
Scalable Heterogeneous
Supercomputing: Programming

Methodologies and Automated Code
Generation

by

Mohammed Sourouri

Thesis submitted for the degree of Philosophiae Doctor
Department of Informatics
Faculty of Mathematics and Natural Sciences
University of Oslo
January 2016





Abstract

Manycore processors such as Graphics Processing Units (GPUs) and Xeon Phis have

remarkable computational capabilities and energy efficiency, making these units an at-

tractive alternative to conventional CPUs for general-purpose computations. The distinct

advantages of manycore processors have been quickly adopted to modern heterogeneous

supercomputers, where each node is equipped with manycore processors in addition to

CPUs.

This thesis takes aim at developing methodologies for efficient programming of GPU

clusters, from a single compute node equipped with multiple GPUs that share the same

PCIe bus, to large supercomputers involving thousands of GPUs connected by a high-speed

network. The former configuration represents a peek into future node architecture of GPU

clusters, where each compute node will be densely populated with GPUs. For this type of

configuration, intra-node communication will play a more dominant role. We present pro-

gramming techniques specifically designed to handle intra-node communication between

multiple GPUs more effectively. For supercomputers involving multiple nodes, we have

developed an automated code generator that delivers good weak scalability on thousands

of GPUs.

While GPUs are improving rapidly, they are still not general-purpose, and depend on

CPUs to act as their host. Consequently, GPU clusters often feature powerful multi-core

CPUs in addition to GPUs. Despite the presence of CPUs, the focal point of many GPU

applications has so far been on performing computations exclusively on the GPUs, keeping

CPUs sidelined. However, as CPUs continue to advance, they have become too powerful

to ignore. This gives rise to heterogeneous computing where CPUs and GPUs jointly take

part in the computations.

The potentially achievable performance of heterogeneous computing codes can be very

large, but requires careful attention to many programming details. We explore resource-

efficient programming methodologies for heterogeneous computing where the CPU is an

integral part of the computations. The experiments conducted demonstrate that by careful

workload-partitioning and communication orchestration, our heterogeneous computing

strategy outperforms a similar GPU-only approach on structured grid and unstructured

grids.

Although our work demonstrates the benefit of heterogeneous computing, the painstak-

ing programming effort required is holding back its wider adoption. We address this

issue through the development and implementation of a programming model and source-

to-source compiler called Panda, which automatically parallelizes serial 3D stencil codes

originally written in C to heterogeneous CPU+GPU code for execution on GPU clusters.

We have used two applications to assess the performance of our framework. Experimental
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results show that the Panda-generated code is able to realize up to 90% of the performance

of corresponding handwritten heterogeneous CPU+GPU implementations, while always

outperforming the handwritten GPU-only implementations.

Compared to the more established GPU-only approach, the methodologies presented

in this thesis contribute to harnessing the computational powers of GPU clusters in a

more resource-efficient way that can substantially accelerate simulations. Moreover,

by providing a user-friendly code generation tool, the tedious and error-prone process

associated with programming GPU clusters is alleviated, so that computational scientists

can concentrate on the science instead of code development.
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Introduction

Figure 1: The Titan supercomputer consists of 18688 compute nodes and was used in connection with
Paper IV. The total compute capacity of the machine is 27 Petaflops. Image courtesy of Oak Ridge National

Laboratory.

Mesh based simulations constitute one important motif of High Performance Comput-

ing (HPC) and are used in a wide range of scientific applications such as earthquake

simulations [75], weather prediction [66], new materials discovery [57], and cardiac

modeling [28]. For many computational scientists and engineers, computer simulations

have become an irreplaceable tool, as they offer a fast, safe and an affordable way of

conducting scientific experiments.

A common trait for many scientific applications is the need for more computing power

to solve larger problems or to solve a problem faster. The continuous need for more

computing power is by and large the main driving force behind the HPC market today.

Historically, the most traditional way of providing computational scientists with more

processing power has been by the release of newer processing units with higher computing

capacity, that is, units capable of delivering more Floating-Point Operations Per Second

(FLOPS). Occasionally, better and faster algorithms have also played a vital role.

The primary source of greater processing capacity in processing units has been attributed
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INTRODUCTION

to Moore’s law [24], which states that the number of transistors roughly doubles every

two years. An important detail in the evolutionary history of processing units is the

slower improvement rate of memory bandwidth. The disparity between a processing

unit’s processing power and memory bandwidth, better known as the memory wall [70],

is a growing concern for many computational scientists. Because applications that are

limited by the memory bandwidth are prevented from fully utilizing the system’s compute

capacity, this leads to a waste of resources. In general, applications that are limited by

the system’s memory bandwidth are categorized as memory bound applications, while

applications that are bound by the system’s processing power are called compute-bound

applications [72]. Prime examples of the former are stencil computations, while dense

matrix multiplication serves as a good example of the latter. This thesis concentrates

solely on mesh-based applications that are normally memory bound.

When scientific applications solve large problems that are too big to fit in the memory

of a single machine or demand more processing power than a single machine can deliver

or both, the application is usually written for clusters or very large clusters called super-

computers. Both of these systems are composed of multiple computers, called compute

nodes, connected by a high-speed interconnect to aggregate the computational power and

memories of each individual compute node.

Supercomputers have predominantly been homogeneous systems powered by conven-

tional CPUs. However, we have lately witnessed a shift towards heterogeneous clusters.

The nodes of these systems are equipped with manycore processors such as Graphics

Processing Units (GPUs) or Xeon Phis, in addition to CPUs. By looking at the latest Top

500 list [63] of supercomputers published in June 2015, it is evident that the interest in

heterogeneous systems is growing. For example, on the November 2009 list, only two

of the systems were heterogeneous, while on the latest list, 88 systems are classified as

heterogeneous systems. Figure 1 shows a picture of the Titan supercomputer, which is

a heterogeneous supercomputer where each compute node is equipped with an NVIDIA

Tesla K20x GPU and one 16-core AMD Opteron 6274 CPU. Titan consists of more than

18600 compute nodes and is at the moment of writing the second fastest supercomputer

in the world [63].

One possible explanation for the increasing interest in heterogeneous clusters might be

that manycore processors, such as GPUs, deliver higher theoretical rates of FLOPS with

a greater power-efficiency than traditional multi-core CPUs. High FLOPS performance

is regarded as a key attribute in many fields of scientific computing, especially with

respect to numerical applications. The focus of this thesis is on mesh-based simulations

on heterogeneous supercomputers equipped with GPUs developed by NVIDIA.

Currently, the most powerful supercomputers are Petascale systems, which means that

they are capable of performing more than one quadrillion (1015) FLOPs. Moreover, the

largest and the fastest supercomputers today are distributed memory systems intercon-

nected by ultra-fast Infiniband technology [63]. In distributed memory systems, the

different compute nodes are physically separated by the network so access to each other’s

memory requires explicit inter-node communication.
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1. DISTRIBUTED MEMORY PARALLELIZATION INTRODUCTION

1 Distributed Memory Parallelization

The de facto programming model for scientific applications that targets distributed memory

systems is message passing. The Message Passing Interface (MPI) [34] is a standardized

library interface that developers are encouraged to follow. Examples of well-known,

vendor neutral MPI libraries are MVAPICH2 [37] and OpenMPI [45].

Compared to sequential applications, writing MPI applications is regarded a challenge

for many computational scientists, as it introduces the programmer to a parallel program-

ming model called Single Program Multiple Data (SPMD), where the same application

is executed on unique MPI processes, but with different data [11]. Other complicating

details of MPI programming are domain decomposition, process layout, data sharing and

explicit communication between different processes, which require calls to MPI routines.

HPC applications are judged by their ability to scale with the computing power provided

by the cluster they are executed on. The two most common scaling methodologies in HPC

are strong and weak scaling. In strong scaling studies the emphasis is generally on the

solution time. Hence, the problem size is kept fixed, and more computational resources

are added to obtain a faster solution time. Weak scaling studies are a type of experiments

where the problem size is increased proportionally with the number of compute resources

because the application can benefit by increasing the problem size and/or resolution.

Under both of the scaling studies, communication becomes quickly a bottleneck as the

number of compute nodes taking part in the computations grows. Usually, this is because

the speed of communication is much slower than the speed of computations, but other

reasons such as sequential communication patterns and network traffic congestions could

also lead to poor scalability.

Hiding communication is considered by many as one of the most challenging aspects of

developing MPI applications. The most widespread way of hiding latency overheads is by

overlapping computations and communication [39]. Typically, this is done by adding a

layer of ghost cells or halo points [25] around the problem domain so that the boundary

points are separated from the interior points. Before computation of the interior points

is started, the halo boundary points are computed first. During the computation of the

interior points, halo boundary data are exchanged between neighboring domains using

MPI routines such as MPI_Irecv and MPI_Isend. However, a much used strategy to

improve performance is by using non-blocking MPI routines, such as MPI_Irecv and

MPI_Isend, to build efficient pipelines. Other latency-hiding techniques include message

aggregation [53], data compression [53] and virtualization [18], but are outside the scope

of this thesis.

2 GPU Programming using CUDA

The increasing popularity of GPU-based computing poses a great challenge for computa-

tional scientists because programming GPUs is radically different than programming CPUs.

This is primarily due to GPUs are complicated to program than CPUs is primarily due to

the inherently different hardware architectures. For example, CPUs and GPUs differ in

terms of how memory is handled. GPUs are designed to prioritize memory bandwidth

over latency since latency can be hidden by parallel computation. CPUs, however, are
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INTRODUCTION 3. HETEROGENEOUS CPU+GPU COMPUTING

designed around large cache coherent memories to increase (single threaded) application

performance. GPUs are not general-purpose processing units and must be installed in

a system with a CPU that can act as the host. NVIDIA GPUs are programmed using the

CUDA [40] programming API.

CUDA exposes the developer to a parallel programming model based on SPMD [7].

Moreover, in CUDA lightweight processes called threads are organized into thread blocks,

which are used to carry out computations in special functions called kernels. Every thread

block launches the same kernel, but each thread within a thread block processes its

designated data elements. However, before the GPU can process the data, the programmer

must explicitly transfer data from the host CPU to the GPU across the slow PCIe bus

because GPUs and CPUs do not share the same memory space. The CUDA API provides

functions for realizing such data transfers. Furthermore, independent of the direction,

each and every transfer is incurred with a performance penalty when data is moved across

the high-latency PCIe bus.

The descriptions unveiled above highlight only some of the details that require a pro-

grammer’s attention. Although a small number of programmers manage to overcome the

obstacles of GPU programming, realizing high performance is possibly the most challeng-

ing part of GPU programming, which sometimes requires that existing algorithms are

redesigned so that they better map to the GPU’s architecture [10, 13, 14, 26, 32, 54, 71].

Unless the algorithms are reworked, CPUs could potentially outperform GPUs [8, 38].

GPUs are designed to exhibit parallelism by incorporating thousands of simplistic cores

operating at low frequencies < 800 MHz. CPUs on the other hand incorporate typically

8-18 more powerful cores running at frequency close to 3 GHz. The inclusion of thousands

of cores demands a memory bandwidth that is capable of handling the traffic generated

by all of the cores. In order to cope with the increased memory traffic, GPUs utilize

faster and more expensive GDDR5 memory, while CPUs use the much slower and less

expensive DDR3/DDR4 technology. Because GDDR5 is more expensive, GPUs come with

a very limited memory capacity. A typical compute node today is equipped with 128-256

GB of DDR3/DDR4 CPU memory, while the fastest GPUs are equipped with only 12 GB

of memory. Hence, the limited memory capacity offered by GPUs becomes quickly a

bottleneck when performing simulations involving large datasets/compute heavy kernels.

However, by distributing a simulation across multiple GPUs, computational scientists are

able to access more memory and computational capacity.

Multi-GPU programming follows the same principles as ordinary multi-CPU codes, that is,

MPI is used for inter-node communication and ghost cells are used to hide communication

overheads. One important difference is that in multi-GPU applications, computations

are typically executed by CUDA kernels on the GPU and not on the CPU. The role of the

CPU in multi-GPU applications is mostly to perform administrative tasks such as intra

and inter-node communication. Since the computations are done on the GPU, the CPU is

mostly idling and thus left underutilized.
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3. HETEROGENEOUS CPU+GPU COMPUTING INTRODUCTION

Processing Unit 2× Intel Xeon E5-2680 Nvidia Tesla K20

Peak DP, GFLOPs 345.6 1170

Peak BW [GB/s] 102.4 208

STREAM [GB/s] 77 151

Table 1: An overview of key hardware specifications of the GPU-equipped compute nodes of Stampede.

3 Heterogeneous CPU+GPU Computing

One recent development in scientific computing has focused on combining CPUs and

manycore processors for improved performance and energy efficiency [36]. The main

purpose of a CPU+GPU implementation is to fully utilize the entire pool of processing units

to solve a given problem as fast as possible. Table 1 displays the specifications for the GPU

and the CPUs installed in some of the compute nodes of the Stampede [62] supercomputer.

Judging by the performance numbers shown in Table 1, the GPU’s theoretical peak FLOPS

rate is approximately 3.4× higher than the two CPUs’. The realistic memory bandwidth

obtained using the STREAM benchmark [33] is merely 1.94× higher. We concentrate on

memory bound applications and therefore on the memory bandwidth numbers.

In short, the numbers from Table 1 tell us that the GPU is close to 2× faster than the two

CPUs. So the workload division must reflect this performance difference. If the workload

division is not appropriate, the application will most likely run into workload balancing

issues that will degrade the performance because the fast GPU will continuously wait for

the CPU. Thus, load balancing is an essential component of any heterogeneous CPU+GPU

implementation.

There are multiple ways to load balance heterogeneous CPU-GPU implementations.

Previous attempts at developing prediction models for heterogeneous CPU+GPU codes

include [3, 6, 55, 65, 67] both static and dynamic load balancing have been proposed in

the past.

Static load balancing means that the workload is partitioned before the computations.

Typically, the entire or a small portion of the application is profiled first. Then, the

acquired profiling data is used as a guiding measure to determine the workload division.

There are significant advantages with static load balancing. Since the load balancing

is performed before the actual computation takes place, the overhead associated with

this strategy is virtually non-existent. The disadvantage of static load balancing is that it

cannot be applied to computational problems in which the optimum workload division

cannot be determined by profiling or where the optimum workload division varies during

the execution.

Dynamic load balancing means that a special load balancer or scheduler automatically

adjusts the workload division between the CPU and the GPU during the computation. This

is especially useful for volatile workloads. Dynamic load balancers are usually domain

specific, and can thus be difficult to generalize. The main disadvantage of dynamic load

balancing is the relatively high overhead arising from the need to continuously reevaluate

and adjust the workload division. The workload of the applications that we focus on do

not change during execution, therefore we consider a static load balancing scheme as the

most viable approach
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In connection with this thesis, we have developed a simple static model for predicting

the CPU’s workload ratio for memory-bound applications. As opposed to other models [3,

6, 55, 65, 67] our model is not dependent on instrumenting, sampling or profiling of

the target application on multiple nodes. The only dependency introduced in our model

is the STREAM memory benchmark, which is open-source software that can be freely

downloaded. It is only necessary to run the STREAM memory benchmark on a single

compute node. We relate the workload ratio of a given processing unit to the its bandwidth

and divide it by the aggregated memory bandwidth of all the processing units, as shown

in (1).

C PUBw

(GPUBw+C PUBw)
(1)

In (1), C PUBw and GPUBw represent the actual memory bandwidths obtained using

the STREAM memory benchmark. As an illustrative example, we use results from Table 1

and insert these numbers into (1) to get an appropriate CPU workload division ratio,

which is 33%. Additionally, if the peak theoretical results from Table 1 were used, the

suggested CPU workload division ratio would be 32%, which could leave the CPUs slightly

underutilized. However, achieving the peak theoretical memory bandwidth is a naive

assumption, which is similar to what other researchers have observed [27, 72]. Thus, for

more accurate predictions, we use the realistic memory bandwidth obtained using the

STREAM memory benchmark.

4 A Framework for Heterogeneous CPU+GPU Computing

It is hypothesized that the collaboration of CPUs and manycore processors will play

an even more important role in near-future, especially as future HPC will adopt fused

CPU+manycore processor chips [1, 36]. A number of studies have demonstrated the benefit

of concurrent CPU+GPU execution in for example stencil computations [28, 49, 57, 65, 73].

Despite the advantages of this approach, the number of tools that can reap the benefit of

this strategy is rather limited.

Many scientists already find code development for a single GPU challenging, in particu-

larly an entire cluster of CPUs+GPUs. This challenge is further complicated by the lack

of a high-level unified programming model that enables developers to exploit different

levels of parallelism. Despite the proliferation of programming models such as CUDA

and OpenCL [23], developing clean code with high performance in a productive manner

remains a big task. The lack of productivity is tightly coupled with the fact that current

programming models require low-level knowledge of the underlying architecture. This

type of knowledge is often difficult to grasp for computational scientists. Moreover, current

programming models also expose the developer to far too many complex programming

details.

Another complexity that is often neglected is portability. Developers face at least two

challenges with respect to portability. The first challenge is tied to new GPU architec-

tures. GPUs, like CPUs, are also updated at the rate of Moore’s law, resulting in a new

generation of architecture every two years. Traditionally, with every new generation of

architecture, certain architecture-specific optimizations become obsolete. The second
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daunting challenge arises when developers try to port code between different types of

clusters e.g. between two heterogeneous clusters using different types of GPUs or even

worse, between a homogeneous and a heterogeneous cluster.

The difficulties described above have given rise to a variety of approaches such as

compiler directives, libraries and Domain Specific Languages (DSLs). One developer

friendly approach, advocated by some experts, is the use of compiler directives to guide

the compiler in generating parallelized code. Thanks to the backing of numerous vendors,

OpenACC [43] and OpenMP [44] have rapidly established themselves as the most popular

solutions for directive-based code development. Despite delivering acceptable perfor-

mance [31, 69] in a broad range of applications, neither of these two solutions is capable

of producing code that can target an entirely homogeneous or an entirely heterogeneous

cluster. As a result, developers must write code that deals with MPI.

DSLs constitute a compromise between language generality and performance. De-

pending on the framework, DSLs may support distributed memory systems. Since DSLs’

knowledge are limited to a particular domain, they can leverage on this knowledge to

deliver excellent performance. In contrary to a directive-based approach, DSLs [17, 74]

require that both novice and expert programmers invest a considerable amount of time and

effort in code development. A similar investment in code redevelopment is also required,

if the programmer already has a parallel or a serial implementation.

Unlike DSLs, but like directives, libraries [56] offer the opportunity to stay within the

boundaries of a general purpose programming language, but at the expense of performance.

The common trait of libraries and DSLs is that they both require explicit changes to the

code, which can easily cause programmers unnecessary difficulties. Portability is another

issue that libraries often fail to address, as they are traditionally optimized for a specific

architecture or cluster.

The different programming models presented so far highlight the lack of a developer-

friendly model that is capable of realizing high-performance on modern heterogeneous

clusters using a general purpose programming language. This is especially a challenge for

domain scientists who wish to write code that can harness the computational provided by

heterogeneous clusters.

5 Summary of papers

During the course of this PhD project, two papers were published in international peer-

reviewed conferences [58, 59], one in an international peer-reviewed journal [28] and

another one is submitted to an international peer-reviewed conference.

The focal point of this thesis has been a bottom-up approach to heterogeneous computing

on GPU clusters. Paper I describes an effective communication scheme for 3D stencil

computations on compute nodes equipped with multiple GPUs. Papers II and III detail

advanced hybrid programming models for implementing scalable HPC applications on

GPU clusters. The hybrid programming model outlined in Papers II and III consists of

MPI, CUDA and OpenMP, making it possible to combine the computing power of CPUs

and GPUs to achieve high performance on both structured and unstructured grids. Paper

IV presents Panda, a novel programming model and its adherent compiler framework for
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automated generation of 3D stencil codes on structured grids incorporating the hybrid

programming model detailed in Paper II and III. Details regarding the computational

resources used in the thesis are presented in Appendix I.

5.1 Paper I: Effective Multi-GPU Communication Using Multiple CUDA

Streams and Threads

Future heterogeneous supercomputers such as ORNL Summit [42] and ANL Aurora [2]

will feature compute nodes that are equipped with multiple GPUs or Xeon Phis. Installing

multiple devices per node has advantages with respect to space and energy. We are already

witnessing a shift towards this architectural change. For example, the world’s current No. 1

supercomputer, Tianhe-2 (see [63]), is already equipped with three Xeon Phi coprocessors

on each node.

The most widespread method for developing HPC code with multiple GPUs per node

in mind is by spawning a unique MPI process for each GPU. The clear advantage of this

approach is versatility, since the same code will work flawlessly regardless of the number

of devices installed per node. However, in this approach, intra-node and inter-node

communication are not differentiated and as a result unnecessary overhead is induced

due to ineffective and redundant memory copies between the GPU, CPU and the MPI

communication subsystem [21], and the creation of a process context for each GPU [48].

When an MPI process is controlling a GPU, it is encapsulated by the process’ context,

which means that e.g. two neighboring GPUs on the same node cannot exchange data

directly unless message-passing or inter process communication is practiced. On the other

hand, when one or more threads are controlling one or multiple GPUs, data can be more

directly exchanged between the different GPUs using functions from the standard CUDA

API.

This paper introduces an efficient intra-node communication scheme designed for

computations on compute nodes that are equipped with multiple GPUs. In the presented

scheme, the domain is decomposed, whilst one OpenMP thread is spawned to control each

GPU, as opposed to one MPI process per GPU. The benefit of using threads is that the GPUs

can effectively communicate using shared-memory and the ability to perform concurrent

kernel launches. Since the GPUs stay within the same process context, the GPUs can

benefit from fast intra-node GPUDirect v2 Peer-to-Peer [41], which is not possible if MPI

is used.

Another optimization, called multi-streaming, is used to increase performance by placing

the CUDA streams, which are responsible for sending computed halo boundaries and

unpacking the halo boundaries, in separate OpenMP threads. In addition to the thread

responsible for controlling the GPU, two additional threads are spawned per GPU, one

for sending computed halo boundaries and one for receiving computed halo boundaries.

The benefit of this strategy is that CUDA kernels responsible for unpacking halo boundary

data can start immediately after the data from a neighboring device has been received.

On the contrary, if only one thread was used to control multiple GPUs, the running thread

could be blocked by for example another function, which would prevent the CUDA unpack

kernels from being launched.

The performance of the proposed scheme is compared to a state-of-the-art MPI imple-
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on a CPU are now offloaded to the GPU, leaving the powerful CPUs underutilized.

In Paper II, two different CPU+GPU implementation techniques are developed and

compared with a corresponding GPU-only implementation where the computations are

performed exclusively on the GPU. The implementations developed employ a workload-

partitioning strategy, which enables concurrent CPU+GPU execution to increase perfor-

mance by exploiting the CPU’s strength.

The first CPU+GPU implementation is a naive version that augments an existing state-

of-the-art multi-GPU application [5, 35, 46] based on MPI and CUDA, by performing

computations on the CPU using OpenMP. More specifically, the domain is decomposed,

followed by a separation of halo boundary and interior points on each GPU. By process-

ing the interior points and the boundary points separately in different CUDA streams,

communication can be overlapped with computation.

Similar to state-of-the-art multi-GPU applications, asynchronous MPI routines are posted

at the very beginning to build efficient communication pipelines, followed by CUDA kernel

launches on the GPU. The computations on the CPU can only start once the different

CUDA kernels have been launched. The naive implementation trades ease of use with

only moderate speedups compared to the GPU-only version. The main drawback of this

version stems from its inability to overlap CPU+GPU computations with inter-node MPI

communication. Although asynchronous CUDA routines are used to ensure that intra-node

communication is overlapped, inter-node communication is rarely overlapped since CUDA

kernel launches and CUDA data transfers can not be launched because the CPU is busy

computing. For example, the unpacking of halo boundary data can not start on the GPU

until the CPU has completed the computations of the interior points.

The naive implementation inability to overlap CPU+GPU computations with commu-

nication is addressed in an improved implementation called nested. OpenMP’s nested

parallelism capability is used to separate computations of the interior points and inter-node

communication as distinct tasks. Moreover, two different thread groups are then created

to concurrently process the different tasks. The first thread group is responsible for MPI

communication, launching CUDA kernels and computations of halo boundaries on the

CPU. Furthermore, the second group is dedicated to computing the interior points on the

CPU.

One of the challenges that developers are facing when dealing with CPU+GPU codes is

to find the optimal workload division ratio for the processing units, that is, the appropriate

compute portion that gives the highest performance. Paper II presents a performance

model for predicting the load balance between the CPU and the GPU in memory bound

applications. With the aid of the STREAM memory benchmark [33] the realistic mem-

ory bandwidth of each processing unit is surveyed. The obtained memory bandwidth

results are then used to determine the CPU workload ratio by dividing the CPU’s memory

bandwidth by the total aggregated bandwidth of the CPU and the GPU.

Strong and weak scaling experiments on the Stampede [62] and the Wilkes [64] clusters

were conducted to assess the performance of the two implementations. Additionally, the

results were compared to a corresponding handwritten GPU-only implementation. Both

of the proposed implementation strategies outperformed the GPU-only implementation

on the two clusters. In order to evaluate the accuracy of our performance model, a series

of CPU workload sensitivity experiments were conducted by varying the CPU’s workload
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ratio. The results from this experiment aligned well with the results predicted by our

performance model.

Despite the accuracy of our performance model, projecting a perfect workload division

ratio for CPU+GPU codes remains a complicated matter because the workload ratio can

be very sensitive to various parameters such as problem size, performance difference

between the processing units, etc. Another important finding of this experiment is that

a CPU workload ratio that is too high will degrade the performance, but a too low CPU

workload ratio is acceptable. In other words, in situations where the CPU workload can

not be predicted accurately, it is better to lower the predicted inaccurate CPU workload.

5.3 Paper III: Scalable Heterogeneous CPU-GPU Computations for

Unstructured Tetrahedral Meshes

(a) Side view of the mesh (b) Inside view of the mesh

Figure 3: The mesh used in an unpublished version of Paper III, models a healthy male human heart

acquired by MRI. Image courtesy of Johannes Langguth.

Paper III investigates heterogeneous CPU+GPU computations on an unstructured tetra-

hedral mesh by solving the diffusion equation using a cell-centered Finite Volume Method.

The tetrahedral mesh representing a healthy male human heart served as a test instance,

consisting of 115 million tetrahedrons. The mesh is illustrated in Figure 3. Additionally,

some best practices for developing heterogeneous CPU+GPU codes that can be of help to

other scientists are also presented.

We give detailed advice including how to handle multiple GPUs per node, how the

different tasks on the CPU should be programmed and how to statically adjust the CPU

workload ratio in conjunction with an increasing number of GPUs per node.

The methodologies and ideas presented in Paper III are similar to those presented

in Paper II, but applied to another scientific domain. Moreover, if a compute node is

equipped with multiple GPUs per node, the technique from Paper I, where one CPU thread

is created for each GPU is used. A stiff challenge that many computational scientists

face when working on unstructured meshes arises from indirect and irregular memory

accesses. The irregular nature of the problem also poses a challenge with respect to
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workload-partitioning, load balancing and the inherently more complex communication

pattern. Another complicating factor with the irregular accesses is that they dramatically

reduce the computational intensity, which quickly limits the scalability because of a low

compute-to-communication ratio.

Both a heterogeneous CPU+GPU and a corresponding GPU-only implementation were

investigated on the Stampede [62] and Wilkes [64] clusters using up to 128 GPUs. A

homogeneous CPU-only version was also implemented to better assess the CPU’s per-

formance, and thus its contribution. Additionally, to establish an upper bound of the

achievable performance, the MPI calls were commented out so that both inter and intra-

node communication were disabled. Before the experiments were conducted, the CPU

workload ratio was computed statically by using the performance model presented in

Paper II.

Strong scaling experiments on 128 nodes of Stampede showed that the heterogeneous

CPU+GPU implementation consistently outperformed the GPU-only implementation, while

realizing 95% of the upper bound. Similar results were also observed for 64 nodes on the

Wilkes cluster when a single GPU was used per node. However, when both GPUs on each

Wilkes node were used, the GPU-only implementation was faster than the heterogeneous

CPU+GPU implementation. In the dual GPU configuration, one MPI process was spawned

for each GPU. A consequence of this process layout was that the number of available CPU

cores was divided equally between the two MPI processes, which significantly weakened

the CPU’s contribution.

Our investigations showed that when both GPUs on each Wilkes node were used, the

access to fewer CPU cores and higher intra-node communication overhead became the

performance limiter. Like in Paper II, the workload ratio predicted by the performance

model was within the vicinity of the observed best results. Similarly, the experimental

performance results presented in Paper III validate the viability of heterogeneous CPU+GPU

computing even on unstructured grids.

5.4 Paper IV: Panda: A Compiler Framework for Concurrent CPU+GPU

Execution of 3D Stencil Computations on GPU-accelerated Super-

computers

A distinct drawback of the heterogeneous CPU+GPU computing technique demonstrated

in Papers II and III is the tedious and often error-prone implementation process associ-

ated with it. Heterogeneous CPU+GPU codes require that the same computation and

communication functions are replicated on both of the processing units. In other words,

the same functions on the CPU must be implemented for the GPU and vice versa. Another

complicating factor is the complex intra-node communication that takes places between

the two processing units and the workload-partitioning strategy employed to divide the

computational workload between the CPU and the GPU. This partitioning requires careful

attention to many programming details.

Paper IV introduces a novel programming model and a domain-specific source-to-

source compiler called Panda, which automatically parallelizes 3D stencil codes written

in sequential C to a heterogeneous CPU+GPU form for execution on GPU clusters. The

programming model provides a set of new compiler directives that serves as an interface,
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(a) t = 100 (b) t = 200 (c) t = 300

(d) t = 400 (e) t = 500 (f) t = 600

Figure 4: The Cardiac Electrophysiology Simulator visualized at different time steps, t. The figures show

how electrical signals propagate through the cardiac tissue and create spiral shaped patterns.

which lets the user annotate parts of a serial C code that deal with time consuming

3D stencil computations. The annotations implicitly capture parallelism that guides the

compiler to perform appropriate transformations for auto-generation of CPU+GPU code.

Moreover, by keeping the number of directives to a minimum, the Panda programming

model offers not only a simple, but yet a highly user-friendly interface that promotes

productivity. Furthermore, general-purpose compilers that do not implement Panda

directives will simply ignore them and as a result, users only need to maintain a single

code base for their sequential and their parallel code.

The Panda framework is implemented in C++ using the ROSE [29] compiler infras-

tructure and targets 3D stencils. Furthermore, the Panda framework employs a modular

design where the different parts are compartmentalized. An overview of the Panda source-

to-source compiler is illustrated in Figure 5. For brevity, several modules are excluded

from Figure 5.

The Directive Manager module ensures that the input source file is correctly anno-

tated. In addition, the role of the Directive Manager module is to extract information

about the user specified compute arrays and their sizes. Based on the extracted information

a Partitioner module will decompose the domain into smaller cuboids. Furthermore, a

special Stencil Analyzer module will then analyze the annotated loop nests and search

for nearest neighbor compute patterns. The result of the Stencil Analyzer module is

then written into a Stencil object that is passed to the different generator modules that
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ignore the computational power of CPU and exclusively offload computations to the GPU.

Panda’s area of operation is currently limited to stencil computations on arrays that are

logically represented as 3D. Moreover, it is also assumed that the annotated compute loops

are parallelizable in such a way that the computed values can be updated concurrently.

The narrowed domain of operation makes it possible to carry out effective optimizations

at the expense of generality.

6 Discussion

The programming methodology presented in Paper I highlights intra-node communication

bottlenecks that arise within a compute node equipped with multiple GPUs. San Diego

Supercomputer Center’s latest HPC system, Comet [52], is an example of a Petascale

machine that adopts this node configuration. Future systems such as ORNL Summit [42]

indicate that this trend will continue. On the basis of the experimental results presented in

Paper I, we believe that intra-node communication and the complex interactions between

multiple GPUs per node will play an important role in both current and future systems.

Hence, extending the methodology presented in Paper I could be worth pursuing.

A clear limitation with the programming methodology presented in Paper I is that it is

currently limited to GPUs that are located on the same node. In other words, inter-node

communication between multiple nodes equipped with multiple GPUs is not taken into

consideration. An obvious extension would therefore be to have an MPI process wrap

the programming technique presented in Paper I so that inter-node communication is

realized.

In the context of heterogeneous CPU+GPU computations, the use of multiple threads

to control each GPU, such as in Paper I could possibly impede the CPU’s performance.

An important finding in Papers II and III was that the number of CPU threads spent

on computation was crucial for achieving high performance. Hence, it could be worth

pursuing the use of logical threads such as Intel Hyper-Threading [19] technology as an

alternative to threads that are each mapped to a physical CPU core. We are also aware

that later CUDA versions now support non-blocking CUDA events, which could potentially

mimic some of the functionality of the methodology presented in Paper I. However, the

use of CUDA events comes at the expense of increased code complexity and reduced

code readability because CUDA events require calls to at least three additional CUDA

functions. Moreover, the use of CUDA events does not automatically address issues such

as concurrent kernel launches.

We acknowledge that the methodology presented in Paper I requires attention to many

intriguing programming details, which can be difficult to grasp. Hence, in order to

make the techniques presented in Paper I accessible to more scientists, it could be worth

investigating different ways to abstract its complexity. One possible idea could be to

provide a library or C++ template that automatically hides the more tedious programming

details.

The technique presented in Papers II and III uses a fine-grained approach to utilizing

both CPU and GPU for computations. The experiments conducted in both of the papers

demonstrate that a conjoined CPU+GPU approach increases the overall computational
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speed. If the difference in the realistically achievable performance between CPUs and

GPUs stays at the current level, combining CPUs and GPUs will remain an attractive

alternative, and thus worth exploring.

Although the fine-grained threading approach of Papers II and III leads to a good overlap

of computations and inter-node communication, intra-node communication is still an

unresolved issue, as described in Paper III. Another weakness of the approach is when

compute nodes are equipped with multiple GPUs. As both Paper II and III show, the

introduction of additional GPUs widens the performance gap between the CPUs and the

GPUs even further. To support two GPUs per node in Papers II and III, an MPI process was

created for each GPU and the CPU cores were divided equally between the different MPI

processes. The downside of this strategy is that the CPU’s performance is substantially

degraded, because each MPI process will have only access to half of the memory bandwidth

and half of the shared cache [9].

A natural extension of the programming methodology presented in Papers II and III

would be to implement the strategy presented in Paper I, as it minimizes the use of

MPI processes and reduces intra-node communication overhead. One key feature of the

methodology presented in Paper I was to use multiple CPU threads to control multiple

GPUs. This would mean that a single MPI process would control multiple GPUs.

Although this thesis has focused solely on GPUs, the findings of Paper I-IV are also

applicable to Xeon Phis. Currently, the difference in peak floating point capability between

a CPU and a Xeon Phi is similar to the difference between a CPU and a GPU. Thus, a

similar speedup should be expected in a heterogeneous CPU+Xeon Phi implementation

too.

The first and foremost limitation of our work in Paper IV is its being domain-specific.

Although such a limitation restricts the outreach of our work, we believe that our domain

choice is large enough to carry out meaningful translations that would not be possible

with a more generic approach.

Performance wise, one of the biggest performance limiters of the work presented in Paper

IV is the lack of highly optimized CPU code when hybrid CPU+GPU code is generated. Fast

CPU code is a necessity in order to narrow the computational performance gap between

the CPU and the GPU. In the work presented so far, the CPU’s straightforward compute

loops are not modified, and as one of the conclusions of Paper II, the CPU’s workload

ratio must be lowered to catch up with the GPU. On the other hand, an aggressively

handwritten CPU code that performs 3D cache blocking [38] in combination with optimal

block sizes will mean that the CPUs will handle more computational work in a CPU+GPU

implementation.

CPU optimization techniques have been an on-going research topic for many years

and numerous works show that cache blocking [12, 30, 38, 51, 60, 68] is an effective

strategy to improve the performance of stencil codes on the CPU. There are already

many impressive frameworks [22, 61] and code-generators [4, 9, 16] that are capable of

generating high-quality CPU code. Hence, instead of writing a new module in Panda, an

alternative would be to review the possibility of adding support from an existing tool to

generate optimized CPU code.

Another limitation of Panda is that it is unable to recognize and translate code on

subscripted multi-dimensional arrays (e.g. U[i][j][k]). There are many reasons why
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Panda only supports flat arrays. First of all, serial C/C++ performance programmers

tend to prefer flattened arrays. Moreover, flat arrays map perfectly to how (linear)

memory is allocated in CUDA, which creates a 1:1 mapping, and thus simplifies the

process of code generation. The use of multi-dimensional arrays complicates the CUDA

translation, as it requires that the compiler flattens the arrays or that special CUDA data

structures such as cudaPitchPtr are used. Furthermore, in many scientific codes, data

are often not laid out contiguously in memory. Flat arrays rely on special incrementors

that automatically compute the array index. We support non-contiguous data layout

by identifying and transforming the incrementor. Panda is capable of automatically

identifying these incrementors, and thus supporting arrays that are laid non-contiguous

in memory.

Despite some of its drawbacks, subscripted multi-dimensional arrays are more widespread

in codes written by domain scientists, as it is syntactically closer to the actual mathematical

notation. Adding support for subscripted multi-dimensional arrays should not pose a

major problem, but requires an additional flag so that critical translator modules such

as the Stencil Analyzer module are made aware of the new data layout. A benefit of

supporting multi-dimensional arrays is that it will make the process of performing stencil

analysis less complicated.

Panda is able to recognize and analyze stencils with a wider reach than 6 points to

its neighbors. However, code generation of MPI communication and halo boundary

computation of the corners that have more than 6 neighbors, has not been implemented

yet. So far, our focus has been on laying the foundation for a framework capable of

auto-generating MPI, MPI+CUDA, and MPI+CUDA+OpenMP code.

One and two-dimensional codes are not supported because we have only focused on

3D problems, which pose the biggest challenge with respect to both communication and

computations. However, there are many real-world applications that are one or two-

dimensional, such as spherulitic crystallization and channel crystallization, two common

problems in the field of polymer physics. In order to support one and two-dimensional

problems, the Directive Manager must communicate the dimension of the problem, which

can be detected by looking at the number of parameters passed to the size clause, to

the Stencil Analyzer module. Once the Stencil Analyzer module has been made aware of

the problem’s dimension, it can perform analysis within an appropriate space.

Another limitation in Panda is the lack of support for parallel I/O and checkpointing.

Parallel I/O is an important component in HPC applications when it comes to tasks such

as visualization or reading user-input. The limitation of handling parallel I/O can be

addressed by introducing a directive specifically for dealing with I/O, and a clause that

lets the user to specify the rank identifier of one or a range of ranks. Currently, Panda

does not support application-level checkpointing primarily due to the lack of parallel

I/O support. In other words, before checkpointing can be supported, the limitations of

parallel I/O must be resolved first. Once parallel I/O is supported, special directives can

be developed to let the user indicate areas of interest for checkpointing.
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7 Conclusion

The main goal of this thesis is to contribute to the improvement and development of novel

programming methodologies and tools for computational scientists. Paper I focused on

the complex interactions and intra-node communication between multiple GPUs that are

located on the same node. It is highly anticipated that both upcoming heterogeneous

Petascale [2, 42] and future Exascale [1] systems will adopt a node architecture where

each node is densely populated with multiple manycore processors such as GPUs. In

these systems, reducing the cost associated with intra-node communication will become

crucial. We expect that the programming techniques detailed in Paper I will make an

important contribution towards reducing intra-node communication costs, which arise

when multiple GPUs are installed on the same node.

The focus of Paper II was on achieving higher compute performance by taking advantage

of the increasing computational power offered by modern CPUs by performing concurrent

CPU+GPU computations. A big challenge in heterogeneous CPU+GPU computing is to find

an appropriate CPU workload ratio that is neither too high nor too low. We have derived

a simple performance model for predicting balanced CPU workloads with CPU+GPU

computing in mind. Experimental results of a simple 7-point 3D stencil benchmark

application on a structured grid showed that our heterogeneous CPU+GPU codes were

able to outperform a corresponding GPU-only implementation by a large margin and that

our performance model did a good job of predicting a balanced CPU workload ratio. The

contributions of Paper II are detailed insights into an advanced programming technique

where task parallelism was used to make efficient use of CPUs and GPUs and an ancillary

performance model to predict an appropriate CPU workload ratio.

Motivated by the performance results in Paper II, a more challenging application for

performing heterogeneous CPU+GPU computations was chosen. The chosen application

solves the diffusion equation using the finite volume method on tetrahedral meshes.

Experimental results using up to 128 GPUs on the Stampede supercomputer showed

that the heterogeneous CPU+GPU version was on average 43% faster than the GPU-only

version. Paper III confirmed our findings from Paper II that conjoining the computational

capacity of the CPU with the GPU increases the application performance. Moreover, Paper

III contributes in giving detailed insights into the development of heterogeneous CPU+GPU

applications for unstructured meshes.

Paper IV makes contributions in the development of a novel automated code generator

for performing heterogeneous CPU+GPU computations. The tool, called Panda, is currently

at the proof-of-concept stage and has many limitations, but is nonetheless capable of

parallelizing simple 7-point 3D stencil codes written in sequential C. In order to assess

the performance of the auto-generated code, a series of experiments were conducted

using the 3D stencil benchmark from Paper II and a real-world application in cardiac

modeling. For evaluation purposes, aggressively optimized versions of the two applications

were handwritten. The first version performed heterogeneous CPU+GPU computations,

while the second version performed computations exclusively on the GPU. Experiments

showed that the Panda-generated code was able to realize 90% of the performance of the

handwritten versions. However, an important finding was that the Panda-code was always

able to outperform the handwritten GPU-only code. The promising results are achieved
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primarily because Panda implements many generalized versions of the programming

techniques unveiled in Papers II and III.

This thesis has thus shed some light on increasing the efficiency of memory-bound HPC

applications by performing concurrent CPU+GPU computations and by providing compu-

tational scientists with a tool that can automatize the development of such applications.
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Manycore processors such as Graphics Processing Units (GPUs) and Xeon Phis have

remarkable computational capabilities and energy efficiency, making these units an at-

tractive alternative to conventional CPUs for general-purpose computations. The distinct

advantages of manycore processors have been quickly adopted to modern heterogeneous

supercomputers, where each node is equipped with manycore processors in addition to

CPUs.

This thesis takes aim at developing methodologies for efficient programming of GPU

clusters, from a single compute node equipped with multiple GPUs that share the same

PCIe bus, to large supercomputers involving thousands of GPUs connected by a high-speed

network. The former configuration represents a peek into future node architecture of GPU

clusters, where each compute node will be densely populated with GPUs. For this type of

configuration, intra-node communication will play a more dominant role. We present pro-

gramming techniques specifically designed to handle intra-node communication between

multiple GPUs more effectively. For supercomputers involving multiple nodes, we have

developed an automated code generator that delivers good weak scalability on thousands

of GPUs.

While GPUs are improving rapidly, they are still not general-purpose, and depend on

CPUs to act as their host. Consequently, GPU clusters often feature powerful multi-core

CPUs in addition to GPUs. Despite the presence of CPUs, the focal point of many GPU

applications has so far been on performing computations exclusively on the GPUs, keeping

CPUs sidelined. However, as CPUs continue to advance, they have become too powerful

to ignore. This gives rise to heterogeneous computing where CPUs and GPUs jointly take

part in the computations.

The potentially achievable performance of heterogeneous computing codes can be very

large, but requires careful attention to many programming details. We explore resource-

efficient programming methodologies for heterogeneous computing where the CPU is an

integral part of the computations. The experiments conducted demonstrate that by careful

workload-partitioning and communication orchestration, our heterogeneous computing

strategy outperforms a similar GPU-only approach on structured grid and unstructured

grids.
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Although our work demonstrates the benefit of heterogeneous computing, the painstak-

ing programming effort required is holding back its wider adoption. We address this

issue through the development and implementation of a programming model and source-

to-source compiler called Panda, which automatically parallelizes serial 3D stencil codes

originally written in C to heterogeneous CPU+GPU code for execution on GPU clusters.

We have used two applications to assess the performance of our framework. Experimental

results show that the Panda-generated code is able to realize up to 90% of the performance

of corresponding handwritten heterogeneous CPU+GPU implementations, while always

outperforming the handwritten GPU-only implementations.

Compared to the more established GPU-only approach, the methodologies presented

in this thesis contribute to harnessing the computational powers of GPU clusters in a

more resource-efficient way that can substantially accelerate simulations. Moreover,

by providing a user-friendly code generation tool, the tedious and error-prone process

associated with programming GPU clusters is alleviated, so that computational scientists

can concentrate on the science instead of code development.

1 Introduction

Heterogeneous systems have lately emerged in the supercomputing landscape. Such

systems are made up of compute nodes that contain, in addition to CPUs, non-CPU devices

such as Graphics Processing Units (GPUs) or Many Integrated Core (MIC) co-processors.

An expected feature of future heterogeneous systems is that each compute node will have

more than one accelerating device, adding a new level of hardware parallelism. Some of

the current heterogeneous supercomputers have already adopted multiple devices per

compute node. The most prominent example is the world’s current No. 1 supercomputer,

Tianhe-2 (see [13]), where each node is equipped with three MIC co-processors. Having

multiple devices per node has its advantages with respect to space, energy and thereby

the total cost of computing power.

When multiple accelerating devices are used per node in a cluster, data exchanges

between the devices are of two types: inter-node and intra-node. MPI [4] is the natural

choice for the first type. However, when it comes to intra-node data exchanges, MPI might

not be the best solution. First, most MPI implementations do not have a hierarchical

layout, meaning that intra-node communication is inefficiently treated as inter-node

communication. Second, one MPI process per device will increase the overall memory

footprint, in comparison with using one MPI process per node. Third, using multiple MPI

processes per device requires the creation of additional process contexts, thus additional

overhead on top of the enlarged memory footprint.

In this work, we explore the intra-node communication between multiple GPUs that

share the same PCIe bus. To improve the state-of-the-art communication performance,

we make use of multiple CUDA streams together with multiple OpenMP threads.

The primary contributions of this paper are as follows:

• We propose an efficient intra-node communication scheme, which lets multiple

OpenMP threads control each GPU to improve the overlap between computation

and communication. Moreover, for each pair of neighboring GPUs, four CUDA
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streams are used to enable completely simultaneous send and receive of data.

• We quantify the performance advantage of our new intra-node communication

scheme by using a representative 3D stencil example, for which inter-GPU data

exchanges have a dominating impact on performance.

2 Background

Apart from aggregating the computation capacity, using multiple GPUs is also motivated

from a memory perspective. Compared with the host memory, a GPU’s device memory

is considerably smaller. For example, 32-64 GB is a typical size for the system memory,

whereas a single GPU has between 4 and 12 GB device memory, thus becoming a limiting

factor. One way of overcoming this barrier is to use multiple GPUs, by either interconnect-

ing multiple nodes equipped with a single GPU or by using a node with multiple GPUs.

The latter configuration is the focus of this paper.

The current generation of GPUs targeted at the HPC market does not share the same

memory space with its CPU host. A programmer thus has to explicitly transfer data

between the device and host. Although recent CUDA versions can abstract the data

transfer calls, the physical data motion still takes place.

Using multiple GPUs per node adds to the complexity. Independent of the direction,

data transfers incur a performance penalty when moving across the high-latency PCIe

bus that connects a GPU with its host. Therefore, one of the main objectives of our new

communication scheme is to better hide the costs of data transfers.

Due to the inefficiencies connected with MPI in the context of intra-node communication,

recent research such as [11] has therefore focused on utilizing a single MPI process per

node while adopting multiple OpenMP threads per node. For example, in [11], a single

thread is spawned per device. Despite these efforts, the underlying methodologies are

essentially the same and imperfect in efficiency. Hence, we believe that a new approach is

needed.

3 State of the Art

This section describes how boundary data exchanges (communication) and computation

are handled in the current state-of-the-art intra-node communication scheme, which uses

an asynchronous solution as exemplified in [1, 2, 6, 8–11]. The state-of-the-art scheme

uses one MPI process or OpenMP thread to control each device, and two CUDA streams

per device to overlap communication with computation.

As shown in Figure 1, a subdomain is the responsible computation area of a GPU. The

data values that are needed by the neighbors constitute the so-called boundary region,

whereas the data values that are to be provided by the neighbors constitute the so-called

ghost region.

Between each pair of neighboring GPUs, the data exchange process consists of first

copying data from the “outgoing” buffer of a GPU to the host, and then from the host into

the “incoming” buffer of a neighboring GPU. Alternatively, P2P [5] can be used to directly
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Table 1: An overview of the GPUs used. SM denotes streaming multi-processor, whereas storage/SM means

shared memory plus L1 cache per SM.

GPU Tesla K20m Tesla C2050

Architecture Kepler Fermi

# SMs 13 14

# cores/SM 192 32

register file/SM 65K 32K

storage/SM 64KB 64KB

memory size 5GB 3GB

bandwidth (GB/s) 208 144

SP, GFLOPs 3520 1030

DP, GFLOPs 1170 515

Multiple threads are used to reduce kernel launch overhead, avoid stalling the running

master thread and improve application performance by reducing the gap between compu-

tation and communication. We also believe that multiple threads can also be useful for

architectures that do not support streams.

Multiple streams are used to stack communication so that data exchange can occur

simultaneously on all boundaries of a subdomain. The use of multiple streams gives

us a more fine-grained control of the different operations, enabling us to launch all

groups of streams at the same time, resulting in bi-directional data transfers in a single

phase. Moreover, the combination of multiple threads and multiple streams reduces

the synchronization overhead that is needed between the send and receive streams.

Additionally, P2P can be adopted for the purpose of reducing the overhead directly related

to data transfer.

5 Experimental Setup and Measurements

All tests were conducted on two systems. The first machine is a dual-socket server

containing two Intel Xeon E5-2650 CPUs with four Nvidia Tesla K20 GPUs. The second

machine is a special multi-GPU node from NERSC’s GPU testbed, Dirac. This node is

equipped with two Intel Xeon 5520 CPUs with four Nvidia Tesla C2050 GPUs. A more

detailed technical overview of the different GPUs is shown in Table 1. All calculations

used double precision floating point with CUDA version 5.5, and OpenMPI 1.6.5.

5.1 Benchmark Stencil Computation

Stencil computations constitute one fundamental tool of scientific computing. They are

typically used to discretely solve a differential equation using finite difference methods,

which in turn give rise to a stencil calculation. For this paper, we have chosen the following
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using four Kepler GPUs. However, if the computation part is big enough, communication

can be entirely hidden. This explains the good performance of the state-of-the-art scheme

for the largest problem sizes.

5.3 Experiments on Fermi

The performance results on the Fermi system, shown in Figure 5(b) are similar to the

results observed on the Kepler platform. We are also able to outperform the state-of-the-art

scheme on the Fermi GPUs. The performance gaps are especially large when four GPUs

are involved. For example, our scheme is 58 % faster for the largest problem size.

By comparing the results from Figure 5(a), and Figure 5(b), we note that our scheme is

able to outperform the state-of-the-art scheme quite considerably when two GPUs are used.

On the other hand, when four GPUs are used, the difference between the two different

schemes is not visible until we reach the larger problem sizes. For larger problem sizes,

our scheme is better at hiding communication than the state-of-the-art scheme.

6 Related Work

Paulius Micikevičius [6] has investigated how a fourth-order wave equation can be solved

on a single compute node with up to four GPUs using MPI. Micikevičius reports linear

scaling in the number of GPUs used for all but one case. The domain is decomposed along

the z-axis, and computation is overlapped with communication.

We decompose the domain in the same manner, and overlap computation with com-

munication. However, we rely on the use of threads and not MPI processes to control

multiple GPUs. We also make use of a new communication scheme to increase the overlap.

We have observed the same linear and superlinear speedup that Micikevičius reports. The

superlinear speedup observed can be explained by reduced TLB miss rate.

Thibault et al. [12] developed a multi-GPU Navier-Stokes solver in CUDA that targets

incompressible fluid flow in 3D. In their study, one Pthread is spawned per GPU. The code

runs on a single Tesla S870 GPU server with four GPUs. Depending on the number of

GPUs and problem size, the speedup is between 21−100× compared to a single CPU core.

The implementation was observed not to overlap computation with communication, and

CUDA streams are not used.

Thibault’s work was extended by Jacobsen et al. [2]. Major changes include the use of

CUDA streams to overlap computation with communication, and the use of MPI processes

in preference to Pthreads. One MPI process was created per device. All experiments were

conducted on a cluster containing 128 GPUs. Each node was equipped with two Tesla

C1060 GPUs, putting the number of compute nodes at 64.

In Bernaschi et al. [1], a CUDA-aware MPI implementation is used to study the inter-

node communication performance by measuring the time it takes to update a single spin

of the 3D Heisenberg spin glass model. The scheme used in Bernaschi et al. uses two

streams, one for compute and one for data exchange. P2P is used between two nodes

(each equipped with two different Fermi GPUs). Inter-node P2P is possible thanks to the

use of APEnet+, a custom 3D Torus interconnect that can access the GPU memory without

going through the host.
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Our proposed scheme used up to five streams per GPU, four streams for data exchange,

and one for the inner points. The computations of the inner points and the boundaries are

scheduled to run at the same time. Moreover, since our scheme uses OpenMP threads, we

are able to easily pass pointers between GPUs with minimal overhead, whereas exchanging

GPU pointers using MPI processes involves explicit message passing.

7 Conclusions

We have proposed a new intra-node communication scheme that is faster than the existing

state-of-the-art approach. The main ingredient of our scheme is to combine multiple

OpenMP threads with multiple CUDA streams for a more efficient overlap of communica-

tion with computation.

First, we make use of multiple OpenMP threads per device to increase the scheme

concurrency. This is in stark contrast to the state-of-the-art where each device is controlled

by a single thread or process. Then, we create a group of CUDA streams for each stage of

the communication, and computation, whereas the state-the-art approach uses only two

CUDA streams. Finally, we combine the two techniques together to create a more efficient

intra-node communication scheme that is able to perform bi-directional communication

with lower synchronization overhead.

Depending on the test platform, results indicate that our scheme is able to outperform

the state-of-the-art scheme quite noticeably. The best observed speedup on the C2050

platform was 1.6×, and 1.85× on the K20 platform.

We have three immediate extensions planned for the future. The first is to study the

effect of larger ghost regions. Currently, our implementations use the thinnest possible

ghost region width. A thicker ghost region can potentially benefit the computation of

wider stencils such as a 19-point stencil or in combination with time unrolling where two

sweeps are performed per time step. Time unrolling trades off redundant computation

for a reduced number of boundary data exchanges.

In this study we have looked at a traditional stencil code, however, our scheme is by

no means limited to stencil method. We are in the process of exploring the use of our

strategies in a real world application involving cell-centered finite volume method on a

3D unstructured tetrahedral mesh. Finally, work is also underway to extend our scheme

to other architectures such as Intel’s Xeon Phi.
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Manycore processors such as Graphics Processing Units (GPUs) and Xeon Phis have

remarkable computational capabilities and energy efficiency, making these units an at-

tractive alternative to conventional CPUs for general-purpose computations. The distinct

advantages of manycore processors have been quickly adopted to modern heterogeneous

supercomputers, where each node is equipped with manycore processors in addition to

CPUs.

This thesis takes aim at developing methodologies for efficient programming of GPU

clusters, from a single compute node equipped with multiple GPUs that share the same

PCIe bus, to large supercomputers involving thousands of GPUs connected by a high-speed

network. The former configuration represents a peek into future node architecture of GPU

clusters, where each compute node will be densely populated with GPUs. For this type of

configuration, intra-node communication will play a more dominant role. We present pro-

gramming techniques specifically designed to handle intra-node communication between

multiple GPUs more effectively. For supercomputers involving multiple nodes, we have

developed an automated code generator that delivers good weak scalability on thousands

of GPUs.

While GPUs are improving rapidly, they are still not general-purpose, and depend on

CPUs to act as their host. Consequently, GPU clusters often feature powerful multi-core

CPUs in addition to GPUs. Despite the presence of CPUs, the focal point of many GPU

applications has so far been on performing computations exclusively on the GPUs, keeping

CPUs sidelined. However, as CPUs continue to advance, they have become too powerful

to ignore. This gives rise to heterogeneous computing where CPUs and GPUs jointly take

part in the computations.

The potentially achievable performance of heterogeneous computing codes can be very

large, but requires careful attention to many programming details. We explore resource-

efficient programming methodologies for heterogeneous computing where the CPU is an

integral part of the computations. The experiments conducted demonstrate that by careful
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workload-partitioning and communication orchestration, our heterogeneous computing

strategy outperforms a similar GPU-only approach on structured grid and unstructured

grids.

Although our work demonstrates the benefit of heterogeneous computing, the painstak-

ing programming effort required is holding back its wider adoption. We address this

issue through the development and implementation of a programming model and source-

to-source compiler called Panda, which automatically parallelizes serial 3D stencil codes

originally written in C to heterogeneous CPU+GPU code for execution on GPU clusters.

We have used two applications to assess the performance of our framework. Experimental

results show that the Panda-generated code is able to realize up to 90% of the performance

of corresponding handwritten heterogeneous CPU+GPU implementations, while always

outperforming the handwritten GPU-only implementations.

Compared to the more established GPU-only approach, the methodologies presented

in this thesis contribute to harnessing the computational powers of GPU clusters in a

more resource-efficient way that can substantially accelerate simulations. Moreover,

by providing a user-friendly code generation tool, the tedious and error-prone process

associated with programming GPU clusters is alleviated, so that computational scientists

can concentrate on the science instead of code development.

1 Introduction

GPU clusters are becoming increasingly popular, because they deliver excellent perfor-

mance and high power efficiency in many types of scientific applications [16, 27]. However,

the current generation of GPUs are not general-purpose, which means they cannot act

as standalone devices. GPUs are therefore dependent on general-purpose CPUs that can

act as hosts. Even if future generations of GPUs could operate as standalone devices, a

virtually CPU-free cluster is not advisable since GPUs are not suitable for certain HPC

workloads. Future GPU clusters such as LLNL Sierra and ORNL Summit [11] suggest that

heterogeneous CPU-GPU clusters will remain widespread, which prompts the development

of CPU+GPU computing.

In heterogeneous CPU+GPU applications, several programming models, such as MPI,

OpenMP and CUDA are combined to exploit the strengths of CPUs and GPUs to achieve high

performance. However, three principal problems arise when going from homogeneous to

heterogeneous CPU+GPU computations.

First, an additional work partitioning between the CPUs and GPUs needs to be intro-

duced. Unlike the standard partitioning among the compute nodes of a homogeneous

cluster, this new workload division is asymmetric, which requires a division ratio that is

proportional to the relative compute speed of the two processing units. Second, inter-

and intra-node data exchanges involving both the CPUs and GPUs, must be properly pro-

grammed in order to attain high communication efficiency. Third, a scheme for controlling

intra-node communication, synchronization and computation must be implemented.

The challenge here lies in establishing an effective overlap between the computation

and the inter- and intra-node communication. This requires introducing proper task

parallelism in addition to the usual data parallelism.
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To tackle the first problem, we make use of the fact that many scientific computations are

memory-bound. Thus, we can roughly predict the CPU-only and GPU-only performance

based on realistic memory bandwidth values obtained by e.g. the STREAM benchmark [8].

Such a simple modeling can suggest a reasonable workload division between the CPU

and the GPU(s) on each compute node. At the same time, care should be taken to make a

heterogeneous implementation flexible enough for fine-tuning the workload division.

We address the second problem by using a single MPI process to control the CPU and

the GPU, instead of two separate MPI processes. The resulting CPU-GPU data exchanges

are performed via cudaMemcpyAsync. For GPU-GPU data exchanges, we use a portable

approach that lets the respective CPU relay the messages. In other words, MPI messages

between CPUs cover both CPU↔ CPU and GPU↔ GPU interactions. The key to efficient

data exchanges lies in obtaining a good overlap with various computing activities, which

are controlled by the CPU. Direct GPU↔ GPU data exchanges across nodes can easily be

adopted to improve our approach, but this requires that CUDA-aware MPI with GPUDirect

v3 [10] is available.

To overlap computations with the various intra-node and inter-node data exchanges, we

adopt a programming style that involves MPI, OpenMP and CUDA. In such an approach,

task parallelism is key. Some of the OpenMP threads are dedicated to the main part of

the computation, while the remaining OpenMP threads handle other tasks, such as data

movement and boundary computations.

To illustrate the programming details, we choose a widely used 3D 7-point stencil. Our

programming approach is by no means limited to the motivating example, and is applicable

to many other numerical computations. This paper makes the following contributions:

• We develop an optimized heterogeneous CPU+GPU implementation for computing

the stencil over a uniform 3D grid with detailed illustrations of advanced program-

ming techniques (Section 3).

• We show that fine-grained use of CPU threads increases parallelism and thus appli-

cation performance.

• Insight into a simple performance model for heterogeneous CPU+GPU applications

(Section 4).

• Experiments showing that concurrent CPU+GPU computations can outperform

a highly optimized GPU-only implementation, even on GPU clusters where each

compute node is equipped with two GPUs per node (Section 4).

2 GPU-only Implementations

In this section, we give a detailed description of the GPU-only, MPI+CUDA implementation

used.

For this paper, we have chosen a representative numerical kernel that sweeps over a

uniform 3D grid. The size of the grid is defined as Nx ×Ny ×Nz, and a 7-point stencil

is used to alternatingly update the two arrays, u_new and u_old, which are stored in
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row-major order. The corresponding GPU versions of the two arrays are d_unew and

d_uold.

2.1 Single-GPU Implementation

To secure good single-GPU performance, we use the pipelined wavefront technique, as

described in [15] and [18]. This technique consists of introducing a for-loop to compute

values column-wise along the z axis. In addition, we make use of the Kepler GPUs’ fast

read-only cache. In our example application, data from d_uold is only read, making it

an ideal candidate for the read-only cache. Moreover, a small portion of the constant

memory is used to store constants in order to free registers.

2.2 Multi-GPU Implementation

It suffices to use a conventional 3D domain decomposition to break the global domain

into smaller 3D subdomains, one per GPU. In this implementation, all the computational

work is done by the GPUs, while the required GPU↔ GPU interactions are realized as

MPI messages that are relayed through the CPU.

To enable overlap between computation and communication, the entire computation is

split into interior points and boundary points, and further, each subdomain is extended

with a layer of ghost cells [4].

Although CUDA-aware MPI libraries with GPUDirect v3 such as MVAPICH2-GDR [23]

can simplify multi-GPU programming, we have assumed for the sake of generality and

portability that GPU-GPU interactions are relayed through the CPU. In other words,

CPU↔ GPU intra-node data movement is always required, in addition to inter-node

MPI communication. Since each subdomain’s boundary points are computed first, the

overhead related to the intra-node data transfer and inter-node MPI can be overlapped

with the remaining computation on the interior grid points.

In addition to a CUDA kernel that computes the interior points, we use supplementary

CUDA kernels to compute the boundary points. We create one CUDA stream per side

of the subdomains in order to allow simultaneous execution of the compute kernels for

the boundary points and the interior points. Furthermore, asynchronous data transfer

functions such as cudaMemcpyAsync are used to perform concurrent CPU↔ GPU data

transfers. As a result, computation and communication can be overlapped.

1 for (int t = 0; t < iterations; t++) {
2 for (auto i: direction vector)
3 MPI Irecv(recv buf);
4 ComputePackBoundary<<<dir stream[i]>>>;
5 cudaMemcpyAsync(cudaMemcpyDeviceToHost,dir stream[i]);
6

7 ComputeInteriorPoints<<<inner stream>>>;
8

9 for (auto i: direction vector)
10 cudaStreamSynchronize(dir stream[i]);
11 MPI Isend(send buf);
12
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13 MPI Waitall();
14

15 for (auto i: direction vector)
16 cudaMemcpyAsync(cudaMemcpyHostToDevice,dir stream[i]);
17 UnpackBoundary<<<dir stream[i]>>>;
18

19 // cudaDeviceSynchronize and swap pointers
20 }

Listing 1: An MPI+CUDA implementation using only GPUs for computation.

Listing 1 outlines the pseudocode of our multi-GPU implementation. The different sides

are stored as enumerated types in a C++ vector, iterated using the C++11 auto keyword.

Before every boundary exchange, points in the boundary region need to be computed and

then stored in a buffer. The process of storing values in a buffer is referred to as packing,

and the reverse is called unpacking. In our implementation, the ComputePackBoundary

kernel performs computation of boundary points as well as packing, thus eliminating

redundant global memory accesses.

Each ComputePackBoundary kernel is placed in its own CUDA stream. The same

streams are reused for unpacking, similar to the approach presented in [17]. In Listing 1,

cudaStreamSynchronize ensures that data from the GPU has been successfully copied

to the CPU before MPI_Isend is called.

In the multi-GPU version presented in this section, computation and communication are

overlapped since the computation of interior points is decoupled from the computation of

boundary points through the use of separate CUDA streams, and thus occurs simultaneously

with the MPI communication.

3 Heterogeneous CPU+GPU Implementations

In this section we describe two CPU+GPU implementations that extend the multi-GPU

implementation presented in Section 2.2. The drawback with the GPU-only implemen-

tation is that it leaves the CPU unused most of the time. Hence, both implementations

described in this section aim to exploit the CPU for further performance improvements.

The first implementation does so in a naive manner, while the second implementation

adopts further optimizations including task parallelism, realized through OpenMP’s nested

parallel regions.

Both of our CPU+GPU implementations mix MPI+CUDA with OpenMP. We have already

introduced the MPI+CUDA part, but not the OpenMP part. Thus, we start by describing a

multi-core CPU implementation.

3.1 Multi-Core CPU Implementation

Our CPU kernel uses pencil shaped cache blocking along the y axis in combination with

non-temporal store instructions, as described in [20]. This technique can be considered a

special case of the original quadrilateral cache blocking technique presented in [14]. We
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Figure 1: Workload division between the CPU and GPU on a compute node.

have also implemented a simple auto-tuner, which ensures that the optimum cache block

size is chosen when the code is moved from one cluster to another.

3.2 Naive Implementation

We decompose the global domain as described in Section 2.2. Moreover, each subdomain

is decomposed again, this time using a 1D decomposition along the z axis. This means

that each subdomain is divided into two parts, as illustrated in Figure 1. The reason for

decomposing each subdomain along the z axis is that a x y plane is contiguous in memory.

The total volume of inter-node data movement remains the same, but the number of MPI

messages in the x and y directions are doubled, because CPUs are now also responsible

for a part of the computation. For this reason, separate send and receive buffers are

created for the CPU and GPU parts. These are noted as gpu_send_buf, cpu_send_buf,

etc. in the following pseudocode.

In order to overlap computation with communication, we continue to use the same

technique as in our multi-GPU implementation, where interior points and boundary points

are treated separately. We reuse the CUDA kernels from our multi-GPU code, but write

new functions for boundary point computation on the CPU side.

To better mask the intra-node boundary data exchange between the GPU and CPU, we

create two additional CUDA streams called data_stream and intra_stream. These streams

are used for CPU↔ GPU intra-node boundary data transfers.

The basic strategy of the naive implementation is to augment the existing MPI+CUDA

implementation using OpenMP, as outlined in Listing 2.
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1 #pragma omp parallel default(shared)
2 for (int t = 0; t < iterations; t++) {
3 #pragma omp master
4 {
5 for (auto i: direction vector ex. intra boundary)
6 MPI Irecv(gpu recv buffer);
7 MPI Irecv(cpu recv buffer);
8 ComputePackBoundary<<<dir stream[i]>>>;
9 cudaMemcpyAsync(DeviceToHost,dir stream[i]);

10

11 ComputeIntraBoundary<<<intra stream>>>;
12 cudaMemcpyAsync(DeviceToHost,intra stream);
13

14 ComputeInteriorPoints<<<inner stream>>>;
15 }
16

17 for (auto i: direction vector)
18 HostComputePackInterBoundary();
19 HostComputeIntraBounddary();
20

21 #pragma omp barrier
22 #pragma omp master
23 {
24 cudaMemcpyAsync(HostToDevice,data stream);
25

26 for (auto i: direction vector ex. intra boundary)
27 MPI Isend(cpu send buffer);
28 cudaStreamSynchronize(inter stream);
29 MPI Isend(gpu send buffer);
30

31 MPI Waitall();
32

33 for (auto i: direction vector ex. intra boundary)
34 cudaMemcpyAsync(HostToDevice,dir stream[i]);
35 UnpackBoundary<<<dir stream[i]>>>;
36 }
37

38 HostComputeInteriorPoints();
39

40 for (auto i: direction vector ex. intra boundary)
41 HostUnpackBoundary();
42

43 #pragma omp barrier
44 #pragma omp master
45 {
46 cudaDeviceSynchronize();
47 std::swap(d uold,d unew);
48 std::swap(u uold,u unew);
49 }
50 #pragma omp barrier
51 }}

Listing 2: A naive MPI + OpenMP + CUDA implementation.
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Using OpenMP, we spawn a number of CPU threads equal to the number of physical

CPU cores, and declare the stencil compute loop as a parallel OpenMP region. First, we

use the master thread to launch the different CUDA kernels and GPU→ CPU data copies

before proceeding to computation of the boundary points on the CPU. Upon completion

of the last boundary on the CPU, we start the communication of the different boundaries

using MPI, creating a sequential pipeline of MPI messages.

Before data from the GPU can be communicated, a cudaStreamSynchronize is nec-

essary to ensure that data has arrived on the CPU. Moreover, MPI_Waitall is required

before launching the unpacking kernels on the GPU. Next, computation of the interior

points on the CPU, HostComputeInteriorPoints, is started.

Unpacking of the received boundary data on the CPU, HostUnpackBoundary, is not

dependent on the computation of the interior points on the CPU, but in order to avoid

delaying this computation, we call HostUnpackBoundary as soon as the computation has

finished. Furthermore, before an entire iteration is concluded, the master thread, guarded

by two barriers (one before and after) swaps the data pointers.

The naive implementation can be further simplified by using the multithreaded thread

safety level (MPI_THREAD_MULTIPLE) provided by many MPI libraries. Although this

mode greatly simplifies the actual code, it comes at the expense of performance. Because

when the thread safety level is set to MPI_THREAD_MULTIPLE, the MPI library makes

extensive use of synchronization to keep internal data structures safe, resulting in high

communication overhead.

3.3 Nested Implementation

There are two drawbacks with the naive CPU+GPU implementation: a) MPI commu-

nication is not guaranteed to happen simultaneously with computation of the interior

points on the CPU. b) Computation of the interior points and boundary points do not

happen simultaneously on the CPU due to the lack of task parallelism. The use of the

CPU’s resources is too coarse-grained, leading to much idling, and thus, performance

degradation.

The drawbacks to the naive implementation are addressed in an alternative implemen-

tation which we call nested, due to the use of nested parallelism. We insert task parallelism

by dividing the OpenMP threads into two groups. This is done using nested parallel

OpenMP regions. To enable nested parallelism support in OpenMP, the omp_set_nested

flag must be set to true. Moreover, each parallel region uses the num_threads clause to

explicitly specify the number of threads to use within each parallel region. The pseudocode

for the nested implementation is shown in Listing 3.

First, two OpenMP threads are spawned in the outer parallel region. Then, each of the

two threads starts an inner parallel region with its own thread group. The total number

of threads equals the number of physical CPU cores.

The first group is responsible for computation of boundary points, controlling the GPU,

and MPI communication, while the second group is responsible for computing the interior

points on the CPU. Within each thread group, a new parallel region is created.

In the first thread group, MPI_Irecv and the CUDA kernels for computing boundary

points are posted by the master thread, while the other threads perform computation of
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boundary points on the CPU. Once the master thread has completed its duties, it will join

the other threads in its group in computing the boundary points.

Simultaneously, threads in the second group are busy with computing the interior points.

Although the use of additional parallel regions implies extra overhead, this approach has

the major advantage that thread synchronization in one thread group will not affect the

threads in the other group. This means that the necessary synchronization required before

MPI communication in the first thread group will not stall the computing threads in the

other group.

1 omp set nested(true);
2

3 #pragma omp parallel default(shared) num threads(2)
4 {
5 int tid = omp get thread num();
6

7 for (int t = 0; t < iterations; t++) {
8 if (tid == 0) {
9 #pragma omp parallel num threads(x)

10 {
11 #pragma omp master
12 {
13 for (auto i: direction vector ex. intra boundary)
14 MPI Irecv(gpu recv buffer);
15 MPI Irecv(cpu recv buffer);
16 ComputePackBoundary<<<dir stream[i]>>>;
17 cudaMemcpyAsync(DeviceToHost,dir stream[i]);
18

19 ComputeIntraBoundary<<<intra stream>>>;
20 cudaMemcpyAsync(DeviceToHost,intra stream);
21

22 ComputeInteriorPoints<<<inner stream>>>;
23 }
24

25 for (auto i: direction vector)
26 HostComputePackInterBoundary();
27 HostComputeIntraBoundary();
28

29 #pragma omp barrier
30 #pragma omp master
31 {
32 cudaMemcpyAsync(HostToDevice,data stream);
33

34 for (auto i: direction vector ex. intra boundary)
35 MPI Isend(cpu send buffer);
36 cudaStreamSynchronize(dir stream[i]);
37 MPI Isend(gpu send buffer);
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Table 1: An architectural overview of the clusters used.

Cluster Stampede Wilkes

Processor Xeon E5-2680 Xeon E5-2630v2

Architecture Sandy Bridge-EP Ivy Bridge-EP

Cores 8 6

Sockets 2 2

# GPUs per node 1 2

Clock freq. [GHz] 2.7 2.6

L3 cache/chip 20 MB 15 MB

Memory size 32 GB 64 GB

Peak DP, GFLOPs 345.6 249.6

Peak BW [GB/s] 102.4 119.4

STREAM [GB/s] 77 72.95

Compiler icc 13.1 icc 13.1

MPI mvapich-2 1.9 mvapich-2 2.1

4 Performance Projections

The overall goal of a CPU+GPU implementation is to exploit the entire pool of hardware

resources on a compute node in order to solve a given problem as quickly as possible.

However, as Tables 1 and 2 show, the CPU and the GPU are not equally fast. Thus, a good

CPU+GPU implementation must take the different computational speeds into account.

Failing to do so will generally lead to a severe load imbalance because the fast GPU will

constantly wait for the slow CPU to complete its workload, and thus to poor performance.

Because our numerical kernel is memory-bound, we balance the load according to the

realistic memory bandwidth values, C PUBw in Table 1 and GPUBw in Table 2, which are

measured by the STREAM benchmark.

We use C PUBw/(GPUBw+C PUBw) to determine the workload ratio assigned to the

CPU, and assign the remaining work to the GPU.

5 Experimental Setup And Results

In this section we present experimental results obtained using the GPU-only implemen-

tation described in Section 2.2, and the two CPU+GPU implementations described in

Section 3. We used two supercomputers, Stampede and Wilkes to perform our experi-

ments.

TACC Stampede is a primarily Xeon Phi cluster, but a small number of the nodes are

equipped Tesla K20m GPUs instead (one per node). While 128 GPU nodes are available,

they have been partitioned in such a way that it is not possible to access more than 32

GPU nodes at a time.

Wilkes is a GPU cluster at the University of Cambridge, UK. The cluster consists of 128
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Table 2: An architectural overview of the accelerator present in both systems.

Accelerator Nvidia Tesla K20

Architecture Kepler

# of SMs 13

Clock freq. [GHz] 0.7

On-chip memory 64 kB

Memory size 5 GB

Peak DP, GFLOPs 1170

Peak BW [GB/s] 208

STREAM [GB/s] 151

Compiler nvcc 6.0

nodes, where each node is equipped with two Tesla K20c GPUs. The CPUs on Wilkes are

weaker than those found in Stampede. We were unable to use all of the 128 nodes due to

several non-operational nodes.

5.1 Strong Scaling

For the strong scaling experiments, we fix the problem size at 512×512×1024, while

varying the CPU workload ratio from 10% to 25% using a step size of 5%. With the

availability of 16 CPU threads and only a single GPU per node on Stampede, one needs

to pay extra attention to the nested implementation so that the two thread groups are

balanced correctly. In our experiments, the optimum thread distribution was 10 CPU

threads on computation of the interior points, and the remaining six threads in the other

thread group.

Figures 3(a) and 3(b) show a comparison of the different implementations using 2D

and 3D domain decompositions on Stampede, while Figures 4(a) — 4(d) display the same

information for the Wilkes cluster. Both of our CPU+GPU implementations scale well,

and they are able to outperform the GPU-only implementation. The benefit of the nested

implementation is more evident when 16 or more nodes are used.

The difference between the two CPU+GPU implementations is smaller on Wilkes. This

is due to the availability of fewer CPU cores, which means a smaller contribution from the

CPU segment. Moreover, a prerequisite for achieving good performance using the nested

implementation is that the CPU cores in the different thread groups are not overutilized.

For example, if one thread group simply has too much work to do, it might lead to threads

in the opposite group to idle excessively. Ideally, we would like both thread groups to be

perfectly balanced so that they complete their tasks simultaneously.

Results where both GPUs on each Wilkes node are used, are shown in Figures 4(c)

and 4(d). In order to make use of both GPUs of Wilkes, the number of MPI processes is

doubled on each compute node for the GPU-only and the CPU+GPU implementations.

When both GPUs and 2D decomposition are used, the GPU-only implementation is faster

than the naive version. The performance degradation observed in both of the CPU+GPU
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world use [13]. Moreover, a lot of research activities have also focused on dynamic

scheduling algorithms for CPU+GPU computations. Prominent examples are DAGuE [2],

ClusterSs [19], StarPU [1], and CAP [24]. While being successful in reaching their stated

goals, none of these works describes performance projections, domain decomposition,

communication handling, and other fundamental programming details with respect to

stencil computation.

Langguth and Cai [5] have studied CPU+GPU finite volume computations on unstruc-

tured grids using a single compute node. Similarly, Wang and JaJa [25] have focused on

accelerating an FFT-based Poisson solver on a single compute node. Both report that their

CPU+GPU implementations outperform the corresponding GPU-only implementations.

Venkatasubramanian and Vuduc [21] present a small-scale CPU+GPU implementation

together with a performance model for a 2D Poisson equation on a square domain using

Jacobi’s method. Thanks to algorithms such as chaotic relaxation and asynchroneous

iteration, CPU-GPU synchronization are minimized. The authors report that their single

node CPU+GPU implementations are able to outperform the corresponding GPU-only

implementation by 8% and 11% (depending on the system). However, the authors are

unable to observe the same performance gain for their CPU+GPU implementation when

moving on to multiple nodes. The big performance difference between the GPU and the

CPU is given as the reason. Despite a slower multi-node CPU+GPU implementation, the

authors conclude that CPU+GPU implementations will play an important role in future

CPU-GPU architectures.

To the best of our knowledge, only the works by Shimokawabe et al. [16], Yang et

al. [26], and Langguth et al. [6] compare directly with our work, as they perform CPU+GPU

computation at a larger scale.

Our work differs from [16] in multiple ways. First of all, in [16], due to problems with

the memory accesses on the GPU, only a global 2D domain decomposition is used. Our

work, on the other hand has demonstrated good scaling for both 2D and 3D decompositions.

Another crucial difference between our work and the study by Shimokawabe et al. is

CPU utilization. In Shimokawabe et al., the CPU is used only for lightweight boundary

computations, while interior point computations are left to the GPU. When Shimokawabe

et al. attempted to allow the CPUs to handle a larger part of the computation they observed

that the CPU became a bottleneck. In our strategy, the CPU computes a slice of the total

domain that is commensurate with its computational speed.

In [26], a CPU+GPU implementation is developed to perform atmospheric simulations

on a cubed-sphere domain. Similarly to [16], the implementation presented in [26] uses

the CPU for boundary computation only. This means that the powerful CPU cores are

only used for a very small amount of computation, while all the remaining computations

occur on the GPU. Moreover, the implementation presented in [26] is unable to overlap

CPU→GPU and GPU→CPU data transfers.

Our task-based approach is more fine-grained because the CPU threads are divided into

two separate groups so that CPU idling is minimized. We use only a handful of threads

for boundary point computation, and the remaining CPU threads are used for computing

the interior points. Because communication happens in one thread group, we are also

able to completely mask intra-node CPU↔ GPU data transfers.

The work originally presented in [5], was further extended by Langguth et al. in [6],
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so that CPU+GPU computations can be executed across multiple nodes. Because the

computational domain is different to the one represented in this paper, it is difficult to

make a fair and direct comparision. However, we note that the implementation presented

in [5] performs a manual thread to core assignment, which effectively means that OpenMP

directives can no longer be used. This means that the abstraction layer that OpenMP

otherwise provides, is peeled off, and as a concequence, the user is exposed to many

low-level programming details.

Due to the use of OpenMP’s own nested parallelism capabilities, we are able to use

OpenMP’s directives in our code, without the need to for example manually divide the

iteration space when performing computations. This is not only easier, but that also

provides better portability when moving the code from one cluster to another.

7 Conclusions

In this paper, we have presented and evaluated two CPU+GPU implementations. We have

demonstrated that by letting the CPU take part in the computations, the overall solution

time for a stencil application on two different GPU clusters is reduced. At the same time,

we have made effective use of all the resources available. We have also introduced a

simple performance model for CPU+GPU implementations, which can provide guidance

for workload division.
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Manycore processors such as Graphics Processing Units (GPUs) and Xeon Phis have

remarkable computational capabilities and energy efficiency, making these units an at-

tractive alternative to conventional CPUs for general-purpose computations. The distinct

advantages of manycore processors have been quickly adopted to modern heterogeneous

supercomputers, where each node is equipped with manycore processors in addition to

CPUs.

This thesis takes aim at developing methodologies for efficient programming of GPU

clusters, from a single compute node equipped with multiple GPUs that share the same

PCIe bus, to large supercomputers involving thousands of GPUs connected by a high-speed

network. The former configuration represents a peek into future node architecture of GPU

clusters, where each compute node will be densely populated with GPUs. For this type of

configuration, intra-node communication will play a more dominant role. We present pro-

gramming techniques specifically designed to handle intra-node communication between

multiple GPUs more effectively. For supercomputers involving multiple nodes, we have

developed an automated code generator that delivers good weak scalability on thousands

of GPUs.

While GPUs are improving rapidly, they are still not general-purpose, and depend on

CPUs to act as their host. Consequently, GPU clusters often feature powerful multi-core

CPUs in addition to GPUs. Despite the presence of CPUs, the focal point of many GPU

applications has so far been on performing computations exclusively on the GPUs, keeping

CPUs sidelined. However, as CPUs continue to advance, they have become too powerful

to ignore. This gives rise to heterogeneous computing where CPUs and GPUs jointly take

part in the computations.

The potentially achievable performance of heterogeneous computing codes can be very

large, but requires careful attention to many programming details. We explore resource-

efficient programming methodologies for heterogeneous computing where the CPU is an

integral part of the computations. The experiments conducted demonstrate that by careful

workload-partitioning and communication orchestration, our heterogeneous computing

strategy outperforms a similar GPU-only approach on structured grid and unstructured
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grids.

Although our work demonstrates the benefit of heterogeneous computing, the painstak-

ing programming effort required is holding back its wider adoption. We address this

issue through the development and implementation of a programming model and source-

to-source compiler called Panda, which automatically parallelizes serial 3D stencil codes

originally written in C to heterogeneous CPU+GPU code for execution on GPU clusters.

We have used two applications to assess the performance of our framework. Experimental

results show that the Panda-generated code is able to realize up to 90% of the performance

of corresponding handwritten heterogeneous CPU+GPU implementations, while always

outperforming the handwritten GPU-only implementations.

Compared to the more established GPU-only approach, the methodologies presented

in this thesis contribute to harnessing the computational powers of GPU clusters in a

more resource-efficient way that can substantially accelerate simulations. Moreover,

by providing a user-friendly code generation tool, the tedious and error-prone process

associated with programming GPU clusters is alleviated, so that computational scientists

can concentrate on the science instead of code development.

1 Introduction

General-purpose GPUs as hardware accelerators have made their successful entrance into

the high-performance computing landscape over the past few years. In a GPU-enhanced

cluster, a compute node typically has significantly higher performance than a node of a

homogeneous CPU-based cluster, thus resulting in a denser packing of the heterogeneous

clusters. This allows significant savings in cost and power due to smaller interconnects.

Due to the large difference between a GPU and a CPU with respect to the theoretical

floating-point capability, in compute-bound applications there is little incentive to include

the CPUs for sharing the computational work on a GPU-enhanced cluster, since this

invariably increases the complexity of the implementation. However, for computations

whose performance is limited by data traffic, rather than floating-point operations, the

computing capability of CPUs should not be overlooked. This is because the GPU-CPU

difference in memory bandwidth is considerably smaller.

If CPUs should indeed join GPUs in the computations, three important questions will

arise:

(i) How much computational work should be assigned to the CPUs? If there are different

types of operations, which should be placed on the GPU?

(ii) How should the different tasks on the CPU side be programmed?

(iii) How much performance improvement can we realistically expect from heteroge-

neous CPU-GPU computing?

Extending our earlier work on single GPU-enhanced compute nodes [4], we will try to

shed some light on the three questions for heterogeneous clusters in this paper. Of course

it is impossible to answer the above three questions in general. The answers depend on
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the specific computational problem to be solved and the hardware configuration of a

heterogeneous system. By choosing a representative case of solving the diffusion equation

using the cell-centered finite volume method over unstructured meshes, we aim to provide

our advice on good programming practices, as well as some important OpenMP and CUDA

programming details that carry over to many similar problems.

Moreover, we will also discuss the important issue of CPU-GPU workload partitioning.

Last but not least, we report performance measurements on up to 128 GPU-enhanced

compute nodes, demonstrating the actual performance benefit due to heterogeneous

CPU-GPU computing.

For structured meshes, heterogeneous CPU-GPU computation has been studied in several

publications, e.g. [3, 10, 13, 14]. However, the unstructured nature of our problem poses

significant additional challenges with respect to partitioning, communication and load

balancing.

2 Solving diffusion equations with finite volumes

As a representative computational problem, we use the following diffusion equation that

describes a very common phenomenon in nature:

∂ u(x , t)

∂ t
= div(~K(x)grad u), (1)

where u(x , t) is typically some concentration modeled as a function of space and time, and
~K(x) denotes a spatially varying tensor field that, together with the concentration gradient,

determines the speed and direction in which high concentration spreads towards low

concentration. Being one of the basic building blocks of many sophisticated mathematical

models, the diffusion equation (1) is an important research topic for fast numerical solvers

and efficient software implementations.

In this paper, we will consider a finite-volume approach for numerically solving (1) in

3D, using an unstructured tetrahedral mesh.

Without going into the mathematical details, it suffices to say that the actual computation

per time step can be represented by a matrix-vector multiply:

uuuℓ= Zuuuℓ−1, (2)

where superscript ℓ denotes the time level, the uuu vector contains the numerical ap-

proximations at the center of all tetrahedra. Matrix Z is sparse and has, in addition

to a nonzero main diagonal, up to 16 nonzero values per row. These 16 off-diagonal

nonzeros correspond to each tetrahedron’s four immediate neighbors and 12 second-level

neighbors.

Throughout this paper, we assume that the main diagonal of Z will be stored in a

separate 1D array D, whereas the off-diagonal entries are stored in a padded, dense N×16

array A with N being the total number of tetrahedra in the mesh. In an unstructured

tetrahedral mesh, the column positions of these off-diagonal entries do not follow any

easily predictable pattern. Thus, they have to be stored separately in I , a N ×16 array of

integer index values.

A plain implementation of (2) is given in the code segment below:
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for (i=0; i<N; i++) {

double value = D[i]*u_old[i];

for (j=0; j<16; j++)

value += A[i,j]*u_old[I[i,j]];

u_new[i] = value;

}

To calculate u_new for each tetrahedron, 33 floating-point operations (17 multiplications

and 16 additions) are needed in every time step.

At least 208 bytes per tetrahedron need to be read from memory (i.e., 128 bytes

for the 16 A[i,j] values, 64 bytes for the 16 I[i,j] values, 8 bytes for D[i] and 8

bytes for u_old[i]). In case cache data reuse is not perfect, more data must be loaded,

depending on the access pattern of the off-diagonal u_old values. Moreover, 8 bytes (due

to u_new[i]) are written to memory per tetrahedron. Thus, computational intensity is

at most 33 FLOP per 216 bytes and thus 0.15. This is far lower than the ratio between

FLOPS and memory bandwidth in GB/s of modern processors, which starts at 2 and can

be higher than 5 for GPUs. Therefore, the theoretical upper limit of the performance for

this computation on any compute device is:

P =
33 FLOP×memory bandwidth

216 bytes
. (3)

3 Partitioning and Problem Setup

3.1 Hierarchical Partitioning

During each time step of the computation, using asynchronous MPI communications, node

n receives updated values for these ghost cells from neighboring nodes and sends updated

values of its separator cells in return. The elements to be sent to a specific node must be

packed into a contiguous buffer during every round. The ghost cells are organized such

that their values can be received in a contiguous fashion.

In order to use heterogeneous computing, a second tier of partitioning is required to

split the CPU part from the accelerator part on each node.

Here, an asymmetric partitioning is needed since the GPUs will generally receive a

higher workload than the CPUs. On each node, we generate one subpartition per GPU,

plus one CPU subpartition. In the case of multiple CPU sockets, the CPUs can work on

a shared subpartition using OpenMP, although care must be taken to obtain their full

performance [6]. Note that although our test systems nodes have at most two GPUs and

CPUs, our code can deal with almost any configuration as long as enough CPU threads

are available.

Thus, the global mesh is broken into k parts, each of which is subdivided into the

MPI separator, a CPU-GPU separator, a CPU interior part, and for each GPU a GPU-CPU

separator and a GPU interior part, as illustrated in Figure 1. All the resulting separators are

packed together in order to allow contiguous access for computation and communication.

Note that there is no explicit GPU-GPU separator since this communication is performed

by transferring data via the CPU.

74





PAPER III 3. PARTITIONING AND PROBLEM SETUP

Our GPU kernel processes elements of A in a column-major ordering, as suggested

in [12]. This means that for every thread block of size b, every b contiguous rows are

turned into a b×16 submatrix and transposed. This allows coalesced accesses to values

of A and I , i.e. threads in a thread block access the elements in a contiguous manner, thus

attaining full memory bandwidth. We found that a thread block size b= 128 yielded the

best performance, as smaller sizes limit the device occupancy. Tetrahedra beyond the last

block of size b are computed using a row-major kernel. Due to their small number, this

has a negligible effect on performance.

The core of our heterogeneous code is the assignment of different tasks to different

hardware CPU threads. In our implementation, this is done by directly assigning a type to

a thread based on its OpenMP thread number. We use one control thread per accelerator.

Each such control thread starts the computation of the separator on its accelerator, copies

the result asynchronously to the CPU, and starts the computation on the interior part.

Meanwhile, all the remaining threads work on the MPI separator elements. When this

is done, a single thread diverges and communicates the u_new values belonging to the

MPI separator to the neighboring nodes via MPI, while receiving corresponding values in

return. In our experiments, using more than one MPI communication thread did not pay

off.

The remaining threads then compute the CPU-GPU separator, and upon completion one

copy thread per accelerator diverges in order to start copying the result to its accelerator,

while the remaining threads compute the interior CPU part which means they are pure

compute threads. Each copy thread also transfers u_new values belonging to the separators

from other accelerators to its own accelerator once they have been transferred to the

CPU memory. Since these transfers are asynchronous, the copy thread can then rejoin

the compute threads working on the interior CPU part. When all these tasks have been

executed, the threads are gathered at a barrier. The array pointers of u_old and u_new

are then swapped on all devices, and a new timestep begins.

Note that we only use physical cores to run the threads. Hyperthreading and similar

techniques may make the threads less responsive, and thereby can reduce performance.

Thus, for a given number of accelerators, an equal number of control and copy threads

must be available in addition to the compute threads. If too few compute threads remain,

the CPU performance will be low, which invalidates the entire approach. As a rule of

thumb, the total number of cores should be at least four times the number of accelerators.

An overview of the threads for a typical test node is shown in Figure 2.

In addition to this, the GPU control threads (id 14 and 15 in Figure 2) and the GPU

communication threads (id 1 and 2 in Figure 2) use multiple CUDA streams to overlap

communication and computation on the GPU. Thanks to its two copy engines, a modern

GPU such as the K20 can send its separator while receiving the CPU-GPU separator from

its copy thread at the same time, as indicated in Figure 2. An example of streams that

overlap communication with computation can be found in Figure 3. It is derived from the

output of the nvprof GPU profiler, although details have been modified for visibility, e.g. the

computation of the interior tetrahedra takes far longer time than all other operations

combined, but has been shortened here. The interior computation cannot be overlapped

with the separator computation since both use the same compute resources, but it does

overlap with communication. While the kernel launches are relatively fast compared
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4 Experimental Setup

All experimental instances are derived from a 3D mesh of a healthy male human cardiac

geometry acquired by MRI. We employ tetgen [11] to generate the initial global mesh.

For our experiments, we set a target resolution via a maximum volume constraint per

tetrahedron of 2.8∗10−6, thereby generating more than 115 million tetrahedra. This test

instance is large enough for a moderate number of compute nodes. However, we need at

least five GPUs to store the partitioned data in device memory at this instance size. To

obtain measurements on smaller node counts, we created a second instance of 6.8 million

tetrahedra, which can be run using a single GPU. All experiments using fewer than 8 GPUs

are run using this smaller instance instead.

The PaToH [1, 2] and Kaffpa [9] partitioning software are then used to generate the

initial k-way partitioning of the global mesh. Kaffpa generally takes less time to partition

than PaToH, and produces better quality (if high quality setting is used). Since Kaffpa

is currently only able to generate symmetric partitions, we use PaToH for the intra-node

partitioning and then Kaffpa again for the reordering.

Finally, to maintain generality, we do not exploit the effects of fitting the entire CPU

workload in the L3 cache. As discussed in [4], small CPU workloads can lead to very high

CPU performance when all required data fits in cache. Thus, in case of an extremely small

CPU workload, it is worthwhile to expand it up to the maximum cacheable size, thereby

speeding up the overall computation. While we do not make use of this, in the future,

this effect guarantees that the CPU can remain useful for memory bound computations

even when a large number of very fast accelerators are available. Another potential way

to benefit from large CPU caches might be to explicitly load the MPI separators into cache

in order to compute them quickly at the start of each round.

As test hardware systems, we use two heterogeneous machines having slightly different

characteristics, which lead to different ratios between CPU and GPU workload in these

systems. This is important for benchmarking our heterogeneous code.

As our primary test system we use the GPU part of TACC’s Stampede. It is primarily a

Xeon Phi machine, but we use its GPU partition for our experiments. Each of its 128 GPU

nodes posses a single NVIDIA K20 GPU and two powerful Intel Xeon E5-2680 processors

with 8 cores each, which gives it a strong CPU to GPU performance ratio.

As the secondary machine we use the Wilkes system operated by the University of

Cambridge. We use up to 64 nodes on Wilkes, and each node has two CPUs and two

NVIDIA K20 GPUs, only one of which can be accessed at full PCIE bus speed from a given

CPU. Thus, each CPU has one preferred GPU, while the second GPU is accessed through

the other CPU on the node. The CPUs are Intel Xeon E5-2630v2, i.e. Ivy bridge processors,

which are very similar to the Sandy Bridge processors used in Stampede. However, they

have only 6 cores each and lower attainable memory bandwidth, which reduces the

system’s CPU to GPU performance ratio. On both machines we use the Intel icc compiler

13.1.0, Intel MPI 4.1.3.049, and CUDA 6.0. Hyperthreading is deactivated in all instances,

and one OpenMP thread per core is used. OpenMP thread affinity is set to “scatter”. We

use up to 64 nodes on Wilkes.
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5 Experimental Results

5.1 Single Device Computation Performance Test

A crucial ingredient of our heterogeneous implementation is the static workload ratio,

which is obtained using performance predictions that are based on the memory bandwidth

of the compute devices. For any device, its workload ratio is obtained by dividing its

predicted performance P by the sum of the predictions for all devices. For convenience,

we denote the total GPU workload ratio as r, which means the CPU workload ratio will be

1− r and each individual GPU will have a workload of r divided by the number of GPUs.

Now, given the peak memory bandwidth provided by the vendors and the fact that

the maximum flop to byte ratio is 0.157, we obtain Ppeak, i.e. the predicted performance

based on these values and thus the appropriate workload ratio rpeak. Table 1 shows the

results. We compare this to the actual measured performance Preal , and the resulting

optimal workload ratio ropt . We can use Preal to obtain an upper limit on the performance

of the heterogeneous code by multiplying the corresponding Preal values with the number

of compute devices used.

The discrepancy between Ppeak and Preal is significant, which implies that might not be

a good performance prediction. We improve it by using Pst ream, which is the performance

estimate based on bandwidth measured using the STREAM benchmark [7]. Table 1 clearly

shows that Pst ream is a much better prediction for Preal and rst ream is closer to ropt .

Stampede Wilkes

CPU peak bandwidth 102.4 102.4

CPU stream bandwidth 77.8 72.9

CPU Ppeak 16.11 16.11

CPU Pst ream 12.24 11.47

CPU Preal 11.46 8.78

GPU peak bandwidth 208 2×208

GPU stream bandwidth 151.1 2×151.1

GPU Ppeak 32.74 2×32.74

GPU Pst ream 23.78 2×23.78

GPU Preal 21.46 2×21.46

rpeak 0.67 0.80

rst ream 0.66 0.80

ropt 0.65 0.83

Table 1: Computational performance estimates (Ppeak and Pst ream) and measurements (Preal) of a single

device in each of the test systems (in GFLOPs). The r values denote workload partitioning ratios computed

on that basis. Unlike the GPU peak bandwidth, the GPU stream bandwidth is based on activated ECC.

Interestingly, the difference between the workload ratios is small in most cases. However,

overestimating CPU performance even by a small amount has a comparatively large impact
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on the overall performance when the CPU contribution is small. See [4] for more details

on this effect. For example, on Wilkes, the fact that both Ppeak and Pst ream overestimate

the CPU performance leads to CPU workloads that are 17% higher than optimal, i.e. from

0.17 to 0.2. This could in turn lead to roughly 17% higher execution time and thus 15%

lower performance. We thus conclude benchmarking the actual performance Preal to

obtain ropt can pay off and we use it in this study, but it might not be worthwhile in

practice. In general, it is advisable to reduce the CPU workload a bit since erring in the

direction of high CPU workloads is much more costly than vice versa.

5.2 Homogeneous Node Scaling Experiment

In the previous experiments we obtained a theoretical upper bound on performance. Now

we bound it from below by running the full communication and computation on the test

systems, but use only CPUs or GPUs, thereby establishing the maximum performance

attainable without using heterogeneous computing. This is necessary to assess the perfor-

mance gain - and thus the potential payoff in using heterogeneous CPU-GPU computation.

Figure 4 shows the attained performance on both Stampede and Wilkes.

These results include MPI communication, and are thus significantly lower per node

than the Preal values from Table 1 would indicate. Summing up the CPU and GPU values

gives us an estimate for the performance upper limit we can expect from heterogeneous

computing. Interestingly, despite having the same GPUs and using only one GPU per node

in on both machines, we observe a noticeably lower GPU performance on Wilkes.

5.3 Heterogeneous Node Scaling Experiment

In this subsection we establish the performance gain obtained from using heterogeneous

computation. Figure 5 shows the results for our heterogeneous implementation and

compares the attained performance to using only GPUs, and to an instance of the hetero-

geneous code where all communication is disabled. On Stampede, the difference between

the heterogeneous and the pure GPU results is quite pronounced, which validates the

usefulness of our technique. Furthermore, the communication-free performance is only

slightly higher, which indicates that communication is overlapped with computation to a

large extent. The speedup for 128 nodes is 98.7.

For Wilkes, the GPU only value is obtained by running the pure GPU code with two

MPI processes on each node. The process placement is such that it matches each process

with its preferred GPU, thus optimizing communication performance. The more complex

node layout, along with the fact that the CPUs are weaker on this machine, reduce the

performance lead of the heterogeneous code. The speedup is 27.7 for 32 and 42.7 for

64 nodes. Also, for 64 nodes, the heterogeneous performance is actually lower than the

pure GPU result, while the communication-free performance is significantly higher. This

indicates that in this setup, intra-node communication is in fact a bottleneck.

We assume that this is due to limitations in strong scaling, i.e. workloads per compute

device become so small that communication becomes an issue in this case. In addition,

the CPUs on Wilkes essentially have a NUMA access to the GPUs, which our assignment of

control threads does not take into account. Furthermore, our one MPI thread communi-
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Manycore processors such as Graphics Processing Units (GPUs) and Xeon Phis have

remarkable computational capabilities and energy efficiency, making these units an at-

tractive alternative to conventional CPUs for general-purpose computations. The distinct

advantages of manycore processors have been quickly adopted to modern heterogeneous

supercomputers, where each node is equipped with manycore processors in addition to

CPUs.

This thesis takes aim at developing methodologies for efficient programming of GPU

clusters, from a single compute node equipped with multiple GPUs that share the same

PCIe bus, to large supercomputers involving thousands of GPUs connected by a high-speed

network. The former configuration represents a peek into future node architecture of GPU

clusters, where each compute node will be densely populated with GPUs. For this type of

configuration, intra-node communication will play a more dominant role. We present pro-

gramming techniques specifically designed to handle intra-node communication between

multiple GPUs more effectively. For supercomputers involving multiple nodes, we have

developed an automated code generator that delivers good weak scalability on thousands

of GPUs.

While GPUs are improving rapidly, they are still not general-purpose, and depend on

CPUs to act as their host. Consequently, GPU clusters often feature powerful multi-core

CPUs in addition to GPUs. Despite the presence of CPUs, the focal point of many GPU

applications has so far been on performing computations exclusively on the GPUs, keeping

CPUs sidelined. However, as CPUs continue to advance, they have become too powerful

to ignore. This gives rise to heterogeneous computing where CPUs and GPUs jointly take

part in the computations.

The potentially achievable performance of heterogeneous computing codes can be very

large, but requires careful attention to many programming details. We explore resource-

efficient programming methodologies for heterogeneous computing where the CPU is an

integral part of the computations. The experiments conducted demonstrate that by careful

workload-partitioning and communication orchestration, our heterogeneous computing

strategy outperforms a similar GPU-only approach on structured grid and unstructured
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grids.

Although our work demonstrates the benefit of heterogeneous computing, the painstak-

ing programming effort required is holding back its wider adoption. We address this

issue through the development and implementation of a programming model and source-

to-source compiler called Panda, which automatically parallelizes serial 3D stencil codes

originally written in C to heterogeneous CPU+GPU code for execution on GPU clusters.

We have used two applications to assess the performance of our framework. Experimental

results show that the Panda-generated code is able to realize up to 90% of the performance

of corresponding handwritten heterogeneous CPU+GPU implementations, while always

outperforming the handwritten GPU-only implementations.

Compared to the more established GPU-only approach, the methodologies presented

in this thesis contribute to harnessing the computational powers of GPU clusters in a

more resource-efficient way that can substantially accelerate simulations. Moreover,

by providing a user-friendly code generation tool, the tedious and error-prone process

associated with programming GPU clusters is alleviated, so that computational scientists

can concentrate on the science instead of code development.

1 Introduction

Manycore processors such as GPUs and the Xeon Phis possess high levels of compute power

per Watt, thus causing large clusters that use accelerators currently in strong demand.

Recently revealed plans for future supercomputers, such as ORNL Summit [25] and ANL

Aurora [2], show that future supercomputers will be heterogeneous systems equipped

with both general-purpose CPUs and accelerators. Looking ahead, it is also hypothesized

by Ang et al [1] that future Exascale systems will continue to adopt a similar system

design.

So far, much attention has been paid to effectively using the accelerators in heteroge-

neous clusters. In such systems, the CPU’s role has mainly been to perform tasks that

accelerators are not able to do on their own or cannot perform effectively. However, as

CPUs continue to scale with Moore’s law, their computational performance and memory

bandwidth have reached a level that can no longer be neglected.

Not surprisingly, the latest research has switched to combining CPUs and accelerators for

improved performance and energy efficiency [23]. A number of studies have demonstrated

the benefit of concurrent CPU+GPU execution, e.g. in stencil computations [13, 29, 34,

35].

A well-known feature of stencil applications is that the performance is often limited

by the memory bandwidth [41]. From a practical point of view, combining CPUs and

accelerators means that the memory bandwidth provided by the CPU and the accelerator

can be aggregated. The increase of memory bandwidth thus motivates involving the CPUs

in addition to the accelerators.

Despite the advantages of this strategy, tools that can reap the benefit of this approach

are scarce. To address this challenge, we propose Panda, a framework comprising a

programming model and a compiler that effectively transforms serial C stencil code for

parallel execution on heterogeneous CPU-GPU clusters. Panda uses CUDA and OpenMP
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to express intra-node parallelism, and MPI to to express inter-node parallelism.

Our primary goal is to provide a tool that is easy to use, and thus promotes productivity.

To make Panda user-friendly, we have developed a programming model that uses compiler

directives to implicitly express parallelism in a sequential code, guiding the compiler

during the subsequent code translation.

Our secondary goal is to provide a tool that satisfies the performance requirements of

both novice and expert users. Frameworks such as OpenACC [27] and OpenMP [28] have

demonstrated that achieving high-performance using a generic approach is challenging.

Previous domain-specific solutions [5, 38] have outcompeted the generic approach.

We have therefore decided to restrict Panda’s applicability to 3D stencil computations

on regular grids. While we acknowledge that this restriction will limit Panda’s outreach,

delivering high performance in such a large application space is considered important

enough to justify the decision.

This paper makes the following contributions:

• We introduce a programming model that abstracts the complexity of writing parallel

code for heterogeneous CPU-GPU clusters. The model consists of a set of compiler

directives that implicitly express parallelism in serial C code, allowing the user to

focus on the domain science instead of parallelization (Section 2).

• We create a source-to-source compiler that implements the programming model

(Section 3).

• We demonstrate the framework’s versatility by generating code that targets different

cluster scenarios, including pure MPI, MPI+CUDA and MPI+CUDA+OpenMP for

concurrent CPU+GPU execution on heterogeneous CPU-GPU clusters (Section 3).

• We experimentally evaluate the performance of our framework. Compared with

highly optimized handwritten code, we observe a performance realization close to

90% under weak scalability experiments for both a simple stencil benchmark and a

real-world application in cardiac modeling (Section 4).

2 The Panda Programming Model

In this section we describe the principal design goals of our framework, and the program-

ming model that adheres to it.

The main goal of our framework is to reduce the complexity of developing large-scale

stencil applications by an automated approach. Our target hardware systems are GPU

clusters where each node is equipped with one or more GPUs.

We regard directive based programming as a developer-friendly model that requires

minimal programming effort. Another benefit of such an approach is backward compati-

bility. Compilers that do not implement specific directives will simply ignore them. As a

result, the user will always have a working code base.
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2.1 The Panda Directives

The fundamental assumption of the Panda framework is that 3D stencil computations

are done over logically 3D data arrays. Moreover, triple loop nests are assumed for

updating the values of these data arrays, where iterations of such a triple loop nest can be

concurrently carried out, thus giving rise to full parallelism. A loop nest can have more

than three levels, such as a time loop being the outermost level that has to be carried

out in sequence. The Panda compiler uses static analyses, with support of directives, to

automatically identify the parallelism, which is subsequently realized by MPI, CUDA and

OpenMP programming.

1 #pragma panda distribute(u old, u new) size(Nx+2,Ny+2,Nz+2)
2 for(int t = 0; t < iterations; t++) {
3 for (int k = 1; k < Nz+1; k++)
4 for (int j = 1; j < Ny+1; j++)
5 for (int i = 1; i < Nx+1; i++) {
6 int idx = i + j∗(Nx+2) + k∗(Nx+2)∗(Ny+2);
7 u new[idx] = kC1 ∗ u old[idx] + kC0 ∗
8 (u old[idx−1] + u old[idx+1] + u old[idx−(Nx+2)]
9 + u old[idx+(Nx+2)] + u old[idx−(Nx+2)∗(Ny+2)]

10 + u old[idx+(Nx+2)∗(Ny+2)]); }
11 #pragma panda wait
12 std::swap(u old, u new);
13 }

Listing 4: A sample 7-point stencil computation benchmark annotated with Panda directives.

panda distribute(list) size(list) For performance reasons, Panda supports only flat-

tened arrays that are logically 3D. We can not assume that the iterators of a triple loop nest

(such as lines 3-10 in Listing 4) are used as array index expressions. This performance-

oriented design decision makes reference extraction difficult. Therefore, the distribute

directive of Panda (such as line 1 in Listing 4) allows the user to annotate all the logically

3D arrays while, more importantly, explicitly marking the variables used to define the

length of the arrays through the size clause.

panda boundary(list) size(list) Panda assumes that a double loop nest is used to

enforce the boundary condition on each side of the physical boundary (six possibilities

in total). Unlike an automatically detected triple loop nest that traverses the entire 3D

volume of an array, Panda relies on the user to insert a special boundary directive in front

of each double loop nest that updates one side of the physical boundary.

The input to the boundary directive is a list that consists of the following variables:

xmin, xmax, ymin, ymax, zmin and zmax, which represent the three directions in a

Cartesian coordinate system. With help of (a subset of) these variables, Panda can detect

the applicable spatial direction, and thus auto-generate the correct parallel code in the

context of distributed memory. The size clause is used both for validation purposes and

for deriving the correct indices inside the boundary-condition double loop nest.
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Figure 1: An architectural view of the Panda source-to-source compiler, which adopts a modular design.

Each module may consist of numerous sub-modules, but for brevity, only the most important sub-modules
are depicted.

panda reduction(operator:list) Many stencil applications need reduction operations,

e.g., to compute an inner product. Interactions (implicitly) enforced between the threads

of a CPU or a GPU are needed to carry out a local reduction. Globally, on distributed

memory, a reduction requires additional interaction with MPI, which a novice user may not

be aware of. Thus, Panda supports (like OpenMP and OpenACC) a reduction directive,

which automatically takes care of necessary intra-node and inter-node data exchanges.

panda wait Code regions that can only be executed sequentially on either the host or

the GPU are marked by the wait directive. The translated implementation depends on

the translator’s mode of operation. For example, when generating MPI+CUDA code, the

wait directive translates into a cudaDeviceSynchronize call. When generating

MPI+CUDA+OpenMP code, the wait directive will result in the insertion of a call to

cudaDeviceSynchronize plus an OpenMP #pragma omp master directive, followed by

#pragma omp barrier.

3 The Panda Source-to-Source Compiler

The fundamental building blocks of our framework are a programming model (described in

the preceding section) and a compiler. In this section we will describe the source-to-source

compiler that translates Panda-annotated serial stencil code to parallel and distributed

forms.

3.1 Overview

Panda generates three types of parallel code: pure MPI for homogeneous CPU clusters,

MPI+CUDA for GPU clusters, and MPI+CUDA+OpenMP for concurrent CPU+GPU exe-

cution on GPU clusters. A common trait for these versions is that they gradually extend

each other. For example, the MPI+CUDA version is similar to the pure MPI version, but

the main difference is that Panda generates CUDA kernels instead of CPU functions (i.e.

the CPUs do no computations). In the MPI+CUDA+OpenMP version, both CPU functions

annotated with OpenMP directives and CUDA kernels are generated by Panda.
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In order to deal with the generation of different code versions, a command line interface

(CLI) will parse the options passed to the compiler. A command-line “translation mode”

flag determines which modules of the Panda source-to-source compiler are utilized to

ensure that correct analyses are performed. Currently, three command-line options are

allowed:

• –mpi generates pure MPI code

• –gpu generates MPI+CUDA (GPU only) code

• –hybrid generates MPI+CUDA+OpenMP (CPU+GPU) code

The user input to our compiler is a serial C source file, annotated with Panda directives.

Panda makes use of the EDG front-end bundled with ROSE [14] to construct an abstract

syntax tree (AST), which expresses the structure of the input code as a graph.

Panda adopts a modular design, and the workflow of the different modules are shown

in Figure 1. Once the AST has been generated, the CLI will pass the translation mode to

the Directive Manager module.

The role of the Directive Manager module is twofold: verification and extraction. First,

it traverses the AST to verify the correctness of the directives. Assuming that all directives

are correctly formulated, the Directive Manager will proceed to extract information from

them. The extracted information is used to generate local C++ objects that are stored for

future access by other modules.

Once the Directive Manager has completed its tasks, it will call the Partitioner module to

decompose the global domain. The default domain partitioning strategy is 3D, meaning

that the global domain is partitioned into smaller cuboids. Moreover, in the CPU+GPU

mode, each subdomain is partitioned an additional time using 1D decomposition along

the z-axis, as described by Sourouri et al [35]. In the CPU+GPU mode, the user can

dynamically control the partitioning and the workload distribution via the command line

because the Partitioner will generate command line arguments code that reads user input

from argc and argv at runtime.

Before the domain can be successfully partitioned, the MPI Manager module is called to

inject the required <mpi.h> header, and to generate calls to functions such as MPI_Init,

MPI_Comm_rank, MPI_comm_size and MPI_Finalize. Some of these MPI function calls

require the generation of additional variables that the Partitioner module depends on.

These variables are needed to complete the domain partitioning. Once the domain has

been successfully partitioned, the Transformer module ensures that for example references

to the global domain are substituted with references to local subdomains.

Next, the Panda compiler calls the Stencil Analyzer. The task of this module is to

reveal important details about the stencil reach, which are needed to generate CPU

functions/GPU kernels for halo boundary computations, and corresponding MPI function

calls. For example, if the stencil shape reaches beyond 7 points, it is necessary to generate

additional CPU functions/GPU kernels for corner accesses. Furthermore, information

about the stencil is essential for performing domain-specific code optimizations.

Panda stores array descriptors in a table and uses it to count the number of read-only

references to each array. When it has finished tallying the references, Panda subsequently
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sorts the arrays in the order of most-to-least-frequently accessed. A description of the

stencil is then stored as a Stencil object, which can be used by other modules for

transformation purposes. Stencil description is typically adopted by domain-specific

languages (DSLs) [21, 42] to deal with this problem. However, while DSLs typically

require the user to explicitly define the stencil, the Panda compiler is capable of detecting

it automatically, like several existing tools [3, 8, 11, 38].

At this stage the Panda source-to-source compiler has sufficient information about the

stencil to perform the necessary transformation, which is spearheaded by the respective

Generator modules.

3.2 MPI code generation

Although the Partitioner module breaks the global domain into smaller cuboids, it does

not generate the MPI function calls necessary for inter-node communication. This respon-

sibility is delegated to the MPI Manager by the Transformer module.

The main objective of the MPI Manager is to generate non-blocking asynchronous MPI

calls to realize inter-node communication that overlaps halo boundary exchange with

computation. However, before the exchange takes place, the respective boundaries must

be computed and stored in dedicated send buffers (packing). The send buffers are then

passed to the MPI_Isend function that communicates the content of the send buffer to

a receiving neighbor. Data received by a neighboring subdomain is stored in a receive

buffer before it is unpacked. Additionally, an MPI_Waitall is also inserted to ensure that

associated MPI requests have completed before the unpacking starts.

3.3 Communication Optimizations

The Panda compiler performs two communication optimizations in order to improve the

application performance.

(i) All data movement between a host CPU and its device GPU is performed by the

cudaMemcpyAsync function, which guarantees that the intra-node data movement

between the CPU and the GPU happens in the background, thus having the possibility

of being overlapped with computation.

(ii) In the context of MPI+CUDA+OpenMP code generation, Panda creates separate MPI

requests for the CPU and the GPU that are used by the designated MPI function calls.

By introducing separate MPI requests, we decouple CPU and GPU MPI requests from

each other, thus creating two independent communication channels. The benefit of

this approach is that the GPU does not need to wait on the CPU’s messages to arrive

(or vice versa) before it can start unpacking its received data.

3.4 MPI+CUDA Code Generation

For computation of the interior points, Panda generates CUDA kernels based on the

pipelined wavefront technique [32], but does not perform register blocking nor loop

unrolling. This implementation decision is for simplifying the actual code generation.
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However, in future work we will investigate auto tuning of cache and register blocking

and other optimizations, such as loop unrolling for CPUs [26, 40] and warp specalization

for GPUs [20]. Listing 5 displays the generated CUDA kernel for computing the interior

points.

1 global void ComputeInteriorPoints(double ∗ restrict const u old,
2 double ∗u new, int nsdx, int nsdy, int nsdz, double kC0,
3 double kC1, int offset) {
4 unsigned int i = 1+threadIdx.x + blockIdx.x ∗ blockDim.x;
5 unsigned int j = 1+threadIdx.y + blockIdx.y ∗ blockDim.y;
6 unsigned int k start = 1+blockIdx.z ∗ offset;
7 unsigned int k stop = k start + offset;
8

9 if (k stop > (nsdz+2)−1) { k stop = (nsdz+2)−2; }
10

11 if (i > 1 && i < (nsdx+2)−2 && j > 1 && j < (nsdy+2)−2)
12 for (int k = k start; k < k stop; k++) {
13 int idx = i + j∗(nsdx+2) + k∗(nsdx+2)∗(nsdy+2);
14 u new[idx] = kC1 ∗ u old[idx]
15 + (kC0 ∗ u old[idx−1] + u old[idx+1]
16 + u old[idx−(nsdx+2)] + u old[idx+(nsdx+2)]
17 + u old[idx−(nsdx+2)∗(nsdy+2)]
18 + u old[idx+(nsdx+2)∗(nsdy+2)]);
19 }}

Listing 5: Auto-generated CUDA kernel for computing interior points using a 7-point stencil. The code has
been formatted for brevity.

One important assumption of Panda is that all stencil-compute loops (i.e., triple loop

nests) require inter-node MPI communication. Since we wish to overlap communication

with computation, the inter-subdomain halo boundaries are computed separately from

the interior points for every identified stencil-compute loop nest. Panda thus generates

unique halo boundary functions for every stencil-compute loop nest.

When generating the kernels for computing the different halo boundaries, Panda

assumes that a subdomain is a box and thus has six sides (up to six MPI neighbors).

Specifically, Panda first enumerates the six different sides, and then iterates over them

using the stencil analysis process described in Section 3.1. At the same time, Panda is able

to distinguish stencil-compute loops from non-stencil-compute loops.

Each halo boundary, which is a 2D plane, is handled by a double loop nest. The Panda

compiler simplifies this part of CPU code generation by performing a deep copy of the

original triple loop nest, while removing one loop layer that is not needed for a specific

halo boundary. The benefit of such a deep copy technique is that we automatically obtain

the loop range (condition statement) of the for-loops.

It is straightforward to accommodate the deep copied for-loops when generating CUDA

kernels, by simply modifying the for-loops to iterate over the respective mesh points that

are assigned to one CUDA thread. This technique is better known as grid-stride loops [19].

As Listing 6 shows, the generated halo boundary loop nest in a CUDA kernel is very similar

to a regular CPU double loop nest.
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1 global void ComputePackEast(
2 double∗ u new, double∗ restrict const u old,
3 double∗ d send buffer, int nsdx, int nsdy, int nsdz,
4 double kC0, double kC1) {
5

6 int z = 1+threadIdx.y + blockIdx.y ∗ blockDim.y;
7 int y = 1+threadIdx.x + blockIdx.x ∗ blockDim.x;
8

9 for (int k = z; k < (nsdz+2)−1; k += blockDim.y ∗ gridDim.y)
10 for (int j = y; j < (nsdy+2)−1); j += blockDim.x ∗ gridDim.x)
11 int idx = (nsdx) + j∗(nsdx+2) + k∗(nsdx+2)∗(nsdy+2);
12 int idx2d = (k−1) ∗ nsdy + j − 1;
13

14 u new[idx] = kC1 ∗ u old[idx]
15 + (kC0 ∗ u old[idx−1] + u old[idx+1]
16 + u old[idx−(nsdx+2)] + u old[idx+(nsdx+2)]
17 + u old[idx−(nsdx+2)∗(nsdy+2)]
18 + u old[idx+(nsdx+2)∗(nsdy+2)]);
19

20 d send buffer[idx2d] = u new sd[idx];
21 }

Listing 6: Auto-generated CUDA kernel for computing a halo boundary (the x y-plane in the “east”). The
code has been formatted for brevity.

The Panda compiler takes advantage of the Kepler architecture’s read-only cache [24]

to further improve the performance. The read-only cache is a 48 kB on-chip memory

that can be used to cache data that is known to be read-only during the lifetime of a

kernel. Data to be placed in the read-only cache must be flagged with the const and

__restrict__ keywords. Thus, upon CUDA kernel generation, the MPI+CUDA Generator

module will use information in the Stencil object to identify read-only arrays. These

arrays are then automatically flagged with the const and __restrict__ keywords.

Choosing a good CUDA thread block size might impact the performance of a kernel. Our

solution is to generate three variables block_x, block_y and block_z, one per dimension.

Each variable (having a default value) is then connected to the command-line interface,

allowing the user to experiment with different block configurations at runtime (as opposed

to compile time). However, auto-tuning to determine optimal block sizes remains as future

work.

3.5 MPI+CUDA+OpenMP Code Generation

So far, much of the attention in accelerator-based computing has been put on the acceler-

ators, while the CPU’s role has mostly been serving as a host for the accelerator. However,

as CPUs have gradually become more powerful, researchers have started to study how

CPUs and GPUs can be cleverly combined for further performance gains. In our scenario,

the trick is to properly divide the computational workload between the CPU and the GPU,

so that the CPU can aid the GPU in sharing the computational costs.
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including the kernels responsible for computing the halo boundary points. Furthermore,

the auto-generated code performs unnecessary packing/unpacking of halo boundary data

that is actually laid out contiguously in memory.

In Figure 4(b) we have repeated the same weak-scaling study outlined in Figure 4(a),

but the MPI calls now are disabled. In other words, there is no inter-node communication.

The purpose is to quantify the amount of time spent on communicating, and thereby

reveal how well the code is able to hide inter-node communication. As Figure 4(b)

shows, the handwritten code does a good job of hiding the MPI communication. It is

only when the number of GPUs exceeds 1024 that the MPI communication becomes a

decisive bottleneck. The difference between the performance results without inter-node

communication and the performance results with communication can help to quantify

the impact of inter-node communication. For example, at 2048 GPUs, 23% of the total

time of the handwritten code is spent on MPI communication, while 33% is spent on MPI

communication when 4096 GPUs are used. Similarly for Panda, MPI communication is

well hidden up to 512 GPUs. After 512 GPUs, communication becomes a more pressing

issue affecting scalability. At 1024 GPUs, 10% of the time is spent on MPI, 21% at 2048

GPUs, and finally at 4096 GPUs, 31% is spent on communication. The performance results

for the OpenACC implementation are considerably lower than Panda’s, thus not displayed

in Figure 4(b) due to space considerations.

The reason that we only present the GPU-only performance measurements on Titan

is because our attempts at efficiently running both the handwritten and auto-generated

CPU+GPU versions were unsuccessful on Titan. Recall that each Titan node is equipped

with a single 16-core AMD Opteron 6274 CPU and a Tesla K20X GPU. The performance

difference between the GPU and the CPU, by comparing the realistic memory bandwidth

performance, is approximately 5.6×. Closing this performance gap is challenging, es-

pecially since the 16 CPU cores share 8 floating point units. Thus, it is not possible to

delegate enough threads to the two thread groups responsible for computing the halo

boundary and interior points.

The lesson learned from clusters such as Titan is that CPU+GPU codes do not pay off,

if the performance gap between the CPU and the GPU is too big. In such a scenario,

GPU-only code might be a better alternative. Luckily, Panda is capable of generating both

GPU-only and CPU+GPU code. Hence, the user can freely choose the best option that

suits a given hardware platform.

4.2 Cardiac Electrophysiology Simulator

We have also applied Panda to a real-world 3D cardiac electrophysiology simulator, which

simulates the propagation of electrical signals in the cardiac tissue. The purpose of such

a simulator is to study complicated cardiac features, such as spiral waves, which may

lead to life threatening situations such as ventricular fibrillation. Figure 5 illustrates the

formation of a spiral wave.

The mathematical model of concern was derived by Aliev and Panfilov [9]. Without

going into details, it suffices to mention that the model consists of a 3D reaction-diffusion

equation, coupled with a two-state ordinary differential equation (ODE) system per spatial

mesh point. In comparison with the preceding 7-point Laplacian stencil benchmark, the
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cardiac simulator has additionally implemented an ODE solver, as well as enforcing a

homogeneous Neumann condition on the entire physical boundary.

The input serial code of the cardiac simulator to Panda is annotated similarly to Listing 4,

with the addition of the panda boundary directive in order to deal with the Neumann

boundary condition, as outlined in Section 2.1. For comparison, we have also implemented

two handwritten versions: GPU-only and CPU+GPU.

Figure 6(a) and Figure 6(b) show the performance results of the cardiac simulator

on the Wilkes cluster using both handwritten and auto-generated CPU+GPU and GPU-

only implementations. Like the stencil benchmark, the most efficient implementations

for the cardiac simulator are the implementations that involve concurrent CPU+GPU

computations.

The performance upper-hand of the handwritten code comes largely from the faster

kernels for the halo boundaries, and for computing the PDE and the ODE parts. The

computations involve many coefficients, which easily cap the occupancy due to high

register usage. The handwritten code makes use of the GPU’s constant memory for

this purpose. Moreover, it also uses plane sweeping and loop unrolling to achieve high

performance. These optimization techniques are not exploited in the kernels generated

by Panda.

The performance difference between the handwritten GPU-only code and the Panda

GPU-only version is more visible under the strong scaling experiments conducted using up

to 1024 GPUs on Titan, as shown in Figure 7(b). We observe that already at 32 GPUs the

two performance curves start to diverge. Profiling reveals that there are two reasons for

this behavior. The first reason is that Panda does halo boundary packing and unpacking

on the x y planes. This is avoided by the handwritten code. The second reason is the

difference in the time spent on the different compute kernels.

5 Related Work

The number of prior works conducted by other researchers is large. To avoid exhausting

the reader, we will categorize the related work into three types: compiler directives,

libraries and DSLs.

Compiler directives A developer friendly approach is to use compiler hints to guide

the compiler in generating parallelized code. Thanks to the support from numerous

vendors, OpenACC and OpenMP have rapidly established themselves as the de facto

solutions for directive-based code development. Although capable of delivering acceptable

performance [17, 39] in a broad range of applications, neither OpenACC nor OpenMP

targets an entire cluster. Users are thus left to their own to write code that deals with MPI.

Our work is closely related to [15, 27, 28, 38], which all can use compiler directives

to automatically offload computation to a single accelerator. OpenACC [27] is known

to provide good performance on Nvidia GPUs, while OpenMP [28] is known to deliver

particularly good performance on CPUs and Xeon Phi co-processors. Mint [38] by Unat

et al. is a domain-specific translator for stencil methods by transforming serial stencil

C/C++ code to CUDA code. OpenMPC [15] by Lee and Eigenmann provides an extension
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of OpenMP, so that code annotated with OpenMP directives is translated to CUDA code.

OpenMPC also includes an auto-tuner for performance tuning. Like OpenACC and OpenMP,

both Mint and OpenMPC target only a single accelerator.

OpenMP-D [4] by Basumallik and Eigenmann provides a set of custom directives that

extends OpenMP for translating OpenMP code to MPI code. Similar to OpenMPC, OpenMP-

D takes a generic approach, and is not restricted to stencil computations. Dathathri et

al. [6] have developed a compiler for auto-generation of regular computation on structured

grid for heterogeneous CPU-GPU clusters. OpenCL is chosen as the programming model

to generate code for both CPUs and GPUs. The compiler by Dathathri et al. can also

generate CPU+GPU code using an asymmetric work distribution similar to ours. The

authors however are not able to make their CPU+GPU code scale beyond a single node,

believing that the CPU is the bottleneck. Ravishankar et al. [30] have developed a

compiler framework of code generation for mixed irregular/regular computations targeting

homogeneous distributed memory systems. Our Panda compiler framework shares several

similarities with the work by Ravishankar et al., such as static analyses of partitionable

loops, use of compiler directives to annotate distributed data structures, etc.

Libraries PARTANS [18] by Lutz et al. provides a C++ template library to ease the

burden of OpenCL programming of stencil code targeting multiple GPUs. The authors

have also developed an extensive auto-tuner for performance optimizations. PARTANS

supports multiple GPUs per node, but its scalability is limited because the library only

supports 1D domain decomposition. Shimokawabe et al. [33] have developed a C++

library for performing large-scale weather forecast simulations on the TSUBAME 2.5 su-

percomputer. The library of Shimokawabe et al. supports various domain decompositions,

and also takes advantage of multiple GPUs on the same node using GPUDirect v2 (peer-

to-peer) memcopies for fast intra-node data transfers. Both PARTANS and the framework

of Shimokawabe et al. lack the ability to perform pure CPU or concurrent CPU+GPU

computations. Furthermore, users with sequential implementations must rewrite their

code in order to take advantage of these libraries.

DSLs DSLs constitute a compromise by giving up some of the language generality for

performance. Since a DSL is restricted to a particular application domain, it can leverage on

this knowledge to deliver excellent performance. Contrary to a directive-based approach,

DSLs require considerable effort in code development. A similar investment in code

redevelopment is also required if the user has an existing parallel implementation.

The DSLs that lie quite close to Panda are [5, 10, 12, 21, 29, 42]. PATUS [5] is a CPU-

GPU stencil code generation and auto-tuning framework developed by Christensen et al.

PATUS depends on user-provided description files, because it lacks a stencil analyzer that

can automatically recognize stencil shapes. Code generation for different architectures

is explicitly defined in a machine architecture description file. Holewinski et al [10]

have developed a single-GPU stencil code generator using overlapped tiles in OpenCL.

Neither PATUS nor the work by Holewinski et al. generates code for concurrent CPU+GPU

execution.

The Halide [29] DSL represents a compiler and auto-tuner framework by Ragan-Kelley

et al. It generates stencil code for 2D image processing on CPUs, GPUs, and CPUs+GPUs.
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Like PATUS and the framework developed by Holewinski et al., Halide targets CPUs and

accelerators within a single node. Physis [21] by Maruyama et al. is an embedded DSL

that targets large-scale GPU clusters. A dedicated compiler translates input code that is

implemented in the Physis DSL into MPI+CUDA code, which overlaps inter-node data

transfers with computation. However, Physis cannot generate heterogeneous CPU+GPU

code. The SnuCL [12] framework by Kim et al. can run a wide range of OpenCL applications

on GPU clusters. SnuCL abstracts the processing units, such as CPUs and GPUs, across

an entire cluster to appear as a single processing unit on a single machine. Applications

transformed by SnuCL are capable of concurrent CPU+GPU computations, but due to

the workload distribution strategy adopted by SnuCL, the performance benefit of this

approach is limited. Another limitation is that SnuCL does not take serial code as input,

only parallel OpenCL code. The auto-generation and auto-tuning stencil framework [42]

by Zhang and Mueller generates high-quality stencil code that can be executed on GPU

clusters. The framework however cannot generate pure MPI or CPU+GPU code.

In summary, the related work reveals the lack of a developer-friendly programming

model that can realize high performance on accelerated clusters by auto-generating

CPU+GPU code based on serial input code written in a general-purpose programming

language such as C. This gap in the compiler toolchain represents a particular obstacle to

domain scientists who wish to harness the computational powers of CPU-GPU clusters.

The Panda framework is thus an effort to close the gap.

6 Limitations

Panda is a domain-specific compiler that targets 3D stencil computations on regular grids.

While some might see domain-specific translations as a restriction, we see the opportunity

of carrying out meaningful optimizations that would not be possible in a more generic

approach.

At the moment of writing, Panda is not equipped with a runtime system that can detect

the number of CPU cores available on a target system. This means that the default number

of OpenMP threads chosen in the context of MPI+CUDA+OpenMP code generation must

be defined as command-line arguments. The lack of such a runtime system makes it

increasingly difficult for the user to know exactly how many OpenMP threads should be

dedicated to the two thread groups. As a rule of the thumb, we recommend that 2
3 of

the OpenMP threads spawned are dedicated to computing the interior points, while the

remaining 1
3 are dedicated to computation of the boundary points.

Finally, to further improve the performance of the CPU+GPU code produced, it is

necessary to generate more optimized CPU code for computations of the interior and

boundary points. High-performance CPU code is an important ingredient in CPU+GPU

implementations to reduce the computational performance gap between the CPU and

the GPU. As numerous works have already shown [7, 16, 31], techniques such as cache

blocking are effective to optimize stencil codes on CPUs.

Other features currently not handled in Panda is I/O and checkpointing, which remains

as future work. Users with serial applications that relies on I/O, must manually modify

the generated code to deal with this feature.
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7 Conclusion

In this paper we have presented the Panda compiler framework, consisting of a directive-

based programming model and a source-to-source translator. From annotated serial C

code, Panda can automatically generate various forms of parallel code that efficiently run

on GPU-accelerated distributed-memory systems.

We have demonstrated that the MPI-supported GPU-only code generated by Panda can

realize 90% of the performance of a highly optimized handwritten counterpart. Moreover,

Panda’s GPU-only code scales nicely on more than 4000 GPUs on the Titan supercomputer.

With respect to concurrent CPU+GPU computation, coding is notoriously hard due to

many fine-grained details. The Panda framework fills the missing gap in automated gen-

eration of hybrid MPI+CUDA+OpenMP code for stencil computations. The automatically

generated CPU+GPU code from Panda can in many cases outperform handwritten GPU-

only code. We thus believe that Panda can satisfy the performance requirements of many

domain scientists, so that they can focus on the science instead of tedious programming

details. At the same time, Panda generates code with high readability, so advanced users

can use Panda as a springboard to quickly generate parallel and hybrid code that can later

be manually modified for further performance enhancements.

Future work will mainly address some of Panda’s current limitations, such as handling

stencils with a wider reach than 7 points. Another topic is periodic physical boundary

condition, which in the context of MPI parallelization requires implementing wrap-around

communication.

We will also explore better support for future GPU clusters that are equipped with

multiple GPUs per node. In the current version of Panda, an MPI process is spawned

per GPU. However, a more promising approach is to use only a single MPI process, but

adopting multiple CPU threads to control the GPUs.

Currently, the Panda source-to-source compiler is specifically designed for GPU clusters,

but we will consider extending Panda with respect to Xeon Phi clusters. Such an extension

will involve fine-grained use of OpenMP on Xeon Phis as opposed to using CUDA on GPUs.

Our preliminary study suggests that the extension can be implemented in a straightforward

manner.
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1 Dirac

Dirac was a small experimental GPU testbed at the National Energy Research Scientific

Computing Center (NERSC). Each of the 44 compute nodes were equipped with two

8-core Intel Xeon 5520 (Nehalem) CPUs, 24GB DDR3 memory, and four Nvidia Tesla

C2050 (Fermi) GPUs. Moreover, all of Dirac’s compute nodes were connected by 4x QDR

Infiniband technology configured in a fat tree topology with a global 2D mesh. Dirac was

retired in December 2014.

Source code on Dirac was compiled using CUDA [3] version 5.0 and OpenMPI [4] version

1.6.5. The following compiler flags were used for CUDA’s nvcc compiler: -arch=sm_20

-m64 -O3

2 Stampede

TACC Stampede [5] is primarily an Intel Xeon Phi cluster consisting of 6400 compute

nodes. However, a small fraction of the nodes are equipped Tesla K20m GPUs instead

(one per node). While 128 GPU nodes are available, they have been partitioned in such a

way that it is not possible to access more than 32 GPU nodes at a time. The GPU compute

nodes are equipped with two 8-core Intel Xeon E5-2680 (Sandy Bridge-EP) CPU, 32 GB of

memory and a single Nvidia Tesla K20m (Kepler) GPU. All Stampede nodes communicate

via a Mellanox FDR Infiniband interconnect configured in a fat-tree topology.

GPU-only source code was compiled using CUDA [3] version 6.0 and MVAPICH2 [2]

1.9. The heterogeneous CPU+GPU source code was compiled using CUDA version 2.0,

Intel IMPI [1] version 4.1.3.049, and Intel C compiler version 13.0.2.146.

The following compiler flags were used for CUDA’s nvcc compiler: -arch=sm_35 -m64

-O3, while the following flags were used for Intel’s icpc compiler: -O3 -openmp -xHOST

-fomit-frame-pointer -fno-alias -ip

3 Wilkes

Wilkes [6] is a GPU cluster at the University of Cambridge, UK. The cluster consists of 128

nodes, where each node is equipped with two Tesla K20c (Kepler) GPUs. Moreover, each

compute node is equipped with two 6-core Intel Xeon E5-2630v2 (Ivy Bridge-EP) CPU,

64GB of RAM and two Mellanox FDR Infiniband adapters. Due to several non-operational

nodes, we were unable to use all of the 128 nodes.
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All GPU-only source code was compiled using CUDA [3] version 6.0 and MVAPICH2 [2]

2.0. The heterogeneous CPU+GPU source code was compiled using CUDA version 2.0,

Intel IMPI [1] version 4.1.3.049, and Intel C compiler version 13.0.2.146.

The following compiler flags were used for CUDA’s nvcc compiler: -arch=sm_35 -m64

-O3, while the following flags were used for Intel’s icpc compiler: -O3 -openmp -xAVX

-fomit-frame-pointer -fno-alias -ip

4 Titan

Titan is a Cray XK7 system located at Oak Ridge National Laboratory, and currently ranked

the second fastest supercomputer on the TOP500 list. In total, Titan consist of 18 688

compute nodes and a theoretical peak performance of 27 Petaflops. Each Titan node

consists of a single 16-core AMD Opteron 6274 (Interlagos) CPU, 32GB of host memory

and a single Nvidia Tesla K20X (Kepler) GPU. The compute nodes are connected via

Gemini interconnect, configured in a 3D torus topology.

All source code on Titan was compiled using the default Cray Compiling Environment

in combination with the provided CC wrapper. The CUDA version used was version 6.5.

The following compiler flags were used for CUDA’s nvcc compiler: -arch=sm_35 -m64

-O3
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