where k is the rank of each

artifact in Iq that is found in Eq .

The experiments make use of two different MAP computa-

tions: overall MAP and MAP when applicable. The difference

lies in the treatment of queries for which an algorithm is not

applicable. While it is possible to assign such queries an AP

of zero, doing so is harsh because the algorithm can correctly

inform the user that it is not applicable. From an engineer’s

perspective, being given a wrong list (where AP is truly

zero) is far worse than being told that no recommendation is

possible. The other alternative is to ignore such queries, which

is optimistic especially when comparing two algorithms applied

to a particularly challenging query where one is applicable

and the other is not. In this case the non-applicable algorithm

should likely see some penalty. Both possibilities are considered.

Overall MAP is computed by assigning non-applicable queries

the AP value zero, while MAP when applicable is computed

by ignoring such queries.

III. EXISTING TECHNIQUES

Only a handful of targeted association rule mining algorithms

have been considered in the context of change impact analysis.

The oldest two, ROSE [15] and the application of FP-TREE to

change recommendation [16], were independently developed

around the same time. Both ROSE and FP-TREE only uncover

artifacts that changed in the history together with all entities

of the query. This strict requirement leaves these algorithms

unable to make a recommendation more often than not [10].

At the other end of the spectrum the CO-CHANGE algo-

rithm [17] uncovers artifacts that co-changed with any element
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most recent transaction earlier in time

t1 T2 T3 T4 t5 T6 t7 T8 T9 T10 T11

first_applicable:

dynamic_all:

dynamic_block:

dynamic_Pn (w. n=70%):

dynamic_1_n (w. n=5)

dynamic_1_n_adjacent (w. n=3)

dynamic_1_n (w. n=3)

dynamic_1_n_adjacent (w. n=4)

dynamic_1_n (w. n=11) empty list

empty list

dynamic_n_adjacent (w. n=4)

dynamic_n_adjacent (w. n=5) empty list

dynamic_1_n (w. n=2)

dynamic_1_n_adjacent (w. n=2)

dynamic_n_adjacent (w. n=2)

Fig. 1. A visualization of the various adaptive algorithms

of the query. This lenient requirement yields more answers,

which are, however, potentially noisy, as they can have little

relation to the full query.

Finally, the more recent TARMAQ algorithm [10] attempts

to balance these two. It uncovers the artifacts that have co-

changed with the largest possible subset of the query. This

constraint balances the precision of a complete match with the

applicability that comes from exploiting partial matches.

IV. ADAPTIVE TECHNIQUES

This section introduces the seven families of adaptive tech-

niques considered in our study. We refer to them as fam-
ilies because the latter four are parameterized and thus

give rise to multiple algorithms (the first three are unpa-

rameterized, i.e., families of one). To illustrate each fam-

ily, Figure 1 shows the treatment of the following history:

T = t1, T2, T3, T4, t5, T6, t7, T8, T9, T10, T11, where uppercase

denotes a relevant transaction, lowercase a non-relevant trans-

action, and t1 is the most recent transaction.

Change impact mining involves four steps: (1) select relevant

transactions from which to build rules, (2) generate rules from

the selection by matching against the query, (3) rank the rules,

and (4) provide a recommendation based on the highest ranked

rules. The adaptive techniques presented here all affect the

first step: based on the query, they dynamically select relevant

transactions from which to generate rules. If this step produces

an empty list, then no recommendation is possible. Steps (2)

through (4) are unchanged from the TARMAQ algorithm [10].

The simplest adaptive algorithm, first-applicable, selects the

first relevant transaction. In the example this is transaction

T2. Like all the adaptive algorithms, first-applicable begins

its search from the most recent transaction. There are two

motivations for considering the first-applicable transaction:

first, there is evidence from previous analysis [19] that a

(single) recent relevant transaction produces very good results.

In addition, this algorithm provides a useful baseline as it is

the simplest possible adaptive approach.

At the other end of the spectrum, the dynamic-all algorithm

returns all relevant transactions. Dynamic-all is used as a

strawman to investigate the value brought by the more selective

adaptive algorithms.

The third adaptive algorithm, dynamic-block, aims to exploit

the observation that adjacent relevant transactions (i.e., those

immediately following a relevant transaction) are likely made

by a single developer who frequently commits changes while

working on a given bug or enhancement. Dynamic-block
starts with the first relevant transaction and then includes all

subsequent adjacent relevant transactions. In the example, the

transactions selected are T2, T3, and T4.

The next family, dynamic-Pn, is motivated by the observation

that dynamic-block might perform poorly if a developer does

not commit frequently or if there are a large number of

developers working in parallel. In both of these situations the

block size is likely small because of the increased likelihood

of interjected unrelated commits in the sequence of relevant

commits. Dynamic-Pn provides a more tolerant approach. It

starts with the first relevant transaction and includes subsequent

transactions until the percentage of relevant transactions

considered falls below n%. For example, dynamic-P70 yields

T2, T3, T4, T6, where the percentage of relevant transactions

at each step is 100% (1/1), 100% (2/2), 100% (3/3), 75% (3/4),

80% (4/5), and finally 66% (4/6). We consider the three family

members dynamic-P20, dynamic-P50, and dynamic-P80.

The fifth family, dynamic1,n, is another attempt at greater

tolerance. It starts with the first relevant transaction and includes

the next n relevant transactions. If there are not n relevant

transactions in the history, then an empty list is returned, which

means that no recommendation is possible. It is important to

note here that no partial lists (with less than n transactions)

are considered. This conscious choice enables the analysis

to more accurately compare dynamic1,2 and dynamic1,3 for

example, because dynamic1,3 does not also include elements

from dynamic1,2. Using the example history, dynamic1,5 yields

T2, T3, T4, T6, T8. Our study considers the eight dynamic1,n
family members for n ∈ {1, 2, 3, 4, 5, 10, 100, 1000}.

The next family, dynamic1,nadjacent is a variation on

dynamic1,n. It starts with the first relevant transaction and

includes the next n adjacent relevant transactions. When there

are not n adjacent relevant transactions, an empty list is

returned. For example, dynamic1,2adjacent yields T2, T3, while

dynamic1,5adjacent yields the empty list. We consider the five

dynamic1,nadjacent family members for n ∈ {1, 2, 3, 4, 5}.
The last family, dynamicnadjacent, aims to increase

dynamic1,nadjacent’s low applicability while preserving its

high average precision. Dynamicnadjacent uses the most

recent n adjacent relevant transactions. It differs from

dynamic1,nadjacent in that it is not anchored at the first relevant

transaction. For example, dynamic4adjacent yields T8, T9, T10,

T11. If there are not n adjacent relevant transactions anywhere

in the history, then an empty list is returned. We study the five

dynamicnadjacent family members for n ∈ {1, 2, 3, 4, 5}.

V. RESEARCH QUESTIONS

To better understand the pros and cons of using adaptive

algorithms for mining association rules, we consider the

following research questions:

RQ1 Viability: Are there queries for which the adaptive

algorithms’ performance is comparable to TARMAQ?
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RQ2 Applicability: How does the applicability of the

adaptive algorithms compare to each other and to that

of TARMAQ? (This includes inter-family comparisons

between the various adaptive approaches, and intra-

family comparisons for different values of n.)

RQ3 Accuracy: How do the MAP values of the adaptive

algorithms compare to each other and to that of

TARMAQ? Accuracy considers both overall MAP and

MAP when applicable.

RQ4 Adjacency’s Impact: What impact does requiring the

selected transactions to be adjacent bring in terms of

both applicability and accuracy?

RQ5 Practical Implications: What effect do the adaptive

algorithms have on the overall time and space needed

to make GitHub-scale recommendations?

As mentioned earlier, our goal is not to simply produce a better

change impact mining algorithm, but to better understand the

interplay between the number of transactions considered and

the quality of the recommendation possible. For example, the

first research question would be negatively answered if the

adaptive algorithms never performed comparable to TARMAQ.

On the other hand, the more often they do so, the greater the

possibility of exploiting them in a hybrid algorithm.

VI. EMPIRICAL INVESTIGATION

This section describes the experimental design. It first discusses

the software systems studied and then describes how the queries

used in the experiments were created. Finally, we discuss our

prototype implementation.

A. Subject Systems

To assess the adaptive algorithms, we selected 19 large systems

having varying characteristics, such as size and frequency of

transactions, number of artifacts, and number of developers.

Two of these are industrial systems, from Cisco Norway and

Kongsberg Maritime (KM), respectively. Cisco is a worldwide

leader in the production of networking equipment. We consider

a software product line for professional video conferencing

systems made by Cisco Norway. KM is a leader in the

production of systems for positioning, surveying, navigation,

and automation of vessels and offshore installations. We

consider a software platform that is used across their systems.

The other 17 systems are well known open-source projects,

and are reported in Table I along with demographics illustrating

their diversity. For each system, we extracted the 50 000 most

recent transactions (commits). This number of transactions

covers vastly different time spans across the systems, ranging

from almost 20 years in the case of HTTPD, to a little over

10 months in the case of the Linux kernel.

Finally, we consider practical fine-grained histories [23]

that contain function-level granularity for source code files that

srcML [24] can parse, and file-level granularity otherwise. We

include a residual per file to capture the changes to code that

is not part of a function (e.g., global variable declarations).

TABLE I
CHARACTERISTICS OF THE SOFTWARE SYSTEMS STUDIED (BASED ON OUR

EXTRACTION OF THE MOST RECENT 50 000 TRANSACTIONS FOR EACH).

System History Unique Unique Languages used∗
(years) files artifacts

CPython 12.05 7725 30090 Python, C, 16 others
Gecko 1.08 86650 231850 C++, C, JavaScript, 34 others
Git 11.02 3753 17716 C, shell script, Perl, 14 others
Hadoop 6.91 24607 272902 Java, XML, 10 others
HTTPD 19.78 10019 29216 XML, C, Forth, 19 others
IntelliJ IDEA 2.61 62692 343613 Java, Python, XML, 26 others
Liferay Portal 0.87 144792 767955 Java, XML, 12 others
Linux Kernel 0.77 26412 161022 C, 16 others
LLVM 4.54 25600 66604 C++, Assembly, C, 16 others
MediaWiki 11.69 12252 12267 PHP, JS, 11 others
MySQL 10.68 42589 136925 C++, C, JS, 24 others
PHP 10.82 21295 53510 C, PHP, XML, 24 others
Ruby on Rails 11.42 10631 10631 Ruby, 6 others
RavenDB 8.59 29245 139415 C#, JS, XML, 12 others
Subversion 14.03 6559 46136 C, Python, C++, 15 others
WebKit 3.33 281898 397850 HTML, JS, C++, 24 others
Wine 6.6 8234 126177 C, 16 others
Cisco 2.43 64974 251321 C++, C, C#, Python, others
KM 15.97 35111 35111 C++, C, XML, others

∗ languages used by open source systems from http://www.openhub.net.

B. Query Generation

Conceptually, a query q represents a set of artifacts that a

developer changed since the last synchronization with the

version control system. Recall that the key assumption behind

evolutionary coupling is that artifacts that frequently change

together are likely to depend on each other. This is often

not true of large transactions such as mass license updates or

version bumps. Fortunately, transaction sizes are heavily skewed

towards smaller transactions. Unfortunately, there exist outlier

transactions containing 10 000 or more artifacts. Thus, it is

common practice to filter the history by removing transactions

larger than a certain size [15, 16, 18, 25].

In an attempt to reflect most change impact analysis scenarios,

we employ a quite liberal filtering and remove only those

transactions larger than 300 artifacts. The rationale behind

choosing this cutoff is that for each program at least 99% of

all transactions are smaller than 300 artifacts. In most cases,

the percentage is well above 99% of the available data.

Finally, to generate a set of queries to experiment with, we

randomly sample 1100 recent transactions from each filtered

history.1 Each selected transaction, t, is then randomly split

into a non-empty query and a non-empty expected outcome.

Finally, to respect the historical time-line, the history used is

composed of the transactions older than t.

C. ATARI Implementation

The seven families of algorithms from Section IV were

implemented in the prototype tool ATARI (Adaptive Targeted

1For a normally distributed population of 50 000, a minimum of 657 samples
is required to attain 99% confidence with a 5% confidence interval that the
sampled transactions are representative of the population. To account for non-
normality we increase the sample size using the lowest (most conservative)
Asymptotic Relative Efficiency (ARE) correction coefficient, 0.637, yielding
a sample size of 657/0.637 = 1032 transactions. Hence, a sample size of
1100 is more than sufficient to attain 99% confidence with a 5% confidence
interval that the samples are representative of the population.
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Association Rule mIning). ATARI was developed in RUBY, and

built as a fork of the TARMAQ implementation, which was

generously provided to us by its developers [10]. Because both

tools use the same input- and output-formats, it was easy to

compare the experimental results.

VII. RESULTS AND DISCUSSION

A. RQ1: Viability

RQ1 considers the viability of the adaptive approach. Given

that TARMAQ has access to ten’s of thousands of transactions,

it is not unreasonable to expect that it will always outperform

any of the adaptive algorithms, especially given that most of the

adaptive algorithms use orders of magnitude fewer transactions.

When comparing two algorithms A and B, the two tie
when applied to a query if neither is applicable, or if both are

applicable and produce the same AP value. Algorithm A wins if

only it is applicable or if both are applicable and A produces a

higher AP value. Algorithm B wins in the symmetric situation.

To address research question RQ1, we execute TARMAQ

and each of the 24 adaptive algorithms on the 1100 randomly

selected queries from each of the 19 systems. As discussed

in Section II each algorithm produces two outcomes: its

applicability and, if applicable, an AP value.

Table II shows the resulting data. Note that because TARMAQ

can make a recommendation with as little as one relevant

transaction, no algorithm is ever applicable when TARMAQ is

not. For 1951 of the 1100 ∗ 19 = 20 900 queries, none of the

algorithms were able to make a recommendation (i.e., none

were applicable).

The fourth column, “B wins”, in Table II shows that each

of the adaptive algorithms has at least some queries for which

it outperforms TARMAQ. It might seem unexpected that any of

the adaptive techniques would out-perform TARMAQ given that

TARMAQ has access to tens of thousands of transactions. This

occurs when the additional transactions TARMAQ considers

muddy the water. For example, given a transaction pairing a
and b and the query a, the obvious answer is b, while when

given 10 000 transactions involving a that don’t all involve b
there is less clarity. In summary for RQ1, the adaptive analysis

is not completely subsumed by TARMAQ and consequently,

viable.

B. RQ2: Applicability
RQ2 compares the applicability of the adaptive algorithms

to TARMAQ and to each other. Applicability is important to

consider because developers will prefer a tool that presents

results as often as possible. The range of applicabilities is seen

on the x-axis of Figure 2. Looking at the relative positions

of the points on the x-axis, the applicability of the adaptive

algorithms covers a wide range. On the right we find the adap-

tive algorithms that have the same applicability as TARMAQ.

Moving to the left, the adaptive techniques have progressively

lower applicability. As shown in Table III, applying Tukey’s

HSD finds that there is a statistically significant difference

in applicability amongst those algorithms that do not match

TARMAQ’s applicability except for the pairwise overlap of the

four with the lowest applicability (those sharing a common

letter are not statistically different).
In summary, compared to each other, as more transactions

are required (as the value of n increases) there is a notable drop-

off in applicability. This drop-off is considerably sharper when

the transactions selected are required to be adjacent. When

compared to TARMAQ, 40% of the adaptive algorithms match

TARMAQ’s applicability while the remainder grow progressively

less applicable if n increases.

TABLE II
VIABILITY DATA FOR THE 24 ADAPTIVE ALGORITHMS

TARMAQ AP B B not
Algorithm B wins tie wins applicable

first-applicable 7551 8125 3273 0
dynamic-all 3393 11781 3775 0
dynamic-block 7398 8132 3419 0
dynamic-P20 7199 8124 3626 0
dynamic-P50 7321 8114 3514 0
dynamic-P80 7404 8108 3437 0
dynamic1,1 7551 8125 3273 0
dynamic1,2 6315 6515 4143 1976
dynamic1,3 5567 5648 4460 3274
dynamic1,4 5089 5142 4505 4213
dynamic1,5 4770 4774 4472 4933
dynamic1,10 3803 3653 4158 7335
dynamic1,100 1460 1092 1771 14626
dynamic1,1000 158 95 112 18584
dynamic1,1adjacent 7551 8125 3273 0
dynamic1,2adjacent 645 738 493 17073
dynamic1,3adjacent 146 195 171 18437
dynamic1,4adjacent 57 68 75 18749
dynamic1,5adjacent 28 33 33 18855
dynamic1-adjacent 7551 8125 3273 0
dynamic2-adjacent 5850 3453 1898 7748
dynamic3-adjacent 3371 1757 908 12913
dynamic4-adjacent 1629 893 471 15956
dynamic5-adjacent 864 522 245 17318

TABLE III
TUKEY’S HSD FOR APPLICABILITY

Algorithm Appl. Group

dynamic1,1 0.9066 a
dynamic1,1adjacent 0.9066 a
dynamic1-adjacent 0.9066 a
dynamic-all 0.9066 a
dynamic-block 0.9066 a
dynamic-P20 0.9066 a
dynamic-P50 0.9066 a
dynamic-P80 0.9066 a
first-applicable 0.9066 a
TARMAQ 0.9066 a
dynamic1,2 0.8121 b
dynamic1,3 0.7500 c
dynamic1,4 0.7050 d
dynamic1,5 0.6706 e
dynamic1,10 0.5556 f
dynamic2-adjacent 0.5359 g
dynamic3-adjacent 0.2888 h
dynamic1,100 0.2068 i
dynamic4-adjacent 0.1432 j
dynamic1,2adjacent 0.0897 k
dynamic5-adjacent 0.0780 l
dynamic1,3adjacent 0.0244 m
dynamic1,1000 0.0174 mn
dynamic1,4adjacent 0.0095 no
dynamic1,5adjacent 0.0044 o

TABLE IV
TUKEY’S HSD FOR OVERALL MAP

Algorithm MAP Group

TARMAQ 0.2487 a
dynamic-all 0.2362 b
dynamic-P20 0.2260 c
dynamic-P50 0.2246 c
dynamic-block 0.2233 cd
dynamic-P80 0.2233 cd
dynamic1,1 0.2209 cd
dynamic1,1adjacent 0.2209 cd
dynamic1-adjacent 0.2209 cd
first-applicable 0.2209 cd
dynamic1,2 0.2139 d
dynamic1,3 0.2002 e
dynamic1,4 0.1875 f
dynamic1,5 0.1767 g
dynamic1,10 0.1414 h
dynamic2-adjacent 0.1091 i
dynamic3-adjacent 0.0527 j
dynamic1,100 0.0444 j
dynamic4-adjacent 0.0281 k
dynamic1,2adjacent 0.0276 k
dynamic5-adjacent 0.0166 l
dynamic1,3adjacent 0.0074 lm
dynamic1,1000 0.0040 m
dynamic1,4adjacent 0.0029 m
dynamic1,5adjacent 0.0012 m
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Fig. 2. A visualization of MAP and applicability for the adaptive algorithms and TARMAQ. The overlap makes discerning the individual algorithms difficult.
Instead the figure is aimed at illustrating the general trend related to MAP values and applicability.

C. RQ3: Accuracy

RQ3 compares the MAP values of the adaptive algorithms to

TARMAQ and to each other. Attaining a high MAP value is key

for a recommendation system: the higher an algorithm ranks

relevant files and functions, the greater its utility to an engineer.

The comparison uses the average precision data obtained from

running the 24 adaptive algorithms and TARMAQ on the 20 900
queries described in Section VI-B.

We consider two views of the data: overall MAP, which

is a harsh measure because it assigns an AP of zero when

an algorithm is not applicable, and MAP when applicable,

which is a soft measure because it ignores queries to which

an algorithm is not applicable.

Table IV presents the results of Tukey’s HSD for the overall
MAP values. The values for the adaptive algorithms progres-

sively decrease primarily due to their decreasing applicability.

While it is not our expectation that the adaptive algorithms

would surpass TARMAQ given the greatly reduced portion

of the history they make use of, it is interesting how close

some of them come. This suggests, for example, the potential

of hybrid techniques. One advantage such hybrids bring is a

speed advantage, especially when building efficient on-the-fly

recommenders. Evidence supporting the value of such hybrids

is seen in the timing comparison shown in Figure 3.

The y axis of Figure 2 shows the range of MAP when
applicable values for the adaptive algorithms and TARMAQ. It

is interesting to note that statistically TARMAQ is not superior

to any of the adaptive algorithms. In fact numerically, there

are four algorithms (dynamic1,nadjacent, for n = 2, 3, 4, 5)

with MAP when applicable values greater than TARMAQ’s.

This means that hybrids such as “apply dynamic1,2adjacent if

applicable otherwise apply TARMAQ” would match TARMAQ’s

applicability while exceeding its MAP value. Overall the

“B wins” column of Table II shows how often an adaptive

algorithm performs better at the individual query level. While

in production we lack an oracle to predict which algorithm to

use for a particular query, given the data from the experiments,

it is possible to compute the MAP value that a perfect prediction

would yield. This value, 0.3798, is a significant improvement

over the values produced by any of the individual algorithms.

Thus in summary for RQ3, as expected, none of the adaptive

algorithms are a clear replacement for TARMAQ. However,

given that they use dramatically less of the history, hybrid

approaches deserve consideration. Furthermore, these results

also suggest that software is somehow fundamentally different

from other domains to which association rule mining has been
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applied and thus the study of software-specific association rule

mining algorithms would be of interest.

D. RQ4: Adjacency’s Impact

RQ4 investigates the impact on both applicability and accuracy

of requiring transactions to be adjacent. Adjacency of relevant

transactions suggests a developer is working on a single issue.

Thus, the information gleaned from adjacent transactions should

identify key relations between software artifacts.

The investigation makes use of the applicability and average

precision data obtained by running 18 adaptive algorithms using

the queries described in Section VI-B. We analyze algorithms

from the families dynamic1,nadjacent and dynamicnadjacent in

comparison with dynamic1,n. Recall the difference between the

two families of adjacent algorithms: dynamic1,nadjacent uses

n adjacent relevant transactions starting from the first relevant
transaction, while dynamicnadjacent uses the most recent

n adjacent relevant transactions in the history, regardless of

where they start. The expectation is that dynamicnadjacent will

identify older transactions in exchange for greater applicability.

To begin with, all three families show a clear power-

law reduction in applicability as n increases (with Residual

Standard Error values of 0.0717 for dynamic1,n, 0.0008 for

dynamic1,nadjacent, and 0.0837 for dynamicnadjacent). The

applicability of dynamic1,n has the least drastic drop-off. For

comparison, consider an applicability cut-off of one percent.

Dynamic1,n is viable until approximately n = 2500, while

dynamicnadjacent until n = 9, and dynamic1,nadjacent until

only n = 5.

In summary, the three families show a wide range of

applicabilities, but a similar pattern for increasing values of

n. The two families that require adjacency exhibit a much

more rapid falloff in applicability as n increases. This indicates

that large runs of relevant transactions are rare in the change

histories. Because of the limited applicability, we focus the

accuracy investigation on values of n ranging from 1 to 5.

Figure 4 shows the impact on accuracy caused by requiring

transactions to be adjacent. In the figure, a positive difference

occurs when adjacency leads to a higher MAP value while a

negative difference occurs when adjacency leads to a lower

MAP value. For example, the first bar shows that dynamic3
outperforms dynamic3adjacent (by about eight percentage

points). Note that for n = 1, dynamicn, dynamicnadjacent,
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Fig. 4. Difference in MAP-when-Applicable When Adjacency is Required

dynamic1,n, and dynamic1,nadjacent are all the same. Thus

the two zero-differences at the center of the graph.

Considering first dynamic1,n, adjacency yields a clear

positive impact on accuracy. The impact fluctuates as the

value of n increases, with an indication that by n = 5 the

accuracy gap is shrinking. One possible explanation is that

inclusion of the first relevant transaction “pins” the age of

the first transaction considered. Because this is the same for

dynamic1,n and dynamic1,nadjacent, the latter will use more

recent transactions. At some point (e.g., n ≥ 5), the volume

of data counteracts the advantage that adjacency brings.

Statistically, there is an interaction that makes it inappropriate

to apply Tukey’s HSD test to all the data. Instead we compare

dynamic1,nadjacent and dynamic1,n “head to head” for each

value of n other than 1 using the Wilcoxon Sum test, which is

equivalent to the Mann-Whitney test. The respective p-values

are < 0.0001, 0.00052, 0.02433, 0.47. In other words the

difference is statistically significance for n = 2, 3, 4, although

the difference at 4 is not strong. It is worth noting that for n = 5
the difference is visually smaller and there are only 94 values

for dynamic1,5adjacent, which is less than half of one percent

of the 20 900 data points considered. Both of these factors

limit the statistical test’s ability to establish the significance

of any difference. Thus, for dynamic1,n, we conclude that

applying adjacency yields better MAP values at the expense

of applicability, and consequently, dynamic1,nadjacent should

be favored over dynamic1,n when it is applicable.

Finally, we compare the accuracy of dynamic1,n and

dynamicnadjacent where the latter uses the most recent

sequence of n adjacent transactions. Because it is not “pinned”

to the first relevant transaction, the transactions involved

are likely older. In exchange, these algorithms have higher

applicability than their dynamic1,nadjacent counterparts. As

shown in Figure 4, in this case adjacency has a negative

impact on accuracy. From n = 1 to n = 3 the cost of

adjacency grows while for n > 3 the negative effect of requiring

adjacency diminishes. There are likely two effects here: first,

as n increases, dynamicnadjacent searches further back in

the history to find n adjacent transactions. Greater age tends

to have a negative impact on change impact analysis quality.

However the decreasing negative difference in MAP value from

n = 3 to n = 5 indicates that a larger number of adjacent

transactions can counter the negative age effect.

Head-to-head statistical comparisons in this case are much

stronger as each p-value is < 0.0001. The negative impact of

requiring adjacency is statistically significant for each value of

n (except n = 1 where the two algorithms are identical).

In summary for RQ4, adjacency has a significant cost in

terms of applicability. This is not unexpected. In exchange, it

notably improves accuracy, which is dampened by age.

E. RQ5: Practical Implications

By design, the adaptive algorithms make use of significantly

less of the transaction history. In the extreme (i.e., a task

that represents the worst case for TARMAQ), this difference

translates into an obvious performance advantage as illustrated
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in Figure 3. We learned from Figure 2 that some adaptive

algorithms, such as dynamic1,2 and dynamic-P20, have equal

or only slightly lower applicability than TARMAQ while

maintaining competitive MAP values. Figure 3 illustrates that

in exchange there is a dramatic reduction in time it takes

to make a recommendation. This is caused by the adaptive

techniques considering dramatically fewer transactions (e.g.,

dynamic1,2 and dynamic-P20 use only 1.4% and 1.8% of the

transactions used by TARMAQ, respectively).

These numbers help us reason about the practical impli-

cations of using adaptive algorithms instead of TARMAQ for

change impact mining. As alluded to in the Introduction, it

generally takes little time to make a recommendation with

TARMAQ, provided that the change history is readily available.

However, extracting the history takes considerable time. For

the systems considered in this study, a modestly sized change

history of 50 000 transactions takes on average 203 minutes of

CPU time to extract and uses roughly 11MB of disk space per

system after compression. These numbers are no impediment

to a normal user who only interacts with a limited number of

active repositories, making periodic (e.g., nightly) updates of

the history viable.

However, in the context of providing (within-project) change

impact mining for large numbers of projects, such as for online

services like GitHub, the time and space needed to maintain up-

to-date histories for all projects becomes unwieldy. The latest

report from GitHub (Sept. 2017) claims a total of 67 million

repositories, of which 25.3 million are considered active (have

seen activity in the preceding year). Keeping a modest (50k)

change history for just the active repositories would require

9765 years of CPU time for initial extraction and result in 272

terabytes of compressed data. While incremental extraction

of new transactions will help with keeping the histories up-

to-date, it will not solve the initial extraction effort, nor will

it address space requirements. The extraction process can of

course be parallelized, but it takes a large number of cores to

turn 9765 years of CPU-time into a feasible time-span (e.g., it

would take 507.780 cores to reduce extraction time to a week,

without accounting for increased communication overhead and

bandwidth challenges).

Our adaptive approach addresses both aspects. Since adaptive

techniques can reduce the time and space required by over 98%,

they enable on-the-fly change impact mining of a single project

of interest, in contrast to pre-extracting change histories for

all projects. In this case, for a single system, impact analysis

including the required extraction would take on average only

2:50 minutes and require approximately 150kB. This greatly

improves the feasibility of providing change impact mining at

this scale, especially for less interactive tasks such as assessing

the impact of a pull request in projects that use modern code

review.

F. Discussion

Some clear patterns emerge in the data. For example, age

seems detrimental to accuracy. In addition, adjacency, while

lowering applicability, brings value to the recommendation.

These general trends suggest the need to conduct more focused

studies considering each of these effects and their interplay.

Furthermore, this initial analysis of adaptive algorithms hints

at the complexity of the information in the change history of a

software system. For example, when compared to the typical

applications of association rule mining, such as analyzing

shopping-cart data, the analysis of historical co-change data in

a software context looks different. The traditional application

of association rule mining aims to leverage “big data.” In

contrast, the success of algorithms such as dynamic1,2 and

dynamic1,5 show that when applied to software, using only a

few transactions is, at least at times, preferable. While in its

preliminary stages, this work pokes at the question “how few

transactions are necessary to make good recommendations?”

One final size related observation is hinted at by the top two

entries of Table IV. The top performing algorithm is TARMAQ,

while second place goes to dynamic-all. What is interesting

is that TARMAQ starts with the same relevant transactions as

dynamic-all, and then filters them based on the overlap with the

query. Only transactions with maximal overlap are retained. As

shown in the table, this filtering yields a statistically significant

improvement in the MAP value. Thus, it would be interesting

to investigate what happens when TARMAQ’s largest overlap

filter step is combined with other adaptive algorithms.

G. Threats to validity

Commits as a basis for evolutionary coupling: The evalua-

tion in this paper is grounded in frequent patterns found in the

transactions of change histories. However, these transactions

are not in any way guaranteed to be “correct” or “complete”

with respect to representing a coherent unit of work [26, 27].

Non-related artifacts may be present, and related artifacts may

be missing from a transaction. However, we believe this threat

is mitigated in the context of our study, as all but one of the

systems (KM) use Git for version control, which promotes

coherent transactions with tools for amending commits and

rewriting history. For KM, we base transactions on their issue

tracking system, which groups relevant commits.

Realism of Scenarios used in Evaluation: Our evaluation

establishes a ground truth from historical transactions, randomly

splitting them into a query and an expected outcome of a certain

size. However, this approach does not account for the actual

order in which changes were made before they were committed

together to the versioning system. As a result, it is possible that

our queries contain elements that were actually changed later

in time than elements of the expected outcome. This cannot

be avoided when mining co-change data from a versioning

system, because the timing of individual changes is lost. It can
be addressed by using another source of co-change data, such

as a developer’s interactions with an IDE, but the invasiveness

of such data collection prevents a study as comprehensive

as the one presented here. Moreover, since the evolutionary

couplings at the basis of our analysis forms a bi-directional

relation, the actual order in which changes were made before

they were committed has no impact on the result. Our goal
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is not to re-enact the actual timeline of changes, but rather to

establish a ground truth with respect to related artifacts.

Equal weight for all commits: In our experiments, all

transactions from the change history are given equal weight

while mining change impact. One could argue that, because of

their knowledge about the system, transactions committed by

core developers should be given higher weight than transactions

committed by occasional contributors. We do not include such

weighing scenarios in our study because of their interaction

with several of our research questions. Moreover, most of

the systems considered in this study use a modern code

review process based on pull-requests to include changes from

occasional contributors. We believe this reviewing process

largely removes any differences between transactions by core

developers and transactions by occasional contributors.

Variation in software systems: We conducted our experi-

ments on two industrial systems and 17 large open source

systems that were carefully selected to vary considerably in

both system- and change-history characteristics (see Table I).

Although this should provide an accurate picture of the adaptive

techniques’ performance in various settings, we are likely not

to have captured all possible variations.

Implementation: Finally, our prototype ATARI is implemented

in Ruby and we conducted the statistical analysis in R. Although

we have thoroughly tested our implementations, we can not

guarantee the absence of errors that may affect our results.

VIII. RELATED WORK

The first algorithm for mining association rules was introduced

in 1993, AIS (Agrawal-Imielinksi-Swami) [20]. Since then,

many improvements have been proposed, generally aimed

at improving execution time or memory efficiency. These

improvements can be classified in four major categories:

(1) Apriori [28], which uses an efficient pre-computation of

rule generation candidates, (2) Eclat [29], which partitions

the search space into smaller independent subspaces that can

be analyzed efficiently, (3) FPGrowth [30], which encodes

the dataset in a compact tree structure, called a frequent

patterns tree (FPtree), in order to enable rule mining without

having to generate candidate rules, and (4) RARM (Rapid

Association Rule Mining) [31], which encodes the data set in

a prefix-tree ordered by the support of items (SOTrieIT). In

addition, evolution of the dataset from which association rules

are mined (e.g., the addition of new transactions) has motivated

incremental association rule mining [32], which aims to update
the earlier mined rules based on the changes to the dataset.

As a refinement to techniques that mine all patterns in

a dataset, targeted association rule mining constrains rule

generation (i.e., pattern mining) to those relevant to a query [14].

Targeted association rule mining ignores transactions unrelated

to the query, which significantly reduces execution time. The

adaptive algorithms studied in this paper aim at an additional

significant reduction in the number of transactions considered,

and consequently at a reduction in execution time.

Silva and Antunes present an in-depth survey of con-

strained pattern mining [33] in which they describe a range

of constraints and properties. Constraint categories include

content constraints such as item constraints, value constraints,

and aggregate constraints, as well as structural constraints

such as length constraints, sequence constraints, and temporal

constraints. The adaptive algorithms make use of several

constraints. For example, adjacency is a sequencing constraint

while relevant transactions is a value constraint.

In the specific context of change impact analysis, potentially

relevant items are suggested based on evolutionary (or logical)
coupling. In general, approaches aimed at identifying evolu-

tionary couplings are based upon co-change information, such

as those that include coarse- and fine-grained co-changes [13,

21, 34], code-churn [35], and interactions with IDEs [9].

Several projects have considered aspects of the mining

problem that, to varying degrees, compliment the investigation

of adaptive algorithms. For example, recent research highlighted

that the configuration parameters of data mining algorithms

have a significant impact on the quality of their results [36].

In the context of association rule mining, several authors

have highlighted the need for thoughtfully studying how

parameter settings affect the quality of generated rules [37–

39]. For example, Moonen et al. recently investigated how the

quality of software change recommendation varied depending

on association rule mining parameters such as transaction

filtering threshold, history length, and history age [19, 40].

The interesting question relative to our work concerns the

value these ideas bring to adaptive analysis, which often makes

a recommendation based on far fewer transactions.

Finally, the software repository mining literature [15, 41, 42]

frequently alludes to the notion that learning from a too short,

or an overly long history harms the outcome, either because

not enough knowledge can be uncovered, or because outdated

information introduces noise. Moonen et al. [19] investigated

the impact of history size on TARMAQ’s performance. Their

discovery that very small histories can yield high quality

recommendations was the impetus for our research. Adaptive

algorithms bring an intriguing new viewpoint to this discussion.

IX. CONCLUDING REMARKS

Conclusions: When applied to source-code change impact
analysis, association rules capture implicit knowledge that

an engineer has about connections between the artifacts of

a system. This paper explores seven families of adaptive
algorithms, many of which use dramatically less of the history

than existing techniques. Doing so enables us to take a finer-

grained look at understanding the value selected transactions

bring to the recommendation process. The empirical investi-

gation demonstrated that adaptive algorithms are viable and

furthermore that their accuracy can rival that of state-of-the-art

complete-history techniques such as TARMAQ.

Contributions: This paper makes the following four contribu-

tions: (1) Introduces the notion of adaptive targeted association

rule mining. (2) Proposes several variants of adaptive algorithms

for change impact mining. (3) Implements these algorithms in

a prototype tool ATARI. (4) Compares the new algorithms to

each other and to the state-of-the-art tool, TARMAQ [10].
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Future work: Looking forward, we see several interesting

directions for future work. The first applies TARMAQ as a filter

to the transactions selected by an adaptive algorithm. Second,

it might be interesting to attempt to provide a natural language

explanation supporting each recommendation.

Finally, the existence of low applicability and high MAP
when applicable algorithms suggests the potential for using

machine learning to create an ensemble of algorithms. As a

preliminary experiment, a hand-crafted ensemble algorithm was

studied, which applies dynamic1,2adjacent if it is applicable,

and uses TARMAQ otherwise. This ensemble takes advantage of

dynamic1,2adjacent’s high MAP while maintaining TARMAQ’s

high applicability. The ensemble increased the MAP value

while maintaining the same high applicability.
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