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Introduction

The fundamental idea behind modelling is to try to create a mathematical description of some
state-of-nature. Often the state-of-nature is governed by a set of equations given by some
underlying physical process. Our goal is then to solve these equations for a quantity of interest
to be able to reproduce the state-of-nature mathematically. However, along the way various
errors are often introduced to the model. The size of those errors are then key to determining
how correct the model is. We start by discussing what these various errors are.

Solving the governing equations will for more complicated problems not be a trivial task.
There is simply not enough information to completly describe the nature we are modelling.
Because of this partial lack of knowledge, assumptions have to be made to compensate in order
to make the problem solvable. This will inevitably create a discrepancy between the state-of-
nature and the model we use to describe it. We denote this discrepency as model selection
error.

Another aspect of the problem with solving the governing equations is that it may be too
complicated to be solved analytically. Assumptions are added for practical reasons to make it
more feasible to solve the governing equations. One approach to compensate for this, is to solve
the governing equations using a numerical solver. For most problems however, introducing
a numerical solver, will effectively replace the analytical model solution with a numerical
approximation. We denote the added discrepancy introduced by using a numerical solver as
numerical errors.

Modelling a state-of-nature often ends up being a two-fold problem. So far we have
described the part called the forward problem: We create a response from governing equations,
either analytically or through a numerical solver, to predict the state-of-nature. However, the
governing equations often have model parameters. To be able to create values from the response,
we have to identify those parameters first. This is known as the inverse problem. We solve the
inverse problem through the use of physical measurements: We create an objective function that
quantifies the distance between the model response and the physical measurements. We then
select the model parameters that minimize the objective function.

A common source of error when solving the inverse problem stems from the measurements.
In some cases the measurements gathered only describe the behavior of the model indirectly.
And in some cases model evaluations have to be inferred through added assumptions. In other
cases the measurement equipment is inaccurate. In any case, the result is measuring errors.

As a result of the various sources of errors, it is likely that the optimal model response
created is not the correct one. Moreover, there are many combinations of the model parameters
that will result in a feasable model response. This motivates us to abandon the deterministic
assumption that each model parameter only has one single fixed value. Instead we can assume
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that the model parameters are unknown and have a probability density function. The density
function describes the relative likelihood for a random variable to take a given value.

Given that we assume that the model parameters should have probability density function
assigned to them, the next step is to determine what those densities should be. Determining
model parameter densities can be done by either reformulating the inverse problem to identify
the densities or by eliciting expert opinions. For insight into the probabilistic inverse problem,
see the excellent book by Idier [1]. And for insight into expert elicitation, see the excellent book
by O’Hagen et al. [2]. In this thesis however, the probability density functions are assumed to
be known.

Given that the model parameters are assumed random, it follows that solving the governing
equations will result in a random response. In other words, there exists a probability density
function that describes the model response. With this density function available we have
an approach for estimating the uncertainty in model response. And here lies the reason for
performing uncertainty quantification: We can calculate statistical metrics for the response. For
example, we can find out how far the response will deviate from a best estimate through the
standard deviation operator, i.e. how stable is the response. Other statistical metrics include
expected value, correlation, confidence intervals, (variance based) sensitivity to mention a few.

Problems that have random components are denoted as probabilistic. In contrast we
can denote problems that are not probabilistic as deterministic. Most numerical solvers are
constructed under a deterministic assumption and the model parameters are assumed fixed for
the problem to be solvable. To account for uncertainty a deterministic numerical solver must
be replaced with a probabilistic one. One such approach is the non-intrusive polynomial chaos
expansion method [3]. This method is the foundation for this thesis. In the next section the
polynomial chaos expansion method will be disussed in more detail.

2.1 Method Description
Let us consider a stochastic computational mechanics problem on the form

L(x, t, u,η, ξ) = 0, (2.1)

where L is a possibly non-linear differential operator, x are spatial coordinates in a domain
Ω ⊆ R3, and t ∈ R is time. Let u(x, t;η, ξ) be the solution of (2.1). Appropriate boundary and
initial conditions are assumed. Further, let η = (η0, . . . , ηR−1)T ∈ RR be all parameters known
accurately without uncertainty and in contrast let ξ = (ξ1, . . . , ξD)T ∈ RD be the parameters
which contain uncertainty. The uncertainty in ξ can sufficiently be described through a joint
probability density function pξ, which is assumed to be known. From this problem formulation,
we define the objective to quantify the uncertainty in the solution u, given uncertainty in ξ. More
specifically, we want to compute the statistical properties of u, or in a goal functional involving
u, at various space or time locations. A typical goal functional of interest are integrals of a flux
or stress vector at parts of the boundary, but here we shall, with no lack of generality, assume
that the interest is in the values of u itself at all space-time locations.

Ultimately, we seek the joint probability distribution pu at all space-time points, but this
is more information than we need to digest in practice. We therefore aim to address the
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following two questions: What is the expected value and the variance of u at a space-time point,
given the uncertainty of ξ? And how accurately can we compute these statistical measures?
Mathematically, we aim to compute the response mean and variance:

E[u(x, t;η, ξ)] =

∫
RD

u(x, t;η, ξ)pξ(ξ) dξ

Var[u(x, t;η, ξ)] =

∫
RD

(u(x, t;η, ξ)− E[u(x, t;η, ξ)])2 pξ(ξ) dξ. (2.2)

Except for trivial examples, the complexity of deriving u is high and a numerical approach
must be assumed. This implies that the deterministic solution of (2.1) is only possible for
known values of ξ. However, since ξ is assumed uncertain and can only be described through a
probability density function, any single deterministic solution of the equation will be insufficient
to represent u. We will assume that a numerical solution is numerically costly, so the number of
such solutions should be kept low. We therefore need an approach that properly quantifies the
uncertainty of u under the constraint that (2.1) can only be solved numerically, and only a few
model evaluations are allowed.

The most popular approach to perform numerical uncertainty analysis is the Monte Carlo
method [4]. The method can be summarized as follows: Create independent identically
distributed pseudo-random samples Q = {Qk}IK whith IK = {0, . . . , K} from the density
pξ, and calculate the mean and variance from empirical measures:

E[u(x, t;η, ξ)] ≈ Ê[u(x, t;η, ξ)] =
1

K + 1

∑
k∈IK

u(x, t;η, Qk)

Var[u(x, t;η, ξ)] ≈ V̂ar[u(x, t;η, ξ)] =
1

K

∑
k∈IK

(
u(x, t;η, Qk)− Ê[u(x, t;η, ξ)]

)2
.

The method’s strengths include that it considers the simulator as a black box and assumes
nothing about the shape of u, and that it scales very well with the number of uncertain
parameters D. On the other hand, it requires a very large number of samples to converge.
The method has an error which is in the order of magnitude of Var[u(x, t;η, ξ)] /(K + 1).
Since we have assumed that the cost of running the simulator for solving (2.1) is very high, it is
seldom feasible to perform Monte Carlo integration on computational mechanics problems.

As a more efficient alternative to the Monte Carlo method, we have the polynomial
approximation method. This method will be discussed next. Let us make the fundamental
assumption that u is a smooth function of the random input parameters ξ. Then we can
effectively approximate u as a function of ξ through a polynomial approximation:

u(x, t;η, ξ) ≈ uM(x, t; ξ) =
∑
n∈IN

cn(x, t)Φn(ξ) IN = {0, . . . , N} , (2.3)

whereM is the polynomial order, N+1 is the number of evaluations, {cn}n∈IN are coefficients,
and {Φn}n∈IN are polynomials. The mean and variance can then be calculated cheaply either
analytically or by performing Monte Carlo simulation on û as a proxy for u. At this point we
must emphasize that even though we assume u to depend smoothly on ξ, u does not need to
vary smoothly with x and t. For example, with the deterministic solution of (2.1) for a given
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Order Index Polynomial
0 Φ0 1
1 Φ1 Φ2 ξ0 ξ1
2 Φ3 Φ4 Φ5 ξ20 ξ0ξ1 ξ21
3 Φ6 Φ7 Φ8 Φ9 ξ30 ξ20ξ1 ξ0ξ

2
1 ξ31

4 Φ10 Φ11 Φ12 Φ13 Φ14 ξ40 ξ30ξ1 ξ20ξ
2
1 ξ0ξ

3
1 ξ41

...
...

...

Table 2.1: Simple monic polynomial expansion sorted reversed and ordered lexicographically.

value of ξ can be assume to contain discontinuities. The polynomial approximation method
only require smoothness in the mapping from ξ to u.

There are several polynomial approximation methods available. Both Taylor polynomials
and Lagrange polynomials are examples. For our purpose, let us first just assume that the
polynomials {Φn}n∈IN are selected as fixed simple monomials. An example of monomials can
be found in Table 2.1.

With the polynomials known and fixed, the coefficients {cn(x, t)}n∈IN must be calculated
in such a way that uM approximates u as well as possible. Though this is preferably done
analytically, because of the limitations in u, this has to be estimated numerically as well:

uM(x, t; ξ) ≈ ûM(x, t; ξ) =
∑
n∈IN

ĉn(x, t)Φn(ξ), (2.4)

where each ĉn is an approximation of cn.
One all-purpose method for estimating the coefficients {cn(x, t)}n∈IN is the point

collocation method (PCM). It is defined as follows. We first select collocation nodes Q =

{Qk}k∈IK . The nodes can be selected somewhat arbitrarily, but will here be selected to be
random samples drawn from pξ. Given the samples, we evaluate the polynomials and model
solver:

P (Q) =

Φ0(Q0) · · · ΦN(Q0)
...

...
Φ0(QK) · · · ΦN(QK)

 U(x, t,Q) =

u(x, t;η,Q0)
...

u(x, t;η,QK)

 .
The coefficients can be estimated using linear least squares minimization:

ĉ(x, t) = (ĉ0(x, t), . . . , ĉN(x, t))T =
(
P (Q)TP (Q)

)−1
P (Q)TU(x, t,Q).

Since u is evaluated numerically on a space-time mesh, ĉ can be calculated for all or a subset of
all mesh points. Alternatively, U may involve the values of one or more goal functionals of u.

Let us present a simple example to demonstrate the computation of the polynomial
coefficients. We look at a decaying process in time, described by

u(t; c, I) = I exp(−ct).
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Let ξ = (c, I)T be stochastically independent uncertain parameters with uniform distributions

c ∼ Uni(0, 0.1) I ∼ Uni(8, 10).

A relevant interval for t is then [0, 10]. Let the polynomials be defined as in Table 2.1. To
determine the vector U and the matrix P , we evaluated the simulator u and the polynomials
{Φn}n∈IN respectively at K + 1 collocation nodes {Qk}k∈IK in the probability space spanned
by the uncertain parameters ξ = (c, I). The coefficients ĉ are thereafter computed by the linear
least squares formula. Following the suggestion of Hosder [5] we select K + 1 = 2 (N + 1).

We may compare the price-performance of the polynomial approximation and the Monte
Carlo integration (MCI) method. More precisely, we investigate the integrated errors in the
mean and variance,

εmean =

∫ 10

0

|E[u(x, t;η, ξ)]− E[û(x, t;η, ξ)]|

εvariance =

∫ 10

0

|Var[u(x, t;η, ξ)]− Var[û(x, t;η, ξ)]| dt,

where the exact mean and variance can be calculated analytically:

E[u(x, t;η, ξ)] = 90
1− e−0.1t

t

Var[u(x, t;η, ξ)] = 1220
1− e−0.2t

3t
−
(

90
1− e−0.1t

t

)2

.

Figure 2.1 shows the error in mean and variance as a function of the number of samples for
both Monte Carlo integration and the approximation using monic polynomials. (Note the “the
number of samples” is the number of collocation nodes in the polynomial approximation.) Since
Monte Carlo integration is a method based on random samples, an average of 104 re-runs is used
instead of a single “unstable” Monte Carlo solution.

The figure shows that the polynomial approximation converges much faster than Monte
Carlo integration. However, as the order of the polynomial goes up, the convergence stops and
starts to diverge. The method is not numerically stable.

One way to increase stability of convergence, is to use a particular polynomial
approximation variant called polynomial chaos expansion. Here we exchange the polynomials
in Table 2.1 with polynomials orthogonal on a custom weighted function space L2

ξ. Let L2
ξ be

defined with inner product and norm defined with respect to the probability density pξ:

〈f, g〉 = E[f(ξ)g(ξ)] ‖h‖ξ =
√
〈h, h〉ξ.

We can then construct polynomials Φ to be orthogonal:

〈Φi,Φj〉ξ = 0 i 6= j. (2.5)

The orthogonality gives us a few beneficial properties [3]. First, a linear least squares method
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Figure 2.1: A comparison of the discrepancy between Monte Carlo integration (MCI) and point
collocation method using monic polynomials (monic) in mean and variance.

using the above defined norm, leads to a diagonal linear system that can be solved analytically:

ci(x, t) =
〈u(x, t,η, ξ),Φi(ξ)〉ξ

‖Φi(ξ)‖2ξ
.

This is nothing but the well-known formula for the Fourier coefficients of generalized Fourier
expansions of u. The formula implies that the ci values become untangled: calculating a
coefficient can be done irrespectively of the other coefficients or the size of the expansion.
Together with the assumption that Φ0 = 1 the orthogonality of the polynomials also imply that
the estimation is simplified:

E[ûM(x, t; ξ)] = c0 Var[ûM(x, t; ξ)] =
N∑
i=1

c2i ‖Φi‖2ξ.

In practice, the orthogonality ensures numerical stability and the halt in convergence seen in
Figure 2.1 is removed. We illustrate this fact in Figure 2.2.

For a given probability density pξ we need to find the associated orthogonal polynomials.
For some standard distributions, the so-called Wiener-Askey scheme [6] provides the relevant
polynomials. If the distribution does not exist in the Wiener-Askey scheme the expansion can be
constructed analytically from methods like Gram-Schmidt orthogonalization. From a numerical
perspective, however, any method that creates orthogonal polynomials from raw moments, is
inherently ill-posed [7]. By raw moments we mean any expected value on the form:

E
[
ξk11 · · · ξ

kD
D

]
=

∫
RD

ξk11 · · · ξ
kD
D pξ(ξ) dξ,

where (k1, · · · , kD) are non-negative integers. Small changes in input, may in such ill-posed
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Figure 2.2: The error when approximating using monic (monic) and orthogonal (orthogonal)
polynomials.

problems create large changes in the computed output. Therefore, orthogonal polynomials are
in practice created from an alternative method known as discretized Stieltjes’ method. Stieltjes’
original method in one dimension is to construct orthogonal polynomials from a three terms
recurrence (TTR) formula:

Φ−1 = 0 Φ0 = 1 Φi+1 = (ξ − Ai)Φi −BiΦi−1

where Ai and Bi are known coefficients defined

Ai =
〈ξΦi,Φi〉ξ
〈Φi,Φi〉ξ

Bi =
〈Φi,Φi〉ξ
〈Φi−1,Φi−1〉ξ

,

where B0 = 〈Φ0,Φ0〉ξ. Stieltjes’ method becomes discretized when the coefficients are
estimated numerically. To extend the method into the multivariate case, we use a tensor product
rule for combining one-dimensional polynomial expansions. For the polynomial to maintain
the orthogonallity property, the method assumes that the random variables are stochastically
independent. This may not seem as a strong restriction in computational mechanics as various
input parameters are usually statistically independent.

With orthogonal polynomials, we can compute ci directly from the formula, though with a
numerical approximation of the integral:

ci =
〈u,Φi〉ξ
‖Φi‖2ξ

=
1

‖Φi‖2ξ

∫
RD

u(x, t;η, ξ)Φi(ξ)pξ(ξ) dξ

≈ 1

‖Φi‖2ξ

K∑
k=0

u(x, t;η,Qk)Φi(Qk)pξ(Qk)Wk. (2.6)

Here, Qk and Wk are respectively quadrature nodes and weights. The norm ‖Φi‖2ξ is

7



often numerically difficult to calculate and is instead estimated using the numerically stable
recurrence coefficients:

‖Φi‖2ξ = 〈Φi,Φi〉2ξ =
〈Φi,Φi〉ξ
〈Φi−1,Φi−1〉ξ

〈Φi−1,Φi−1〉ξ

=
〈Φi,Φi〉ξ
〈Φi−1,Φi−1〉ξ

· · ·
〈Φ1,Φ1〉ξ
〈Φ0,Φ0〉ξ

〈Φ0,Φ0〉ξ

= Bi · · ·B1 ·B0 =
i∏

j=0

Bj.
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Figure 2.3: Comparing absolute error in aproximation when using point collocation nodes
(PCM) and pseudo-spectral projection (PSP).

Figure 2.3 compares absolute error in approximation using pseudo-spectral projection
(PSP) and our previously defined point collocation method. For the pseudo-spectral method
Gauss-Legendre quadrature was used (which is optimal for moments of uniformly distributed
variables). We can observe that in this example PSP is superior to PCM.

Note that the only component varying with the index i in (2.6) is the polynomial term Φi;
The evaluations of u can be reused for every i, reducing the computational cost by not needing to
reevaluate u for each coefficient. Note that our formerly described least squares approximation
of ci is based on a set of collocation nodes and no information on pξ. The analytical Fourier
coefficient formula for ci is based on a least squares method (or Galerkin projection) involving
an integral over the probability space that incorporates pξ. The latter should therefore be more
accurate than the former. However, when the integral is approximated by a quadrature rule, we
are back to using K + 1 collocation nodes, this time governed by the choice of quadrature rule,
which depends on the probability density pξ.
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2.2 Summary of Papers
Three journal papers represents the main research of this thesis. The over all theme of the papers
is non-intrusive polynomial chaos expansions. Paper I applies non-intrusive polynomial chaos
expansion on a 1-dimensional flow problem modelling the arterial system in the human body.
Paper II introduces a software toolbox that allows the user to perform non-intrusive polynomial
chaos expansions. Paper III introduces a new approach in polynomial chaos expansions that
aims to broaden the class of problems where polynomial chaos expansions are effective.

Paper I: A novel method for sensitivity quantification of timing and
amplitude of pressure and flow waves in the arterial system

The human heart beats to keep us all alive. It is designed to pump blood periodically through the
arteries and the capillaries, transporting nutrients to the body’s organs. The blood propagates
through the arteries as a coupled pressure and flow waves. However, on the journey the waves
meet obstacles such as bifurcations, narrowing, etc. At these locations some waves are reflected
and travel back towards the heart. We call these waves backward propagation waves. In a
young and healthy person, when the major part of the reflected wave returns to the heart, the
aortic valve is closed, causing no harm to the heart.

As we get older, the walls of the arteries often stiffens [8, 9]. As a result the wave speed of
the blood flow increases, and the backward propagation wave reaches the heart earlier and with
a higher amplitude. If the coupled wave reaches the heart before the valve has the chance to
close, blood might enter the left ventricle and increase the load on the heart. This increased load
is associated with high blood pressure [10] (hypertension), expansion of the ventricle [9, 11]
(ventricular hypertrophy), and various heart diseases associated with these two conditions.
Identifying the timing and the amplitude of the backward pressure wave is therefore important
for understanding the mechanism of these diseases.

In this paper we present a model to study phenomena related to stiffening of the arterial
walls. We construct a one-dimensional idealized mathematical model of the human systemic
arterial tree. Through this model we can observe the change of amplitude and timing of the
pressure wave at various key locations, and in particular how early the backward propagation
reaches the heart.

One of the major challenges in such models is that the model parameters are uncertain in
nature. This motivates solving the problem using uncertainty quantification. Each parameter
will then have a probability distribution, and our goal is changed to finding statistical metrics
instead of deterministic ones. In practice, we address the timing and amplitudes of the wave in
the form of expected values, standard deviation and variance based sensitivity index. In other
words, we are looking for an estimate under uncertainty, the stability of the solution and a metric
telling us which input parameter has the largest effect on the pressure timing and amplitude.

Solving the problem in practice, we use the Starfish software for the blood flow simulation
[12]. To handle the uncertainty, the model is coupled with the Chaospy software [13].
Chaospy is a tailored software for performing uncertainty quantification using polynomial
chaos expansions. The problem at hand is well suited for using polynomial chaos expansion
for the following reasons. Even though one-dimensional distributed models are considered
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computationally cheap compared to other methods like the 3D fluid-structure interaction
approach [14], the computational cost is high enough to be non-trivial. In addition, all metrics
of interest can be expressed as simple functions of raw statistical moments of the model solver.
Polynomial chaos expansions are well equipped to calculate these features.

In the paper we first outline the model and the tools for analysis before we describe four
trials. In the first trial, we compare the output of the Starfish software, with a series of results
from another established simulation model by Reymond et al. [15]. Key pressure and flow
wave patterns from Starfish software are calculated and compared to the same patterns from the
comparable model. The results of the first trial indicate that the numerical model implemented
in Starfish performs on par with the model implemented by Reymond et al. which was validated
in clinical trials.

In the second trial we evaluate the sensitivity of the backward pressure wave given the
stiffening in different body compartments. We select 8 groups of vessels in the arterial network
and give each location a random stiffness value. The distribution of this random value is selected
based on data to represent the change in arterial stiffness over age. We then perform uncertainty
quantification to determine which group has the most influence on the backward pressure timing
and amplitude. From the resulting calculations we are able to identify the most sensitive location
in the arterial network as the aortic arteries, followed by ascending aorta. The effects of the other
locations on the wave were negligible.

In the third trial we assess the effects of ageing by using material parameters representative
for both a young and elderly adult. With this we quantify the change in wave pattern.

In the fourth and last trial, we follow the result of the second trial and look at the sensitivity
of the pressure wave in ascending aorta with respect to the stiffening of the aortic arteries. We
determine which of the ten aortic arteries is the most sensitive.

Paper II: Chaospy: An Open Source Tool for Designing Methods of
Uncertainty Quantification

The number of comprehensive toolboxes for performing stochastic analysis using non-intrusive
polynomial chaos expansions are for most part limited [16], despite the increased popularity in
the method in the recent years [17]. And considering the large number of mathematical details
involved in implementing the methods, it is useful to assist users in implementing the methods
with quality software. To this end, the second paper in this thesis introduces a new software
toolbox called Chaospy [13]. Chaospy aims at being a researcher’s experimental foundry within
the scope of uncertainty quantification using advanced Monte Carlo methods and non-intrusive
polynomial chaos expansions.

Chaospy is a direct competitor to the following two software packages: the Dakota
project [18] and the Opus Open Turns library [19]. The aim of the Dakota project, and to
some extent the Opus Open Turns library are all encompassing software for doing uncertainty
quantification using predefined state-of-the-art methods. They provide these functionalities
through a black-box approach where the user’s interaction with the underlying technology
is limited to keep the interface simpler. In comparison Chaospy aims to assist scientists; it
provides several black-box functionalities, but it is designed to be more modular. Through a
compact and powerful Python interface, Chaospy allows for a very high level of customization.
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Through little effort it is possible to extend the software to interact with other software projects,
like Pandas [20] and Scikit Learn [21] or any user define software that can be interfaced through
Python.

From a technology point of view, Chaospy separates itself from Dakota and Turns by
the heavy utilization of the Rosenblatt transformation [22]. The transformation allows for
detailed control over the creation of arbitrary multivariate random variables, and is useful when
generating random samples for Monte Carlo simulation [23], and in generalized polynomial
chaos expansion [24]. In Chaospy the Rosenblatt transformation is extended to incorporate
Copulas [25].

To minimize the amount of code needed to produce useful results, a collection of wrapper
methods are used to automate various aspects of the underlying details, and is designed to
approximate any missing features if possible. For example, if an inverse transformation is not
provided by the user when constructing a random variable, the software will use a custom
Newton’s method for minimization to estimate those values. Likewise, any raw statistical
moments are estimated using numerical integration techniques. It is therefore possible to
perform a full uncertainty analysis with custom random variables using very little code. Note
that Chaospy still provides a collection of 64 different distributions that all are defined without
using any of these approximation methods.

Another building block in the Chaospy toolbox is the robust polynomial class, which is
used in both the expansions and the model approximation in polynomial chaos expansion.
The toolbox contains several methods for constructing orthogonal polynomial expansions, but
allows the user to user define the polynomials. The software toolbox also provides a collection
of general tools for manipulating the polynomials. These tools include basic arithmetic
operators, variable substitution and creation of gradient functions to name a few. In addition,
the class is constructed to be compatible with Numpy, the default toolbox for fast numerical
calculation in Python [26], in terms of shaping and indexing.

Even though Chaospy is designed for Monte Carlo simulation and non-intrusive polynomial
chaos expansions, the modular nature of the software toolbox makes it usable beyond its scope.
For example, when formulating the intrusive Galerkin method [27], custom code has to be
written involving construction and manipulation of orthogonal polynomial expansions. With the
tools Chaospy provide for arithmetic and expected value operators, the process can be greatly
assisted.

One variant of polynomial chaos expansion is called pseudo-spectral projection, which
is based on numerical integration. Chaospy provides a collection of tools for numerical
integration. These methods include adaptive cubature [28] and optimal Gaussian quadrature
[29] to mention a couple. In addition the users are free to create their own quadrature rule.
Methods for linking custom methods together is provided.

Another variant of polynomial chaos expansion is the stochastic collocation method [30]. It
is based on a linear regression fit between an orthogonal polynomial expansion and the model
samples. Chaospy provides a few methods for this task. In addition it provides a wrapper
to the Scikit-learn package that contains a large collection of state-of-the-art linear regression
methods [21]. In addition to this, since the polynomial expansions can be manipulated directly,
it is always possible to construct user defined regression methods as needed.

Irrespectively of the method used to construct a polynomial chaos expansion, the end result
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is still part of the powerful polynomial class mentioned above. Among the tools available to
manipulate polynomials there exists multiple tools for performing stochastic analysis. These
tools include mean, covariance, skewness, Sobol indices [31] to mention a few.

Paper III: Multivariate Polynomial Chaos Expansions with Dependent
Variables

One of the major assumptions when creating a polynomial chaos expansion is that the model
solution as a function of the random model parameters is smooth. A discontinuity in either the
function itself or in its first derivative will result in the loss of the fast convergence property
that the polynomial chaos expansions are known for. This is known as the so-called Gibbs
phenomena [32].

In the third paper we introduce a new polynomial chaos expansion method that is designed
to have fast convergence for models with Gibbs phenomena. This new method can be described
as follows. First we search for auxiliary variables, or transformations of the uncertain model
parameters, that can be used to create a re-parameterization of the model. The goal is to
create a model with a solution that is smooth as a function of these auxiliary variables in the
probability space. Given that these auxiliary variables are found, we can create a polynomial
chaos expansion with polynomials orthogonal with respect to these variables. The resulting
polynomial approximation created is then unaffected of the Gibbs phenomena present in the
original parameterization.

One challenge with the new method is that the auxiliary variables created often are
stochastically dependent. There are a few methods for addressing stochastically dependent
variables in polynomial chaos expansions [33, 22]. However, these methods also involve re-
parameterizations and will interfere with the smoothness property introduced by the proposed
auxiliary variables. We therefore introduce a new type of multivariate polynomial chaos
expansion where the polynomials are orthogonal on a weighted function space spanned by
the stochastically dependent auxiliary variables. This results in a polynomial chaos expansion
which maintains the smooth feature in the probability space created by the re-parameterization.

Creating orthogonal polynomials given stochastically dependent variables is a numerically
ill-conditioned procedure [7]. To address this ill-conditioning we introduce a new methodology
for constructing orthogonal polynomial expansions based upon the modified Cholesky
decomposition method [34]. We illustrate how well the new construction method works by
showing how much the orthogonality property holds as the polynomial order increases for a
few stochastically independent random variables. We then compare the results with current
best numerical method for creating orthogonal polynomial expansions: the discretized Stieltjes
method [35]. The comparison shows that the two methods have comparable ability to create
orthogonal polynomial expansions.

To illustrate the effectiveness of the new method, we introduce a case study involving
diffusion in a multi-material/multi-domain model. We define the model with the following
properties. Each layer’s internal property and the boundary location between each layer are
assumed to be uncertain and probability density functions are assigned to all of them. This
model contains discontinuities in the first derivative as a result of the sharp change in material
properties in the interface between each layer. Using classical implementations of polynomial
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chaos expansions, we show that the method has slow convergence properties, illustrating the
Gibbs phenomena in the model.

The existence of a discontinuity in the first derivative in the multi-material/multi-domain
model motivates the use of the new methodology. The paper demonstrates the steps
involved in applying the new methodology to this model, including several proposals for re-
parameterization and creation of auxiliary variables. The solution for each of the proposals is
then compared to the classical polynomial chaos expansion implementation using both pseudo-
spectral projection and point collocation. The comparison shows that the new methodology
can achieve fast convergence where the classical polynomial chaos expansions can not. »»»>
6f4c6a5127aeaa533f03814ff5d13eeb5afd78d0

2.3 Future Work
The first paper explores the application of polynomial chaos expansions used on arterial flow
system. The input is assumed to be stochastically independent. In practice however, it is not
unreasonable to assume that the input parameters are stochstically dependent. There are two
reasons for this. One, a strong predictor for the stiffness of each bloodvessel is a person’s age.
And two, the stiffness is usually not isolated physically at a stationary location. If one blood
vessel is found to be highly stiff, it is reasonable to assume that the neighboring vessels are
stiff as well. In either case, this stiffness can be modelled by adding a positive correlation
between the variables. This correlation can be introduced into the model through a Nataf
[33] or Rosenblatt [22] transformation. In practice this can be approached using generalized
polynomial chaos expansions [36]. It would be of interest to explore how large the positive
correlation coefficients have to be for respectively a person’s age and locational dependencies
to have a significant effect on the model response.

The second paper introduces Chaospy, a new software toolbox for performing non-intrusive
polynomial expansion. Since the topic of polynomial chaos expansions is an active reasearch
field [17], there are many features that would be of interest to have included in the toolbox.
Some of these features include: support for Karhunen-Loeve expansions [37] so that stochastic
processes can be included, piecewise polynomial basis [38, 39], wavelet basis [40, 41] and
multi-element polynomial chaos expansions [42, 43], and methods for addressing the so-called
“curse of dimensionality” [44, 45, 46]. In addition, better support for adaptive methods, like the
method implemented in Dakota [18] would also be of interest. Lastly, it is worth noting that the
underlying code of Chaospy is written in Python programming language. To be able to address
higher dimensional problems in practice, it is useful to increase the computational efficiency of
the software by implementing the code using a computationally faster language like C or C++.

The last paper introduces a new method for addressing problems solved with polynomial
chaos expansion with discontinuities in the probability space. Because of the discontinuities,
the convergence property of the expansion is lost. We show that the new methodology can
restore the convergence property on a one-dimensional diffusion problem. A natural next step
would be to investigate how well the method works on two- and three dimensional cases. From
there, it would be of interest to look into how well the method works on more real world
practical applications. Another research direction of interest would be to look at the theoretical
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foundation of the new method. This paper demonstrates the method in practice, but only hints
at a theoretical foundation.
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timing and amplitude of pressure and flow

waves in the arterial system

Vinzenz Eck, Jonathan Feinberg, Hans Petter Langtangen, Leif Rune Hellevik

In the field of computational hemodynamics, sensitivity quantification of pressure and flow
wave dynamics has received little attention. This work presents a novel study of the sensitivity
of pressure wave timing and amplitude in the arterial system with respect to arterial stiffness.
Arterial pressure and flow waves were simulated with a one-dimensional distributed wave
propagation model for compliant arterial networks. Sensitivity analysis of this model was
based on a generalized polynomial chaos expansion combined with a stochastic collocation
method. First-order statistical sensitivity indices were formulated to assess the effect of arterial
stiffening on timing and amplitude of the pressure wave and backward propagating pressure
wave (BPW) in the ascending aorta, at the maximum pressure and inflection point in the
systolic phase. Only the stiffness of aortic arteries were found to significantly influence timing
and amplitude of the BPW, whereas other large arteries in the systemic tree showed marginal
impact. Furthermore, the ascending aorta, aortic arch, thoracic aorta and infrarenal abdominal
aorta had the largest influence on amplitude, whereas only the thoracic aorta influenced timing.
Our results showed that the non-intrusive polynomial chaos expansion is an efficient method
to compute statistical sensitivity measures for wave propagation models. These sensitivities
provide new knowledge in the relative importance of arterial stiffness at various locations in
the arterial network. Moreover, they will significantly influence clinical data collection and
effective composition of the arterial tree, for in-silico clinical studies.

sensitivity quantification, systemic arterial tree, wave propagation, arterial stiffening

3.1 Introduction
This paper presents a mathematical model for studying the phenomena of aging in the
arterial system and related pathologies. The main contribution was to embed the model in
a computational framework where simulation results can be judged within the context of
significant statistical uncertainty and natural variation in physiological input data.

With increased age, the arterial wall stiffens and as a consequence,the pulse wave velocity
rises [1, 2]. Primary hypertension [3] and left ventricular hypertrophy [2, 4] are only some of
the pathologies believed to result from arterial stiffening. Pressure and flow at any location in
the arterial tree are composed of two waves, one propagating from the heart to the periphery
(forward) and another traveling from the periphery to the heart (backward) [5]. Arterial
stiffening and rise in pulse wave velocity affect the wave propagation, particularly timing and
amplitude of the backward propagating pressure wave (BPW). Knowledge of the impact on
timing and amplitude plays a key role on the understanding how primary hypertension and left
ventricular hypertrophy arise.



The arterial system has been investigated in many numerical simulation studies. Commonly
three deterministic numerical model types have been employed: i) simplified lumped parameter
models [6], ii) one-dimensional distributed models [7] and iii) computationally intensive 3D
fluid-structure interaction approaches [8]. These arterial models differ in computational effort,
level of detail, and necessary input/output parameters. One-dimensional distributed models are
computational efficient and ideal to simulate wave propagation phenomena [9, 10, 11, 12, 13,
8, 14, 15, 16].

Some researchers have studied arterial aging with deterministic arterial models, e.g., [3,
17, 18]. The investigators [3, 17] used lumped parameter models which do not take wave
propagation effects into account [6], while [18] applied a one-dimensional distributed model.
Liang et al. [18] focused on ventricular-arterial coupling with simulations of the major systemic
arteries. They described forward and backward waves in the ascending aorta and age-related
changes. However, they neither assessed the changes in timing and amplitude in detail nor did
they investigate the effect of increased wave reflections in the arterial tree.

To account for uncertainty in arterial models, a stochastic simulation approach is needed.
Arterial models are commonly discretized with a finite difference method (FDM), finite volume
method (FVM) or finite element method (FEM). In combination with stochastic methods FDM,
FVM and FEM can be referred to as: stochastic finite difference (SFDM), stochastic finite
volume (SFVM) and stochastic finite element method (SFEM), respectively. Some of the
most common numerical methods for stochastic computing [19, 20, 21] which can be applied
to FDM, FVM and FEM are: i) the perturbation method, ii) joint diagonalization method,
iii) Monte Carlo method and its variants and iv) projection-based methods e.g., polynomial
chaos expansion. The perturbation method is computationally undemanding, but can capture
only second order moments and supports only small variations in input and output parameters
(around 10%). The joint diagonalization method is commonly applied in the context of SFEM
[20, 21] and has no limits on the range or type of random variables. In simple cases, the
algebraic stochastic solution can be calculated. However, the computational costs are directly
related to the size of the applied stochastic system. The Monte Carlo method is computationally
demanding as its convergence rate is slow, although some variants like the quasi-Monte Carlo
method have an increased convergence rate. All Monte Carlo methods can handle large numbers
of random input variables. The projection-based methods have a fast convergence rate, i.e., low
computational costs. However, the methods are somewhat restricted in the maximum number
of random input variables (around 20). The one-dimensional model in our study is discretized
with FVM and combined with a projection-based method, namely a non-intrusive polynomial
chaos expansion method. The limitations of the polynomial chaos expansion did not affect the
calculations, as the number of stochastic input variables was manageable.

Recently, some efforts have been made to incorporate uncertainty quantification in one-
dimensional models, to account for biological variation and measurement errors in arterial
networks [22, 23, 24, 25, 26]. Most approaches for uncertainty quantification in one-
dimensional models are based on Monte Carlo simulations [22, 23, 24] or a generalized
polynomial chaos expansion method [25, 26]. The former [25] introduced the generalized
polynomial chaos method to the domain of one-dimensional blood flow simulations. As a proof-
of-concept by means of an analytic validation, they focused mostly on a small synthetic vascular
network (with one bifurcation). The latter [26] focused on a global sensitivity analysis of a
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larger arterial network. They estimated the effect of uncertainty in most input parameters and
linked the results to general potential physiological and pathological implications. However,
biological variation of these parameters was not taken into account. An artificial variation
was used instead to determine the sensitivity of pressure and flow patterns. In particular, to
the best of our knowledge, sensitivity analysis of BPWs timing and amplitude, based on real
physiological data has not been addressed in previous work.

This paper we present a computational framework STARFiSh (S), which combines a one-
dimensional arterial wave propagation solver with a stochastic polynomial chaos method. First
the deterministic one-dimensional arterial wave propagation solver was compared against the
well established simulation model of Reymond et al. [16] (R), which has been validated against
clinical data and reproduces physiological pressure and flow wave forms [16, 27]. Thereafter,
aortic pressure simulated with parametric uncertainty, accounting for the biological variation
in arterial stiffness, was compared to the model predictions simulated with (R). In addition,
the effects of age-related variation in arterial stiffness on the dynamics of the BPW in the
ascending aorta were assessed with deterministic simulations. The impact on BPW timing
and amplitude was computed by a novel stochastic sensitivity analysis procedure. The new
statistical analysis can identify arteries where uncertainties play a key role in the response data.
Finally, the sensitivity of BPW timing and amplitude was studied with respect to stiffening in:
i) groups of arteries, representing parts of the human body, and ii) individual aortic arteries.
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3.2 Methods

Deterministic solver component

Governing equations.

The arterial system was regarded as one-dimensional in space, consisting of straight compliant
blood vessels with a circular cross section, in accordance with the modeling framework
introduced in [28]. The blood was assumed to be a Newtonian fluid with dynamic viscosity µ
and density ρ. The physical behavior of pressure and flow waves in each vessel is governed
by the principle of mass and momentum balance combined with a constitutive law for the
elasticity of the arterial walls. Starting with the balance equations in integral form [29], the
partial differential equations were derived:

∂A

∂t
+
∂Q

∂x
= 0, (3.1a)

∂Q

∂t
+ δ

∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
= −2π(γ + 2)

µ

ρ

Q

A
, (3.1b)

with δ =
(γ + 2)

(γ + 1)
.

The primary variables, pressure P = P (x, t), volumetric flow rate Q = Q(x, t) and lumen
area A = A(x, t) are quantities averaged over cross sections of the vessel segment. Moreover,
δ and γ are coefficients related to the velocity profile. The convective acceleration and viscous
wall friction force (the second and fourth term in the conservation of momentum (3.1b)), both
depend on the velocity profile in a local cross section. The local velocity profile v(x, r, t) was
approximated with a power law profile introduced by Hughes and Lubliner [30]:

v(x, r, t) = v̄(x, t)
γ + 2

γ

(
1−

( r
R

)γ)
, (3.2)

where R is the vessel radius, v̄(x, t) the mean (cross sectional) axial velocity and γ a coefficient
for velocity profile bluntness. In this study, γ = 2 was set, resulting in a parabolic profile.

Compliant properties of the arterial wall.

Arterial blood vessels constrict and dilate due to changes in transmural pressure. The relation
between cross-sectional area A and pressure P was based on the exponential pressure-diameter
(P, d) relation established experimentally by Hayashi et al. [31]:

P (d) = Ps e
β(d/ds − 1), (3.3)

where the diameter ds and pressure Ps are values at a reference state. β is a material parameter
accounting for the arterial wall stiffness. According to the suggestions of Hayashi et al. [31],
Ps = 100 mmHg was chosen and ds (at Ps) calculated from radius data presented in Table 3.1.

Based on (3.3), an expression for the compliance C was derived, which is a measure for
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changes in cross-sectional area A due to actual pressure P :

C(P ) =
∂A(P )

∂P
=

2 As
β P

(
1 +

1

β
ln

(
P

Ps

) )
, (3.4)

whereAs is the area at reference pressure Ps = 100 mmHg. With (3.4), the system of governing
equations (3.1) was closed. The primary unknowns were pressure P = P (x, t) and volumetric
flow rate Q = Q(x, t).

The wave speed in the model is dependent on the actual P and A:

c2 =
A

ρ C
. (3.5)

An alternative expression for the wave speed as function of actual pressure was derived by
including (3.3) and (3.4) in (3.5):

c2 =
P

2ρ

(
β + ln

(
P

Ps

))
. (3.6)

Numerical solution method.

The governing equations (3.1) were posed on a network of one-dimensional domains. Each
domain modeled a part of the arterial tree as a straight vessel. A uniform grid was applied
and the system of partial differential equations were solved with an explicit forward-backward
MacCormack scheme [32], which is second order in space and time. The explicit scheme
restricted the choice of both the global time step ∆t and local grid spacing ∆xi in domain i
according to the CFL stability condition ∆t ≤ ∆xi/ci, where ci is the local pulse wave velocity
(3.5) in domain i. The discretization parameters ∆t and ∆xi, were chosen in a way that the
CFL stability condition was met for all domains i in the simulated arterial tree (55 domains)
with a lower limit of five grid points per domain. Typically, the global time step was around
∆t = 0.346 ms, the local ∆xi around 0.43 mm and the total number of grid points NT around
1200. The computational time to solve the PDE-system (3.1) once for a single domain with 30
grid nodes was 0.138 ms on a standard desktop computer. The run-time of a simulation with
the applied arterial network took 2 1/2 min for five heart cycles. The pressure and flow waves
reached a steady state condition after the second heart beat.

Boundary conditions.

Each vessel in the arterial tree was subject to inflow and outflow conditions. The vessels
were connected via bifurcations. At each bifurcation point, conservation of momentum and
volumetric flow were imposed.

At the proximal boundary of the ascending aorta (Id 1) a volumetric flow was set as
a Dirichlet boundary condition. At the distal boundaries three-element Windkessel (WK3)
models were implemented:

dP

dt
+
P − Pv
CTRc

=
Q

CTRc

(Z +Rc) + Z
dQ

dt
, (3.7)
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where Pv is the venous pressure, CT the terminal compliance, Z the proximal and Rc the distal
resistance of the peripheral bed. To achieve minimal reflections at high frequencies at the distal
boundary, the proximal resistance (Z) was set equal to vessel impedance (Zc) of the boundary
vessel:

Z ≡ Zc =

√
ρ c(P )

A(P )
. (3.8)

Values for the terminal compliance CT and the total terminal resistance RT = Rc + Z are
presented in Table 3.1. Distal boundary conditions were imposed with Riemann invariants in
the same manner as proposed by [29].

Wave separation.

The BPW were extracted by means of wave separation, as suggested by Westerhof et al. [33].
This approach is based on the linearised and in-viscid form of the governing equations (3.1):

C
∂P

∂t
+
∂Q

∂x
= 0, (3.9a)

∂Q

∂t
+
A

ρ

∂P

∂x
= 0. (3.9b)

The pressure solutions P (t), at an arbitrary point in the system is assumed to consist of a
forward Pf = P (x − ct) and backward Pb = P (x + ct) traveling pressure wave. The same is
applicable for the volumetric flow rate Q(t):

P = Pf + Pb, Q = Qf +Qb. (3.10)

With the characteristic vessel impedance Zc = Pf/Qf = −Pb/Qb, a relation between
volumetric flow rate and the forward and backward pressure component is stated:

Q =
Pf
Zc
− Pb
Zc
. (3.11)

Finally, the backward component of the pressure wave is deduced through algebraic elimination
of (3.10) in (3.11):

Pb =
P − ZcQ

2
. (3.12)

The vessel impedance Zc (3.8) applied in the linear wave splitting method, was calculated
with the mean of the simulated pressure over time. Non-linear wave splitting equations can
be derived, accounting for the pressure dependent characteristic impedance [34]. A comparison
of pressure wave forms, calculated with linear and non-linear wave splitting, is presented in
Figure 3.1. The linear wave splitting method was applied because the root mean-square error
between the resulting backward waves was small (0.012).
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Figure 3.1: Wave splitting of the pressure wave in the ascending aorta with linear and non-linear
methods.

Stochastic response modelling

The wave propagation model involves numerous input parameters that are subject to significant
uncertainty. To assess the impact of such uncertainties, selected input parameters, in particular,
the arterial stiffness, were described as random variables.

Our wave propagation model maps these stochastic variables to one or more response
variables (e.g., BPW timing and amplitude). The goal of uncertainty quantification is to
calculate the statistical properties of such response variables. Let z = (z1, . . . , zD) be a vector of
continuous random input variables, and q a resulting scalar random response variable. The wave
propagation model implies a mappingM between z and q: q =M(z). In practice, the mapping
is computed by selecting a range of fixed values of the random input vector and subsequent use
the deterministic wave propagation model to solve the governing equations (3.1) for pressure
P (x, t) and flow Q(x, t). Finally, the desired response q is derived from the resulting Q and P .

Surrogate model.

The statistical properties of q can easily be computed by Monte Carlo simulation of q =M(z),
but this approach requires a very large number of samples. More efficient methods try to replace
the mappingM by a simple and cheap surrogate model. One such successful model is based
on polynomial chaos expansions [35]. The fundamental idea is to assume that the mappingM
is smooth, such that it can well be described by a fast-converging polynomial approximation.
(Note that the assumption of smoothness relates to the mapping of z to q in probability space,
not the smoothness of P and Q as functions of space and time.) The polynomial approximation
takes the form:

q ≈ q̂M =

Np∑
n=0

cnΦn(z), (3.13)

where M is the order of the polynomial, cn unknown (Fourier) coefficients to be computed,
Φn predefined orthogonal polynomials and Np + 1 the number of terms related to M and the
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number of input variables D through the binomial coefficient:

Np =

(
M +D

D

)
. (3.14)

Fast spectral convergence of (3.13) demands the polynomials to be orthogonal with respect to
the probability distribution of z. For the most common distributions, specific expressions for
the polynomials can be found in the Wiener-Askey scheme [36].

The stochastic point collocation method [37] was used to calculate the Fourier coefficients
cn. The selection of collocation points in z space followed the suggestion of Hosder et al. [38]
and used K = 2 Np + 2 samples from the Hammerslay sequence [39]. The coefficients cn were
then computed by a least-squares minimization of the deviation between (3.13) and simulated
response at collection points. Multiple response parameters require repeated use of the least-
squares procedure for each response.

Known cn, (3.13) makes analytic expressions for lower-order moments of q, such as the
expectation E [q], the variance Var [q] and standard deviation SD =

√
Var [q] conveniently

available. These statistical quantities are of most interest in this study. Monte Carlo simulation
of (3.13) can cheaply establish the full probability density of q, if desired.

The hope is that polynomial chaos expansions converge so fast that M can be kept low (say
2 − 4), resulting in a modest number of evaluations (K) of the wave propagation model. This
number is usually orders of magnitude smaller than what is required for a comparable accuracy
of Var [q] by Monte Carlo simulation of the underlying flow model.

Sensitivity analysis.

To quantify the impact of each uncertain parameter zi on the model response q, a variance-based
sensitivity analysis was introduced. More precisely, a first-order sensitivity index (Si) [40] was
used:

Si(zd) =
Var [E [q | zd]]

Var [q]
d = 1, . . . , D, (3.15)

where Var [E [q | zd]] is the variance of the expected value of the model response given the
random variable zd. That is, this quantity measures the contribution of random parameter zd to
the global variance of the model response q. The advantage of first-order sensitivity indices is
that they quantify the relative influence of the input variable zd on a scale from 0 to 1.

Sensitivity analysis of timing and amplitude.

The sensitivity analysis was conducted for the BPW timing and amplitude in the ascending
aorta. The occurrence time and amplitude of two distinctive points in the wave were used
as model response: i) the maximum pressure and ii) the inflection point in the systolic phase
of the wave (see Figure 3.9). These points were chosen as they are distinct, convenient to
evaluate, and representative for the change in timing and amplitude (see also Figure 3.9). Both
points were tracked in all deterministic simulations required for the uncertainty quantification
procedure. Based on the BPW occurrence times and amplitudes, polynomial expansions (3.13)
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Figure 3.2: (a) representation of the arterial tree used in this study, (b) groups of arteries used
in the non-deterministic simulations of Trial II.

were calculated. Finally, first-order sensitivity indices (3.15) were derived for the timing (SiT )
and amplitude (SiA) of both points. To the best of our knowledge, such specific sensitivity
indices for BPW timing and amplitude have not been used before to quantify the impact of
material parameters (arterial stiffness) in a one-dimensional simulation framework for blood
flow.

Random variables.

To estimate the effect of changes in arterial wall stiffness, uncertainty was introduced in the
stiffness coefficients β of the arterial wall model (3.4). In general, the variation of the stiffness
coefficient (B) was defined as a product of a deterministic β value and a random variable zd
with a given probability distribution, e.g., as uniformly distributed random variable:

B = zd β. (3.16)

The random variable zd reflects the relative variability of the deterministic variable β. This
implies that the same random variable zd can be applied in the variation equation (3.16) of a
group of arteries or the hole network.
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Figure 3.3: Physiological volumetric flow rate imposed as Dirichlet boundary condition at the
proximal grid node of the ascending aorta (Id 1).

Figure 3.4: Estimated correlation of β30 and age from data in the ascending aorta published by
[1].

Figure 3.5: Estimated biological variation of β30 from data in the ascending aorta published by
[1].
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Numerical simulations

Arterial tree and initial conditions.

The simulated arterial tree consisted of the largest arteries in the systemic circuit (Figure 3.2a),
which are generally said to stiffen due to aging [2]. The geometry, distensibility and terminal
boundary parameters (Table 3.1) were taken from Reymond et al. [16], except for the terminal
boundary parameters of the carotid and vertebral arteries, which were taken from Stergiopulos
et al. [15]. The geometry and model parameters were considered as representative of a healthy
young adult from a Western population [15, 16]. Therefore, a corresponding age of 30 was
assumed and the stiffness parameters β30 (β at age 30) were calculated from distensibility
Dw(Ps) = C(Ps)/As (Table 3.1). The reference area As at pressure Ps = 100 mmHg was
calculated from the average of proximal and distal radii presented in Table 3.1. The blood was
assumed to have viscosity µ = 0.004 Pa s and density ρ = 1.050 kg/m3. At the ascending
aorta (Id 1) a physiological flow rate (Figure 3.3), found in [16], with a heart rate of 0.8 s was
imposed. All vessels were initialized with a pressure of 100 mmHg and a volumetric flow rate
of 0 ml/s.

Variation of arterial stiffness.

The assumption was that the stiffness coefficients β30 of all arteries have the same relative
variation (3.16). To evaluate the random variable zd in (3.16) with respect to age-related stiffness
changes, a deterministic counterpart to (3.16) was defined:

B = f β30, (3.17)

where f is a function describing the relative change in stiffness over age (α). The function f was
estimated from data in the ascending aorta (mean values and standard deviations of pulse wave
velocities cAv with corresponding pressure PAv and age αAv) published by Avolio et al. [1]. First
the corresponding βAv(cAv, PAv, αAv) stiffness parameters of mean values in the published data
were calculated based on (3.6) (see Fig 3.4). Secondly, a linear least-square regression was
fitted for βAv values over age and normalized with the βAv at age 30, which led to:

f(α) = (b α + d) (3.18)

where b = 0.022 and d = 0.33. The change in B(α) for a given age-range α1 to α2 was
expressed by stochastic means with the introduction of a uniformly distributed random variable
zd = u (as each age has the same probability):

u = U (f(α1), f(α2)) ⇒ B = u β30, (3.19)

where f(α1) and f(α2) are the lower and upper bounds of the uniform distribution.
For the biological variation of β30 for a person at age 30, the stiffness parameters βAv ±SD

were additionally calculated, based on the standard deviations of the published data [1]. After
fitting two regression curves for βAv ± SD, respectively, outliers were calculated for βAv at
age 30 (see Figure 3.5). The relative biological variation for β30 was assumed to be normally
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distributed. Thus, a normally distributed random variable was defined from the normalized βAv
and its outliers at age 30, and inserted into (3.16):

n = N (µ, σ) ⇒ B = n β30, (3.20)

where µ = 1.0 and σ = 0.31.

Simulation trials.

For this study, four simulations trials were conducted. The geometry and boundary condition
parameters were the same in all trials (Table 3.1). Only the arterial stiffness β was changed in
the arterial wall models (3.3) for the different trials (overview in Table 3.2).

Trial I: Comparison of numerical models (S) and (R).

To test the predictions of our deterministic model, the simulation results were compared to
those simulated with the one-dimensional code (R) of Reymond et al. [16]. The code (R) was
first presented by Stergiopulos et al. [15], later enhanced and validated experimentally [16] and
applied in a patient-specific investigation [27].

Our wave propagation model (S), and the code (R), have some distinct differences. First, the
numerical time discretization is different: explicit (S) versus implicit (R). Second, (R) applies
a visco-elastic constitutive law, while in (S) the law is non-linearly elastic. Third, the velocity
profile in (R) is based on the Womersley theory, while (S) applies a power law profile. Fourth,
all vessels have the same amount of grid points (Ni = 5) in (R), whereas (S) uses least five grid
points in each vessel.

Simulations were conducted with the arterial tree geometry in Figure 3.2a and model
parameters from Table 3.1, using both codes (S) and (R), to qualitatively compare the resulting
pressure and flow waves by visual inspection. In addition, the discrepancy between resulting
pressure waves was assessed quantitatively with a root-mean-square estimator (RMS), where
P S denotes the resulting pressure with (S) and PR the pressure obtained with the (R):

RMS(x, t) =

√(
P S − PR

PR

)2

. (3.21)

This quantity defines the discrepancy between deterministic solvers (S) and (R) at one point in
time and space. Finally, the mean value RMS and standard deviation SD(RMS) of all RMS
in the middle of a vessel was calculated for all points in time of one heart cycle. A linear
interpolation was used to match the solutions of (S) and (R) in time.

The biological variation of β30 in all arteries was assessed with non-deterministic
simulations. The result was compared to simulations conducted with (R), using the elastic
and the visco-elastic model approach for the arterial wall behavior. The same relative biological
variation (3.20) with one normally distributed random variable was applied to β30 of all arteries.
Simulations for a polynomial chaos expansion (3.13) with order M = 3 were conducted. For
comparison, an SD interval was used, reaching from E − SD to E + SD at each point of the
pressure wave.
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Trial II: Sensitivity analysis with stiffening in groups of arteries.

In this trial, we estimated the sensitivity with respect to arterial stiffness in eight groups of
arteries. The 55 vessels of the simulated arterial tree were divided into eight groups representing
different parts of the body and topological togetherness (Figure 3.2b): ascending aorta, aortic
arteries, neck & shoulder arteries, organ arteries, left/right arm and left/right leg. Even though
the ascending aorta is one of the aortic arteries, it is treated as a separate group. This is because
preliminary simulations [41] showed that changes in local compliance can have a significant
influence on local pressure and flow wave forms. Eight random variables were defined, one for
each group of arteries, based on (3.19), adapting changes in β30 on an interval corresponding to
ages 19 to 75. Thus, all stiffness parameters of one group vary with the same relative variation
variable zd, i.e., all stiffness parameters of one group are always representative for the same
age. Simulations were conducted for the polynomial chaos expansions, ranging in order from
M = 1 to M = 4, for sensitivity indices SiT and SiA (3.15) both points and found that M = 3

gives sufficient accuracy. The evaluation of the polynomial chaos expansion (3.13) with order
M = 3 required 330 deterministic simulations.

Trial III: Deterministic aging of the aortic arteries.

Based on the findings in Trial II, this focused on the impact of the aortic arteries. To quantify
the change in BPW timing and amplitude in the ascending aorta, two deterministic simulations
were conducted. The stiffness parameters β of the aortic arteries were set corresponding to a
young adult at age 19 and an elderly adult at age 75, based on (3.17) and (3.18). The stiffness
parameters for the remaining arteries were kept constant, as presented in Table 3.1. The wave
patterns and some characteristic points of the waves were analyzed: the diastole (minimum
pressure before the pulse), maximum pressure and inflection point in the systolic phase of the
wave.

Trial IV: Sensitivity analysis with stiffening in the aortic arteries.

As in Trial III, the effect of changed arterial stiffness in the ten aortic arteries was investigated,
albeit in this trial with a sensitivity analysis. Ten uniform distributed random variables (3.19)
(one for each aortic artery) were defined with same age-interval, representing ages 19 to 75.
The β parameters for the remaining arteries were set according to Table 3.1. For the calculation
of the polynomial chaos expansion (3.13) with order M = 3, 572 collocation points (i.e.,
deterministic simulations) were used. As in Trial II, the SiT and SiA (3.15) at the inflection
point and maximum pressure were evaluated.

3.3 Results

Trial I.

Qualitatively, the pressure and flow wave patterns of the simulations with (S) and (R) matched
well (Figure 3.6), especially the rising slopes to systole (maximum) and the diastolic decay of
the waves. The pressure and flow pattern of (S) were steadier whereas (R) revealed a wavy
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Figure 3.6: Comparison of pressure and flow waves at eight significant locations in the
arterial tree at age 30 (using parameters presented in Table 3.1) simulated with our framework
(continuous lines) and the code presented by Reymond et al. [16] (dashed lines).
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Figure 3.7: Quantitative comparison of both simulation approaches: RMS with SD(RMS) for
all vessels in the simulated arterial tree. Unfilled dots represent the vessels at the boundary
terminated with a WK3 model.

Figure 3.8: Pressure in the ascending aorta of non-deterministic simulations taking the
biological variation of the arterial stiffness in the arterial tree into account and in comparison
with deterministic simulations of the code (R), using different numerical material models for
the arterial walls.

Figure 3.9: Pressure and BPW in the ascending aorta with stiffness parameter corresponding
to age 19 (continuous) and age 75 (dashed).
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Figure 3.10: Timing (SiT ) and amplitude (SiA) sensitivity of pressure waves in the ascending
aorta with respect to stiffening in: groups of arteries (Trial II) (a) and (b) and aortic arteries
(Trial IV) (c)–(e).
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form, especially in the decay phase of the flow. In the volumetric flow wave pattern of vertebral
(Id 6), subclavian B (Id 32) and radial (Id 22) a second peak was observed in (S) but not in
(R). Although the pressure waves of the vertebral (Id 6) matched well, the systolic value of
volumetric flow had the highest discrepancy.

The quantified discrepancy between the simulation results in each vessel confirmed the
findings (Figure 3.7 and Table 3.3). The RMS for all arteries close to the heart was under
3.0%. The RMS extended 4.3% only for the vessels in the arms and legs. The periphery vessels
which terminated with a WK3 model, had d particularly higher relative discrepancy than the
interior vessels. The comparison of biological variation in arterial stiffness with the different
compliance models of (R) is presented in Figure 3.8, showing the pressure in the ascending
aorta. The discrepancy between our model (S) and the visco-elastic model in (R) is qualitatively
in the same order of magnitude as the elastic model in (R). The yellow area (E± SD interval)
in Figure 3.8 states where the pressure will be within a standard deviation of the mean, for the
defined biological variation of the stiffness parameters. Both predictions of (R), with the elastic
and with the visco-elastic model, lay inside the yellow area.

Trial II.

The sensitivity indices (3.15) SiT and SiA are presented in Figure 3.10a for the maximum
pressure and in Figure 3.10b for the inflection point. The highest sensitivity arose at both
points in the aortic arteries group. At the maximum pressure, the sensitivity indices were
SiT = 0.37 and SiA = 0.73 and at the inflection point SiT = 0.59 and SiA = 0.50. The
ascending aorta showed a considerable influence (i.e., highest sensitivity index) only on the
timing of the maximum pressure (SiT = 0.26). The neck and shoulder group revealed marginal
response, except for the amplitude of the inflection point. Beside for the timing of the maximum
pressure (SiT = 0.1), the sensitivity on the right/left leg was negligible. Both points showed no
significant sensitivity to the organ arteries and the right/left arm.

Trial III.

The form of the pressure waves with β, corresponding to ages 19 and 75 were similar (Figure 3.9
up). The pressure wave widened with age and the rising slope steepened. The systole increased
with ∆P = 17.19 mmHg (Table 3.4), while the diastole decreased with ∆P = −12.75 mmHg
at age 75. The variation in timing was small for both the systole and diastole.

The BPW revealed a distinctly heightened amplitude at age 75 (Figure 3.9 down). The
maximum pressure peak increased by ∆P = 10.56 mmHg, corresponding to an increase of
66% from age 19 to 75. The occurrence time of the maximum pressure peak remained almost
constant. At the inflection point, the amplitude changed insignificantly, but the occurrence
time changed with ∆t = −0.015 s. This means, that the BPW arrives earlier at age 75; this
corresponds to 1.9% of the heartbeat. The rising slope steepened about the same angle as the
pressure wave (∆γ = 20°). The change in the diastole was not significant.
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Trial IV.

The sensitivity indices (3.15) for timing SiT and amplitude SiA of the BPW maximum pressure,
are presented in 3.10c. Stiffening in the ascending aorta induced the largest sensitivity indices
of timing (SiT = 0.86) and amplitude (SiA = 0.46). All other vessels had no considerable
sensitivity on the timing. A low but appreciable amplitude sensitivity showed stiffening in the
aortic arch B (SA = 0.07), as well as the thoracic aorta A and B (SiA = 0.12 and SiA = 0.15).
Also, the abdominal aorta D revealed some considerable response on amplitude (SiA = 0.12).
The sensitivity with respect to all other abdominal vessels was negligible.

SiT and SiA (3.15) of BPW inflection point are shown in Figure 3.10d. The only evident
sensitivity for amplitude revealed stiffening in the ascending aorta (SiA = 0.29) and aortic
arch A and B (SiA = 0.11 and SiA = 0.13). The timing sensitivity was only for thoracic aorta
A and B larger than SiT = 0.03.

SiT and SiA (3.15) at the maximum pressure of the pressure wave are presented in Figure
3.10e. The indices reflected the findings of the BPW maximum pressure point (Figure 3.10c),
with timing sensitivity somewhat lower in the ascending aorta but higher in the abdominal
aorta D (SiT = 0.53).

3.4 Discussion
In this study, we have introduced a novel computational framework and demonstrated how it
can be used to quantify the sensitivity of BPW timing and amplitude with respect to arterial
stiffness. With this method, the BPW timing and amplitude sensitivity in the ascending
aorta was assessed with respect to changed arterial stiffness due to aging. The sensitivity
quantification showed that the timing and amplitude had the highest sensitivity (SiT = 0.59 and
SiA = 0.73) to arterial stiffness in the aortic arteries group. The aortic arteries are the largest
and most compliant vessels in the arterial tree; thus, it may be expected that these vessels are
most influential. Furthermore, the ascending aorta, aortic arch, thoracic aorta and abdominal
aorta D were found to have the most influence on the BPW amplitude. The thoracic aorta was
mainly influential on the timing. Deterministic simulations representing healthy adults at ages
19 and 75 showed that the BPW amplitude increased by 66% because of arterial stiffening.

The deterministic solution of our framework revealed quantitatively good agreement with
results obtained with code (R) from [16] and in the non-linear high amplitude phases, the
agreement of both pressure and flow patterns was especially good. The RMS of the pressure
waves of (S) and (R) was less than 4.2% and the SD(RMS) less than 3% for most arteries.
However, a lower diastolic pressure was observed in our simulations which might result from
different material models for the arterial walls. The tibial arteries in the legs showed a
somewhat high relative discrepancy (RMS = 10-12%), which might come from the different
implementation of WK3 models. Interestingly, the results from our solver with an elastic
compliance model were in better agreement with the visco-elastic model of (R), than the elastic
model of (R) [16]. This finding might indicate that visco-elasticity is not strictly imperative to
resemble physiological pressure and flow waves in one-dimensional simulation models.

We compared the impact of biological variation in stiffness parameters to both the elastic
and visco-elastic compliance model of (R) (Figure 3.8). The results revealed that the uncertainty
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of arterial stiffness with respect to biological variation has at least the same impact on the
prediction of one-dimensional models as the different arterial wall models. This indicates that
to succeed in predictive modeling for real clinical applications uncertainty quantification is
needed as much as model development.

The variation in stiffness parameters was estimated from corresponding βA parameters,
calculated with the data given by [1]. These βA parameters were higher than the β30 of the
considered geometry and model data (Table 3.1). This discrepancy arises due to higher pulse
wave velocities in Asian populations as compared to Western populations. However, the rate of
change in pulse wave velocities over age is reported to be equivalent [42].

The rate of change in stiffness over age was estimated from measurements in the ascending
aorta (Figure 3.4) and applied to all arteries in the arterial tree. Thus, the arteries in arms
and legs stiffened over age with the same rate as the aortic arteries, which is somehow not
physiological, as the peripheral arteries were found not to stiffen as much as the aorta [1].
However, we believe that this simplification did not influence the sensitivity analysis, as our
results revealed that the sensitivity indices were marginal with respect to stiffening in the arm
and leg arteries (Figure 3.10a and b).

The largest arteries in the arterial tree are stiffening with age causing inreased aortic blood
pressure. Several investigators [4, 43, 2] claim that the stiffening actually effects the BPW
timing and amplitude, which results in an increased aortic blood pressure. Our results are in
accordance with this hypothesis (see Figure 3.9).

The contribution of the largest arteries in the arterial tree to the changes of BPW was
assessed by dividing the arterial tree into eight groups (Figure 3.2b) and by performing an
uncertainty quantification. The stiffness of the aortic arteries group was found to be by far the
most influential with respect to both timing (SiT = 0.59) and amplitude (SiA = 0.73) (Figure
3.10c and d). The groups of peripheral arteries such as left/right leg and left/right arm and the
organ arteries had marginal influence on the timing and amplitude, although the rate of change
in arterial stiffness was overestimated.

As the aortic arteries seemed to be the most influential arteries, the change in pressure
and BPW in the ascending aorta was quantified with deterministic simulations, taking only
stiffening in the aortic arteries into account. The results showed remarkable changes in BPW,
with an increase of 66% maximum amplitude and earlier arrival (Figure 3.9). Steepening of
systolic wave flank could be found in both the pressure and its backward component. The
diastole of the pressure wave decreases with age, which is in agreement with findings of others
[44]. However, an alternation in wave form pattern could not be observed, e.g., a second
peak after the maximum pressure [43], leading to the conclusion that different or additional
mechanisms led to this phenomenon. The change in BPW in timing was best described by
the inflection point, whereas the change in amplitude was best represented by the maximum
pressure.

The sensitivity of the BPW to stiffening in individual aortic arteries (Figure 3.10c-e) was
assessed. The amplitude was mostly affected by changes in the ascending aorta, aortic
arch, thoracic aorta and abdominal aorta D. Our uncertainty quantification revealed that the
thoracic aorta had the largest influence on the timing, evaluated at the inflection point (Figure
3.10d). Also the abdominal aorta D (infrarenal abdominal aorta) showed some sensitivity to
the pressure wave timing. Stiffening in the ascending aorta had a higher influence on timing of
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the maximum pressure in the backward component than on the systole in total pressure (Figure
3.10e).

Banding experiments on pigs showed that increased local stiffness of the ascending aorta
and aortic arch resulted in isolated systolic hypertension, i.e., increased maximum pressure
[45]. BPW timing and amplitude can have a crucial impact on the heart load. If a major part of
the backward component arrives earlier in the systole at the heart, the aortic valve is still open,
and the BPW poses a greater load to the left ventricle. The thoracic aorta and abdominal aorta
D are common locations for an aneurysm, implicating local stiffening in this region. Even after
surgery to insert a graft, the vessel wall does not return to its original elastic state but remains
stiff. Thus, the altered local stiffening directly influences the left ventricular pressure, as the
BPW timing and amplitude is affected.

Due to its efficiency and straight-forward application, the stochastic model presented in this
paper (the polynomial chaos expansion) may have great potential. However, for studies with
a greater number of random variables, the method can become less efficient and one might
consider instead a quasi-Monte Carlo or joint diagonalization method [20, 21].

In conclusion, we have compared our model against the well established model of Reymond
et al. [16] and found that the predicted pressure and flow pattern agree well. The discrepancy
of both models was in about the same magnitude as the impact of stiffness parameter with
biological variation. This underlines the need for uncertainty quantification in the application
of such wave propagation models for clinical applications. The sensitivity of BPW timing and
amplitude with respect to arterial stiffness was successfully assessed with a novel method for
sensitivity quantificaion. Of all arterial the groups aortic arteries had the largest influence (i.e.,
highest sensitivity index) on the BPW timing and amplitude in the ascending aorta. Local
changes of arterial stiffness in the ascending aorta, aortic arch, thoracic aorta and abdominal
aorta D (infrarenal), influenced the BPW amplitude, while the other aortic arteries revealed
no significant impact. The BPW timing revealed high sensitivity to local changes in arterial
stiffness in the thoracic aorta. Furthermore, the maximum pressure of the BPW increased by
66% from age 19 to 75 and the backward propagating pressure wave arrived earlier at age 75.

We thank the research group of N. Stergiopulos, Laboratory of Hemodynamics and
Cardiovascular Technology (LHCT) at EPFL Lausanne, Switzerland, for the support and access
to their code.

42



Table 3.1: Geometry, distensibility, terminal resistance and compliance of the arterial network
Proximal Distal Terminal Terminal

Vessel Name Id Length Radius RadiusDistensibility Dw β30 Resistance RTCompliance CT

mm mm mm mmHg10e−3 - mmHg s m−1 ml mmHg10e−5

Aorta Arteries
Ascending Aorta 1 40 14.7 14.4 5.42 3.66
Aortic Arch A 2 20 12.55 12 4.90 4.08
Aortic Arch B 14 39 10.7 10.4 4.48 4.46
Thoracic Aorta A 18 52 10 9.45 4.26 4.69
Thoracic Aorta B 27 104 8.25 6.45 3.60 5.56
Abdominal Aorta A 28 53 6.1 6.1 3.22 6.21
Abdominal Aorta B 35 20 5.75 5.65 3.09 6.47
Abdominal Aorta C 37 20 5.9 5.9 3.16 6.33
Abdominal Aorta D 39 106 5.8 5.5 3.07 6.51
Abdominal Aorta E 41 20 5.4 5.2 2.96 6.76

Neck and Shoulder Arteries (left/right)
Brachiocephalic 3 34 10.1 9 4.22 4.74
Subclavian A 19/4 34 5.5/5.75 4.25/4.5 2.81/2.90 7.12/6.90
Common Carotid 15/5 139/94 6/6.75 3/3.5 2.68/2.93 7.46/6.83
Internal Carotid 16/12 178 2.65/2.85 2.05/2.15 1.82/1.89 10.99/10.58 104.26? 178.44?

External Carotid 17/13 41 2.35/2.5 2.15/2.25 1.77/1.83 11.30/10.93 104.26? 178.44?

Vertebral 20/6 148/149 1.85 1.4 1.46 13.7 45.08? 412.70?

Arm Arteries (left/right )
Subclavian B, 21/7 422 4.05 2.35 2.19 9.13
axillary, brachial
Radial 22/8 235 1.75/1.85 1.4/1.55 1.43/1.49 13.99/13.42 39.7 469.76
Ulnar A 23/9 67 2.15/1.85 2.15/1.7 1.72/1.53 11.63/13.07
Interosseous 24/10 79 0.9/1.05 0.9 1.03/1.08 19.42/18.42 633.8 29.42
Ulnar B 25/11 171 2.05/1.6 1.85/1.4 1.62/1.39 12.35/14.39 39.7 469.76

Organ Arteries (left/right)
Intercostals 26 80 6.3 4.75 3.04 6.58 10.5 178.44
Celiac A 29 20 3.9 3.45 2.38 8.40
Celiac B 30 20 2.6 2.45 1.90 10.53
Hepatic 31 66 2.7 2.2 1.87 10.70 27.3 683.29
Gastric 32 71 1.6 1.5 1.42 14.08 40.7 458.48
Splenic 33 63 2.1 1.95 1.66 12.05 17.4 1069.12
Superior Mesenteric 34 59 3.95 3.55 2.41 8.30 7 2667.11
Renal 36/38 32 2.6 2.6 1.93 10.36 8.5 2195.01
Inferior Mesenteric 40 50 2.35 1.6 1.64 12.20 51.7 360.53

Leg Arteries (left/right)
Common Iliac 43/42 59 3.95 3.5 2.39 8.37
External Iliac 44/50 144 3.2 3.05 2.15 9.30
Inner Iliac 45/51 50 2 2 1.65 12.12 59.7 312.55
Femoral 46/52 443 2.6 1.9 1.77 11.30
Deepfemoral 47/53 126 2 1.85 1.61 12.42 35.9 520.00
Posterior Tibial 48/54 321 1.55 1.4 1.38 14.49 35.9 520.00
Anterior Tibial 49/55 343 1.3 1.15 1.24 16.13 42 443.71
Given arterial radii and distensibility are assumed for reference pressure Ps = 100 mmHg.
All values are taken from [16], except (?) total terminal resistance RT and terminal compliance CT of carotid
arteries are taken from Stergiopulos et al. [15]
β30: arterial stiffness parameter calculated from given distensibility and the average of distal/proximal area
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Table 3.2: Stiffness parameter in Trials I-IV.
trial case simulation random distribution β-values

type variables

I comparison d – – β30

biological s 1 n = N (1, 0.3) B = n β30 (3.20)
variation

II groups of s 8 u = U (f(α1), f(α2)) (3.19) B = uj β30 (3.19)
arteries α1 = 19, α2 = 75 for each group j

III deterministic d – – B = f(α) β30 (3.17)
aging for aortic arteries

others: β30

IV aortic s 11 u = U (f(α1), f(α2)) (3.19) B = ui β30 (3.19)
arteries α1 = 19, α2 = 75 for each aortic artery i

others: β30
d: deterministic, s: stochastic, N : normal distribution, U : uniform distribution
f(α): β-age relation function (3.18), β30: values presented in Table 3.1

Table 3.3: Statistics of the RMS and SD(RMS), showing mean and extreme values of the artery
groups in Figure 3.6 (Trial I)

RMS SD(RMS)
mean max min mean max min

arteries close to the heart 2.81 3.14 2.23 1.93 2.22 1.69
right arm 4.07 4.76 2.34 3.24 3.48 2.34
left arm 6.32 6.78 3.45 4.04 4.70 2.59
abdominal arteries 3.14 4.24 2.56 2.52 4.25 1.50
right leg 5.30 12.15 4.44 5.07 7.99 3.33
left leg 5.31 12.32 4.45 5.01 8.18 3.22

Table 3.4: Distinctive points of the pressure wave and BPW in the ascending aorta at ages 19
and 75, presented in Figure 3.9.

systole / maximum diastole / minimum inflection point
age amplitude time amplitude time amplitude time

pressure wave 19 128.29 0.2066 75.22 0.0201 97.93 0.1048
75 145.48 0.2059 62.47 0.0187 119.64 0.1289

backward 19 20.54 0.2915 -1.84 0.0672 10.19 0.1613
pressure wave 75 31.10 0.2840 -3.69 0.0780 11.81 0.1464
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Chaospy: An Open Source Tool for Designing
Methods of Uncertainty Quantification

Jonathan Feinberg, Hans Petter Langtangen

The paper describes the philosophy, design, functionality, and usage of the Python
software toolbox Chaospy for performing uncertainty quantification via polynomial chaos
expansions and Monte Carlo simulation. The paper compares Chaospy to similar packages
and demonstrates a stronger focus on defining reusable software building blocks that can
easily be assembled to construct new, tailored algorithms for uncertainty quantification. For
example, a Chaospy user can in a few lines of high-level computer code define custom
distributions, polynomials, integration rules, sampling schemes, and statistical metrics for
uncertainty analysis. In addition, the software introduces some novel methodological advances,
like a framework for computing Rosenblatt transformations and a new approach for creating
polynomial chaos expansions with dependent stochastic variables.

4.1 Introduction
We consider a computational science problem in space x and time t where the aim is to
quantify the uncertainty in some response Y , computed by a forward model f , which depends
on uncertain input parametersQ:

Y = f(x, t,Q). (4.1)

We treatQ as a vector of model parameters, and Y is normally computed as some grid function
in space and time. The uncertainty in this problem stems from the parameters Q, which are
assumed to have a known joint probability density function pQ. The challenge is that we want
to quantify the uncertainty in Y , but nothing is known about its density pY . The goal is then to
either build the density pY or relevant descriptive properties of Y using the density pQ and the
forward model f . For all practical purposes this must be done by a numerical procedure.

In this paper, we focus on two approaches to numerically quantify uncertainty: Monte Carlo
simulation and non-intrusive global polynomial chaos expansions. For a review of the former,
there is a very useful book by Rubinstein, Reuven and Kroese [1], while for the latter, we
refer to the excellent book by Xiu [2]. Note that other methods for performing uncertainty
quantification also exist, such as perturbation methods, moment equations, and operator based
methods. These methods are all discussed in [2], but are less general and less widely applicable
than the two addressed in this paper.

The number of toolboxes available to perform Monte Carlo simulation is vastly larger than
the number of toolboxes for non-intrusive polynomial chaos expansion. As far as the authors
know, there are only a few viable options for the latter class of methods: The Dakota Project
(referred to as Dakota) [3], the Opus Open Turns library (referred to as Turns) [4], Uncertenty
Quantification Toolkit [5], and MIT Uncertenty Quantification Library [6]. In this paper we will



focus on the former two: Dakota and Turns. Both packages consist of libraries with extensive
sets of tools, where Monte Carlo simulation and non-intrusive polynomial chaos expansion are
just two tools available among several others.

It is worth noting that both Dakota and Turns can be used from two perspectives: as a
user and as a developer. Both packages are open source projects with comprehensive developer
manuals. As such, they both allow anyone to extend the software with any functionality one sees
fit. However, these extension features are not targeting the common user and require a deeper
understanding of both coding practice and the underlying design of the library. In our opinion,
the threshold for a common user to extend the library is normally out of reach. Consequently,
we are in this paper only considering Dakota and Turns from the point of view of the common
user.

Dakota requires the forward model f to be wrapped in a stand-alone callable executable.
The common approach is then to link this executable to the analysis software through a
configuration file. The technical steps are somewhat cumbersome, but has their advantage in
that already built and installed simulation software can be used without writing a line of code.

Alternative to this direct approach is to interact with an application programming interface
(API). This approach requires the user to know how to program in the supported languages, but
this also has clear benefits as an interface through a programming language allows for a deeper
level of integration between the user’s model and the UQ tools. Also, exposing the software’s
internal components through an API allows a higher detailed control over the tools and how
they can be combined in statistical algorithms. This feature is attractive to scientists who would
like the possibility to experiment with new or non-standard methods in ways not thought of
before. This approach is used by the Turns software (using the languages Python or R) and is
supported in Dakota through a library mode (using C++).

For example, consider bootstrapping [7], a popular method for measuring the stability of
any parameter estimation. Neither Dakota nor Turns support bootstrapping directly. However,
since Turns exposes some of the inner components to the user, a programmer can combine these
to implement a custom bootstrapping technique.

This paper describes a new, third alternative open source software package called Chaospy
[8]. Like Dakota and Turns, it is a toolbox for analysing uncertainty using advanced Monte
Carlo simulation and non-intrusive polynomial chaos expansions. However, unlike the others,
it aims to assist scientists in constructing tailored statistical methods by combining a lot of
fundamental and advanced building blocks. Chaospy builds upon the same philosophy as Turns
in that it offers flexibility to the user, but takes it significantly further. In Chaospy, it is possible
to gain detailed control and add user defined functionality to all of the following: random
variable generation, polynomial construction, sampling schemes, numerical integration rules,
response evaluation, and point collocation. The software is designed from the ground up in
Python to be modular and easy to experiment with. The number of lines of code to achieve a
full uncertainty analysis is amazingly low. It is also very easy to compare a range of methods
in a given problem. Standard statistical methods are easily accessible through a few lines of R
or Pandas [9] code, and one may think of Chaospy as a tool similar to R or Pandas, just tailored
to polynomial chaos expansion and Monte Carlo simulation.

Although Chaospy is designed with a large focus on modularity, flexibility, and
customization, the toolbox comes with a wide range of pre-defined statistical methods. Within
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the scope of Monte Carlo sampling and non-intrusive polynomial chaos expansion, Chaospy
has a competitive collection of methods, comparable to both Dakota and Turns. It also offers
some novel features regarding statistical methods, first and foremostly a flexible framework for
defining and handling input distributions, including dependent stochastic variables. Detailed
comparisons of features in the three packages appear throughout the paper.

The paper is structured as follows. We start in Section 4.2 with a quick demonstration of how
the software can be used to perform uncertainty quantification in a simple physical problem.
Section 4.3 addresses probability distributions and the theory relevant to perform Monte Carlo
simulation. Section 4.4 concerns non-intrusive polynomial chaos expansions, while conclusions
and topics for further work appear in Section 4.5.

4.2 A Glimpse of Chaospy in Action
To demonstrate how Chaospy is used to solve an uncertainty quantification problem, we
consider a simple physical example of (scaled) exponential decay with an uncertain, piecewise
constant coefficient:

u′(x) = −c(x)u(x), u(0) = u0, c(x) =


c0, x < 0.5

c1, 0.5 ≤ x < 0.7

c2, x ≥ 0.7

(4.2)

Such a model arises in many contexts, but we may here think of u(x) as the porosity at depth x
in geological layers and ci as a (scaled) compaction constant in layer number i. For simplicity,
we consider only three layers with three uncertain constants c0, c1, and c2.

The model can easily be evaluated by solving the differential equation problem, here by a
2nd-order Runge-Kutta method on a mesh x, coded in Python as:

def model(x, u0, c0, c1, c2):
def c(x):

if x < 0.5: return c0
elif 0.5 <= x < 0.7: return c1
else: return c2

N = len(x)
u = np.zeros(N)

u[0] = u0
for n in xrange(N-1):

dx = x[n+1] - x[n]
K1 = -dx*u[n]*c(x[n])
K2 = -dx*u[n] + K1/2*c(x[n]+dx/2)
u[n+1] = u[n] + K1 + K2

return u

Alternatively, the model can be implemented in some external software in another programming
language. This software can either be run as a stand-alone application, where the Python
function model runs the application and communicates with it through input and output files,
or the model function can communicate with the external software through function calls if a
Python wrapper has been made for the software (there are numerous technologies available for
creating Python wrappers for C, C++, and Fortran software).

The Chaospy package may be loaded by
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import chaospy as cp

Each of the uncertain parameters must be assigned a probability density, and we assume that c0,
c1, and c2 are stochastically independent:

c0 = cp.Normal(0.5, 0.15)
c1 = cp.Uniform(0.5, 2.5)
c2 = cp.Uniform(0.03, 0.07)
# Joint probability distribution
distribution = cp.J(c0, c1, c2)

The sample points (c0, c1, c2) in probability space, where the model is to be evaluated, can be
chosen in many ways. Here we specify a third-order Gaussian Quadrature scheme tailored to
the joint distribution:

nodes, weights = cp.generate_quadrature(
order=3, domain=distribution, rule="Gaussian")

The next step is to evaluate the computational model at these sample points (object nodes):

x = np.linspace(0, 1, 101)
samples = [model(x, u0, node[0], node[1], node[2])

for node in nodes.T]

Now, samples contains a list of arrays, each array containing u values at the 101 x values for
one combination (c0, c1, c2) of the input parameters.

To create a polynomial chaos expansion, we must generate orthogonal polynomials
corresponding to the joint distribution. We choose polynomials of the same order as specified
in the quadrature rule, computed by the widely used three-term recurrence relation (ttr):

polynomials = cp.orth_ttr(order=3, dist=distribution)

To create an approximate solver (or surrogate model), we join the polynomial chaos expansion,
the quadrature nodes and weights, and the model samples:

model_approx = cp.fit_quadrature(
polynomials, nodes, weights, samples)

The model_approx object can now cheaply evaluate the model at a point (c0, c1, c2) in
probability space for all x points in the x array. Built-in tools can be used to derive statistical
information about the model response:

mean = cp.E(model_approx, distribution)
deviation = cp.Std(model_approx, distribution)

The mean and deviation objects are arrays containing the mean value and standard
deviation at each point in x. A graphical illustration is shown in Figure 4.1.

The accuracy of the estimation is comparable to what Dakota and Turns can provide. Figure
4.2 shows that the estimation error in the three software toolboxes are almost indistinguishable.
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The error is calculated as the absolute difference between the true value and the estimated value
integrated over the depth x:

εE =

∫ 1

0

|E(u)− E(uapprox)| dx εV =

∫ 1

0

|V(u)− V(uapprox)| dx

Both the point collocation method and the pseudo-spectral projection method are included.
The former is calculated using two times the random collocation nodes as the number of
polynomials, and the latter using Gaussian quadrature integration with quadrature order equal to
polynomial order. Note that Turns does not support pseudo-spectral projection, and is therefore
only compared using point collocation.
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Figure 4.1: Solution of a simple stochastic differential equation with uncertain coefficients.

4.3 Modelling Random Variables

Rosenblatt Transformation

Numerical methods for uncertainty quantification need to generate pseudo-random realizations

{Qk}k∈IK IK = {1, . . . , K},
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Figure 4.2: The error in estimates of the mean and variance, computed by Dakota, Turns, and
Chaospy using point collocation and pseudo-spectral projection, is almost identical.

from the density pQ. Each Q ∈ {Qk}k∈IK is multivariate with the number of dimensions
D > 1. Generating realizations from a given density pQ is often non-trivial, at least when D
is large. A very common assumption made in uncertainty quantification is that each dimension
in Q consists of stochastically independent components. Stochastic independence allows for a
joint sampling scheme to be reduced to a series of univariate samplings, drastically reducing the
complexity of generating a sampleQ.

Unfortunately, the assumption of independence does not always hold in practice. We have
examples from many research fields where stochastic dependence must be assumed, including
modelling of climate [10], iron-ore minerals [11], finance [12], and ion channel densities in
detailed neuroscience models [13]. There also exists examples where introducing dependent
random variables is beneficial for the modelling process, even though the original input was
stochastically independent [14]. In any cases, modelling of stochastically dependent variables
are required to perform uncertainty quantification adequately. A strong feature of Chaospy is
its support for stochastic dependence.

All random samples are in Chaospy generated using Rosenblatt transformations TQ [15].
It allows for a random variable U , generated uniformly on a unit hypercube [0, 1]D, to be
transformed into Q = T−1Q (U), which behaves as if it were drawn from the density pQ. It
is easy to generate pseudo-random samples from a uniform distribution, and the Rosenblatt
transformation can then be used as a method for generating samples from arbitrary densities.

The Rosenblatt transformation can be derived as follows. Consider a probability
decomposition, for example for a bivariate random variableQ = (Q0, Q1):

pQ0,Q1(q0, q1) = pQ0(q0)pQ1|Q0(q1 | q0), (4.3)

were pQ0 is an marginal density function, and pQ1|Q0 is a conditional density. For the
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multivariate case, the density decomposition will have the form

pQ(q) =
D−1∏
d=0

pQ′d(q′d), (4.4)

where

Q′d = Qd | Q0, . . . , Qd−1 q′d = qd | q0, . . . , qd−1 (4.5)

denotes that Qd and qd are dependent on all components with lower indices. A forward
Rosenblatt transformation can then be defined as

TQ(q) = (FQ′0(q
′
0), . . . , FQ′D−1

(q′D−1)), (4.6)

where FQ′d is the cumulative distribution function:

FQ′d(q′d) =

∫ qd

−∞
pQ′d(r | q0, . . . , qd−1) dr. (4.7)

This transformation is bijective, so it is always possible to define the inverse Rosenblatt
transformation T−1Q in a similar fashion.

Numerical Estimation of Inverse Rosenblatt Transformations

To implement the Rosenblatt transformation in practice, we need to identify the inverse
transform T−1Q . Unfortunately, TQ is often non-linear without a closed-form formula, making
analytical calculations of the transformation’s inverse difficult. In the scenario where we do
not have a symbolic representation of the inverse transformation, a numerical scheme has to
be employed. To the authors’ knowledge, there are no standards for defining such a numerical
scheme. The following paragraphs therefore describe our proposed method for calculating the
inverse transformation numerically.

The problem of calculating the inverse transformation T−1Q can, by decomposing the
definition of the forward Rosenblatt transformation in (4.6), be reformulated as

F−1Q′d
(u | q0, . . . , qd−1) =

{
r : FQ′d(r | q0, . . . , qd−1) = u

}
d = 0, . . . , D − 1.

In other words, the challenge of calculating the inverse transformation can be reformulated
as a series of one dimensional root-finding problems. In Chaospy, these roots are found by
employing a Newton-Raphson scheme. However, to ensure convergence, the scheme is coupled
with a bisection method. The bisection method is applicable here since the problem is one-
dimensional and the functions of interest are by definition monotone. When the Newton-
Raphson method fails to converge at an increment, a bisection step gives the Newton-Raphson
a new start location away from the previous location. This algorithm ensures fast and reliable
convergence towards the root.

The Newton-Raphson-bisection hybrid method is implemented as follows. The initial values
are the lower and upper bounds [lo0, up0]. If pQ′d is unbound, the interval is selected such that
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it approximately covers the density. For example for a standard normal random variable, which
is unbound, the interval [−7.5, 7.5] will approximately cover the whole density with an error
about 10−14. The algorithm starts with a Newton-Raphson increment, using the initial value
r0 = (up0 − lo0)u+ lo0:

rk+1 = rk −
FQ′d(rk | q0, . . . , qd−1)− u
pQ′d(rk | q0, . . . , qd−1)

, (4.8)

where the density pQ′d can be approximated using finite differences. If the new value does not
fall in the interval [lok, upk], this proposed value is rejected, and is instead replaced with a
bisection increment:

rk+1 =
upk + lok

2
. (4.9)

In either case, the bounds are updated according to

(lok+1, upk+1) =

{
(lok, rk+1) FQ′d(rk+1 | q0, . . . , qd−1) > u

(rk+1, upk) FQ′d(rk+1 | q0, . . . , qd−1) < u
(4.10)

The algorithm repeats the steps in (4.8), (4.9) and (4.10), until the residual |FQ′d(rk |
q0, . . . , qd−1)− u| is sufficiently small.

The described algorithm overcomes one of the challenges of implementing Rosenblatt
transformations in practice: how to calculate the inverse transformation. Another challenge
is how to construct a transformation in the first place. This is the topic of the next section.

Constructing Distributions

The backbone of distributions in Chaospy is the Rosenblatt transformation TQ. The method,
as described in the previous section, assumes that pQ is known to be able to perform the
transformation and its inverse. In practice, however, we first need to construct pQ, before the
transformation can be used. This can be a challenging task, but in Chaospy a lot of effort
has been put into constructing novel tools for making the process as flexible and painless as
possible. In essence, users can create their own custom multivariate distributions using a new
methodology as described next.

Following the definition in (4.6), each Rosenblatt transformation consists of a collection of
conditional distributions. We express all conditionality through distribution parameters. For
example, the location parameter of a normal distribution can be set to be uniformly distributed,
say on [−1, 1]. The following interactive Python code defines a normal variable with a normally
distributed mean:

>>> uniform = cp.Uniform(lo=-1, up=1)
>>> normal = cp.Normal(mu=uniform, sigma=0.1)

We now have two stochastic variables, uniform and normal, whose joint bivariate
distribution can be constructed through the cp.J function:
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>>> joint = cp.J(uniform, normal)

The software will, from this minimal formulation, try to sort out the dependency ordering and
construct the full Rosenblatt transformation. The only requirement is that a decomposition as
in (4.4) is in fact possible. The result is a fully functioning forward and inverse Rosenblatt
transformation. The following code evaluates the forward transformation (the density) at
(1, 0.9), the inverse transformation at (0.4, 0.6), and draws a random sample from the joint
distribution:

>>> print joint.fwd([1, 0.9])
[ 1. 0.15865525]
>>> print joint.inv([0.4, 0.6])
[-0.2 -0.17466529]
>>> print joint.sample()
[-0.05992158 -0.07456064]

Distributions in higher dimensions are trivially obtained by including more arguments to the
cp.J function.

As an alternative to the explicit formulation of dependency through distribution parameters,
it is also possible to construct dependencies implicitly through arithmetic operators. For
example, it is possible to recreate the example above using addition of stochastic variables
instead of letting a distribution parameter be stochastic. More precisely, we have a uniform
variable on [−1, 1] and a normally distributed variable with location at x = 0. Adding the
uniform variable to the normal variable creates a new normal variable with stochastic location:

>>> uniform = Uniform(lo=-1, up=1)
>>> normal0 = Normal(mu=0, scale=0.1)
>>> normal = normal0 + uniform
>>> joint = J(uniform, normal)

As before, the software automatically sorts the dependency ordering from the context. Here,
since the uniform variable is present as first argument, the software recognises the second
argument as a normal distribution, conditioned on the uniform distribution, and not the other
way around.

Another favorable feature in Chaospy is that multiple transformations can be stacked on top
of each other. For example, consider the example of a multivariate log-normal random variable
Q with three dependent components. (Let us ignore for a moment the fact that Chaospy already
offers such a distribution.) Trying to decompose this distribution is a very cumbersome task
if performed manually. However, this process can be drastically simplified through variable
transformations, for which Chaospy has strong support. A log-normal distribution, for example,
can be expressed as

Q = eZL+b,

where Z are standard normal variables, and L and b are predefined matrix and vector,
respectively. To implement this particular transformation, we only have to write
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>>> Z = cp.J(cp.Normal(0,1), cp.Normal(0,1), cp.Normal(0,1))
>>> Q = e**(Z*L + b)

The resulting distribution is fully functional multivariate log-normal, assuming L and b are
properly defined.

One obvious prerequisite for using univariate distributions to create conditionals and
multivariate distributions, is the availability of univariate distributions. Since the univariate
distribution is the fundamental building block, Chaospy offers a large collection of 64 univariate
distributions. They are all listed in Table 4.1. The list also shows that Dakota’s support is limited
to 11 distributions, and Turns has a collection of 26 distributions.

The Chaospy software supports in addition custom distributions through the function
cp.constructor. To illustrate its use, consider the simple example of a uniform random
variable on the interval [lo, up]. The minimal input to create such a distribution is

>>> Uniform = cp.constructor(
... cdf=lambda self,x,lo,up: (x-lo)/(up-lo),
... bnd=lambda self,x,lo,up: (lo,up) )
>>> uniform = Uniform(lo=-1, up=1)

Here, the two provided arguments are a cumulative distribution function (cdf), and a boundary
interval function (bnd), respectively. The cp.constructor function also takes several
optional arguments to provide extra functionality. For example, the inverse of the cumulative
distribution function – the point percentile function – can be provided through the ppf keyword.
If this function is not provided, the software will automatically approximate it using the method
described in Section 4.3.

Copulas

Dakota and Turns do not support the Rosenblatt transformation applied to multivariate
distributions with dependencies. Instead, the two packages model dependencies using copulas
[16]. A copula consists of stochastically independent multivariate distributions made dependent
using a parameterized function g. Since the Rosenblatt transformation is general purpose,
it is possible to construct any copula directly. However, this can quickly become a very
cumbersome task since each copula must be decomposed individually for each combination of
independent distributions and parameterization of g. To simplify the user’s efforts, Chaospy has
dedicated constructors that can reformulate a copula coupling into a Rosenblatt transformation.
This is done following the work of Lee [17] and approximated using finite differences. The
implementation is based of the software toolbox RoseDist [18]. In practice, this approach
allow copulas to be defined in a Rosenblatt transformation setting. For example, to construct a
bivariate normal distribution with a Clayton copula in Chaospy, we do the following:

>>> joint = cp.J(cp.Normal(0,1), cp.Normal(0,1))
>>> clayton = cp.Clayton(joint, theta=2)

A list of supported copulas are listed in Table 4.2. It shows that Turns supports 7 methods,
Chaospy 6, while Dakota offers 1 method.
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Distribution D T C Distribution D T C
Alpha n n y Anglit n n y
Arcsinus n n y Beta y y y
Brandford n n y Burr n y y
Cauchy n n y Chi n y y
Chi-Square n y y Double Gamma n n y
Double Weibull n n y Epanechnikov n y y
Erlang n n y Exponential y y y
Exponential Power n n y Exponential Weibull n n y
Birnbaum-Sanders n n y Fisher-Snedecor n y y
Fisk/Log-Logistic n n y Folded Cauchy n n y
Folded Normal n n y Frechet y n y
Gamma y y y Gen. Exponential n n y
Gen. Extreme Value n n y Gen. Gamma n n y
Gen. Half-Logistic n n y Gilbrat n n y
Truncated Gumbel n n y Gumbel y y y
Hypergeometric Secant n n y Inverse-Normal n y n
Kumaraswamy n n y Laplace n y y
Levy n n y Log-Gamma n n y
Log-Laplace n n y Log-Normal y y y
Log-Uniform y y y Logistic n y y
Lomax n n y Maxwell n n y
Mielke’s Beta-Kappa n n y Nakagami n n y
Non-Central Chi-Squared n y y Non-Central Student-T n y y
Non-central F n n y Normal y y y
Pareto (First kind) n n y Power Log-Normal n n y
Power Normal n n y Raised Cosine n n y
Rayleigh n y y Reciprocal n n y
Rice n y n Right-skewed Gumbel n n y
Student-T n y y Trapezoidal n y n
Triangle y y y Truncated Exponential n n y
Truncated Normal n y y Tukey-Lamdba n n y
Uniform y y y Wald n n y
Weibull y y y Wigner n n y
Wrapped Cauchy n n y Zipf-Mandelbrot n y n

Table 4.1: List of supported continuous distributions in software. The titles ’D’, ’T’ and ’C’
represents Dakota, Turns and Chaospy respectively. The elements ’y’ and ’n’ represent the
answers ’yes’ and ’no’ indicating if the distribution is supported or not.

Variance Reduction Techniques

As noted in the beginning of Section 4.3, by generating samples {Qk}k∈IK and evaluating
the response function f , it is possible to draw inference upon Y without knowledge about pY ,
through Monte Carlo simulation. Unfortunately, the number of samplesK to achieve reasonable
accuracy can often be very high, so if f is assumed to be computationally expensive, the number
of samples needed frequently make Monte Carlo simulation infeasible for practical applications.
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Supported Copulas Dakota Turns Chaospy
Ali-Mikhail-Haq no yes yes
Clayton no yes yes
Farlie-Gumbel-Morgenstein no yes no
Frank no yes yes
Gumbel no yes yes
Joe no no yes
Minimum no yes no
Normal/Nataf yes yes yes

Table 4.2: The list of supported copulas in the various software packages.

As a way to mitigate this problem, it is possible to modify {Qk}k∈IK from traditional pseudo-
random samples, so that the accuracy increases. Schemes that select non-traditional samples
for {Qk}k∈IK to increase accuracy are known as variance reduction techniques. A list of such
techniques are presented in Table 4.3, and it shows that Dakota, Turns and Chaospy support 4,
7, and 7 variance reduction techniques, respectively.

One of the more popular variance reduction technique is the quasi-Monte Carlo scheme
[1]. The method consists of selecting the samples {Qk}k∈IK to be a low-discrepancy sequence
instead of pseudo-random samples. The idea is that samples placed with a given distance from
each other increase the coverage over the sample space, requiring fewer samples to reach a given
accuracy. For example, if standard Monte Carlo requires 106 samples for a given accuracy,
quasi-Monte Carlo can often get away with only 103. Note that this would break some of the
statistical properties of the samples [19].

Most of the theory on quasi-Monte Carlo methods focuses on generating samples on the unit
hypercube [0, 1]N . The option to generate samples directly on to other distributions exists, but is
often very limited. To the authors’ knowledge, the only viable method for including most quasi-
Monte Carlo methods into the vast majority of non-standard probability distributions, is through
the Rosenblatt transformation. Since Chaospy is built around the Rosenblatt transformation, it
has the novel feature of supporting quasi-Monte Carlo methods for all probability distributions.
Turns and Dakota only support Rosenblatt transformations for independent variables and the
Normal copula.

Sometimes the quasi-Monte Carlo method is infeasible because the forward model is too
computationally costly. The next section describes polynomial chaos expansions, which often
require far fewer samples than the quasi-Monte Carlo method for the same amount of accuracy.

4.4 Polynomial Chaos Expansions
Polynomial chaos expansions represent a collection of methods that can be considered a subset
of polynomial approximation methods, but particularly designed for uncertainty quantification.
A general polynomial approximation can be defined as

f̂(x, t,Q) =
∑
n∈IN

cn(x, t)Φn(Q) IN = {0, . . . , N}, (4.11)
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Quasi-Monte Carlo Scheme Dakota Turns Chaospy
Faure sequence [20] no yes no
Halton sequence [21] yes yes yes
Hammersley sequence [22] yes yes yes
Haselgrove sequence [23] no yes no
Korobov latice [24] no no yes
Niederreiter sequence [25] no yes no
Sobol sequence [26] no yes yes
Other Methods Dakota Turns Chaospy
Antithetic variables [1] no no yes
Importance sampling [1] yes yes yes
Latin Hypercube sampling [27] yes limited yes

Table 4.3: The different sampling schemes available.

where {cn}n∈IN are coefficients (often known as Fourier coefficients) and {Φn}n∈IN are
polynomials. If f̂ is a good approximation of f , it is possible to either infer statistical properties
of f̂ analytically or through cheap numerical computations where f̂ is used as a surrogate for f .

A polynomial chaos expansion is defined as a polynomial approximation, as in (4.11), where
the polynomials {Φn}n∈IN are orthogonal on a custom weighted function space LQ:

〈Φn,Φm〉 = E[Φn(Q)Φm(Q)] =

∫
· · ·
∫

Φn(q)Φm(q)pQ(q) dq = 0 n 6= m. (4.12)

As a side note, it is worth noting that in parallel with polynomial chaos expansions, there
also exists an alternative collocation method based on multivariate Lagrange polynomials [28].
This method is supported by Dakota and Chaospy, but not Turns.

To generate a polynomial chaos expansion, we must first calculate the polynomials
{Φn}n∈IN such that the orthogonality property in (4.12) is satisfied. This will be the topic of
Section 4.4 In Section 4.4 we show how to estimate the coefficients {cn}n∈IN . Last, in Section
4.4, tools used to quantify uncertainty in polynomial chaos expansions will be discussed.

Orthogonal Polynomials Construction

From (4.12) it follows that the orthogonality property is not in general transferable between
distributions, since a new set of polynomials has to be constructed for each pQ. The easiest
approach to construct orthogonal polynomials is to identify the probability density pQ in the
so-called Askey-Wilson scheme [29]. The polynomials can then be picked from a list, or
be built from analytical components. The continuous distributions supported in the scheme
include the standard normal, gamma, beta, and uniform distributions respectively through the
Hermite, Laguerre, Jacobi, and Legendre polynomial expansion. All the three mentioned
software toolboxes support these expansions.

Moving beyond the standard collection of the Askey-Wilson scheme, it is possible to
create custom orthogonal polynomials, both analytically and numerically. Unfortunately, most
methods involving finite precision arithmetics are ill-posed, making a numerical approach quite
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a challenge [30]. This section explores the various approaches for constructing polynomial
expansions. A full list of methods is found in Table 4.4. It shows that Dakota, Turns and
Chaospy support 4, 3 and 5 orthogonalisation methods, respectively.

Orthogonalization Method Dakota Turns Chaospy
Askey-Wilson Scheme [29] yes yes yes

Bertran recursion [31] no no yes
Cholesky Decomposition [14] no no yes

Discretized Stieltjes [32] yes no yes
Modified Chebyshev [32] yes yes no

Modified Gram-Schmidt [32] yes yes yes

Table 4.4: Methods for generating expansions of orthogonal polynomials.

Looking beyond an analytical approach, the most popular method for constructing
orthogonal polynomials is the discretized Stieltjes procedure [33]. As far as the authors know, it
is the only truly numerically stable method for orthogonal polynomial construction. It is based
upon one-dimensional recursion coefficients that are estimated using numerical integration.
Unfortunately, the method is only applicable in the multivariate case if the components of pQ
are stochastically independent.

Generalized Polynomial Chaos Expansions One approach to model densities with
stochastically dependent components numerically, is to reformulate the uncertainty problem
as a set of independent components through generalised polynomial chaos expansion [34]. As
described in detail in Section 4.3, a Rosenblatt transformation allows for the mapping between
any domain and the unit hypercube [0, 1]D. With a double transformation we can reformulate
the response function f as

f(x, t,Q) = f(x, t, T−1Q (TR(R))) ≈ f̂(x, t,R) =
∑
n∈IN

cn(x, t)Φn(R),

where R is any random variable drawn from pR, which for simplicity is chosen to consists of
independent components. Also, {Φn}n∈IN is constructed to be orthogonal with respect to LR,
not LQ. In any case,R is either selected from the Askey-Wilson scheme, or calculated using the
discretized Stieltjes procedure. We remark that the accuracy of the approximation deteriorate
if the transformation composition T−1Q ◦ TR is not smooth [34]. Dakota, Turns, and Chaospy
all support generalized polynomial chaos expansions for independent stochastic variables and
the Normal/Nataf copula listed in Table 4.2. Since Chaospy has the Rosenblatt transformation
underlying the computational framework, generalized polynomial chaos expansions are in fact
available for all densities.

The Direct Multivariate Approach Given that both the density pQ has stochastically
dependent components, and the transformation composition T−1Q ◦ TR is not smooth, it
is still possible to generate orthogonal polynomials numerically. As noted above, most
methods are numerically unstable, and the accuracy in the orthogonality can deteriorate with
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polynomial order, but the methods can still be useful [14]. In Table 4.4, only Chaospy’s
implementation of Bertran’s recursion method [31], Cholesky decomposition [35] and modified
Gram-Schmidt orthogonalization [32] support construction of orthogonal polynomials for
multivariate dependent densities directly.

Custom Polynomial Expansions In the most extreme cases, an automated numerical method
is insufficient. Instead, a polynomial expansion has to be constructed manually. User-defined
expansions can be created conveniently, as demonstrated in the next example involving a
second-order Hermite polynomial expansion, orthogonal with respect to the normal density
[29]:

{Φn}n∈I6 =
{

1, Q0, Q1, Q
2
0 − 1, Q0Q1, Q

2
1 − 1

}
The relevant Chaospy code for creating this polynomial expansion looks like

>>> q0, q1 = cp.variable(2)
>>> phi = cp.Poly([1, q0, q1, q0**2-1, q0*q1, q1**2-1])
>>> print phi
[1, q0, q1, q0^2-1, q0q1, -1+q1^2]

Chaospy contains a collection of tools to manipulate and create polynomials, see Table 4.5.
One thing worth noting is that polynomial chaos expansions suffers from the curse of

dimensionality: The number of terms grows exponentially with the number of dimensions [36].
As a result, Chaospy does not support neither high dimensional nor infinite dimensional
problems (random fields). One approach to address such problems with polynomial chaos
expansion is to first reduce the number of dimension through techniques like Karhunen-Loeve
expansions [37]. If software implementations of such methods can be provided, the user can
easily extend Chaospy to high and infinite dimensional problems.

Chaospy includes operators such as the expectation operator E. This is a helpful tool to
ensure that the constructed polynomials are orthogonal, as defined in (4.12). To verify that two
elements in phi are indeed orthogonal under the standard bivariate normal distribution, one
writes

>>> dist = cp.J(cp.Normal(0,1), cp.Normal(0,1))
>>> print cp.E(phi[3]*phi[5], dist)
0.0

More details of operators used to perform uncertainty analysis are given in Section 4.4.

Calculating Coefficients

There are several methodologies for estimating the coefficients {cn}n∈IN , typically categorized
either as non-intrusive or intrusive, where non-intrusive means that the computational
procedures only requires evaluation of f (i.e., software for f can be reused as a black box).
Intrusive methods need to incorporate information about the underlying forward model in the
computation of the coefficients. In case of forward models based on differential equations, one
performs a Galerkin formulation for the coefficients in probability space, leading effectively to
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Function Description
all Test all coefficients for non-zero
any Test any coefficients for non-zero
around Round to a given decimal
asfloat Set coefficients type as float
asint Set coefficient type as int
basis Create monomial basis
cumprod Cumulative product
cumsum Cumulative sum
cutoff Truncate polynomial order
decompose Convert from series to sequence
diag Construct or extract diagonal
differential Differential operator
dot Dot-product
flatten Flatten an array
gradient Gradient (or Jacobian) operator
hessian Hessian operator
inner Inner product
mean Average
order Extract polynomial order
outer Outer product
prod Product
repeat Repeat polynomials
reshape Reshape axes
roll Roll polynomials
rollaxis Roll axis
rolldim Roll the dimension
std Empirical standard deviation
substitute Variable substitution
sum Sum along an axis
swapaxes Interchange two axes
swapdim Swap the dimensions
trace Sum along the diagonal
transpose Transpose the coefficients
tril Extract lower triangle of coefficients
tricu Extract cross-diagonal upper triangle
var Empirical variance
variable Simple polynomial constructor

Table 4.5: List of tools for creating and manipulating polynomials.

a D-dimensional differential equation problem in this space [38]. Back et al. [39] demonstrated
that the computational cost of such an intrusive Galerkin method in some cases was higher than
some non-intrusive methods. None of the three toolboxes discussed in this paper have support
for intrusive methods.

Within the realm of non-intrusive methods, there are in principle two viable methodologies
available: pseudo-spectral projection [40] and the point collocation method [41]. The former
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applies a numerical integration scheme to estimate Fourier coefficients, while the latter solves
a linear system arising from a statistical regression formulation. Dakota and Chaospy support
both methodologies, while Turns only supports point collocation. We shall now discuss the
practical, generic implementation of these two methods in Chaospy.

Integration Methods

The pseudo-spectral projection method is based on a standard least squares minimization in
the weighted function space LQ. Since the polynomials are orthogonal in this space, the
associated linear system is diagonal, which allows a closed-form expression for the Fourier
coefficients. The expression involves high-dimensional integrals in LQ. Numerical integration
is then required,

cn =
E[YΦn]

E[Φ2
n]

=
1

E[Φ2
n]

∫
· · ·
∫
pQ(q)f(x, t, q)Φn(q) dq (4.13)

≈ 1

E[Φ2
n]

∑
k∈IK

wkpQ(qk)f(x, t, qk)Φn(qk) IK = {0, . . . , K − 1},

where wk are weights and qk nodes in a quadrature scheme. Note that f is only evaluated for
the nodes qk, and these evaluations can be made once. Thereafter, one can experiment with the
polynomial order since any cn depends on the same evaluations of f .

Table 4.6 shows the various quadrature schemes offered by Dakota and Chaospy (recall
that Turns does not support pseudo-spectral projection). All techniques for generating nodes
and weights in Chaospy are available through the cp.generate_quadrature function.
Suppose we want to generate optimal Gaussian quadrature nodes for the normal distribution.
We then write

>>> nodes, weights = cp.generate_quadrature(
... 3, cp.Normal(0, 1), rule="Gaussian")
>>> print nodes
[[-2.33441422 -0.74196378 0.74196378 2.33441422]]
>>> print weights
[ 0.04587585 0.45412415 0.45412415 0.04587585]

Node and Weight Generators Dakota Turns Chaospy
Clenshaw-Curtis quadrature [42] yes no yes
Cubature rules [43] yes no no
Gauss-Legendre quadrature [44] yes no yes
Gauss-Patterson quadrature [45] yes no yes
Genz-Keister quadrature [46] yes no yes
Leja quadrature [47] no no yes
Monte Carlo integration [1] yes no yes
Optimal Gaussian quadrature [44] yes no yes

Table 4.6: Various numerical integration strategies implemented in the three software toolboxes.
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Most quadrature schemes are designed for univariate problems. To extend a univariate
scheme to the multivariate case, integration rules along each axis can be combined using a
tensor product. Unfortunately, such a product suffers from the curse of dimensionality and
becomes a very costly integration procedure for large D. In higher-dimensional problems one
can replace the full tensor product by a Smolyak sparse grid [48]. The method works by taking
multiple lower order tensor product rules and joining them together. If the rule is nested, i.e., the
same samples found at a low order are also included at higher order, the number of evaluations
can be further reduced. Another feature is to add anisotropy such that some dimensions are
sampled more than others [49]. In addition to the tensor product rules, there are a few native
multivariate cubature rules that allow for low order multivariate integration [43]. Both Dakota
and Chaospy also support the Smolyak sparse grid and anisotropy.

Chaospy has support for construction of custom integration rules defined by the user. The
cp.rule_generator function can be used to join a list of univariate rules using tensor grid
or Smolyak sparse grid. For example, consider the trapezoid rule:

>>> def trapezoid(n):
... X = np.linspace(0, 1, n+1)
... W = np.ones(n+1)/n
... W[0] *= 0.5; W[-1] *= 0.5
... return X, W
...
>>> nodes, weights = trapezoid(2)
>>> print nodes
[ 0. 0.5 1. ]
>>> print weights
[ 0.25 0.5 0.25]

The cp.rule_generator function takes positional arguments, each representing a
univariate rule. To generate a rule for the multivariate case, with the same one-dimensional
rule along two axes, we do the following:

>>> mvtrapezoid = cp.rule_generator(trapezoid, trapezoid)
>>> nodes, weights = mvtrapezoid(2, sparse=True)
>>> print nodes
[[ 0. 0.5 1. 0. 0. 1. ]
[ 0. 0. 0. 0.5 1. 1. ]]

>>> print weights
[ 0. 0.25 0.125 0.25 0.125 0.25 ]

Software for constructing and executing a general-purpose integration scheme is useful
for several computational components in uncertainty quantification. For example, in Section
4.4 when constructing orthogonal polynomials using raw statistical moments, or calculating
discretized Stieltjes’ recurrence coefficients, numerical integration is relevant. Like the ppf
function noted in Section 4.3, the moments and recurrence coefficients can be added directly
into each distribution. However, when these are not available, Chaospy will automatically
estimate missing information by quadrature rules, using the cp.generate_quadrature
function described above.

To compute the Fourier coefficients and the polynomial chaos expansion, we use the
cp.fit_quadrature function. It takes four arguments: the set of orthogonal polynomials,
quadrature nodes, quadrature weights, and the user’s function for evaluating the forward model
(to be executed at the quadrature nodes). Note that in the case of the discretized Stieltjes method
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discussed in Section 4.4, the nominator E[Φ2
n] in (4.13) can be calculated more accurately using

recurrence coefficients [32]. Special numerical features like this can be added by including
optional arguments in cp.fit_quadrature.

Point Collocation

The other non-intrusive approach to estimate the coefficients {ck}k∈IK is the point collocation
method. One way of formulating the method is to require the polynomial expansion to equal
the model evaluations at a set of collocation nodes {qk}k∈IK , resulting in an over-determined
set of linear equations for the Fourier coefficients:

 Φ0(q0) · · · ΦN(q0)
...

...
Φ0(qK−1) · · · ΦN(qK−1)


 c0...
cN

 =

 f(q0)
...

f(qK−1)

 , (4.14)

Unlike pseudo spectral projection, the locations of the collocation nodes are not required to
follow any integration rule. Hosder [41] showed that the solution using Hammersley samples
from quasi-Monte Carlo samples resulted in more stable results than using conventional pseudo-
random samples. In other words, well placed collocation nodes might increase the accuracy. In
Chaospy these collocation nodes can be selected from integration rules or from pseudo-random
samples from Monte Carlo simulation, as discussed in Section 4.3. In addition, the software
accepts user defined strategies for choosing the sampling points. Turns also allows for user-
defined points, while Dakota has its predefined strategies.

The obvious way to solve the over-determined system in (4.14) is to use least squares
minimization, which resembles the standard statistical linear regression approach of fitting a
polynomial to a set of data points. However, from a numerical point of view, this might not
be the best strategy. If the numerical stability of the solution is low, it might be prudent to use
Tikhonov regularization [50], or if the problem is so large that the number of coefficients is very
high, it might be useful to force some of the coefficients to be zero through least angle regression
[51]. Being able to run and compare alternative methods is important in many problems to see
if numerical stability is a potential problem. Table 4.7 lists the regression methods offered by
Dakota, Turns, and Chaospy.

Generating a polynomial chaos expansion using linear regression is done using Chaospy’s
cp.fit_regression function. It takes the same arguments as cp.fit_quadrature,
except that quadrature weights are omitted, and optional arguments define the rule used to
optimize (4.14).

Model Evaluations

Irrespectively of the method used to estimate the coefficients ck, the user is left with the job to
evaluate the forward model (response function) f , which is normally by far the most computing-
intensive part in uncertainty quantification. Chaospy does not impose any restriction on the
simulation code used to compute the forward model. The only requirement is that the user
can provide an array of values of f at the quadrature or collocation nodes. Chaospy users will
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Regression Schemes Dakota Turns Chaospy
Basis Pursuit [52] yes no no
Bayesian Auto. Relevance Determination [53] no no yes
Bayesian ridge [54] no no yes
Elastic Net [55] yes no yes
Forward Stagewise [56] no yes no
Least Absolute Shrinkage & Selection [51] yes yes yes
Least Angle & Shrinkage with AIC/BIC [57] no no yes
Least Squares Minimization yes yes yes
Orthogonal matching pursuit [58] yes no yes
Singular Value Decomposition no yes no
Tikhonov Regularization [50] no no yes

Table 4.7: List of supported regression methods for estimating Fourier coefficients

usually wrap any complex simulation code for f in a Python function f(q), where q is a node
in probability space (i.e., q contains values of the uncertain parameters in the problem). For
example, for pseudo-spectral projection, samples of f can be created as

samples = [f(node) for node in nodes.T]

or perhaps done in parallel if f is time consuming to evaluate:

import multiprocessing as mp
pool = mp.Pool(mp.cpu_count())
samples = pool.map(f, nodes.T)

The evaluation of all the f values can also be done in parallel with MPI in a distributed
way on a cluster using the Python module like mpi4py. Both Dakota and Turns support
parallel evaluation of f values, but the feature is embeded into the code, potentially limiting
the customization options of the parallelization.

Extension of polynomial expansions

There is much literature that extends on the theory of polynomial chaos expansion [36]. For
example, Isukapalli showed that the accuracy of a polynomial expansion could be increased by
using partial derivatives of the model response [59]. This theory is only directly supported by
Dakota. In Turns and Chaospy the support is indirect by allowing the user to add the feature
manually.

To be able to incorporate partial derivatives of the response, the partial derivative of the
polynomial expansion must be available as well. In both Turns and Chaospy, the derivative of
a polynomial can be generated easily. This derivative can then be added to the expansion,
allowing us to incorporate Isukapalli’s theory in practice. This is just an example on how
manipulation of the polynomial expansions and model approximations can overcome the lack
of support for a particular feature from the literature.

To be able to support many current and possible future extensions of polynomial chaos, a
large collection of tools for manipulating polynomials must be available. In Dakota, no such
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tools exist from a user perspective. In Turns, there is support for some arithmetic operators
in addition to the derivative. In Chaospy, however, the polynomial generated for the model
response is of the same type as the polynomials generated in Sections 4.4 and 4.4, and the rich
set of manipulations of polynomials is then available for f̂ as well.

Beyond the analytical tools for statistical analysis of f̂ , either from the toolbox or custom
ones by the user, there are many statistical metrics that cannot easily be expressed as simple
closed-form formulas. Such metrics include confidence intervals, sensitivity indices, p-values
in hypothesis testing, to mention a few. In those scenarios, it makes sense to perform a
secondary uncertainty analysis through Monte Carlo simulation. Evaluating the approximation
f̂ is normally computationally much cheaper than evaluating the full forward model f , thus
allowing a large number of Monte Carlo samples within a cheap computational budget. This
type of secondary simulations are done automatically in the background in Dakota and Turns,
while Chaospy does not feature automated tools for secondary Monte Carlo simulation. Instead,
Chaospy allows for simple and computationally cheap generation of pseudo-random samples,
as described in Section 4.3, such that the user can easily put together a tailored Monte Carlo
simulation to meet the needs at hand. Within a few lines of Python code, the samples can
be analyzed with the standard Numpy and the Scipy libraries [60] or with more specialized
statistical libraries like Pandas [9], Scikit-learn [61], Scikit-statsmodel [62], and Python’s
interface to the rich R environment for statistical computing. For example, for the specific f̂
function illustrated above, the following code computes a 90 percent confidence interval, based
on 105 pseudo-random samples and Numpy’s functionality for finding percentiles in discrete
data:

>>> q_samples = cp.Normal(0,1).sample(10**5)
>>> samples = f_approx(*q_samples)
>>> p05, p95 = np.percentile(samples, [5, 95], axis=-1)
>>> print p05[:3]
[ 1. 1.0000004 1.0000016]
>>> print p95[:3]
[ 1. 1.00038886 1.00155544]

Since the type of statistical analysis of f̂ often strongly depends on the physical problem at
hand, we believe that the ability to quickly compose custom solutions by putting together basic
building blocks is very useful in uncertainty quantification. This is yet another example of the
need for a package with a strong focus on easy customization.

Descriptive Tools

The last step in uncertainty quantification based on polynomial chaos expansions is to quantify
the uncertainty. In polynomial chaos expansion this is done by using the uncertainty in the
model approximation f_approx as a substiute for the uncertainty in the model f . For the
most popular statistical metrics, like mean, variance, correlation, a polynomial chaos expansion
allows for analytical analysis, which is easy to calculate and has high accuracy. This property is
reflected in all the three toolboxes. To calculate the expected value, variance and correlation of
a simple (here univariate) polynomial approximation f_approx, with a normally distributed
ξ0 variable, we can with Chaospy write
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>>> f_approx = fit_quadrature(orth, nodes, weights, samples)
>>> print f_approx
[q0, q0^2, q0^3]
>>> dist = Normal(0,1)
>>> print E(f_approx, dist)
[ 0. 1. 0.]
>>> print Var(f_approx, dist)
[ 1. 2. 15.]
>>> print Corr(f_approx, dist)
[[ 1. 0. 0.77459667]
[ 0. 1. 0. ]
[ 0.77459667 0. 1. ]]

A list of supported analytical metrics is listed in Table 4.8.

Method Dakota Turns Chaospy
Covariance/Correlation yes yes yes
Expected value yes yes yes
Conditional expectation no no yes
Kurtosis yes yes yes
Sensitivity index yes yes yes
Skewness yes yes yes
Variance yes yes yes

Table 4.8: List of common statistical operators that can be used for analytical evaluation of
polynomials.

4.5 Conclusion and Further Work
Until now there have only been a few real software alternatives for implementing non-intrusive
polynomial chaos expansions. Two of the more popular implementations, Dakota and Turns,
are both high-quality software that can be applied to a large array of problems. The present
paper has introduced a new alternative: Chaospy. Its aim is to be an experimental foundry for
scientists. Besides featuring a vast library of state-of-the-art tools, Chaospy allows for a high
degree of customization in a user-friendly way. Within a few lines of high-level Python code,
the user can play around with custom distributions, custom polynomials, custom integration
schemes, custom sampling schemes, and custom statistical analysis of the result. Throughout
the text we have compared the built-in functionality of the three packages, and Chaospy do
very well in this comparison, which is summarized in table 4.9. But the primary advantage of
the package is the strong emphasis on offering well-designed software building blocks, with a
high abstraction level, that can easily be combined to create tailored uncertainty quantification
algorithms for new problems.

Although the primary aim of the software is to construct polynomial chaos expansions,
the software is also a state-of-the-art toolbox for performing Monte Carlo simulation, either
directly on the forward model or in combination with polynomial chaos expansions. Variance
reduction techniques are included to speed up the convergence, and because Chaospy is
based on Rosenblatt transformations, efficient quasi-Monte Carlo sampling is available for any
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distribution. Another novel feature of Chaospy is the ability to handle stochastically dependent
input variables through a new mathematical technique.

Feature Dakota Turns Chaospy
Distributions 11 26 64
Copulas 1 7 6
Sampling schemes 4 7.5 7
Orthogonal polynomial schemes 4 3 5
Numerical integration strategies 7 0 7
Regression methods 5 4 8
Analytical metrics 6 6 7

Table 4.9: A summary of the various features in Dakota, Turns and Chaospy.
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Multivariate Polynomial Chaos Expansions
with Dependent Variables

Jonathan Feinberg, Hans Petter Langtangen

This paper describes a new approach to handling dependent stochastic variables in
polynomial chaos expansions for uncertainty quantification. The methodology is based on
a decorrelation algorithm that only requires raw statistical moments of multivariate random
variables. When the mapping from input in probability space to the response is not smooth,
polynomial chaos expansions may converge slowly. One remedy proposed in this paper is
to introduce a transformation of the input parameters to create a smoother mapping in an
alternative probability space. However, such a transformation quickly leads to dependent
stochastic variables and hence a need for handling dependency.

We consider two cases to demonstrate how variable transformations and the new framework
can significantly increase the convergence rate of polynomial chaos expansions. The first
case involves an analytical, non-smooth mapping to exemplify serious convergence problems
and the power of transforming the variables. The second case concerns diffusion in multi-
material/multi-domain models with uncertain internal boundaries and uncertain material
properties. We investigate in detail a simplified version of this physical problem where the
performance of the method can be understood. Standard polynomial chaos expansions converge
very slowly because of uncertain material boundaries, but with a variable transformation,
leading to dependent variables, we are able to achieve significantly faster convergence compared
with state-of-the-art methods.

5.1 Introduction
Polynomial chaos expansions have in recent years become popular as an approach to quantify
uncertainty in forward models because of the fast convergence properties observed in many
problems [1]. The number of samples of the underlying mathematical model can then be
orders of magnitude smaller than what is required by Monte Carlo-based methods for the
same accuracy. This feature is of particular importance when the underlying model involves
large-scale simulations solving partial differential equations where the computational cost is
high. Unfortunately, we have experienced a significant slowdown in the speed of convergence
when differential equations have uncertain discontinuous coefficients and uncertain internal
boundaries (see Section 5.5 and [2, 3]). Such coefficients and boundaries naturally arise in
multi-material/multi-domain models. This paper presents a new approach, based on stochastic
variable transformations, to improve the convergence rate for such problems. Our approach
requires a method for handling dependent random variables in polynomial chaos expansions.
We therefore need to derive a new framework for working with dependent variables. This
paper describes the framework and how it can be applied to restore the attractive convergence
properties of polynomial chaos expansions in multi-material diffusion problems.



The method of polynomial chaos expansions was originally defined for standard Gaussian
independent random variables through the Hermite polynomial expansion [4]. The theory
was extended by the Wiener-Askey scheme to a collection of common random variables [5].
Later, the method was further extended to include arbitrary univariate random variables and
multivariate random variables with independent components, through tensor product operations.
Some theory has been proposed to address multivariate random variables with dependent
components through transformations [6, 7].

When the mapping from random input to the response is not sufficiently smooth, e.g.,
because of discontinuities in the mapping itself or its derivatives, a classical polynomial chaos
expansion is less suited because of Gibbs phenomena; the result is an expansion with a
lower convergence rate as the polynomial degree increases [8]. However, with the use of
an appropriately chosen transformation of the random input variables, such problems can be
reduced, and in some cases even removed, as will be demonstrated later. The goal of the variable
transformation is to create a new mapping which enables the response to be well approximated
by a low-order polynomial chaos expansion.

Although some mathematical models do feature stochastically dependent input parameters,
such as ion channel densities in detailed neuroscience models [9], most physical models involve
input parameters that are stochastically independent. But as mentioned, the remedy for the
loss of convergence rate involving variable transformations will in general introduce stocastic
dependencies between the variables. These dependencies arises even if the physical parameters
are independent. For this reason alone, there is a need to be able to deal with dependent
stochastic variables in polynomial chaos expansions.

There are two distinct novel features of this paper. First, we derive a framework for
multivariate polynomial chaos expansion for dependent variables. This framework is a new
general methodology for constructing orthogonal polynomials with respect to any probability
distribution, including if it is dependent upon other random variables and physical parameters
like time and space. The implementation and application of the framework are straightforward
and represent a simplification compared to existing methods for handling dependent variables.
(The simplification follows from the fact that a Rosenblatt transformation is not required.)
Throughout the presentation of the framework, we review the literature and compare our
method with previous work. Second, the paper proposes the use of auxiliary input variables
to reformulate the response in a new probability space. These variables are generated using
selected transformations, which are more general and easier to implement than Rosenblatt
transformations. The auxiliary variables are mostly stochastically dependent, but this is handled
by the aforementioned framework for implementation. Comparison with relevant literature is
done as part of the presentation of the variable transformations.

The paper is organized as follows. Section 5.2 reviews the existing building blocks in non-
intrusive polynomial chaos expansions. In Section 5.3, the new approach for constructing
orthogonal polynomials with dependent variables are presented, and in Section 5.4 the new
method for implementing polynomial chaos expansion with transformed variables is introduced.
Section 5.5 applies the new methodology to a physical application with multiple domains, where
uncertain domain boundaries pose serious convergence problems for existing polynomial chaos
techniques. Finally, we present concluding remarks and remaining challenges.
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5.2 Overview of Methods for Non-Intrusive Polynomial
Chaos

The most common method for modeling uncertainty in large scale problems is the Monte Carlo
method. Monte Carlo is easy to apply, requires very few model assumptions to operate, and
can treat the full forward problem solver as black box software. The method produces random
samples, as if drawn from the distribution of the response, and can be analyzed using the large
collection of tools from statistical analysis. A very attractive feature of the Monte Carlo method
is that it scales very well with the number of uncertain parameters.

On the other hand, the Monte Carlo method is known for having a slow convergence rate.
The variance estimate is typically 1/K times the variance of the model, where K is the number
of model evaluations [10]. A forward model based on a set of partial differential equations may
often be numerically costly to solve. The consequence of this cost is that number of samples
required by Monte Carlo method to converge might be infeasible to create. Polynomial chaos
expansions provide an alternative methodology, which may reduce the number of samples of
the forward model by orders of magnitude.

Polynomial Chaos Expansion

Consider a forward model described by a partial differential equation system, here written in
the generic form

L(x, t, u, ξ,η) = 0, (5.1)

where L is a possibly non-linear differential operator, x ∈ Ω ⊆ RQ are spatial coordinates and
t ∈ R is time. Together with L we associate appropriate boundary and initial conditions.
Let u(x, t;η, ξ) be the solution of the equation, where η and ξ denote model parameters.
Furthermore let η = (η0, . . . , ηR−1) ∈ RR be all parameters known with certainty and let
ξ = (ξ0, . . . , ξD−1) ∈ RD be the uncertain parameters. We assume that the uncertainty can be
described through a joint probability density function pξ. The goal is to compute statistics of
a response quantity d derived from u. For simplicity, we take d as u itself and aim to compute
the spatial and temporal variation of the average and standard deviation of u. Nothing in the
framework prevents d from being any functional of u.

Given that the response, here u, depends smoothly on ξ, it can be approximated through a
truncated polynomial chaos expansion [11] in the stochastic variables ξ. In our case, we seek
to compute the expansion

ûM(x, t;η, ξ) =
N∑
i=0

ci(x, t;η)Φi(ξ), (5.2)

where {Φi(ξ)} are prescribed orthogonal monic polynomials of increasing order and
{ci(x, t;η)} are unknown coefficients. The expansion is truncated at N + 1 terms, and the
value of N + 1 is selected such that the expansion includes all polynomials of order M and
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lower. The resulting number of terms is

N + 1 =
(M+D)!

M !D!
. (5.3)

To simplify the notation, let the variables x, t and η be implicit in such a way that u(ξ) is a short
form of u(x, t;η, ξ) and ci is a short form of ci(x, t;η). For a given η, u and ci are (usually)
evaluated as grid functions according to the numerical discretization used to solve the partial
differential equation in (5.1).

Let each polynomial in the expansion {Φi} be defined on a weighted function space Lξ
equipped with the inner product and norm

〈q, r〉ξ = E[q(ξ)r(ξ)] ‖q‖ξ =
√
〈q, q〉ξ, (5.4)

where E is the mathematical expected value operator with respect to pξ. The polynomials are
considered orthogonal with respect to Lξ when satisfying

〈Φi,Φj〉ξ = ‖Φi‖2ξδij, (5.5)

where δij is the Kronecker delta (δij = 1 when i = j and δij = 0 otherwise).
Given the availability of an expansion as defined in (5.2), statistical information can be

calculated analytically. For example, the model’s mean and variance are

E[ûM ] = c0 Var[ûM ] =
N∑
i=1

c2i ‖Φi‖2ξ.

For an introduction to polynomial chaos expansions we recommend the book by Xiu [12].

Construction of Orthogonal Polynomials

Because the definition of orthogonality in (5.5) involves the density function pξ, the orthogonal
polynomial expansion must be chosen differently for each random variable ξ. For densities in
the so-called Askey-Wilson scheme[13], the corresponding orthogonal polynomial expansion
is known analytically. Beyond these known cases, the expansion must usually be constructed in
such a way that the orthogonality property holds.

Though there are several options for calculating orthogonal polynomials numerically, most
are numerically unstable [14]. The one exception is the discretized Stieltjes procedure [15],
which allows for the construction of orthogonal polynomials from a univariate probability
density function. To extend the method to the multivariate polynomial expansion {Φi}, a
tensor product between univariate expansions can be used. In other words, each polynomial
is naturally factorized as

Φi(ξ) = Φi0,...,iD−1
(ξ) = Φi00(ξ0) · · ·ΦiD−1D−1(ξD−1), (5.6)

where Φidd represents a univariate polynomial of order id in dimension d. The index i is selected
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such that there is a one-to-one relationship between the single index and a multi-index

i ∼ i = (i0, . . . , iD−1). (5.7)

It will be assumed that the polynomials are ordered using graded reverse lexicographical
(grevlex) ordering [16]. An illustration of the first eight polynomials using respectively a
multi-index and a single index following the grevlex ordering in two dimensions can be seen
in Figure 5.1. For example, the multi-index i = (1, 1) is equivalent to the integer index i = 4

using this ordering method.

multi-index single index
Φ00 Φ0

Φ10 Φ01 Φ1 Φ2

Φ20 Φ11 Φ02 Φ3 Φ4 Φ5

Φ30 Φ21 . . . Φ6 Φ7 . . .

Figure 5.1: The mapping between single index and multi-index using graded reverse
lexicographical sorting in two dimensions.

One weakness with using the tensor product rule on orthogonal univariate polynomials is
that it retains the orthogonality only if the random vector ξ consists of independent components.
If that is not the case, generalized polynomial chaos (gPC) can be utilized [5]. This method
addresses dependent variables by applying an appropriate mapping

T : ξ ∈ RD 7→ ζ ∈ RD

for creating stochastically independent variables ζ = T (ξ). A polynomial chaos expansion can
be performed on the transformed space Lζ with an expression for ûM on the form

ûM(x, t;η, T−1(ζ)) =
N∑
i=0

ĉiΦi(ζ). (5.8)

There is more than one mapping to make variables stochastically independent. If the full
joint distribution of ξ is known, T is preferably a Rosenblatt transformation [6] defined as

T (ξ) = F−1ζ (Fξ(ξ)), (5.9)

where

Fξ(ξ) = (Fξ0(ξ0), Fξ1|ξ0(ξ1) . . . , FξD−1|ξ0,...,ξD−2
(ξD−1))

are cumulative distribution functions created from the components of a probability density
decomposition

pξ(ξ) = pξ0(ξ0)pξ1|ξ0(ξ1) · · · pξD−1|ξ0,...,ξD−2
(ξD−1). (5.10)
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The inverse distribution functions F−1ζ = (F−1ζ0
, . . . , F−1ζD−1

) are conversely created from pζ ,
where ζ = (ζ0, . . . , ζD−1) are stochastically independent.

One problem with the Rosenblatt transformation is that even for simple problems,
the transformation can quickly become discontinuous and highly non-linear. Xiu and
Karniadakis [17] showed that transformations between some standard univariate variables
introduce Gibbs phenomena and deterioration of the convergence rate. Therefore, it seems
to be no way to treat dependent stochastic variables in polynomial chaos expansions and retain
convergence properties. But this is exactly what we aim at with the new method in Section 5.3.

We remark that if the joint distribution pξ is unavailable or unfeasible to obtain, approximate
methods like the Box-Cox [18] and Nataf [7] transformations may be used. Under the correct
conditions these methods can perform as well as the Rosenblatt transformation, but are simpler
to set up. However, except for a small set of problems, a transformation from complicated
dependencies to a stochastically independent vector may be challenging to construct.

Estimation of Fourier Coefficients

Given that the orthogonal polynomials {Φi} are available, a polynomial chaos expansion can
be created by calculating the Fourier coefficients {ci} as defined in (5.13). Exact integration is
only possible in rare cases, so in general a numerical approximation ĉi ≈ ci is necessary. This
section reviews some of the various approaches.

The most common method for estimating the coefficients {ci} is to use point collocation and
least squares minimization [19]. This approach, which we use here, results in a non-intrusive
method where the forward solver can be treated as a black box. We select J+1 collocation nodes
ξ0, . . . , ξJ from some appropriate sampling scheme. For our purpose we select the samples as
suggested in [20]: J + 1 = 2(N + 1) samples from the Hammersley sequence. For each
collocation point, we solve the forward problem and evaluate the polynomials. The results are
collected in

U =

 u(ξ0)
...

u(ξJ),

 P =

Φ0(ξ0) · · · ΦN (ξ0)
...

...
Φ0(ξJ) · · · ΦN (ξJ)

 . (5.11)

The coefficient c can now be estimated by a least square procedure. Let e = U − Pc be the
deviation between the observation U and the polynomial expansion Pc. We find c such that
square of the Euclidean norm of e is minimized. The result becomes

ĉ = (P TP )−1P TU . (5.12)

The described least squares procedure does not require the polynomials {Φi} to be orthogonal
to converge, but without orthogonality the procedure loses some of its properties [19].

Another approach for estimating the coefficients {ci} is to perform a pseudo-spectral
projection [21], which can be viewed as a least squares minimization in the weighted function
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space Lξ, resulting in

ci =
〈u,Φi〉ξ
‖Φi‖2ξ

. (5.13)

In practice, the inner products and norms must be computed by numerical approximations:

ci =

∫
u(ξ)Φi(ξ)pξ(ξ) dξ∫

Φi(ξ)2pξ(ξ) dξ
≈
∑J

j=0wju(ξj)Φi(ξj)pξ(ξj)∫
Φi(ξ)2pξ(ξ) dξ

, (5.14)

where wk and ξk are weights and nodes in a numerical integration method.
A popular integration rule is optimal Gaussian quadrature [14]. This method has nodes and

weights optimized for a known weighting function, which in our case can be selected to be the
probability density function pξ(ξ). The approach results in the slightly simplified integration
formula

ci ≈
∑J

j=0wju(ξj)Φi(ξj)∫
Φi(ξ)2pξ(ξ) dξ

.

The Golub-Welsch algorithm can be used to calculate the weights and nodes in this scheme
[22]. Alternatively, one can use more generic schemes like Clenshaw-Curtis quadrature or
Gauss-Patterson quadrature [23].

Multivariate quadrature rules are constructed as tensor products of one-dimensional rules.
However, using a full tensor product to construct quadrature rules results in the curse of
dimensionality [24]. This problem can be somewhat mitigated by using Smolyak’s sparse grid
rule [25, 26]. In either case, for the optimal Gaussian quadrature to use pξ as a weighting
function, the method requires that the components of ξ are stochastically independent.

Originally, the coefficients {ci} were calculated using the intrusive Galerkin method [11].
The method relies on a Galerkin formulation of the equations in the forward model and
replacing the exact solution by the polynomial chaos expansion. The result is a system of
algebraic equations for the coefficients. Essentially, the methodology requires developing a
new PDE solver in high dimension (D).

5.3 Dependent Orthogonal Polynomials
As noted in the last section, generalized polynomial chaos expansions can be used to address
stochastically dependent input variables. However, as will be discussed in Section 5.4, this
approach does not help address the issue of Gibbs phenomena. To be able to address the
phenomena, we must instead create a new polynomial chaos expansion approach. This will
be the topic of the present section.
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Decorrelation Algorithm for Constructing Orthogonal Polynomials

First we define the initial polynomial Φ0 = 1. For any polynomial orthogonal to Φ0 we have
that

E[Φi] = E[ΦiΦ0] = 〈Φi,Φ0〉ξ = 0, i 6= 0.

This implies that

Cov(Φi,Φj) = E[ΦiΦj]− E[Φi]E[Φj] = E[ΦiΦj] = 〈Φi,Φj〉ξ i 6= 0, j 6= 0

In other words, the orthogonality definition in (5.5) is equivalent with the polynomials being
stochastically uncorrelated (when Φ0 is not considered). This key observation will now be used
to construct polynomials in the multivariate case with dependent variables.

Let {vi} be the sequence of simple monic polynomials,

{vi(ξ)} = 1, ξ, ξ2, . . .

A sequence {vi} of multivariate polynomials can be created by a tensor product

{vi(ξ)} =
D−1⊗
d=0

{vi(ξd)} . (5.15)

We introduce for convenience a one-to-one mapping between the single index i and the multi-
index i = (i0, . . . , iD−1) and let the mapping be ordered using grevlex. Also, let the expansion
be truncated at N + 1 terms according to (5.3).

Let v be the vector (v0,v1, . . . ,vN) and let v \ v0 denote v with the first component
v0 = 1 removed. The vector v is a vector of dependent, and hence in most cases, correlated
stochastic variables. Since any set of uncorrelated polynomials will be orthogonal, we can apply
a decorrelation procedure to compute a vector of uncorrelated polynomials Φ \Φ0:

Φ \Φ0 = L−1(v \ v0 − E[v \ v0]) (5.16)

where L is defined as the Cholesky factor of the covariance matrix:

Cov(v \ v0) = Σv\v0 = LLT .

It is easy to verify that the polynomials Φ \Φ0 are uncorrelated with zero mean:

E[Φ \Φ0] = L−1 (E[v \ v0]− E[v \ v0]) = 0

Cov(Φ \Φ0) = L−1Cov(v \ v0)L−T = L−1LLTL−T = I.

The polynomial collection Φ without Φ0 is therefore orthogonal. Since Φ0 is uncorrelated
with the other polynomials, we can just append Φ0 = 1 to get the complete set of orthogonal
polynomials.

Despite the fact that Cov(v \ v0) is by definition symmetric and positive definite, rounding
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errors may accumulate in such a way that the standard Cholesky decomposition algorithm
applied to Cov(v \ v0) breaks down. To mitigate this, we apply a modified Cholesky
decomposition where L is set as Σv\v0 + E, E being a diagonal stabilization matrix. The
modified decomposition is implemented using the algorithm developed by Gill and King in
[27].

Exemplifying the Polynomial Construction Algorithm

To ensure that all details of the procedure described above are clear, consider a specific example
where ξ has a bivariate normal distribution with

E[ξ] =

[
0

0

]
Cov(ξ) =

[
1 1

2
1
2

1

]
(5.17)

To construct orthogonal polynomials of order at most M = 2, we need the following basis,
sorted using the grevlex ordering defined in Section 5.2:

{vi} = 1, ξ0, ξ1, ξ
2
0 , ξ0ξ1, ξ

2
1 ,

with the following first and second order statistics:

E[v \ v0] =


0

0

1
1
2

1

 Cov(v \ v0) =


1 1

2
0 0 0

1
2

1 0 0 0

0 0 2 1 1
2

0 0 1 5
4

1

0 0 1
2

1 2


We can now compute the modified Cholesky decomposition and obtain (to three decimals)

L =


1.000 0.000 0.000 0.000 0.000

0.500 0.866 0.000 0.000 0.000

0.000 0.000 1.414 0.000 0.000

0.000 0.000 0.707 0.866 0.000

0.000 0.000 0.353 0.866 1.060



L−1 =


1.000 0.000 0.000 0.000 0.000

−0.577 1.154 0.000 0.000 0.000

0.000 0.000 0.707 0.000 0.000

0.000 0.000 −0.577 1.154 0.000

0.000 0.000 0.235 −0.942 0.942

 .

Using equation (5.16) we get the following polynomials:

Φ0 = 1.000 Φ3 = 0.707ξ20−0.707

Φ1 = 1.000ξ0 Φ4 =−0.577ξ20+1.154ξ0ξ1

Φ2 = 1.154ξ1−0.577ξ0 Φ5 = 0.942ξ21−0.942ξ0ξ1+0.235ξ20−0.707
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Orthogonality can be verified for each polynomial pair. For example for Φ1 and Φ2 we have
that

E[Φ1Φ2] = E[1.000ξ0(1.154ξ1 − 0.577ξ0)]

= E
[
1.154ξ0ξ1 − 0.577ξ20

]
= 0.577− 0.577 = 0.000.

Investigating Possible Ill-Conditioning

In Section 5.2, we mentioned that constructing orthogonal polynomials from raw statistical
moments, as we do here, is an ill-conditioned problem [14]. We therefore employ the mentioned
modified Cholesky decomposition to stabilize the construction. This subsection investigates the
effectiveness of this stabilization. First, we look at how well the new method performs when
the polynomial order grows and the number of uncertain parameters is held constant. Second,
we look at the stability of the method as the number of uncertain parameters grows while the
polynomial order is fixed.

We compare the polynomials generated by the new method with polynomials generated
from the three terms recursion method (TTR), where the recurrence coefficients are calculated
analytically [22]. Since the orthogonality property in polynomials is invariant up to
multiplication of a scalar, we normalize the polynomials. For TTR, it is possible to calculate
the norm of the polynomial in a stable manner using the product rule

‖Φi‖ξ =

√√√√ i∏
n=0

Bn,

where Bn is the second recursion coefficient in the method. Polynomials calculated by our new
method are automatically normalized. To measure the divergence from orthogonality, we look
at the maximum absolute value of the inner product of each polynomial pair:

ε = max
i 6=j

∣∣∣〈Φi,Φj〉ξ
∣∣∣ .

All raw statistical moments used, in our method and TTR, are calculated analytically.
First, we explore the error ε as a function of polynomial order while keeping the number of

dimensions fixed at one. We have conducted tests on the following distributions: the standard
normal distribution, the standard gamma distribution, a Wigner distribution with unit radius, a
uniform distribution on [−1, 1], a beta distribution with parameters a = 2 and b = 4, and a
triangle distribution with bounds at -1 and 1, and top at 0.

Figure 5.2 shows the error on a logarithmic scale for the various distributions. Polynomials
generated from the method with a modified Cholesky decomposition are marked as Chol. All
ε curves are left truncated since at low enough polynomial orders the error identifies as exactly
zero. As the order grows, the errors in orthogonality all start around 10−16, before they grow
with exponential rate. The trend for TTR is a steady increasing error with little variation. On the
other hand, for Chol the growth is more unstable in a more piecewise linear behavior. For the
Wigner, uniform, beta, and triangle distributions, the new method is sometimes as good as TTR,
and sometimes better. For the Gamma and Normal distributions, the error ε for Chol is larger
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than TTR for lower orders. The former method reaches a plateau where the error stagnates.
Since the TTR error continues to grow, the Chol error will be lower for higher orders here as
well.
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Figure 5.2: The absolute error ε in orthogonality arising from three terms recursion method
(TTR) and modified Cholesky decomposition method (Chol) for various distributions.

The second part of the analysis is to investigate how the error ε is affected by the number
of dimensions (D). The polynomial order is now fixed at 4. In Figure 5.3, the error ε is plotted
as a function of the number of dimensions. The gamma and the Wigner distributions are not
displayed, because both of them have error that identifies as exactly zero at all dimensions for
both TTR and Chol. For Chol there is a growth, but it is small: from 1 to 10 dimensions, the error
only grows from 10−12 to 10−10 for the triangle distribution. For the beta distribution the range
is from 10−12 to 10−11. The change is much more negligible for the rest of the distributions.

It is worth while to remark that the number of polynomial terms N grows quickly with the
number dimensions D, according to (5.3) with M = 4. For example, at dimension D = 10, the
number of polynomial terms is N + 1 = 1001, which means that the Cholesky decomposition
needs to handle a 1000 × 1000 matrix. In comparison, if D = 1 and M = 30, we get a small
matrix (N + 1 = 31). As illustrated in Figure 5.3, the error in orthogonality is much larger in
the latter case, despite involving a much smaller matrix. It is therefore reasonable to assume
that even though D dramatically increases the number of polynomial terms and the size the
problem, it has little effect on the stability of the modified Cholesky method. In the applications
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Figure 5.3: The absolute error ε in orthogonality arising from Three Terms Recursion (TTR)
and modified Cholesky decomposition (Chol) at order 4 for various distributions as a function
of the number of dimensions.

addressed in this paper, the polynomial order M is small relative to the number of dimensions
D. It therefore seems from the tests (and also our further experience with the new method) that
stability is not a significant concern.

5.4 Using Forward Transforms to Improve Convergence
We shall now describe a problem class where the previously described framework for handling
dependent random variables in polynomial chaos expansions will be particularly useful. One
major assumption in polynomial chaos theory is that the response is a smooth function of the
random variables. In the presence of, e.g., discontinuities in this function, the polynomial chaos
expansion will converge with a reduced speed compared to the smooth case. We shall propose
a way to improve the convergence by using certain types of variable transformations, which
introduce dependent random variables even if the physical input parameters are stochastically
independent. With the previously suggested algorithm for constructing multivariate orthogonal
polynomials with dependent variables at hand, we can easily explore variable transformations to
improve the convergence in problems where there is a lack of smoothness in probability space.

Finding the right effective variable transformation for improving the convergence is highly
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problem dependent, so a theoretical analysis of the convergence properties seems difficult. We
shall therefore proceed with specific examples to illustrate the effectiveness of transformations.

Variable Transform

Suppose the response quantity in our model, here u, is not a sufficiently smooth function of ξ
for fast convergence of polynomial chaos expansions. A possible remedy is then to introduce a
map

T : (x, t, ξ,η) ∈ RQ × R× RD × RR 7→ ζ ∈ RC , (5.18)

to create an auxiliary random variable ζ = (ζ0, . . . , ζC−1). By performing a variable
substitution, we can reformulate u(x, t, ξ,η) to be u∗(x, t, ζ,η), i.e., a function in ζ instead
of ξ. The hope is that u∗ becomes a smooth function in ζ. We can then create a polynomial
chaos approximation û∗M with polynomials orthogonal in Lζ instead of Lξ. For convenience we
denote T (x, t, ξ,η) as T (ξ).

Many will associate T with a Rosenblatt transformation, but (5.18) is much more general.
The transformation can depend upon time t and space x, making ζ a stochastic process. The
number of dimensions in the output, C, do not need to match the number of dimensions in
the input, D, and the new transformation does not need to be either injective or surjective. In
comparison, none of these features are shared by the Rosenblatt transformation.

For almost any choice of T , ζ is going to have stochastically dependent components,
irrespectively of any dependencies found in ξ. This difficulty of dependent variables can be
solved with the new, proposed framework for constructing orthogonal polynomials.

With the great flexibility in choosing the transformation T , calculating the probability
density pζ from pξ is most often not feasible. Even performing simple arithmetics on random
variables often ends up in calculations involving complicated convolutions [28]. However, since
we only need the raw statistical moments, we do not need to find pζ , because the raw statistical
moments of ζ can be calculated directly in Lξ space:

E

[
D−1∏
d=0

ζkdd

]
=

∫
pζ(ζ)

D−1∏
d=0

ζkdd dζ =

∫
pξ(ξ)

D−1∏
d=0

Td(ξ)kd dξ. (5.19)

Given the raw moments of ζ, an orthogonal polynomial expansion {Ψi} can be constructed
using the method described in Section 5.3 for each space-time degree of freedom in the
response. The corresponding coefficients c∗ can thereafter be estimated using a least squares
procedure based on point collocation, as in (5.14). The U and P quantities are now

U =

u(ξ0)
...

u(ξJ)

 P =

Ψ0(T (ξ0)) · · · ΨN(T (ξ0))
...

...
Ψ0(T (ξJ)) · · · ΨN(T (ξJ))

 . (5.20)

Comparing this new method with the point collocation method described in Section 5.2,
there is an important difference in the computational cost between (5.11) and (5.20). In the
former, P and its inverse are evaluated only once, while in the latter, P has to be evaluated
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and inverted for every time point t and spatial location x. If the space-time resolution in the
model response is high, this can result in a much higher computational cost than in gPC. In
addition, because of the repeated calculations of variations of the same problem, the possibility
of P being ill-posed is greater. Since P needs to be inverted in (5.12), this might introduce
numerical instabilities. To alleviate this problem, the inversion is done with a first-order
Tikhonov regularization [29]. The size of the regularization parameter is determined using
robust generalized cross-validation with γ = 0.1 as proposed by Lukas [30].

It is worth noting that even though the transformed samples

(ζ0, . . . , ζJ) = (T (ξ0), . . . , T (ξJ))

are used to evaluate P , U is evaluated given non-transformed samples (ξ0, . . . , ξJ). In other
words, irrespectively of what the transformation is, we only use one set of samples. And because
running the forward model is often very time consuming, this is a favorable feature since it
allows us to experiment with many variations of T without additional costly evaluations of the
forward model.

The first and second order statistics from the alternative expansion {Ψi} can be calculated
from the moments in (5.19) as:

E[u] ≈ E[û∗M ] = E

[
N∑
i=0

ĉ∗iΨi

]
= ĉ∗0

Var[u] ≈ Var[û∗] = Var

[
N∑
i=0

ĉ∗iΨi

]
=

N∑
i=1

(ĉ∗i )
2‖Ψi‖2ξ. (5.21)

Remark To some extent it is possible to approximate the response u∗ using the tools available
in gPC expansions. Nevertheless, problems will arise, because generalized polynomial chaos
expansions require the introduction of a secondary transformation S, so that we can create a
new stochastically independent vector

υ = S(ζ) = S(T (ξ)).

Even if the density pζ is known, which most likely it is not, finding a transformation S that
results in an υ which consists of independent components is not trivial. Furthermore, let us
assume that T is selected to be a Rosenblatt transformation. One obvious solution would then
be to select S = T−1. The resulting vector υ will then be stochastically independent since
υ = T−1(T (ξ)) = ξ, but this approach keeps the non-smooth properties intact. So, rather than
constructing two transformations in gPC expansions, we just construct one and instead deal
with dependent variables.

An Illustrating Example

With the previously suggested algorithm for constructing multivariate orthogonal polynomials
with dependent variables at hand, we can explore variable transformations to improve the
convergence in problems where there is lack of smoothness in probability space. As a simple
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example, consider the following non-smooth mapping from two stochastic input variables to
the response u:

u(t, ξ0, ξ1) = |ξ0|e−tξ0ξ1 .

Here, ξ0 and ξ1 are independent uniform random variables on [−1, 1]. Because of the
discontinuity in the derivative of the mapping from ξ to u, generalized polynomial chaos
expansions in the ξ variables will result in reduced convergence speed. For example, the
uppermost curves in Figure 5.4 show that on a log scale, the pseudo-spectral approach where
the coefficients are estimated by Gaussian quadrature integration is only marginally faster than
the Monte Carlo method.

The remedy to the convergence problem is to introduce new stochastic variables by choosing
a suitable transformation as in (5.18). Preferably, the transformation should result in a smooth
mapping from the auxiliary variables ζ to the response u. One possible transformation is
ζ0 = |ξ0| and ζ1 = tξ0ξ1, because this leads to the mapping

u∗(ζ0, ζ1) = ζ0e
−ζ1 ,

which is smooth. However, the transformation results in ζ0 and ζ1 being dependent stochastic
variables.

With our new framework we can construct orthogonal polynomials in the new variables
ζ = (ζ0, ζ1). The raw moments of ζ can in this case be calculated analytically:

E
[
ζ i0ζ

j
1

]
= E

[
|ξ0|i(tξ0ξ1)j

]
=

∫ 1

−1

∫ 1

−1
0.25|ξ1|i(tξ0ξ1)j dξ0 dξ1

=
tj

4

∫ 1

−1
|ξ0|iξj0 dξ0

∫ 1

−1
ξj1 dξ1 =

tj

4

1 + (−1)j

i+ j + 1

1 + (−1)j

j + 1
=
tj

2

1 + (−1)j

(i+ j + 1)(j + 1)

A numerical integration scheme can be used when analytical moments are not feasible to
calculate.

With the raw moments available, an orthogonal polynomial expansion can be created using
the method described in Section 5.3. The orthogonal polynomials up to second order, at t = 1

for example, become

Φ0 = 1.000 Φ3 = − 2.457ξ0 + 0.409 + 7.373ξ21

Φ1 = 3.000ξ1 Φ4 = −11.618ξ1 + 15.491ξ0ξ1

Φ2 = 3.464ξ0 − 1.732 Φ5 = 13.647ξ20 − 13.189ξ0 + 2.198− 1.373ξ21 .

To measure the approximation errors of the various methods, the L1 norm integrated over
time for the mean and variance is plotted against the number of samples. More precisely, Figure
5.4 shows

εE =

∫ 1

0

|E[u]− E[ũ] | dt εV =

∫ 1

0

|Var[u]− Var[ũ] | dt, (5.22)

where ũ represents the approximative model by polynomial chaos expansion. In our example
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Figure 5.4: The L1 norm in time of the difference between polynomial approximations and the
exact model.

the true mean and variance are calculated analytically as

E[u] =
cosh(t)− 1

t
Var[u] =

cosh(2t)

t
− sinh(2t)

2t3
− cosh(2t)

2t4
+

2 cosh(t)

t4
.

Figure 5.4 compares four approaches: a quasi-Monte Carlo scheme using Hammersley samples
[31], labeled MC; two polynomial chaos expansions with pseudo-spectral projection and point
collocation for estimation of the coefficients, labeled PS and PC respectively; and the new
proposed method with the suggested variable transformation, labeled NM. The L1 error was
computed from 1000 evenly distributed sampling points over t ∈ [0, 1]. The figure shows that
all methods except the new proposed method has an error larger than 10−3 within the first 100
samples. On the other hand, the new proposed method reaches as low as 10−10 in the same
span.

The model problem in this section is quite simple. This is partially to exemplify the steps in
the algorithms and partially to demonstrate the impact of smooth and non-smooth mappings in
probability space. The next section deals with a physical application.

5.5 Application to Diffusion in Layered Media
We address single-phase fluid flow in porous, geological formations. The governing partial
differential equation is

∇ · (K∇φ) = 0, (5.23)

where φ is the pressure head and K is the permeability tensor, both of which are functions
of spatial position. In geological applications, one often views the medium as composed of
layers, arising from depositions of different types of sediments through different geological
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Figure 5.5: Sample medium with horizontal layers.

periods. The layers may therefore feature very different physical compositions and values of
K. A reasonable assumption is to let K be constant in each layer, and that it is sufficient to
distinguish between the permeability of flow parallel to the layer and perpendicular to the layer
(which means that the K tensor is diagonal in a coordinate system aligned with the layer).
The values of the elements in K between two neighboring layers can differ by many orders of
magnitude. We remark that the same mathematical model arises in other physical contexts as
well. For example, φ may be the temperature in a multi-layered solid material, and K the heat
conduction coefficient, which is taken to be constant in each layer.

To better understand why layered media pose difficulties for polynomial chaos expansions
in diffusion problems, we simplify and let φ depend on the vertical coordinate only. With the
z axis pointing upward and the x, y axes pointing in the horizontal directions, we consider a
medium consisting of m+ 1 horizontal, parallel layers. We further assume that φ is prescribed
at the bottom z = B and at the top z = H . The flow problem can then be reduced to the model

d

dz

(
K(z)

dφ

dz

)
= 0, φ(B) = φB, φ(H) = φH . (5.24)

We scale the problem for convenience by introducing the dimensionless variables

x =
z −B
H −B

, u =
φ− φB
φH − φB

, a =
K

maxz∈[B,H]K(z)
.

Clearly, x, u, and a vary between 0 and 1. The corresponding dimensionless boundary-value
problem reads

d

dx

(
a(x)

du

dx

)
= 0, u(0) = 0, u(1) = 1. (5.25)

The exact solution of (5.25) is found to be

u(x) =

∫ x
0

[a(τ)]−1dτ∫ 1

0
[a(τ)]−1dτ

. (5.26)

A model problem with this analytical insight is helpful to find remedies to decreased
convergence speed of polynomial chaos expansions.
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For the described layered medium, a(x) is a piecewise constant function with value ai in
layer i, recognized by x ∈ [`i, `i+1]. We can express the a(x) function as

a(x) =


a0 0 = `0 ≤ x < `1

a1 `1 ≤ x < `2
...

...

am lm ≤ x ≤ lm+1 = 1.

(5.27)

Figure 5.5 depicts a medium where m = 5. The analytical solution corresponding to (5.27)
becomes

u(x) =

∑i−1
j=0(`j+1 − `j)/aj + (x− `i)/ai∑m

j=0(`j+1 − `j)/aj
x ∈ [`i, `i+1). (5.28)

Media with Two Layers

The most simplified medium where polynomial chaos expansions lead to a decreased
convergence rate consists of two layers with individual uncertain permeabilities a0 and a1,
and an uncertain interval boundary location l0. This problem setting involves three random
variables: ξ = (ξ0, ξ1, ξ2) with ξ0 = a0, ξ1 = a1, and ξ2 = `1, as illustrated in Figure 5.6. We
assume that the permeability and thicknesses of the layers are completely independent, implying
that ξ0, ξ1, and ξ2 are stochastically independent.

If one applies standard polynomial chaos methods to this problem, the accuracy in computed
statistics versus the number of deterministic solutions of the forward model will be reduced by
an order of magnitude compared with what is to be expected. (Quantitative results appear
toward the end of the paper in Figure 5.7.) To repair the performance of the original polynomial
chaos method, we shall introduce a variable transformation, but first we need to understand the
details of the convergence problem.

The original mapping in probability space from ξ0, ξ1, and ξ2 to the response u becomes

u(ξ0, ξ1, ξ2;x) =

(
ξ2
ξ0

+
1− ξ2
ξ1

)−1{x/ξ0 x ∈ [0, ξ2)

ξ2/ξ0 + (x− ξ2)/ξ1 x ∈ [ξ2, 1]
(5.29)

For fixed ξ2 and x, only one of the formulas describes the entire mapping of ξ0 and ξ1 to u,
depending on x < ξ2 or x ≥ ξ2, and the mapping is a smooth rational function. On the other
hand, for fixed x, ξ0, and ξ1, we see that the mapping from ξ2 to u is piecewisely continuous and
smooth, but with a discontinuity in ∂u/∂ξ2 at ξ2 = x. The heart of the problem is this lack of
smoothness, arising when the internal boundary ξ2 = `1 is uncertain, while uncertain material
parameters with fixed layer geometries pose no problems.

Since the flux −au′ has to be continuous in this problem, the jump in a is compensated
by a jump in u′. The moving discontinuity of u′ implies a complicated mapping in probability
space, and hence a polynomial is a bad candidate for approximating this mapping. We shall
bring evidence to this assertion later in Figure 5.7.

The uncertain model parameters ξ = (ξ0, ξ1, ξ2) follow simple distributions that are popular
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Figure 5.6: The two-layer medium used for numerical investigations.

in engineering:

ξ0 ∼ Triangle(0.10, 0.15, 0.20) ξ1 ∼ Triangle(0.8, 0.9, 1.0) ξ2 ∼ Uniform(0.1, 0.9). (5.30)

The triangle distribution is defined as

pτ |a,b,c(τ | a, b, c) =
2

(b− a)(c− a)


τ − a τ ∈ [a, b)

c− τ τ ∈ [b, c)

0 τ /∈ [a, c)

,

where (a, b, c) are distribution parameters representing the lower bound, the peak, and the upper
bound of the distribution.

The challenge is to construct a transformation ζ = T (ξ) such that the reformulation of u(ξ)

in terms of u∗(ζ) creates a smooth mapping in probability space. The discontinuity is caused
by the integral from 0 to x of the discontinuous function a(x). If the solution of the integral was
used as a stochastic variable, there would be a linear dependence between the integrand and u
without any discontinuity. Following this idea, we can decompose the analytical form of the
solution in (5.29). For example it is possible to split it in two:

ζ0 =
ξ2
ξ0

+
1− ξ2
ξ1

ζ1 =

{
x
ξ0

x ∈ [0, ξ2)
ξ2
ξ0

+ x−ξ2
ξ1

x ∈ [ξ2, 1)
(5.31)

leading to the simple form

u∗(ζ) =
ζ1
ζ0
, (5.32)

which is a smooth function. Since both variables ζ0 and ζ1 can be expressed as a function of
ξ, they can be considered stochastically dependent. Our described framework for multivariate
polynomial chaos expansions with dependent variables can easily treat this case. But, unlike
the simpler problem described in Section 5.4, we here choose to estimate the raw statistical
moments numerically. We employ a 100th order Clenshaw-Curtis quadrature [32] using a full
tensor product rule to calculate the Fourier coefficients {ci}. The domain is split into smaller
domains which are integrated separately using a composite rule. Specifically, the domains are
split at the discontinuities in the derivative for both the triangle distributions and at the location
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x = ξ0.
For more complicated problems, an analytical form of the solution u as in (5.29) is

unavailable. Finding the correct transformation T can therefore be more challenging. However,
since the new methodology allows for flexible construction of transformations, it opens up for
experimenting with various choices of T . For example, in our problem formulation we know
the location of the discontinuity in the derivative of the solution u. This knowledge suggests
trying a function that has the discontinuity in the derivative at the same location. As an example,
we propose the use of the integral from 0 to x of a as an auxiliary variable:

A(x, ξ) =

∫ x

0

a(τ, ξ) dτ.

It is likely that u expressed as a function of A does not capture the uncertainty that is captured
with ξ. Therefore, the proposed transformation is combined with the original variables defined
in equation (5.30). However, it is possible to imagine that only a subset of the variables are
necessary to capture the uncertainty in u. To investigate if this is the case, we explore these
alternative transformations:

ζ0 = ξ0 ζ1 = ξ1 ζ2 = ξ2 ζ3 =

∫ x

0

a(τ, ξ) dτ (5.33)

ζ0 = ξ0 ζ1 = ξ1 ζ2 =

∫ x

0

a(τ, ξ) dτ (5.34)

ζ0 = ξ2 ζ1 =

∫ x

0

a(τ, ξ) dτ (5.35)

Observe that the last variable in each transformation depends on the former, making the
variables stochastically dependent. An interesting question is whether these transformations
are inferior to (5.31), which was based on analytical insight that is normally not available. The
answer to this question lies in Figure 5.7.

Figure 5.7 compares the performance of the four variable transformations with popular
and state-of-the-art methods. Seven curves are listed. The Monte Carlo method is denoted
MC. Because of the fluctuations in the method, the solution is averaged over 100 repeated
simulations using bootstrapping [33]. Classical point collocation and pseudo-spectral projection
in polynomial chaos expansions are denoted PC and PS, respectively. The former uses samples
from the Hammersley sequence, while the latter uses optimal Gaussian quadrature points where
pξ are weighing functions. The various proposed transformations listed in (5.31), (5.33), (5.34)
and (5.35) are denoted N1, N2, N3 and N4, respectively. All of these four methods use the
same samples as in the classical point collocation scheme. The figure shows the error in mean
and variance as defined in (5.22). The reference solution for the mean and variance is estimated
using a classical Monte Carlo scheme with 109 samples. The approximate mean and variance
in the polynomial chaos methods are calculated from (5.21).

Figure 5.7 also shows that all methods converge as the number of samples increase. For the
pseudo-spectral method, the results are on par with Monte Carlo, but not much better. The point
collocation method, on the other hand, performs much better, with an error that goes down to
10−3. The accuracy of our new methodology varies somewhat. The choice N3, which is based
on (5.35), fails to converge in variance. It illustrates that selecting the wrong transformation
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Figure 5.7: The absolute error plotted against the number of forward model samples in a
diffusion problem with two layers.

may result in a bad approximation, likely due to the model being under-parameterized. A better
selection is N4, which does as well as PC. For N1 and N2, the results are about the same. Both
cases are much better than the other alternatives and converges with an exponential rate.

Media with Three Layers

To illustrate that the method also works for multiple layers, we have increased the problem to
three layers. Here we designate the variables as follows:

ξ = (ξ0, ξ1, ξ2, ξ3, ξ4) = (a0, a1, a2, `1, `2),

with the distributions

ξ0 ∼ Triangle(0.10, 0.15, 0.20)

ξ1 ∼ Triangle(0.8, 0.9, 1.0)

ξ2 ∼ Triangle(0.10, 0.15, 0.20)

ξ3 ∼ Uniform(0.1, 0.45)

ξ4 ∼ Uniform(0.55, 0.9). (5.36)

The mapping in probability space from ξ to the response u becomes

u(ξ0, ξ1, ξ2, ξ3, ξ4) =

(
ξ3
ξ0

+
ξ4 − ξ3
ξ1

+
1− ξ4
ξ2

)−1
x
ξ0

x ∈ [0, ξ3)
ξ3
ξ0

+ x−ξ3
ξ1

x ∈ [ξ3, ξ4)
ξ3
ξ0

+ ξ4−ξ3
ξ1

+ x−ξ4
ξ2

x ∈ [ξ4, 1)

(5.37)
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An analog to “N1” in three layers would be to use the two auxiliary variables

ζ0 =
ξ3
ξ0

+
ξ4 − ξ3
ξ1

+
1− ξ4
ξ2

ζ1 =


x
ξ0

x ∈ [0, ξ3)
ξ3
ξ0

+ x−ξ3
ξ1

x ∈ [ξ3, ξ4)
ξ3
ξ0

+ ξ4−ξ3
ξ1

+ x−ξ4
ξ2

x ∈ [ξ4, 1)

Equivalently, we define N2, N3 and N4 as the following transformations:

ζ0 = ξ0 ζ1 = ξ1 ζ2 = ξ2 ζ3 = ξ3 ζ4 = ξ4 ζ5 =

∫ x

0

a(τ, ξ) dτ (5.38)

ζ0 = ξ0 ζ1 = ξ1 ζ2 = ξ2 ζ3 =

∫ x

0

a(τ, ξ) dτ (5.39)

ζ0 = ξ3 ζ1 = ξ4 ζ2 =

∫ x

0

a(τ, ξ) dτ (5.40)

The rest of the problem is the same as before.
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Figure 5.8: The absolute error plotted against the number of forward model samples in a
diffusion problem with three layers.

In Figure 5.8 the error is plotted for the three-layered problem. The results are very similar
to the two-layered problem. Here neither N3 nor N4, defined in (5.39) and (5.40), converge
in variance. The methods all converge in mean, but with error in the same order as the point
collocation method (PC). The pseudo-spectral method (PS) converges, but more slowly than
N1 and N2. As before, the results from N1 and N2 are on the same order of magnitude, with
the consistently lowest error estimate among the tested methods. Both examples show that the
convergence rate in a non-smooth problem can be recovered to an exponential rate. The reason
for this difference in convergence rate between N3 and N4, and N1 and N2 is likely due to
under-parameterization of the form two.
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5.6 Conclusion
This paper has presented a new framework for constructing polynomial chaos expansions
for stochastically dependent variables. Besides being able to handle problems where input
variables are dependent, the framework may have even more important applications when
variable transformations are used to restore the fast exponential convergence of polynomial
chaos expansions. The convergence rate can significantly detoriate when the mapping from
uncertain input parameters to a response contains discontinuities. One difficult case, pointed out
in this paper, is when the location of the discontinuities varies with the uncertain parameters.
The purpose of the variable transformation is to obtain a smooth mapping in the new probability
space. Very often, variable transformations involve auxiliary dependent stochastic variables.
Finding the right variable transformation can be a challenge in a new problem, but for the
diffusion problem in multi-layered media considered herein, the improvement in convergence
was not significantly sensitive to the specific variant of the transformation. However, it is
necessary to utilize mathematical and physical insight in the problem at hand to identify the
non-smoothness and construct effective variable transformations. Fortunately, the proposed
framework allows to experiment with multiple transformations without any further evaluations
of the forward model.

The new, simple methodology for constructing orthogonal polynomials has accuracy and
stability on par with the most accurate method available: the three-term recursion formula
(TTR). The error in our method flattens out at a certain threshold, while the error in TTR
continues to grow. This event happens at such a high polynomial order M that the problem
is not of much concern in most applications. When it comes to the error’s sensitivity to the
number of dimensions D, TTR is a little more resiliant, but insignificant when compared to the
error introduced from increasing the polynomial order.

The new methodology has been tested on a one-dimensional diffusion problem with multiple
domains with uncertainties in material properties and domain boundaries. Using the structure
of the analytical solution in the variable transformation results in much faster convergence.
Other types of transformations where the discontinuity is integrated work almost equally well,
provided we keep some of the original parameters as components in the transformed variables.
The main conclusion is that the type of variable transformation is not critical as long as the
mapping from ζ to u∗ in the new probability space is smooth.

The framework for constructing orthogonal expansions in dependent variables works also
for 2D and 3D problems in physical space. However, effective variable transformations must be
further investigated through selected cases. In this paper, we have worked with error measures
based on the true error. Finding appropriate error measures is much more difficult in 2D and
3D problems with discontinuities.

All the methodologies described in this paper are available in the open source package
Chaospy [34, 35], which was used for all computations.
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