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Abstract

Testing complex integrated robots (CIRs) requires testing several inter-
acting control systems. This task is challenging, especially for robots
performing process-intensive tasks such as painting or gluing, since their
dedicated process control systems can be loosely coupled with the robot’s
motion control.

Current practices for validating CIRs involve manual test case design
and execution. To reduce testing costs and improve quality assurance, one
trend has been to automate the generation of test cases and execute the
test case automatically as part of a continuous integration process.

This thesis makes two main contributions. First, we present a methodol-
ogy for the fully automated testing of CIR control systems. Our approach
is based on a novel constraint-based model for automatically generating
test sequences, where test sequences are both generated and executed as
part of a continuous integration process. We call the methodology CATS,
which is short for Constraint-based Automatic Testing of IPS, where IPS
is an abbreviation for ABB Robotics’ integrated paint control system.

Second, we present TC-Sched, a cost-effective method for automatic
test case execution scheduling on multiple machines with constraints on
accessible resources, such as measurement devices or network equipment.
TC-Sched is also based on a constraint-based model and is designed to be
integrated with and executed as part of continuous integration process.

The combinations of CATS and TC-Sched represent an efficient method
for quickly validating the critical software components of CIRs. We first
use CATS to automatically generate test cases. We then use TC-Sched
to optimally schedule the test cases. We show that, when operating in a
continuous integration process, there is a trade-off between the time spent
solving the constraint model and the time spent executing the result of
the model.

To evaluate our approach, we integrated CATS within ABB Robotics’
continuous integration process. A full lab for the automatic testing of
actual embedded control systems was built. The first version of the model
was introduced two years ago and has been extended several times. For
TC-Sched, the method was tested on several real industrial test suites, in
addition to a large set of randomly generated test suites. The results are
promising and ABB Robotics has decided to implement TC-Sched in a
full-scale setting at its research facilities at Bryne.
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In conclusion, the research presented in this thesis shows that solving
constraint programming models as part of a continuous integration process
can generate realistic test cases and efficient test execution schedules. The
research also shows that the solving process can be performed so that the
trade-off between solving time and execution time is optimal.
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Summary

1 Introduction

This section starts by presenting background information for the research
performed as part of this thesis including an introduction to robot control
systems. It also presents the industrial settings under which this research
was performed and argues for the direction the research has taken during
the work.

This thesis concerns the field of software engineering under the
topic of software validation and testing. Its main topic focuses on chal-
lenges related to software development for robot control systems. The
research performed in this thesis focuses on the development and solving
of constraint programming (CP) models [56] as a tool for improving the
quality of software testing for robot control systems as part of a continuous
integration (CI) [16] process.

1.1 Challenges in the Development of Robot Control Sys-
tems

In the early days of industrial robots, individual robots existed in a
standalone setting; that is, they were not connected together in larger
groups of robots or to an overall control system. Furthermore, the robot
control system’s internal design was based on a single standalone single-
core computer. However, as industrial robots evolved, connecting each
individual robot to external systems quickly became a requirement. Such
connections were, in the beginning, very primitive. An example is the
connection from a robot to an external control system by means of setting
or reading a digital signal, where each digital signal has a specific meaning.
An input signal could mean start paint job, while another output signal
could mean paint job finished.
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1. INTRODUCTION SUMMARY

Today, customers of industrial robots require even more features.
They need to read the robot’s current status and affect its behavior. A
general requirement is the ability to analyze the internals of the robot and
to control the robot in a more finely granulated manner than ever before.
This is one of the reasons why robot manufacturers have experienced a shift
in robot control system design technology, from a single-core computer
setup controlling all aspects of a robot to today’s robot controllers, which
are networks of computers, where each computer controls separate parts
of the robot: one computer controlling the man-machine interface, one
controlling the robot’s physical input and output, one to execute the user
program and run the interpolator, and so forth. This has led to what we
define today as complex industrial robots (CIRs).

Separation of the robot’s control system into multiple interconnected
computers has led to large improvements in the flexibility of control
systems, including reductions in cabling and the ability to bring the
computers closer to the physical process. However, this development has
also led to great challenges in testing such systems. Unlike the early
days of having a single application binary for a robot, we now have more
than 30 applications for the most complex settings. During testing, we
need to make sure that the complete system works as expected while
still maintaining the flexibility to modify only parts of the control system.
To achieve this goal, an automated solution is needed to support the
development process of CIRs.

This thesis addresses two specific tasks in which we propose a fully
automated solution to support the development of CIRs. The first task
relates to modeling a robot’s paint control system. With such a model, we
can extract automatic test cases in which timed event sequences related to
the synchronization of the robot’s physical motion path with the activation
of a spray painting process. The second task relates to the automatic
scheduling of test cases on parallel execution on multiple machines.

1.2 Industrial Setting

This thesis was written as part of the industrial Ph.D. program offered
by the Research Council of Norway. The research was funded by ABB
Robotics and the Research Council of Norway. The main part of the
research was performed at ABB Robotics, Bryne, Norway. The remainder
of the research was performed at the University of Stavanger, Norway, and
at Simula Research Laboratory, Oslo, Norway. The thesis and research
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SUMMARY 1. INTRODUCTION

project is mainly focused on applied industrial research. The following
summarizes the areas prioritized during the research:

• The performance of high quality industry-driven research, mainly
applicable to the automatic testing of ABB Robotics’ paint robots.

• The performance of realistic experiments and the development of
tools integrated in ABB’s current software development processes
and infrastructure.

• A strong focus on completing the research project on time and on
budget.

The performance of realistic experiments and the development of tools inte-
grated in ABB’s current software development processes and infrastructure
involved a significant amount of effort beyond what is reflected in the
included papers. This work can be summarized as follows:

Figure 1: Software test lab built as part of the research.
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1. INTRODUCTION SUMMARY

• Construction of a full-scale automatic software test lab, as shown in
Figure 1.

• Restructuring of the current build tools used at ABB Robotics to
enable model-based testing [54].

• Extensive refactoring of ABB’s in-house testing framework, which is
based on Python [46].

• A preference for high-quality tools integrated into ABB’s production
and testing rather than experimental prototype tools, such that the
tools and models developed during the research were integrated into
ABB’s current testing platform as much as possible and built to
production-quality standards

1.3 Collaborations

Through cooperation with my supervisors, Hein Meling (University of
Stavanger) and Arnaud Gotlieb (Simula Research Laboratory), new doors
were opened. Through Hein Meling’s connections, we established contact
with Lyse and Altibox, among the largest energy and Internet providers, re-
spectively, in Norway. Further, Arnaud Gotlieb introduced ABB Robotics
to the Certus consortium. The Certus consortium is a group of Norwegian
companies together with Simula Research Laboratory created for long-
term perspectives and a strong industrial profile and whose main focus
is to lead in software verification and validation research. ABB Robotics
became a full-fledged member of the Certus consortium in 2013. Through
Certus, we established valuable connections and collaborative relations
with other companies that also had a strong focus on software testing and
validation. Our cooperation with Cisco especially added a new dimension
to the research in this thesis. Cisco provided us with background data
and served as a valuable partner with whom to discuss solutions when we
needed a counterweight to solutions provided by the research community.

1.4 Contributions

This thesis focuses on the generation and scheduling of test cases as part of
a CI cycle by using CP. In particular, the contributions can be summarized
as follows.

4



SUMMARY 1. INTRODUCTION

(i) We modeled the timing aspects of ABB Robotics’ integrated paint
control system (IPS) as a CP model based on a finite domain. Our
aim was to capture the timing of the process related to the activation
of physical actuator outputs along a robot’s moving path. The model
can reflect both the correct behavior of the IPS as well as its behavior
in various error scenarios. The model is highly disjunctive and highly
configurable. This means that the model has many solutions, where
some of the solutions are better with respect to test case execution
time. The model underwent extensive testing to find the best search
heuristics to solve the CP model. We find two different heuristics,
each with its own strengths and weaknesses: Heuristic 1 has a
fast generation time while the test case’s execution time is longer.
Heuristic 2 is the opposite: Its generation time is longer and the
execution time is shorter compared with heuristic 1 (paper 2).

(ii) Based on the CP model of the IPS, we built a system for the
automatic test case generation of the IPS. Given a test objective, it
is capable of generating the configuration parameters for the IPS,
the actual timed event test sequences, and the Oracle describing
the expected behavior. The model was fully integrated into ABB
Robotics’ CI process. Test cases were generated and executed as
part of the CI cycle. This was the first time such complex solving
processes had been both solved and executed as part of a CI process.
The model was shown capable of both detecting completely new
errors and detecting old, reintroduced errors (paper 2).

(iii) We developed a methodology for test case execution scheduling based
on scheduling techniques from the CP community. The goal of the
scheduling model was to generate a schedule that executes all test
cases in a single test suite. Each test case can be executed on one or
several machines and the scheduler selects which of them to use for
execution. The scheduler also handles resource constraints between
test cases, which can prevent two test cases from being executed
simultaneously, even if executed on two distinct machines. The
scheduling model is designed for integration into a CI cycle, where the
schedule is calculated at execution time. This setup makes it possible
to add or remove both test cases and execution machines dynamically
without interfering with the test case execution (paper 3).
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2. BACKGROUND SUMMARY

1.5 Thesis Structure

This thesis is a collection of papers and is organized into two parts, as
follows.

• Summary: This part presents the research conducted in relation
to this thesis and introduces the papers included. Section 2 presents
background information on the main concepts. Section 3 explains
the core ideas, including how the contributions fits together within
a broader setting. Section 4 describes the research methods and
Section 5 summarizes the main results of each paper. Finally, Sec-
tion 6 discusses future directions for this research before Section 7
concludes the thesis.

• Papers: The second part of this thesis presents the research papers
included that have been published or submitted.

2 Background

Section 2.1 starts by stating some of the common problems in develop-
ing large-scale software systems designed to run on multiple hardware
platforms and multiple operating systems, such as robot control systems.
Section 2.2 presents the basics of CI, including how testing in a CI process
is typically performed and some of its challenges. Section 2.3 discusses CI
in general and provides a short introduction to its use in solving scheduling
problems. Finally, Section 2.4 provides an introduction to industrial robots
and highlights some challenges related to testing industrial robot systems.

2.1 Challenges in Multi-Platform/Multi-OS Systems

In today’s industry, software is a valuable asset. When a software compo-
nent is written, its subsequent reuse is usually desirable, since the cost of
rewriting it is very high. An example of such a long-living software product
is ABB’s robot controller and the Linux operating system. Although both
have been through long phases of development and restructuring, they
still retain some of their initial software components.

Maintaining such long-living software components can be challenging,
especially when a component is designed to be executable on many different
hardware platforms and operating systems. For example, ABB Robotics’

6



SUMMARY 2. BACKGROUND

IPS has software components that are compiled on more than six different
hardware architectures (e.g., x86, MPC5200, P1010, MC68223, C5400,
C5500, F2812) and more than four different operating systems (e.g.,
Windows XP, Windows CE, Linux, VxWorks). This means that, when a
software component is changed because of either a bug fix or an extension,
extensive testing is required to verify that the software component conforms
to the requirements of all the hardware architecture-operating system
combinations.

A number of tools can help the developer to perform such verification
and testing, such as static code analyzers, automatic code inspection tools,
and model checkers. However, these are usually insufficient. To obtain
better confidence about changing a component, the de facto industry
standard is to fully integrate it into the end product and execute tests
on actual hardware. With many combinations of hardware and operating
systems, this task quickly becomes infeasible if carried out manually. When
such tasks are done manually, the time since the change is tracked in
the source code and the next time the component is tested can be long
enough to prevent the developer from remembering it clearly. It will
also be very difficult to track which change caused which error, since
integration and testing are potentially conducted over several changes by
several developers.

However, solutions to this problem exist. By automating all the task
involved in building the software, performing the integrations, deploying
it to actual hardware, and executing tests, it is possible to drastically
reduce the time from a component’s change until it is verified on actual
hardware. The following sections discuss some of the techniques used and
the challenges of using them on industrial robots.

2.2 Continuous Integration

Continuous integration [16] is a software engineering practice aimed at
uncovering software errors at an early stage of software development, to
avoid problems during integration testing. A typical CI infrastructure
includes source control repository tools, automated builds, build servers,
and test servers. A build server is a machine that fetches source code
from the source control repository and carried out the building, testing,
integration, and so forth. All steps are carried out completely automatically
and are typically triggered by a source code commit or a timer. A typical
example of such a process is shown in Figure 2. Fitzgerald and Stol
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2. BACKGROUND SUMMARY

[15] describe CI as “a process which is typically automatically triggered
and comprises inter- connected steps such as compiling code, running
unit and acceptance tests, validating code coverage, checking compliance
with coding standards, and building deployment packages.” There is a
common understanding that the time from a CI cycle being triggered to
the developer receiving feedback should be as short as possible [13, 43].
Furthermore, one of the key ideas behind CI is to build, integrate, and
test the software as frequently as possible and keep the cycle as short as
possible. Developers working under CI are encouraged to submit small
source code changes to the source code repository instead of infrequent,
large chunks.

Developer
commit.

Software
building.

Software
deployment.

Testing.

Developer
feedback.

Static test suites
executed over a static schedule

Figure 2: Continuous Integration as currently performed in many industrial settings.
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SUMMARY 2. BACKGROUND

2.2.1 Testing as Part of Continuous Integration

In its simplest form, testing as part of CI executes a static collection of
test suites containing unit tests [55] and the unit test is executed on the
build/test machine rather than on the end target hardware platform. This
stage is usually very quick and will reveal a large group of potential errors
in the software component under test. However, since the unit test is not
being executed on the actual end platform, errors related to the target
hardware architecture are not detected. An extension would therefore be
to execute each unit test on the actual hardware platform. This setup
would, of course, potentially detect more errors but would require a more
expensive and complicated infrastructure where the actual end hardware
platforms must be installed.

The next step, in terms of better testing as part of CI, is to execute
integration tests on the actual end hardware platform in addition to
running the unit tests as already described. Integration tests are typically
performed on the end product, into which the full end product software
has been integrated. Such integration tests are typically a set of static,
fixed test cases and the test suite of integration tests is typically kept
static over a longer time period. A typical integration test for an industrial
robot system would be to reboot the robot’s control system and make
sure that the mechanical arm can perform basic movements. This will, of
course, require placing the robot in a safe area to avoid human injury.

Both of the above-presented testing techniques executed as part of
CI use one or more test suites of fixed test cases. This means that exactly
the same test suite is executed for every test campaign. In many contexts,
this is sufficient; however, a more advanced approach is needed when the
test suites are large and the time allocated for test execution is limited.

The approach of having a known, fixed set of test suites executed in
a CI process has major drawbacks, which can be summarized as follows.

• There is no strong link between a change in a software component
and the corresponding test case. For example, if a feature is removed
from a software component, the corresponding test case will also
need to be updated. This can lead to false errors due to a mismatch
between the behavior of the test case and that of the software
component. The task of detecting this deviation and potentially
modifying the test case is a manual one.

9



2. BACKGROUND SUMMARY

• Changing a test suite to accommodate a new test case prioritization
or new test suite optimization, for example, is typically a manual
job, performed outside of the CI environment. The result of the
change (the new test suite or the new schedule) then needs to be
manually transferred into the CI environment.

• If the time allocated for testing in the CI cycle is less than the time
it takes to run the tests in the test suite, a manual selection needs
to be undertaken that could leave out important test cases.

Several approaches could, in principle, be integrated and performed as
part of the CI cycle, such as test case generation, test suite minimization,
and prioritization [7, 12, 21, 5, 31]. There are, however, no reported cases
of such complex processes or their equivalent having been integrated and
executed as part of the CI process. The only example we have found
involves the inclusion of system execution modeling tools as part of CI
in testing distributed real-time systems Hill et al. [22]. This approach,
however, does not work on the end product itself but, rather, on a simulated
model of the system.

In the work presented in this thesis, we incorporate systematic
automated test case generation in CI in addition to presenting a solution
for automated test case scheduling. This is a first step toward greater
automation in the software validation of complex software control systems
such as robot control systems.

2.2.2 Scheduling Test Cases as Part of Continuous Integration

In many settings, a test suite can be executed in several ways, for example,
by order of test case execution or by the machine to which each test case
is assigned for execution. If test case execution machines exist, several
test cases can even be executed in parallel. However, it is common for
constraints on test cases and target machines to require an execution
schedule to be solved to minimize the test suite execution time.

The scheduling of test cases, even outside of CI, has not, to our
knowledge, been mentioned in the literature. To our knowledge it seems
that the default method of scheduling test cases in a CI environment
is to set up a static schedule based on one or more static test suites.
However, we know from our industrial collaboration that test cases need
to be scheduled and that simple methods are being used in industry.

10



SUMMARY 2. BACKGROUND

Our cooperation with Cisco, Norway, provided great insight into their
simple yet powerful scheduling approach, compared to static scheduling.
Their approach is based on a first come, first served principle, where
the scheduler dispatches test cases for execution in order of appearance.
However, test cases requiring external resources such as a special network
interface are postponed until the resources are available. This method
of scheduling test cases, however, does not calculate an optimal schedule
with respect to the available time allocated for test execution.

In short, the scheduling challenge in CI is to select the best test case
to execute at a given time on a given target execution machine so that
the total time in the CI cycle is minimized. However, the time allocated
to solve the scheduling problem needs be taken into account to minimize
the overall test execution time.

2.3 Constraint Programming

This section first provides a general introduction to CP. Further, it presents
a more special direction of CP, that is, CP over a finite domain. Finally,
it discusses the use of CP for test case generation and scheduling.

CP[56] is a well-known programming paradigm that was introduced
20 years ago to solve combinatorial problems in an efficient and flexible
manner. The programming paradigm consists of a way to describe relations
between variables in the form of constraints. Typically, a CP model is
composed of a set of variables V , a set of domains D, and a set of
constraints C. The goal of constraint resolution is to find a solution,
that is, an assignment of values to variables that belong to the required
domains and satisfy all the constraints. Finding solutions is the role of the
underlying constraint solver, which applies several filtering techniques to
prune the search space formed by all the possible combinations. In practice,
the constraint models that are developed to solve concrete and realistic
testing problems usually involve complex control conditions (conditionals,
disjunctions, recursions) and integrate dedicated and optimized search
procedures [20].

The use of domains in CP typically distinguishes one CP problem
from another. The domain could be a continuous one, typically with real
numbers. Domains of lists, Boolean, trees or sequences are other domains
that can be used to express a CP problem [34].

Many problems that can be expressed as a CP problem can also be
expressed through other techniques. It is important to emphasize that
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2. BACKGROUND SUMMARY

other techniques such as satisfiability (SAT) or satisfiability modulo theory
(SMT) techniques [9], search-based techniques [36], and mixed integer
programming [23] are often very comparable in terms of performance and
the possibility of expressing the problem.

2.3.1 Constraint Programming over a Finite Domain

CP over a finite domain is an important subclass of constraint domains
where the values of the variable V are restricted to a finite set. An
example of such a finite domain is D = {red, blue, black} or D = {2, 5, 8}.
A bijective mapping between a finite set of symbols and a finite set of
integers is trivial for finite domains and, in the above example, we could
therefore easily say that D = {red = 1, blue = 2, black = 3} can switch
completely to using integers. The constraints, C, used in finite domain
CP are typically simple relations such as =, >, and < or more advanced
constraints such as All different[27], which constrains a set of variables
to be different from each other.

Use of CP over a finite integer domain is particularly useful for mod-
eling discrete optimization and verification problems such as scheduling,
planning, packing, and timetabling.

The following small, well-known example highlights some of the
most basic properties of CP. The SEND+MORE=MONEY [59] problem
is based on the crypto-arithmetic problem

S E N D

+ M O R E

= M O N E Y

where each letter represents a different integer from zero to nine. This
problem can be modeled as a constraint problem, as follows:

Listing 1: The SEND+MORE=MONEY implemented in SICStus Prolog

:- use_module(library(clpfd )).

smn( [S,E,N,D,M,O,R,Y] ):-

domain ([S,E,N,D,M,O,R,Y],0,9),

all_different ([S,E,N,D,M,O,R,Y]),

S #\=0, M#\=0,

1000*S + 100*E + 10*N + D

12
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+ 1000*M + 100*O + 10*R + E

#= 10000*M +1000*O + 100*N + 10*E + Y,

labeling ([], [S,E,N,D,M,O,R,Y]).

The program starts by setting the possible domain for all of the
variables and then stating all the constraints. Finally, the labeling state-
ment will start the search among the variables (S,E,N,D,M,O,R,Y) and
try to assign them values from the domain (zero to nine) so that all the
constraints are satisfied.

By launching the above constraint model in a constraint solver, we
obtain the following answer:

Listing 2: Solution to the SEND+MORE=MONEY problem from Listing 1. This is the only
solution; that is, no other assignments of the variables exist that satisfy the constraints.

| ?- smn([S,E,N,D,M,O,R,Y]).

S = 9,

E = 5,

N = 6,

D = 7,

M = 1,

O = 0,

R = 8,

Y = 2 ?

Although this example is very basic, it illustrates the general approach to
solving a CP problem: 1) Assign a domain to all unknown variables, 2)
post the constraints, and 3) initiate the search for a solution.

2.3.2 Solving Constraint Programming Problems over a Finite
Domain

A CP model over a finite domain will, in many practical situations, have
more than one distinct solution. The example shown in Listing 1 has only
one solution. However, it is not uncommon for the solution space to be
very large and it is often a challenge to find one distinct solution in the
solution space that optimizes a given objective function. An objective
function can be related to finding the solution with the lowest cost, the
solution with the highest profit, or the solution with the shortest schedule.
Problems in which a CP model searches among a large set of possible
solutions typically has one of the following outcomes.
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• No solution with proof: The problem provably has no solution. The
interaction between the constraints and the search algorithm is such
that the problem cannot be satisfied.

• No solution without proof: The search algorithm was unable to find a
solution within a given contract of time. This means that a solution
could exist, but the time allocated to the search was insufficient to
draw any conclusions.

• Quasi-optimal solution: At the end of the time contract, a solution
is returned, meaning that the search calculated an estimate for the
optimum but was interrupted while trying to prove the solution’s
optimality. There could be a better solution in the solution space
that has not yet been found.

• Optimal solution with proof: Before the end of the time contract,
the search algorithm returns an optimal solution. This means that
the search found a guaranteed global optimum, that is, the search
explored the entire search space.

As we can see from the above, a search therefore typically operates with a
timeout. This element is essential for many problems in which there is a
trade-off between the time searching for the best solution and the result
of the solution itself, which can be the execution time of a schedule or of
a test case.

2.3.3 Constraint Programming for Test Case Generation

In this section, we describe some of the main tasks that need to be executed
when developing a test case or a test suite. Further, we discuss how CP
can be used with the intention of automating this task.

When developing a test suite for testing a software system, we can
divide the development into two parts: the generation of the test cases,
often referred to as the input data, and the generation of the expected
result, which is also known as the output data or the oracle. There are,
however, many different approaches in the literature. In this thesis, we
use CP for both test case generation and for generation of the expected
result.

One of the trends in software engineering has been to use CP
and constraint solvers to calculate the test inputs and the oracle. The
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general idea behind constraint-based testing is to use constraint-solving
and constraint optimization techniques to generate test cases and the
oracle for the program under test. The software program or a model of the
system to be tested can be expressed as constraints with corresponding
domains. Then, by providing a set of test objectives, the CP model extracts
a test case and oracle to satisfy the test objective. A test objective could
generate input data to a unit test such that all possible paths through a
program are executed or generate a set of inputs such that all possible
assertions in the program are tested.

The idea of using CP for automatic test case generation dates back
to the early 1990s, to the work of Marre [33] and Dick and Faivre [11]. Use
of CP for test case generation has been shown to be both versatile and
flexible. Examples include CP being used to automatically generate unit
tests by conducting static source code analyses [60, 19]. More recently, Di
Alesio et al. [10] used CP to generate stress tests for real-time applications.
They constructed a complex declarative constraint model implementing
the behavior of a priority-based real-time operating system with the goal
of finding worst-case scenarios with respect to deadline misses. Further,
K. Balck and Pearson [25] used CP to generate replay scenarios for a
public warning system service as part of the 4G Long Term Evolution
(LTE) standard.

2.3.4 Constraint Programming for Scheduling

When given a test suite containing multiple test cases and more than one
machine is available to execute each test case, we can decrease the time
it takes to execute all test cases by running them in parallel. However,
constraints must often be considered when setting up such a parallel test
case execution. These constraints can, for example, relate to the machine
each of the test cases is to be executed on or the order in which they are
executed. When such execution constraints need to be accounted for, the
execution problem can turn into a complex scheduling problem.

The field of scheduling is very broad. Scheduling can relate to how
a kernel in an operating system decides which task to execute and when.
It can also relate to finding the optimal way of carrying out a building
project, solving a rostering problem, or planning a sports tournament.
There are many tools and techniques for solving and modeling scheduling
problems from different communities, such as operations research [26],
and genetic algorithms [8]. However, many scheduling problems, even if
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quite diverse, turn out to share similarities, which makes CP a possible
candidate for a tool for both modeling and solving schedules.

Over the years, several variants of scheduling problems have been
addressed by both the CP and operations research communities. Lombardi
and Milano [30] point out that neither CP nor operations research tech-
niques can claim to have the best approach; they both perform equally well.
However, CP has been shown to work extremely well for some scheduling
problems [41, 49], and is also attractive because of its declarative nature
and closeness to the mathematical model.

2.4 Testing Robot Systems

We define a CIR (paper 1) as a classical industrial robot with an additional
control system attached that performs an industrial or physical process.
This control system is typically responsible for controlling such physical
processes as painting, gluing, and welding. This means that we have one
control system responsible for moving the mechanical arm of the robot
and an additional control system responsible for controlling the physical
process.

The interconnection between the motion control system and the
process control system typically varies. Some process control systems has
a very tight interconnection with the motion control system through inter-
faces such as dual-port RAM, while others have a looser interconnection,
such as industrial field buses or industrial Ethernet. Testing software for
CIRs is a complex task, mainly because of this separation between control
systems. The separation introduces delays and latency, which is one of
the main reasons why testing becomes complex.

To facilitate process-intensive task such as painting, gluing, or seal-
ing, it is convenient to decouple the process control system from the motion
control system even further. However, this decoupling introduces addi-
tional challenges with respect to testing such robot systems. In particular,
a key requirement for robotized painting is the ability to precisely activate
the process equipment along a robot’s programmed path. However, many
of the physical processes involved in robotized painting are relatively
slow compared to moving the mechanical robot. Consequently, advanced
computationally based techniques have been established to take advantage
of the knowledge of the slower physical processes to compensate for these
latencies. The validation of such systems is therefore challenging.
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Current testing practices to reduce the number of software faults
apply techniques such as the manual design of unit and integration testing,
where both the test inputs and expected output are defined by validation
engineers. Testing often requires access to the physical layer to activate
many of the robot’s features. Much of the testing is based on running
a full-scale system with a moving robot and measuring outputs with
instruments such as an oscilloscope. This results in a lengthy period
between a change in the software and the time of testing and reduces the
possibility of automating testing. In addition, many of the tests produced
for one configuration cannot be easily reused to test another configuration,
since manual test configuration is required. These techniques are labor
intensive and error prone. Consequently, software faults may still be
detected late in the design process, often close to the release date, leading
to increased validation costs.

3 Main Contributions

In this section, we introduce the two main contributions of this thesis. The
first contribution is a methodology for automatic test case generation for
ABB Robotics’ IPS. The methodology, which we have named Constraint-
based Automatic Testing of IPS(CATS), is designed to be executed as
part of a CI cycle. We present more details of CATS in Section 3.2.

The second contribution relates to test case execution scheduling
inside a CI cycle. We have named our methodology TC-Sched and will
present it in more detail in Section 3.3.

3.1 Relation between CATS and TC-Sched

Both CATS and TC-Sched are designed to reduce the overall testing
time, Tt, in a CI cycle. This section presents an overview of how the two
methodologies are related to each other and how they are integrated in
a full CI cycle. It is well known [16, 42, 43] that an important success
criterion for CI, is the round-trip time of a CI cycle, or the time it takes
to return test results to the developer. Recall from Figure 2 the different
phases in a CI cycle. Figure 3 shows a complete CI cycle laid out in time,
where each phase in the CI cycle will contribute to the overall time, as
follows:
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Developer commit. When a developer is finished with a small task
involving code change, he will submit the changes to the source
control repository. The time it takes to do the commit can in most
cases be ignored.

Software building. Building the software occupies a considerable slice
of Tci. This task include fetching source code from the source control
repository, compiling it, and packing it into installation packages.
To optimize the build time, several techniques are used, such as
distributing the builds [44], building software in parallel [2], caching
builds [53], using pre-compilation [61], backtracking on the last
successful build [52], and using a distributed workflow [50]. Google
has even designed a new language, Go [18], with the express goal of
fast build times.

Software deployment. The time it takes to deploy the software can
be neglected for some products (e.g., copy a single file). For other
products, it can take considerable time (e.g., reinstalling a complete
operating system). The time will often depend on the physical char-
acteristics of the target platform. An example from ABB Robotics
shows that installation times can vary from more than 30 minutes
when the upgrade is performed over serial lines to less than five sec-
onds when done over Ethernet. This makes it difficult to generalize
the time it takes to deploy software.

Testing. The testing phase often involves running a static set of test cases.
In more advances settings, this will also include running multiple
tests on multiple embedded computers in parallel.

Developer feedback. Providing feedback to the developer is usually
just a matter of sending an email with the results of the build and
test. This time is short and can be ignored in most cases.

The time from when a change is committed to the source control repository
until the developer is notified of possible errors is denoted Tci. The time
spent in the testing phase is denoted Tt, where Tt = Ts + Te. The variable
Ts is the time spent in generating either a test case or a test case execution
schedule and Te is the time to actually execute the test case or schedule.

This thesis focuses on the testing phase. Both our contributions,
CATS and TC-Sched, aim to reduce the test execution time Tt. Figure 4
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Time
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Software
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Figure 3: A complete CI cycle. The total cycle time is denoted Tci. The testing time
is denoted Tt = Ts + Te, where Ts is the time spent to generate or schedule a test suite
and Te is the time it takes to execute the generated test suite or schedule.

shows how CATS and TC-Sched relate to each other and to the complete
CI cycle.

CATS

Static test
suite

Static test
suite

TC-Shed Test execution/
dispatcher

Figure 4: Overview of how CATS and TC-Sched interact in a complete system.

In a CI cycle, CATS automatically generates a test suite to test
ABB Robotics’ IPS. By describing the IPS as a CP model, CATS is able
to automatically generate test cases. These test cases can be scheduled
in combination with other test suites for execution using TC-Sched. TC-
Sched is also based on a CP model intended to be solved as part of the
testing phase.

The goal of both CATS and TC-Sched is to find a solution based
on constraints given as inputs to the model, in addition to solutions such
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that the trade-off between Ts and Te minimizes Tt.

3.2 CATS

In this section, we present CATS and provide the background for its use.
For CIRs, the single most important function it needs to master is to
move the mechanical robot arm along a programmed path and perform
physical operations synchronized to the movement along the path. The
physical operations that are synchronized to the path typically classify the
type of robot. These operations can be simple, such as opening/closing a
gripper for handling robots, taking a picture for an inspection robot, or
turning on a spray paint pattern for a paint robot. All of these examples
involve an external physical process that needs to be synchronized with
the movement of the robot arm. Another common feature is that the
time it takes to operate the physical process is significant and needs to
be accounted for. Examples of such process delays are the time it takes
to open a solenoid valve, accelerating a motor to the correct speed, and
filling a hose with air.

As already mentioned in Section 2.4, it is common to separate
the motion control system and the process control system for advanced
processes such painting and gluing. This is done for the various reasons
already addressed in Section 1.1. One of these reasons is to move the
control system physically closer to the physical process. Another reason is
to be able to use one process control on different types of motion control
systems, even running the process control system as a standalone module
without the use of any robot.

This separation of the motion control system and the process control
system has many obvious benefits. However, there are also some drawbacks.
One drawback is that testing becomes more complex, mainly due to the
physical distance between the two control systems but also because they
need to be time-synchronized (e.g., IEEE 1588 [28]), complicating matters
even further.

ABB Robotics’ IPS is such a separated process control system. The
IPS is a distributed paint control system designed mainly for installation
on ABB Robotics’ robots, but it can be installed on other types of robots
and also includes a standalone version. The IPS is highly configurable
and several different embedded controllers can be tied together over a
distributed industrial network to form it. One of the key features of
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Figure 5: CATS overview. A constraint model of the IPS can generate configurations,
test sequences, and the oracle. This is done as part of a CI cycle and executed on real
embedded controllers running the IPS. The process is fully automatic and any potential
error detected is reported to the developer. CATS is currently installed and used at
ABB Robotics, Bryne.

the IPS is the synchronization of many physical outputs (valves, pumps,
airflow, air pressure, etc.) which together form the spray pattern with the
robot’s motion. Due to the IPS’s distributed nature, the different parts of
the IPS can be placed close to the physical processes on the robot. This
improves the accuracy of the control of the process and reduces the robot’s
paint consumption. As mentioned in Section 2.4, this distributed nature
makes testing challenging. Until now, there was no systematic, automatic
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way to test synchronization between path and process. The testing was
highly manual, which led to overly lengthy periods between a change in
software and the software actually being tested. A serious consequence of
this long time delay was that developers had huge problems relating old
software changes to a newly found bugs.

We developed CATS to overcome the problems raised above. The
core of CATS consists of a CP model of the IPS that captures the relation
between the control systems moving the robot and those activating the
physical processes along its path. CATS can generate configuration pa-
rameters for the IPS, test cases, and a test oracle [54] for an IPS behaving
in a normal, non-erroneous fashion. CATS can also drive the IPS into
error states to verify that it is able to operate in and recover from such
situations. A high level overview of CATS is shown if Figure 5.

CATS is currently installed in ABB Robotics’ software development
infrastructure. It has been running for more than two years, solving the
CP model several times a day. It has shown that it can detect both
completely new errors in addition to old, reintroduced errors.

3.3 TC-Sched

It is well recognized [43] that the time from when a change is committed
to the source control repository until the developer receives feedback on
potential errors is crucial. It is important to minimize this time while
still maintaining a high quality of testing. On the one hand, minimizing
the scope of the testing is desired to shorten the feedback time to the
developer; on the other hand, extending the scope is desired to raise the
quality of testing. To address this problem, we developed TC-Sched, the
second main contribution of this thesis. The main idea of TC-Sched is
to schedule the execution of a test suite in parallel on a set of machines
available for executing test cases. This method is particularly useful for
applications that are executable on many different platforms. For such
applications, it is common for test cases to be reused between the different
platforms. In this context, a platform can be a hardware platform or an
operating system or have another feature that differentiates the machines
executing test cases.

TC-Sched is a cost-effective method for test execution scheduling
on multiple machines with constraints on accessible resources, such as
measurement devices or network equipment. TC-Sched takes as input a
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test suite, a set of machines available for test cases execution, and a set
of shared resources and produces an execution schedule. The schedule
guarantees that each test will be executed once and minimizes the round-
trip time, that is, the time it takes to solve the schedule and execute
it. Figure 6 shows a high-level schematic of TC-Sched. As with CATS,
TC-Sched is based on a CP model over a finite integer domain and is
designed to run as part of a CI cycle.

Resources:
t4(r1), t5(r1)

CP
model

Testsuite:
t1, t2, t3, t4, t5

Machines:
m1,m2,m3

Test suite execution schedule

m1

m2

m3

t

t4(r1) t3

t1 t5(r1)

t2

Figure 6: TC-Sched overview. TC-Sched takes as input a test suite, where each
test case can require exclusive access to a resource (e.g., an instrument) and a set
of machines on which the test cases can be executed. TC-Sched then generates an
execution schedule that satisfies the given constraints.

4 Research Method

In this section, we describe the research methods used in the entire research
project. From a high-level perspective, the research methodology is divided
into four parts:

(i) Industrial context and problem identification (Section 4.1).

(ii) Background study and literature review (Section 4.2).

(iii) Modeling the problem (Section 4.3).

(iv) Implementation and evaluation (Section 4.4)

23



4. RESEARCH METHOD SUMMARY

4.1 Industrial Context and Problem Context

Having worked for ABB Robotics for more the 15 years, I am well aware of
the actual challenges and problems ABB Robotics has from an engineering
point of view. To get a broader, more scientific view of these challenges,
we started by identifying two problems and tried to map them to similar
problems observed by other industrial partners and the research community.
The two problems we identified are related to the automatic testing of
the behavior of timed events (CATS) for robots and test case execution
scheduling (TC-Sched) and their performance as part of a CI cycle.

4.2 Background Study and Literature Review

For the first problem identified, the automatic testing of timing-related
events for robots, there was no industrial partner with whom to discuss
the issues. Although industrial robots are common nowadays, the chal-
lenge of synchronizing an external process control system to a motion
control system was not addressed by the research community at the time.
Furthermore, besides ABB Robotics, only two companies in the world
manufacture high-end robots with advanced process control systems such
as those involved in painting. In addition, these two companies have no
tradition of publishing their research in this specific field.

However, we have had discussions with companies in other industrial
domains, such as the testing of synchronization in smart grid technology [35,
29] and the synchronization of events in distributed programmable logic
controller (PLC) systems. These discussions showed that we were all facing
similar problems with respect to automatic testing. However, the partners
we discussed our issues with mainly had experience in manual testing
and less experience with automatic testing. None had any experience in
testing within a CI cycle, as we required.

Regarding the TC-Sched problem, we held valuable discussions with
Cisco, Oslo, a branch that develops video conferencing equipment. In
addition to seeing that we face some of the same challenges, we also shared
valuable experiences related to test case execution scheduling. Cisco
already had a simple system for scheduling test cases. Although Cisco
uses a minimalistic and simplified scheduling approach, we still gained
valuable experience from these discussions. Cisco’s approach is based on a
simple first come, first served [14] scheduler. Cisco also provided industrial
test suites to use in our own empirical evaluation of TC-Sched (paper 3).
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On the more theoretical side, we also reviewed the related literature.
Testing of timed event system has received significant attention (e.g.,
[45, 51, 62, 35]). However, we found no references to systems where the
test case generation was integrated as a dynamic part of a CI cycle. We
experienced the same for the scheduling of test cases. However general
work on scheduling is widely referenced in both the CP community ([4,
10, 47, 48]) and, in general, the software testing community ([24, 6]).

The review helped us understand the current state of CI-based
testing and the use of CP for test case generation and scheduling.

4.3 Modeling Problem

For both CATS and TC-Sched, we began by formulating mathematical
models. The mathematical models were derived from knowledge of the
IPS and prior test execution scheduling discussions we had held internally
and with industrial partners. Initially, the mathematical relation was
documented in internal technical reports, which formed a foundation for
discussion between researchers and developers. These technical reports
were later used as input for the published papers. The mathematical mod-
els were then transferred to experimental CP models. These experimental
CP models were used in smaller experiments, especially experiments re-
lated to finding optimal search heuristics and the speed of the solving
process. Ultimately, the experimental models were rewritten to industrial-
quality standards and adapted to the current build and test infrastructure
at ABB Robotics. After the first version was integrated in a full-scale
setting, we continued to make improvements to the smaller experimental
models, which were later transferred to the full-scale models.

4.4 Implementation and Evaluation

CATS has been fully integrated into the ABB Robotics build and test
environment. To perform this task, the current build and test tools had
to be studied in detail. This involved several modifications of the current
system, which can be divided into two major tasks:

• Comparing the measurements of actuator outputs and their corre-
sponding times with the oracle produced by CATS. This task might
seem trivial, but it turned out to be quite complicated, since the IPS
does not store the time and value of an actuator output if no changes
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are made. We evaluated several possible solutions to this problem.
One of them was based on an extension of the CP model to capture
more of the IPS’s actual behavior. This approach was discarded
mainly because the complexity of the CP model would increase to a
level that would overly complicate the model’s maintenance. Instead,
we decided to add more logic and knowledge to the software part
responsible for comparing the oracle with the measured actuator
outputs. We consider this solution to be more in line with recom-
mended practices [54], which emphasize a simple and minimalistic
model.

• The clock on the computer that is responsible for executing CATS
and running the derived test cases (paper 1), needs to be synchro-
nized with the clocks on the embedded controllers running the IPS.
This requirement forced us to perform a major rebuild of the in-
terfaces to the IPS and develop a clock synchronization algorithm
inspired by IEEE 1588 [28]. However, this extension was shown to
be applicable to other ABB Robotics products and we were able to
reuse this synchronization in contexts not related to testing. We
already used this rebuild in one of our other products, RobView
[1]. The work done in cooperation with this thesis is therefore also
applicable outside software testing.

CATS went through extensive evaluation during its entire development.
The goal of this evaluation was to ensure that the proposed methodology
actually contributed to detecting bugs faster and earlier in the development
cycle. The evaluation was mainly divided into the following parts:

• Evaluation of the model itself, including performance of the heuristics
(paper 1, paper 2).

• Evaluation of the quality of the generated test cases compared to
manually generated test cases (paper 2).

• Evaluation of CATS when deployed in a CI cycle, including its ability
to find old, reintroduced bugs (paper 1).

TC-Sched has not been integrated to the same extent as CATS, which has
prevented us from carrying out a full-scale evaluation in a CI environment.
However, the empirical evaluation conducted (paper 3) on both artificially
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generated test suites and real-life industrial test suites shows that the
proposed methodology corresponds to the expected results. Therefore,
ABB Robotics has decided to build and deploy a full-scale implementation
of TC-Sched in continuation of this thesis.

5 Summary of Results

The main research results of our work are elaborated in the three papers
included in this thesis. In this section, we summarize the key results
obtained for each paper.

5.1 Paper 1

“Testing Robot Controllers Using Constraint Programming and
Continuous Integration.” Morten Mossige, Arnaud Gotlieb, and Hein
Meling. Published in Information & Software Technology, Vol. 57, pp.
169–185, 2015, [37].

This paper is a journal extension of the following papers:

• Morten Mossige, Arnaud Gotlieb, and Hein Meling. “Test Generation for
Robotized Paint Systems Using Constraint Programming in a Continuous
Integration Environment.” In: IEEE Sixth International Conference on
Software Testing, Verification and Validation, Luxembourg, March 18–22,
2013, pp. 489–490.

• Morten Mossige, Arnaud Gotlieb, and Hein Meling. “Testing Robotized
Paint System Using Constraint Programming: An Industrial Case Study.”
In: 26th IFIP WG 6.1 International Conference on Testing Software and
Systems, ICTSS 2014, Madrid, Spain, September 23–25, 2014, Vol. 8763,
Lecture Notes in Computer Science, pp. 145–160.

This paper reports on CATS from a software engineering perspective,
focusing mainly on the software testing. The CP model is mentioned and
explained but given less attention. We introduce the domain of robotized
painting, with a special focus on how testing is currently performed and its
challenges. We also present the mathematical model of the IPS on which
CATS is based. We introduce the concept of just-in-time test generation
(JITTG) and discuss experience gained by the deployment and use of
JITTG.

Paper 1 answers the following research questions:
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• RQ1: How efficient are the search heuristics of CATS? We
perform a detailed analysis of experimental results for a simplified
version of the constraint model used in CATS. We determine the most
appropriate parameterization of the search process. We conclude
there are two different, complementary search heuristics that are
the most efficient.

• RQ2: What is the model scalability of CATS? Through a
controlled experiment on a full-scale model, we determine the scal-
ability of CATS. We tested a large set of different combinations
(length of test sequence and number of different spray patterns).
We found that, for all combinations, CATS provided a first solution
within 10 seconds. Most of the combinations generated a first solu-
tion in less than three seconds. We also performed an experiment
on the same setup that determined the optimal solving time when
minimizing the total execution time. We found that there is no
benefit to run the solving process longer then 12 seconds for the
configurations we tested. This result assumes that a test case is only
used once. If a test case can be used multiple times, there is greater
benefit in investing more in the solving phase.

• RQ3: Can CATS be adapted in an industrial environment?
This research question addresses how CATS can be integrated within
an industrial environment. We divided the question into the following
sub-questions:

– Can the model detect new errors? CATS found three
previously unknown errors in the IPS when it was deployed.
Two of them were directly related to the IPS’s behavior, while
the last was related to how a PC tool presents online diagnostics
for a live system.

– Is the model able to detect old errors that were rein-
troduced into the IPS? To further validate the robustness
of the model, a collection of old, previously detected errors
were reintroduced into the source code, with the intention of
verifying that the model was able to detect them. The results
show that CATS was able to find them all.

– Does the proposed JITTG framework behave as ex-
pected? We discuss our core experience gathered through the
deployment of CATS. We point out several key factors and
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lessons learned that we consider important to the success of the
CATS deployment in a full industrial setting at ABB Robotics.

5.2 Paper 2

“Using Constraint Programming to Test Paint Control System
for Robots”. Mossige, Gotlieb, and Meling. Invited journal paper
submitted to the journal Constraints [38].

This paper is a journal extension of the following paper [39]:

• Morten Mossige, Arnaud Gotlieb, and Hein Meling. “Using CP in Au-
tomatic Test Generation for ABB Robotics’ Paint Control System.” In:
20th International Conference on Principles and Practice of Constraint
Programming, CP 2014, Lyon, France, September 8–12, 2014, Vol. 8656.
Lecture Notes in Computer Science, Best Application Paper Award,
pp. 25–41.

Paper 2 builds on the results found in paper 1. We shift the focus from
software engineering/software testing to CP. We present the mathematical
relations in the IPS in a way more suited to CP, which includes explaining
a real painting case from a CP point of view, with real numbers. Further,
we provide a deeper explanation of boundary and start-up conditions and
present the more fundamental constraints.

The paper focuses on the complexity of the paint process, including
how to obtain an overview of the timing of different processes distributed
on different embedded controllers, through the introduction of a graphical,
easily understood method of representing the painting process.

In paper 1, we present a set of search heuristics, but why the different
search heuristics behave as they do remains an open question. This issue
is addressed in paper 2. It explains the difference between the two search
heuristics, including why one of them behaves as it does.

The paper also present how to introduce diversity in the solutions
with the help of global constraints. That method avoids useless test cases,
establishes diversity in the configuration for the IPS, and at the same time
generates test cases for a given test scenario.

Finally, we perform a detailed evaluation in which we analyze how
CATS generates test sequences compared to a group of highly skilled
paint domain experts. The results show that, even in very small instances,
humans are not able to generate the test cases with the given constraints
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within a reasonable time. We had to give the human group more relaxed
constraints to even generate the test cases. This shows that CATS is not
only capable of generating test cases in a CI environment but also capable
of generating test cases that cannot be generated manually.

5.3 Paper 3

“Optimal Test Execution Scheduling on Multiple Machines with
Resource Constraints”. Mossige et al. Submitted to Automated Soft-
ware Engineering (ASE 2015), [40].

In paper 1 and paper 2, we introduced test case generation as part of a
CI cycle and showed how a carefully controlled solving process of the CP
model can lead to more efficient test cases. Paper 3 maintains the same
basic focus, that is, to improve the efficiency of the test phase in a CI cycle.
We introduce TC-Sched, which addresses test case scheduling as part of a
CI cycle, where we assume the availability of multiple machines on which
to execute the test cases and where some of the test cases require exclusive
access to an external resource such as an instrument or an actuator.

Paper 3 provides a formal mathematical definition of the optimal
test case scheduling problem (OTS) and describes the context of testing
in a CI cycle. Further, it presents a solution based on CP and the use of
the Cumulatives [4] constraint.

In Paper 3, we answer the following research questions:

• RQ1: How does TC-Sched compare with simpler schedul-
ing methods in terms of schedule execution times?

The proposed solution is compared with two naive algorithms (ran-
dom and greedy), where we show that the first solution found by
TC-Sched is comparable or better than the solutions provided by
the two naive algorithms.

• RQ2: For TC-Sched, will an increased investment in the
solving time reduce the overall time of a CI cycle?

By continuing the solving process after the first solution is found,
it is possible to find better candidates. This will, of course, require
an extra investment in the time allocated to the search, which
contributes negatively to the time spent in the test phase in a CI
cycle. By executing TC-Sched on 840 randomly generated test suites,
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we conclude that the total execution time, Tt, can be minimized
by adding extra time to the solving phase, Ts. We found that the
optimal amount of time to allocate to solving depends on the size of
the test suite.

• RQ3: Can TC-Sched scale up to industrial optimal test
case scheduling problems?

To further validate the capabilities of TC-Sched in handling real-
world test suites, we performed an additional controlled experiment:
We tested TC-Sched on two real-world industrial test suites, one test
suite for ABB Robotics’ IPS [39] and one for a video conferencing
system [32]. The tests revealed that TC-Sched was able to find the
optimal execution time, Tt, by running the solving process for less
than one second (IPS) and less than 33 seconds (video conferencing
system).

6 Further Work and Lessons Learned

The research presented in this thesis has several promising directions for
further work. We divide this future work into that related to CATS,
presented in Section 6.1, and work related to TC-Sched, presented in
Section 6.2. Finally, in Section 6.4, we present some lessons learned during
the research.

6.1 Further Work on CATS

CATS has already been in daily use since almost two years and has proved
its ability to find errors. Besides adding small extensions to the model, we
do not foresee much future work on CATS in its current setting. However,
one possible spin-off would be to take CATS out of the CI environment
and use it as a standalone tool. In its current usage, the duration of a
generated test case is usually constrained by the available time in the CI
cycle. We do, however, see the need for generating longer test cases for
long-term testing outside of the CI environment.

6.2 Further Work on TC-Sched

Our work on test case execution scheduling has yielded very promising
results (paper 3). However, several tasks still remain to be done to realize
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the full potential of our findings. First, TC-Sched needs to be able to
handle more realistic industrial requirements. One of those requirements
relates to test cases requiring more than one execution machine. This is
a well-known requirement [57, 58] in several real-world industrial testing
suites, such as the testing of video conference equipment, where one test
case can use two or more video telephone terminals to test call functionality.

Another very promising direction for future work relates to schedul-
ing of test cases where the time window allocated for testing is constrained.
When scheduling test cases for a time-constrained window, there will not
be enough time to execute all the test cases in the test suite, even if an
optimal schedule is found. This scenario will require that only a subset
of the available test cases in the test suite is scheduled for execution. A
possible approach to this selection involves the use of priorities for each
test case, in addition to consideration of the duration of the last test case
execution. This method will result in a setting where high-priority test
cases are executed often and lower-priority test cases are executed less
often. This is, however, not a new problem. [12] and [21] address both test
suite reduction and prioritization. However, their work does not take place
within a CI process. We believe that the previously mentioned examples
are good candidates for extension into a CI process.

A full-scale implementation of TC-Sched is highly desirable. ABB
Robotics has already decided to implement a full deployment of TC-Sched
in their CI environment as a spin-off of this thesis. However, this will
require considerable refactoring of the current testing infrastructure. First,
we will have to develop an industrial-quality test dispatcher responsible
for the actual execution of the schedule. Further, a better system for
the collection of historical data is required. Based on experience with
the full-scale implementation of CATS, the extensions required on the
infrastructure are considerable. Without going into too much detail, the
extensions can be summarized as follows:

• Formalization of the definition and execution of a test case. What
kind of metadata need to be stored in a test case?

• A system for storing and restoring the historical execution times of
a test case.

• Solution of the synchronization problem that can arise if a test case
takes more or less time to execute while holding one or more global
resources.
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We also see that the current search heuristics used for TC-Sched can be
targeted for further work. We think that there might be other options that
provide a better trade-off when the time allocated to solving the schedule
is limited. We will probably favor search heuristics that converge quickly
in the beginning of the search but which may lack capabilities to prove
optimality. Proving optimality is mainly interesting from a theoretical
point of view, but less from an industrial point of view.

6.3 New Testing in Continuous Integration

Both CATS and TC-Sched show that the solving of CP models for test case
generation or scheduling inside a CI cycle is both possible and effective.
This opens up replication of the methodology for application to other
parts of the robot system. CATS has only focused on the timing and
synchronization of actuator outputs related to a robot’s moving path.
Other components, however, could be modeled through either CP models
or other modeling techniques, with the intention of applying JITTG
(paper 1) in a CI environment. One component for which we are currently
considering developing a model is the error reporting module in the IPS.
We are aware that customers of robot systems have a desire for more precise
error messages while requesting that “unimportant” errors be suppressed.
This leads to a complex IPS error module. A model of the error system
will make it much easier to validate extensions made to the system as part
of new customer demands, as well as extensions to the error reporting
module system.

6.4 Lessons Learned

The research performed as part of this thesis has taught us several lessons,
based on experience gathered through the development and deployment of
the test framework and discussions with test engineers at ABB Robotics.
We summarize these lessons as follows:

• Greater confidence when changing critical parts: Based on
feedback from developers, there is now less apprehension about ap-
plying changes to critical parts of the code. Previously, such changes
involved significant planning efforts and had to be synchronized with
the test engineers responsible for executing tests manually. With
the new testing framework as part of the CI cycle in place, it is
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easy to apply a change, deploy a new build with the corresponding
execution of tests, and inspect the results. If the change caused
unwanted side effects, it is rolled back to keep the build “green.”

• Simple frontend, complex backend: By using Python [46] as
the frontend interface to the constraint solver and keeping the test
engineer’s interface as simple as possible, we can utilize personnel
with a minimal computer science background. [17] and [3] recognize
that CP has a high threshold for usage. By limiting the train-
ing to the introduction of famous classical problems such as the
SEND+MORE=MONEY problem [34], test engineers were given
enough training to use the constraint solver from Python without
major problems.

• Less focus on manual, legacy tests: A positive side effect of
introducing model-based testing is that the organization’s focus
shifted from mainly manual testing toward more automatic testing.
Even for products beyond the scope of this thesis, the introduction
of a fully automatic test system as part of a CI cycle has inspired
other areas of ABB Robotics’ internal organization.

• Keeping tests in sync with the source code and hardware:
The combination of adding “everything” to the source control repos-
itory and JITTG is that we experience fewer problems with tests
generating false errors due to a mismatch. We still maintain other
test suites that do not have such tight integration and thus their
tests may occasionally produce false errors.

• Return on Investment with CATS Computing the return on
investment for ABB Robotics for the work performed during this
thesis is not easy. One could potentially measure the number of de-
fects found with and without the CATS model during the validation
of a new IPS release or compare the human effort required in both
cases. However, none of these measurements have been carried out
yet. In the long term, we expect CATS to be recognized as a way to
increase the general quality of the testing process, since necessary
refactoring will be performed before the technical depth grows out
of control.
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7 Conclusion

This thesis examines the solving of CP models as part of CI, where the
motivation is to increase the efficiency of testing during the CI cycle. The
work is divided into two distinct problem formulations: 1) automatic
test case generation for ABB Robotics’ IPS and 2) automatic test case
execution scheduling.

For the test case generation of ABB Robotics’ IPS, we developed a
CP model describing the behavior of the timing involved for the activation
of actuators synchronized to the path a robot arm is moving along(paper 1
and paper 2). This model can generate both IPS test sequences and
configurations, where the IPS is in a normal, non-erroneous operating
state. The model can also generate test sequences with corresponding
configurations in which the IPS is forced into error states and illegal
behavior. The complete model has been integrated into ABB Robotic’ CI
environment, where it is currently used as part of daily automatic testing.

For large instances of test cases generated by the CP model, we also
performed experiments that investigated how the trade-off between solving
the model and executing the test cases in a CI environment (paper 2). We
show there is little to gain from running the solving process for more than
around 10 seconds (paper 1). Furthermore, we conducted an experiment
that compared test cases generated by a group of highly skilled engineers
and test cases generated by our model. The most astonishing result was
not that the model was able to generate better (in terms of execution
time) test cases than the manual ones, but that our model was able to
generate test cases that a group of highly skilled engineers could not, even
with more relaxed constraints and tools to help generate the test cases.
This result shows that not only can our model help generate test cases,
but also it can generate test cases that cannot be generated manually.

Finally, we show that we are not only able to generate efficient test
cases as part of CI, but we are also able to schedule the test cases as
part of CI. In paper 3, we develop a CP model for test case execution
scheduling. We performed comparable experiments as for the CP model of
the IPS, where we found an optimal trade-off between solving the schedule
and executing it. The results show that, for the test suites we investigated,
it is possible to set a specific time-out that will generate the optimal result.
This time, however, depends on the size of the test suite and the number
of machines available to execute the schedule.
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To summarize our findings, we show that both test case generation
and test case execution scheduling modeled based on CP and solved as
part of a CI cycle are very efficient and definitively an area where more
research can be performed based on the same ideas.
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Abstract:
Context: Testing complex industrial robots (CIRs) requires testing sev-
eral interacting control systems. This is challenging, especially for robots
performing process-intensive tasks such as painting or gluing, since their
dedicated process control systems can be loosely coupled with the robot’s
motion control.
Objective: Current practices for validating CIRs involve manual test
case design and execution. To reduce testing costs and improve quality
assurance, a trend is to automate the generation of test cases. Our work
aims to define a cost-effective automated testing technique to validate
CIR control systems in an industrial context.
Method: This paper reports on a methodology, developed at ABB
Robotics in collaboration with SIMULA, for the fully automated testing
of CIRs control systems. Our approach draws on continuous integration
principles and well-established constraint-based testing techniques. It is
based on a novel constraint-based model for automatically generating test
sequences where test sequences are both generated and executed as part
of a continuous integration process.
Results: By performing a detailed analysis of experimental results over
a simplified version of our constraint model, we determine the most ap-
propriate parameterization of the operational version of the constraint
model. This version is now being deployed at ABB Robotics’s CIR testing
facilities and used on a permanent basis. This paper presents the empirical
results obtained when automatically generating test sequences for CIRs
at ABB Robotics. In a real industrial setting, the results show that our
methodology is not only able to detect reintroduced known faults, but
also to spot completely new faults.
Conclusion: Our empirical evaluation shows that constraint-based test-
ing is appropriate for automatically generating test sequences for CIRs
and can be faithfully deployed in an industrial context.

1 Introduction

A complex industrial robot (CIR) is defined as a classical industrial robot
with an additional control system attached to perform a given process.
This additional control system is typical responsible for controlling the
process, which is typically painting, gluing, welding, and so forth.

Developing reliable software for CIRs is a complex task, because
typical CIRs are comprised of numerous components, including control
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computers, microprocessors, field-programmable gate arrays, and sensor
devices. These components usually interact through a range of different
interconnection technologies, for example, Ethernet and dual port RAM,
depending on delay and latency requirements on the communication. As
the complexity of robot control systems continues to grow, the development
and validation of software for CIRs is becoming increasingly difficult.

The problem is even worse for robots performing process-intensive
tasks such as painting, gluing, or sealing, since their dedicated process
control systems can be loosely coupled with the motion control system. In
particular, a key feature of robotized painting is the ability to precisely ac-
tivate the process equipment along a robot’s programmed path. However,
many of the processes involved in robotized painting are relatively slow
compared to the process of moving the mechanical robot. Consequently,
advanced computation- based techniques have been set up to take advan-
tage of knowledge of the slower physical processes to compensate for these
latencies. Validation of such a paint control system, called an Integrated
Painting System (IPS), is therefore challenging. Current testing practices
to reduce the number of software faults apply techniques such as the
manual design of unit and integration testing, where both the test inputs
and expected output are defined by validation engineers. Testing the
IPS requires access to the physical layer to activate many of the painting
robot’s features. Much of the testing is based on running the full-scale
system with a moving robot and measuring IPS outputs with instruments
such as an oscilloscope. This results in long round-trip times and little
automation. In addition, many of the tests produced for one configuration
of the IPS cannot easily be reused to test another configuration, since
manual test configuration is required. These techniques are labor intensive
and error prone. Consequently, software faults may still be detected late
in the IPS design process, often close to release date, leading to increased
validation costs.

In this paper, we report on a methodology to fully automate the
testing of ABB’s CIR control systems. The work builds on initial ideas
sketched in a poster presentation [29]. Our approach draws on continuous
integration principles and well-established constraint-based testing tech-
niques. It is based on an original constraint-based model for automatically
generating test sequences that are both generated and executed as part
of a continuous integration process. By performing a detailed analysis
of experimental results over a simplified version of our constraint model,
we determine the most appropriate parameterization of the operational
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version of the constraint model. This version is now deployed at ABB
Robotics’s CIR testing facilities and used on a permanent basis. This
paper presents the empirical results obtained when automatically gen-
erating test sequences for CIRs at ABB Robotics. In a real industrial
setting, the results show that our methodology is not only able to detect
reintroduced known faults, but also to spot completely new faults. Our
empirical evaluation shows that constraint-based testing is appropriate
to automatically generate test sequences for CIRs and can be faithfully
deployed in an industrial context.

1.1 Contributions

The contributions of the paper can be summarized as follows:

(i) Our testing methodology introduces a new constraint-based math-
ematical model focusing on IPS timing aspects. The constraints
are used to describe both normal behaviors of the IPS, as well as
abnormal behaviors, so that it is possible to target error states
when generating test cases. The model is generic and expressed
using simple mathematical notions, which makes it reusable in other
contexts.

(ii) A full-scale implementation of the model is presented with constraint
programming tools [27]. The paper presents how the model is
integrated in a live industrial setting to test the IPS. To the best
of our knowledge, this is the first time a constraint model and its
solving processes are used in a continuous integration environment
to test complex control systems.

(iii) An empirical evaluation is conducted to analyze the model’s deploy-
ment. During this evaluation, reinserted old, historical faults are
found by this new approach, as well as new faults. Comparing this
constraint-based approach with current IPS testing practices reveals
that the time from a source code change to the time that a relevant
test is executed is dramatically reduced.

1.2 Organization

We start by providing background information and presenting related work
in Section 2. In Section 3 we introduce robotized painting. We describe
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some of the design choices made when developing ABB’s paint control
system and how these affect testing of the system. We present how the
IPS is currently tested in Section 4. We describe the paint control systems’
mathematical properties in Section 5 and, based on these properties, we
present the constraints used as a basis for generating a model that can
be used for test case generation in Section 6. In Section 7, we describe
how the model is implemented and how it is integrated with a continuous
integration system. We then present the results this new test strategy in
Section 8. We present a thoroughly experimental evaluation of the model
including recommendations of how to use the model. In Section 9, we
suggest ideas for improvement and further work.

2 Background and Related Work

The methodology proposed in this paper is tightly coupled with continuous
integration and model-based testing (MBT). This section recalls the basics
of continuous integration and gives a brief overview of the most recent
advances in the field by looking at how continuous integration influences
verification and validation activities. This section also reviews usage of
MBT, with a particular focus on constraint programming in software
testing.

2.1 Continuous Integration

Continuous integration [15] is a software engineering practice aimed at un-
covering software errors at an early stage of software development, to avoid
problems during integration testing. Even if there is no general consensus
of what continuous integration is exactly, a typical continuous integration
infrastructure includes source control repository tools, automated build,
build servers, and test servers. A build server is a machine that fetches
source code from the source control repository and performs building,
testing, integration, and so forth. All steps are carried out completely
automatically and typically triggered by a source code commit or a timer.
Fitzgerald and Stol [14] describe continuous integration as“a process which
is typically automatically triggered and comprises inter-connected steps
such as compiling code, running unit and acceptance tests, validating
code coverage, checking compliance with coding standards, and building
deployment packages.” There is therefore a common understanding that
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the time from a continuous integration cycle being triggered to a developer
receiving feedback should be as short as possible [12, 30]. Therefore, one
of the key ideas behind continuous integration is to build, integrate, and
test the software as frequently as possible. Developers working under con-
tinuous integration are encouraged to submit small source code changes to
the source code repository instead of waiting and occasionally submitting
larger sets of changes.

If we consider test execution part of a continuous integration cycle,
various testing activities could, in principle, be included. For example, au-
tomatic test case generation, test suite minimization, or prioritization [11,
7, 25, 3, 19] could be included to reduce the time needed to execute a test
suite without reducing the quality of the overall test process. Interestingly,
Hill et al. [20] report on the inclusion of system execution modeling tools
to test distributed real-time systems as part of continuous integration.
However, to the best our of knowledge, very few results evaluate the impact
of including more testing activities in continuous integration. Our work,
incorporating systematic automated test case generation methodology
in continuous integration, is a first step toward more automation in the
software validation of complex software control systems.

2.2 Model-based Testing and Constraint Programming

The test strategy described in this paper relates to different validation and
verification approaches. The discussion work is divided into three topics.

Correct-by-construction approaches: When a step-by-step refine-
ment process is used to derive an implementation, a correct-by-
construction system can be obtained. Systems designed by such
approaches are typically generated by a formal specification model
in which the system’s correctness is guaranteed and formally proved.

MBT: This approach typically involves three major stages: (1) A specifi-
cation model (e.g., UML diagrams) is first built for testing purposes.
(2) Then, the model is used to automatically generate test inputs
and test oracles. (3) Finally, the actual system can be run with
the generated inputs and its results compared with automatically
predicted outputs.

Constraint-based testing: This approach aims to use constraint solv-
ing technologies to derive test cases automatically from a piece
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of code or a model. The main challenges for this approach lie in
the mathematical formulation of the code or model and tuning the
constraint solving process.

Correct-by-construction approaches. Correct-by-construction meth-
ods are frequently used in the design of safety-critical systems in avionics
or railway domains, but other application domains are also relevant. Zhao,
Liu, and Lee [40] reports on the use of discrete-event systems (DES) [32, 6]
for the design of an event-triggered real-time distributed system related to
the “eye vision” project. In this approach, called Programming Temporally
Integrated Distributed Embedded Systems (PTIDES), multiple cameras
are synchronized via IEEE 1588 [24, 22] to take synchronized images.
Since each camera has its own internal timing characteristics, taking a
synchronized image requires addressing problems that are similar to those
encountered in robotized painting. This PTIDES approach is appealing,
since formalizing the event-triggered real-time distributed system would
drive engineers to automatically correctly implement it.

However, even if the problems addressed in PTIDES share some
similarities with the testing of CIRs, a major drawback is that the complete
system is required, including all functional behaviors, to model the problem.
For many industrial applications, obtaining such a model is challenging.
When some parts of the system are delivered by third-party suppliers, the
problem is even worse.

Industrial robots are usually considered representative of the larger
class of Cyber-Physical Systems (CPS) [31, 35], whose modeling is known
to be challenging [23]. Broy et al. [4] formally verify a distributed real-time
system used in the automotive field, using a de facto modeling notation
for developing automotive controllers, namely, Simulink/State. Using this
formal notation enables automatic model-based code generation, analysis,
and verification of the control software systems. This of course, is an
advantage of the approach, but, again, a formal model is required for each
component. Note also that pushing the system-under-test into error states
is not easy when developing a correct-by-construction approach. Formal
models tend to capture only correct behaviors, refining these only until
code generation.

Generally, correct-by-construction methods requires skill in writ-
ing mathematical proofs, which is uncommon among average software
developers. In our industrial environment, this method is clearly out of
scope.
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MBT. MBT [37] is a part of model- based design and is thus related
to the previously mentioned approaches. A UML model can be developed
to specify the architectural parts of the system, together with manual
coding of the implementation details. Then, generating test cases based
on the model allows the validation engineer to check the correctness of the
developed code. However, according to Utting and Legeard [37], a more
common approach in MBT is to create a dedicated executable testing
model. This approach is simpler because the complete behavior of the
system does not need to be reflected by the model and details unrelated to
actual testing can be ignored. However, writing a UML executable model
is more demanding than writing a constraint model focused on particular
aspects of the system, such as timing aspects. Support tools for MBT are
also limited when it comes to including actual testing into a continuous
integration environment. Another challenging aspect concerns including
the test generation process into MBT tools [2].

Specifying variable ordering when generating test inputs is usually
not possible, meaning that the control of the test generation time is
limited. We later show that this is a critical factor in finding solutions in
a reasonably allocated contract of time.

Constraint-based testing. Use of constraint programming for
automatic test case generation has been around for a long time e.g. Gotlieb,
Botella, and Rueher [17], Marre and Blanc [26], Di Alesio et al. [9]. Gotlieb
et al. [18] developed a constraint programming model for automatic test
case generation for C programs. Similarly, Marre and Blanc developed
GATeL [26], a constraint-based testing tool able to generate test cases for
synchronous languages. In both these approaches, Prolog with constraints
was used, along with techniques to fine-tune the search process. More
recently, Di Alesio et al. [10] adopted a similar approach to stress-test
real-time applications. The approach proposed in this paper differs in that
none of these constraint models are included with a continuous integration
process and none of the constraint solving processes are launched at
testing time. Such integration requires that the constraint solving time be
carefully controlled.

3 ABB’s Process Control System

This section first briefly introduces ABB’s IPS before presenting a general
introduction to robotized painting and some of the challenges involved in
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controlling slow physical processes. We discuss some of the trade- offs in
testing the IPS. We also look at some of the design choices taken when
developing the IPS and how we can view the IPS in a more abstract way.

ABB’s IPS is a standalone distributed control system usually used
with a standard ABB robot controller, but it can also be used with non-
ABB robots. The IPS is a collection of different real-time embedded
controllers capable of performing one or more process-related tasks. Exam-
ples of such tasks can be the closed-loop control of air flow/air pressure, the
closed-loop control of pump pressure in paint flow, the closed-loop control
of high voltage for electrostatic charging, and various control systems for
operation on valves and the supervision of sensors. The IPS can be used
in many different configurations, ranging from a single controller for small
paint robots to large systems with more than 20 controllers interconnected
over an industrial-grade network.

In the following, we illustrate the principles of robotized painting
with the IPS with a small example and introduce some of the challenges.

3.1 Example of Robotized Painting

In this example, the objective is to apply paint to an object, using a
robot. The robot is shown in Figure 1 and the fill area at the bottom left
illustrates object to be painted. We assume that the robot is programmed
to move in a straight line at a constant speed of 1000 mm/s. We also
assume time starts at t = 0, when the robot motion starts.

The spray pattern to be applied starts at 500 mm and, since the
robot is moving at a speed of 1000 mm/s, the final spray pattern should
be ’on’ 500 ms after the start, as shown in Figure 1. Producing the desired
spray pattern involves at least four different physical processes that must
be combined to obtain the expected pattern. For the purpose of this
example, we consider four physical processes: a motor running a paint
pump, a valve connected to the spray head through which paint flows
when the valve is open, and two different air flows that are used to shape
the paint fog that comes out of the spray head.

To account for the motion of the robot, the different physical pro-
cesses must be activated at the appropriate times. For instance, about
200 ms before the robot arrives at the point where the paint should be
applied, the robot controller may send the following message to the IPS:
(B = 1, ta = 500). This message means that the IPS should apply spray
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Message to IPS

Air1Air2Valve
Pump

Start of spray
pattern

Figure 1: To achieve the correct spray pattern at the starting edge of the object to be
painted, different physical processes need to be activated with individual timing before
the robot reaches the object.

pattern number 1 at activation time ta = 500 ms. The value B = 1
is simply a logical value describing a specific spray pattern. The IPS
uses the value of B as an index in an internal lookup table that provides
the physical value to be applied to the actuator outputs to produce the
desired spray pattern. For this particular example, B = 1 could mean that
the actuators controlling the pump and air flows 1 and 2 should provide
400 ml/m of paint and 250 Nl/m and 400 Nl/m of air, respectively. These
parameters are, of course, user configurable.

The IPS will then calculate when each of the actuator outputs needs
to be activated to produce the requested spray pattern at ta. Since many
of the physical processes involved in painting have significant physical
delays, their actual activation must take place before ta. For this example,
the IPS calculates that the pump must be started 50 ms before ta, while
the valve must be opened 80 ms before ta. For the two air flows, activation
must take place 120 ms and 150 ms before ta, respectively.

As is apparent from this example, the IPS needs to synchronize sev-
eral actuator outputs, where each output has its own timing characteristic
and may be located on different controllers. The timing characteristics for
a specific actuator output depend on many factors, the most important of
which is the magnitude of the change in output. Consider, for example, a
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pump; a large change will take longer to apply than a small change, due
to the acceleration of the motor.

3.2 Testing Challenges

Offering a product with high levels of precision introduces several challenges
in the development phase, among them being testing the system’s behavior
with respect to its timing characteristics [36]. Testing the timing behavior
of a centralized control system with a single clock can be challenging.
However, the IPS is typically configured with a number of embedded
controllers distributed across the robot system. These controllers run time
synchronization protocols to keep their clocks synchronized. Still, testing
the IPS timing behavior has proven to be a major challenge, mainly due
to its distributed nature. Moreover, the degrees of freedom in configuring
the IPS leads to further complexity in the testing phase, since a wide
range of configurations must be tested. A natural consequence of these
complexities is that automated testing has become a necessity.

The IPS is designed to be a highly flexible and configurable paint
control system. Depending on the complexity of a customer’s solution, a
robot is equipped with one or more embedded controllers running the IPS
software.

The most complex configurations involve as many as 20 embedded
controllers interconnected through an industrial-grade communication
network. The main motivation for designing the IPS as a distributed
system is to enable the different embedded controllers to be located
physically close to the actual process that it controls. This enables fast
control loops and is essential to make the system precise and accurate.
The result of this design principle is that some of the controllers are placed
at different locations on the robot, while others are located in a control
cabinet close to the robot brain.

This design principle provides a powerful process solution but, com-
plicates testing both due to the distributed nature of the IPS, and due to
the fact that some of the embedded controllers can be located on movable
and possibly hazardous robots.

3.3 Abstraction of the IPS

An abstract model of the IPS is shown in Figure 2. As we can see, the
robot controller communicates with an embedded controller, denoted the
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Controller 3
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Time Sync.
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Figure 2: Logical overview of the IPS. The IPS is interconnected by an industrial-grade
network. All the embedded boards are synchronized by use of IEEE 1588 [24]. Each
embedded controller is typically located inside the robot’s control cabinet, at different
locations on the robot arm, or in an external process control cabinet.

IPS master. This master connects to other embedded controllers through
an industrial-grade network. Note also that all the embedded controllers
are synchronized with respect to time. Since the robot controller and
the IPS are synchronized, a function call to gettimeofday() executed on
any embedded controller and the robot controller at the same time will
return a synchronized time with microsecond precision. This accurate
synchronization is one of the most important building blocks in the design
of the IPS, since each embedded controller can schedule activation times
for an actuator output, using the global clock.

4 Legacy Test Practices

In this section, we review some IPS testing practices, focusing on validating
the accuracy of the time-based activation of actuator outputs. We discuss
the benefits and drawbacks of these legacy testing practices before we
outline the requirements for our automated test method.

A major challenge in testing a robot system is that it involves a
physically moving part (the robot arm) that must be accurately syn-
chronized with several external process systems. This quickly turns into
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Spray-
pattern 1

Spray-
pattern 2

Figure 3: Painting on paper allows for the visual inspection of the timing of different
actuator outputs. However, the inspection must typically be performed by a paint
process engineer in cooperation with a software engineer.

labor-intensive procedures to set up and execute tests. Moreover, strict
regulations with regard to safety must also be followed due to moving
machinery and the use of hazardous fluids, such as paint [13].

4.1 Painting on Paper

To simulate a realistic application of spray painting with a robot, we can
configure a paint system to spray paint on a piece of paper. An example
of this is shown in Figure 31. This test includes both realistic robot
movement and a complete and realistic IPS configuration. However, there
are many drawbacks with this method. For instance, it involves quite a
bit of costly manual labor to set up the test. In addition, the test can
only be performed in a protected environment to prevent human exposure
to dangerous paint fluids and gases. Finally, it is more or less impossible
to automate this test, even after some initial configuration, as discussed
below.

Due to its high cost, this type of test is typically performed during
the final verification stage for a new product running the IPS software,
such as a new air controller or a new pump controller. The test is also
performed after a major refactoring of the IPS. Based on our experience at
ABB Robotics, it is both extremely rare and difficult to find timing-related
errors using this test method.

1The video at http://youtu.be/oq524vuO5N8 also shows painting on paper.
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4.2 Activation Testing with an Oscilloscope

By reducing the IPS configuration to a single digital actuator output,
without any fluid or air units and detecting trigger points using a proximity
sensor, it is possible to run rudimentary synchronization tests on the IPS.
Specifically, the test involves connecting the actuator output to an input
channel on an oscilloscope and connecting the proximity sensor to another
input channel on the oscilloscope. With this setup, the robot can be
programmed to perform a linear movement passing over the proximity
sensor, with the paint program set to activate at exactly that point. The
robot thus generates a signal on its actuator output that should correspond
exactly to the signal from the proximity sensor. By comparing the signal
from the actuator output with the signal from the proximity sensor, it is
possible to test many of the timing behaviors of the IPS2.

At ABB Robotics, this is one of the most executed tests aimed at
uncovering synchronization problems, but it also requires manual labor to
set up and execute the test runs. In addition, since it involves physical
movement of the robot arm, a hazard zone must be established for the test.
However, unlike the test described in Section 4.1, it can be executed without
supervision and the test results can be inspected after test completion.

4.3 Running in a Simulated Environment

The IPS is designed to be portable to many microprocessor architectures
and operating systems. It is even possible to run the IPS on a desktop sys-
tem such as Windows. This advantageously allows much of the functional
testing to be performed in a simulated environment, which reduces some
of the need for time- consuming manual testing on actual hardware. How-
ever, testing against performance requirements is impossible in a simulated
environment, due to the lack of real-time behavior in the simulator.

4.4 Summary of Existing Test Methods

The test methods described above have several drawbacks. Test methods
that use a real robot have the advantage of very realistic results, but they
require slow, costly manual labor to set up the test and interpret the results.
For the method described in Section 4.3, it is clearly possible to automate

2These two videos show activation testing using a proximity sensor and an oscilloscope,
respectively: http://youtu.be/I1Ce37_SUwc and http://youtu.be/LgxXd_DN2Kg.

56

http://youtu.be/I1Ce37_SUwc
http://youtu.be/LgxXd_DN2Kg


Paper 1 5. Modeling the IPS

the setup and to some degree the result analysis. However, the method
cannot be used to execute tests related to real time or synchronization
between several embedded controllers. To cope with such tests, we need a
new test method.

4.5 New Test Method

In the following, we outline the requirements for our new test method. The
goals of the new method are automation, the reduction of manual labor,
and reduction of the time required to detect errors introduced during
development.

Automated: It should be possible to set up the test, execute the test,
and analyze the results without human intervention.

Systematic: Tests should be generated automatically by a model rather
than constructed by a test engineer.

Adaptive: Generated tests should automatically adapt to changes in the
software and/or configurations and should not require any manual
updates to the testing framework. This implies that tests should
be generated immediately prior to their execution, using as input
information obtained from the system-under-test.

5 Modeling the IPS

In this section we introduce a mathematical representation of the IPS.
We first establish the mathematical relations within the IPS and show
how these can be abstracted into a general-purpose model. We then show
how the IPS can predict when to apply a change on an actuator output
based on the activation time and the magnitude of the change. Finally,
we discuss some of the interesting constraints and scenarios the IPS must
be able to handle and show how they can be formulated as mathematical
constraints and integrated into the model.
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Pj,i = L[Bi][j], ∀j ∈ 1...5

tcj,i = fcj (Pj,i, Pj,i−1)
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Figure 4: Abstract mathematical overview of the test model.

5.1 IPS Channels

Before we introduce the mathematical model of the IPS, we need to
introduce the concept of a channel used in the IPS.

As previously mentioned, the IPS can be configured in different
ways, depending on the complexity of the process. One way to configure
the IPS is by using channels. A channel is simply an abstraction that
represents how a specific spray pattern is generated. Each channel is
responsible for controlling one physical process, for example, air or paint,
involved in generating a spray pattern. The current IPS supports up to
five channels plus a special internal channel (channel 0) that is reserved
for controlling the paint valve in the spray applicator. In the abstract
model of the IPS shown in Figure 4, each channel is shown as an output
of the model.

5.2 Mathematical Model

Abstractly, the IPS can be modeled as shown in Figure 4. The input to
the IPS is represented by a sequence of spray patterns along with their
desired application times, that is, a sequence of (Bi, ti)-tuples, denoting
the i-th spray pattern Bi and its application time ti. This sequence
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corresponds to the commands sent by the robot controller. The output
of the model represents the physical values for each channel j, along
with their activation times, (Pj,i, tj,i). In the following, we describe the
mathematical relations for the transformation (Bi, ti) 7→ (Pj,i, tj,i),∀j.

To model the physical processes they represent, each channel has its
own set of configuration parameters, which are used as input to the timing
calculation for the channel: D+

j , D−j , and Kj in Figure 4 and explained
further in Section 5.6. The IPS can also compensate for timing disturbances
between the different channels. This functionality is controlled by the
parameters PreT ime and PostT ime. Finally, we have a brush table L that
is consulted to perform the transformation Bi 7→ Pj,i.

All of the parameters mentioned above are treated as constants in
a production installation. However, for the purpose of generating test
sequences for the IPS model, these parameters are turned into variables
that may change. Finally, the model configuration part of Figure 4 contains
configuration parameters describing how to generate the IPS test model.
These parameters typically include the length of the test sequence, the
type of test scenario, and so on.

5.3 Brush Table

As mentioned earlier, the robot controller will send a new activation
message with the value Bi, identifying a specific spray pattern. Internally
in the IPS, Bi is used as an index in the brush table. The content of the
brush table determines the actuator output for each channel, which is used
to produce the desired spray pattern. This lookup function is expressed
as follows:

Pj,i = L[Bi][j], ∀j ∈ 1 . . . 5 (1)

where L is a brush table with five columns, one for each channel, and λ rows,
representing the different spray patterns. For the internal channel 0, the
output is derived from the value of channel 1, according to Equation (2).

P0,i = 1 if P1,i > 0 (2)

P0,i = 0 if P1,i ≤ 0

This means that the valve controlled by channel 0 will open if channel 1 has
a positive output. Moreover, a negative value on channel 1 corresponds to
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a special configuration for loading paint into a canister, meaning that the
valve of channel 0 should be closed. Thus, it is important that channels
0 and 1 are tightly synchronized to prevent excess pressure on the hoses
that carry paint, which could otherwise cause them to rapture.

5.4 Channel Activation Time

By referring to Figure 4, we now explain how to compute the activation
times for each channel, tj,i, from the desired spray pattern activation
time, ti, received from the robot controller. Equation (3) shows how this
calculation is performed:

∀j ∈ 0 . . . 5,∀i ∈ 1 . . . N

tj,i = ti − taj,i − tcj,i
= ti − faj (Pj,i, Pj,i−1)− fcj (Pj,i, Pj,i−1) (3)

where N is the size of the input sequence. The air delay taj,i and channel
delay tcj,i used in this equation are computed using Equations (4) and (5),
respectively.

Note that the resulting time tj,i depends on the change between
the actuator output Pj,i and the previous output Pj,i−1. As we discuss
later, each channel also has its own set of parameters that are used in this
calculation.

5.5 Timing Influence between Channels

As mentioned earlier, some of the IPS channels will influence the timing of
other channels. For example, turning on or off the paint channel (channel 1)
will disturb the timing of the air channels (channels 2-4). To compensate
for this disturbance, an air compensation function fa is added to the air
channels:

faj (u, v) =


PreT ime if u = 0 ∧ v 6= 0

PostT ime if u 6= 0 ∧ v = 0 ∀j ∈ 2 . . . 4

0 otherwise

(4)

where PreT ime and PostT ime are considered constant configuration pa-
rameters (see also Table 4 on page 89).
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5.6 Timing on Isolated Channels

Each channel has its own set of parameters that can used to adjust
its timing characteristics. This timing is calculated using the channel
compensation function fc , shown in Equation (5). A channel can be
configured to have either a fixed delay or a delay that is linearly related
to the change of Pj,i. A fixed delay is typically used for digital outputs
that control valves, while a linear delay is typically used for outputs that
control motors and air flows. For a linear delay, the time needed to adjust
the output value depends on the magnitude of the change; a large change
takes longer:

fcj (u, v) =


D−j · (

v−u
Maxj−Minj

)Kj if u < v

D+
j · (

u−v
Maxj−Minj

)Kj if u > v ∀j ∈ 0 . . . 5

0 otherwise

(5)

where Kj ∈ {0, 1} is used to enable or disable the linear delay component.
Maxj and Minj gives the maximal and minimal value the physical ac-
tuator output can take. The terms D+

j and D−j are considered constant
configuration parameters (see also Table 4).

6 Test Scenarios with Constraints

With our mathematical model at hand, we now describe scenarios that can
arise when multiple spray patterns are activated in succession. Accordingly,
we identify mathematical constraints that can be used to generate test
sequences to produce such error scenarios.

We divide the scenarios into two main categories. The first category
expresses how the IPS behaves in a normal operational state. The second
category represents scenarios in which the IPS is pushed into either an
erroneous state or a state with reduced performance. These scenarios are
summarized in Figure 5 and discussed in detail in the following sections.
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Figure 5: A collection of error scenarios that the model can generate. Horizontal lines
represent time and a black dot represents the activation of an output. A specific spray
pattern is a collection of output activations, visualized by a line connecting the black
dots.

6.1 Normal Scenario

During normal, non-erroneous behavior, the robot controller sends com-
mands to the IPS and the IPS activates outputs according to the following
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constraints, respectively, both corresponding to Figure 5(a):

∀i ∈ 1 . . . N,

ti − ti−1 ≥MinBrushSep,

ti > ti−1, ti ≥ 0, (6)

Bi 6= Bi−1, Bi ∈ 0 . . . λ

∀j ∈ 0 . . . 5,∀i ∈ 1 . . . N

tj,i − tj,i−1 ≥MinTrigSep, (7)

tj,i > tj,i−1, tj,i ≥ 0

whereMinBrushSep andMinTrigSep refer to two configurable parameters
that are entered into the model prior to generating a test sequence. These
constraints are especially efficient in generating test sequences with a
corresponding configuration and oracle to validate that the IPS is behaving
as expected under non-erroneous conditions. During comparison between
the outputs generated by the IPS and the oracle generated by this scenario,
we specifically look for missing output events and missing brush events.

6.1.1 Burst

An extension of the normal behavior scenario can be achieved by con-
straining the time span on either a set messages in the input sequence
or a set of output activations. This makes it possible to force a burst of
messages or activations within a limited time period. The constraints
for a burst on an input sequence and a burst for an output channel are
formalized, respectively, as

te − te+BurstLen ≤ BurstT ime (8)

tc,e+BurstLen − tc,e ≤ BurstT ime (9)

BurstLen,BurstT ime, c and e are configurable input parameters in the
model (see Table 4).

6.2 Overlap Scenario

Overlapping events are probably one of the most interesting scenarios
that can be generated, as shown in Figure 5(b). This scenario is best
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explained with a simple example. Assume that one actuator output is
configured with K = 0, D+ = 10, and D− = −10. Consider two events,
where the first resulted in an activation schedule Pt1 = 0 and tt1 = 10 for
the actuator output IO2. The second message is Pi2 = 1 and ti2 = 15.
Assuming that the current time (gettimeofday()) is less than 10, it is
easy to see that tt2 = ti2 −D+ = 15− 10 = 5. As this example illustrates,
an event received later can result in an activation time before events
already scheduled for activation.

The IPS could generally handle such an overlap scenario in one of two
ways. One possibility is to schedule the new event before the current event,
resulting in the activation sequence ((Pt2 = 1, tt2 = 5), (Pt1 = 0, tt1 = 10)).
However, this approach has a serious safety flaw. Assume that the last
event was some form of shutdown command, for example, to open a
valve due to overpressure. Then the supervisor system would observe the
actuator in an unexpected state.

Another option is to retain the old tt and just replace the Pt value
in the queue with the newly calculated Pt, resulting in a schedule ((Pt2 =
1, tt1 = 10)). We thus ensure that the actuator ends up in a state expected
by our supervisor system. This corresponds to the approach taken by the
IPS.

In real robot applications, there are many sources for this particular
overlap scenario, the most common being that a customer wishes to
increase the speed of the robot and thus moves the activation time of two
events closer together. The standard behavior for the IPS is to report
this in an error message to the user and resolve the schedule as described
above:

tc,e − tc,e+1 ≥MinOverlapT ime,

tc,e+1 − tc,e−1 ≥MinTrigSep, (10)

tc,e+2 − tc,e ≥MinOverlapT ime

where tc,e represents the activation time for a specific user configurable
channel c and user configurable event e. Note that MinOverlapT ime and
MinTrigSep are considered positive constants given as input when a test
sequence is generated (see also Table 4 ).
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6.3 Shutdown Scenario

The shutdown scenario is important to validate that the IPS is able to shut
down safely in specific error cases. Depending on the IPS’s configuration,
forcing one of the output channels to fail may cause the IPS to initiate a
controlled shutdown. This shutdown procedure must be performed in a
special sequence, taking care to avoid pressure buildup in hoses, which
could otherwise lead to rupturing them. This scenario is illustrated in
Figure 5(c) and its constraint is specified as

Pc,e = IllegalV al (11)

where IllegalV al is a configurable input parameter in the model (see
Table 4) that causes the IPS to initiate a shutdown.

6.4 Minimizing Test Execution Time

As stated previously, the actual test sequence sent to the IPS is a sequence
of timed events (B1, t1, . . . , BN , tN ). When the test sequence is executed,
each (Bi, ti) pair is sent to the IPS at time tS , such that tS + tδ ≤ ti.
This means that the IPS receives each pair (Bi, ti) around tδ before the
activation time. In practice, the value of tδ is typically around 200 ms.
Consequently, the execution time of a complete test cycle lies in the area
of the time of the last ti, that is, tN . By minimizing the value of tN , we
gain the ability of executing more tests within a given time interval as we
discuss in Section 8.4

7 Implementation

This section explains how the model is implemented, deployed, and used in
ABB’s production-grade test facility. We also discuss some of the design
choices made during the model’s deployment.

7.1 Test Setup

This section describes the steps involved in setting up a continuous
integration-based test facility for generating and executing tests. Test
execution is typically triggered by a build server upon a successful build
of the IPS software. These steps are illustrated in Figure 6 and explained
below.

65



7. Implementation Paper 1

(i) Build: The software is scheduled to be built every night. In addition,
a developer can trigger a manual build or a build can be triggered
by a check-in to the source control repository.

(ii) Upgrade: All embedded controllers are upgraded with the newly
built software. This is one of the most important tests performed,
one where catastrophic, hard to find errors are often be detected.
Typically, these can cause the new software to throw an exception
or simply freeze.

(iii) Configure: In this step, the IPS is configured according to configura-
tions retrieved from the source control repository. This configuration
can be either a specific qualified setup of one of the different config-
urations that a customer can buy or a configuration specially made
for testing purposes.

(iv) Query and Solve Model: A set of basic smoke tests [37] is then
executed before the constraint model is launched for test case gener-
ation. By feeding data retrieved from the new configuration into the
constraint model, together with properties retrieved from the IPS,
we ensure that the generated tests are kept in sync with the current
software and configuration. Further details about this just-in-time
test generation (JITTG) are discussed in Section 7.2.

(v) Run Test: Finally, the actual test is executed by applying the
generated test sequence and comparing the actuator outputs with
the model generated oracle. Figure 7 shows this last step in more
detail.

In ABB’s production test facility, each generated test sequence is executed
on 11 different configurations, including execution on different hardware
and software generations of the IPS and on both VxWorks and Linux as
the base operating system for the IPS. The test framework is written in
Python [34] and supports parallel test execution as long as resources are
not shared. This allows for a significant reduction in the time needed
to run the test sequence on many different configurations, compared to
running them one at a time, in sequence.

7.2 Just In Time Test Generation

As discussed in Section 5, many parameters in the model must be specified
before the model can be solved. Some of these parameters come from
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Figure 6: Integration between the test server and IPS. The test server typically receives
a new build from a build server, upgrades all embedded boards, performs tests, and
publishes the results for the developer. The numbers correspond to the explanation
given in Section 7.1.

configuration files used to configure the IPS and some can be extracted
by querying a newly built IPS. Common to both sets of parameters is
that the resulting model will differ if the parameters change. This means
that the model is tightly coupled to what is fetched from the source
control repository. Consequently, we decide to generate and solve the
model at testing time, as opposed to solving the model once and adding
the resulting model to the source control repository, corresponding to
what Utting, Pretschner, and Legeard [38] call on-line and off-line testing,
respectively. The choice of on-line versus off-line testing is a trade-off. The
main advantage of JITTG is that there is a lower probability of falsely
reporting an error due to a mismatch between the generated model and
the real system. However, an important concern then becomes the time
needed to solve the model. If the model is solved once and used many
times, a solving time of several hours is reasonable. However, with JITTG
the solving time becomes crucial. The models solved so far have a solving
time of less than a few minutes.

7.3 Model Implementation

To convert our mathematical model into an executable model out of which
test sequences and test oracles could be extracted, we use Constraint
Programming (CP) [27].

67



7. Implementation Paper 1

P1,i t1,i

450 270
600 730

0 905

Test Oracle

P2,i t2,i

600 278
750 745

0 990

P3,i t3,i

60 305
65 760
0 900

P1,i t1,i

450 271
600 732

0 905

Test Result

P2,i t2,i

600 281
750 745

0 991

P3,i t3,i

60 306
65 763
0 901

Compare

Fail
Pass

Embedded
controller 1

I/O

Embedded
controller 3

I/O

I/O
Embedded
controller 2

I/O

I/O

IPS
Master

Clock
Syncronization

Robot-
controller

I/O

[B,t]

Bi ti

1 300
2 750
0 900

Test
Sequence

Constraint
 Model

PC with Constraint
Model and Test

Framework

Figure 7: How a complete test is executed. The constraint model generates the test
sequence, the configuration of the IPS, and the oracle. The configuration is applied to
the IPS and the test sequence is executed. The oracle is then compared with actual
measurements before a pass/fail is determined. Currently 11 different variations of this
setup are being executed in parallel at ABB Robotics.
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CP is a well-known paradigm introduced 25 years ago to solve
combinatorial problems in an efficient and flexible way [39]. Typically, a
constraint programming model is composed of a set of variables V , a set of
domains D, and a set of constraints C and constraint resolution aims to find
solutions, that is, assignments of V to values that belong to D such that
all the constraints C are satisfied. Finding solutions is the purpose of the
underlying constraint solver, which applies several filtering techniques [39]
to prune the search space formed by all the possible combinations of
values in D. A nice feature of constraint programming is the ability
to call the constraint solver incrementally, during program execution.
Consequently, most constraint programming solvers are embedded into
various programming languages, including Java, C++, and Prolog, or
dedicated modeling languages, such as OPL, Comet, and Zinc [33].

In practice, constraint models developed to solve concrete and real-
istic combinatorial problems usually contain complex control conditions
(e.g., conditionals, disjunctions, recursions) and integrate optimized and
programmable search procedures. The flexibility and versatility of con-
straint programming are recognized as a competitive advantage over other,
more rigid approaches [27].

However, solving the mathematical model could have been possible
by using other techniques, such as SAT or SMT solving [8], search-based
test data generation [28], or Mixed Integer Programming (MIP) [21].
These techniques were examined and discarded for the following reasons:

(i) The selected technique had to be flexible enough to accommodate
the many alternatives in the dynamic configuration of the IPS. MIP
techniques are very powerful for handling conjunctions of linear
constraints [21], but handling disjunctive constraints (i.e., non-linear
constraints) is much more problematic. Constraint programming
offers a high degree of flexibility to handle disjunctive constraint
systems, including the use of backtracking, reification, or constructive
disjunction [33].

(ii) Time-constrained optimization is essential to use the technique in
an industrial context and to build a cost-effective testing method.
SAT and SMT solving are amazingly efficient at handling Boolean
and non-Boolean constraint satisfiability problems [8], but they are
not tuned to solve optimization problems (e.g., minimizing a cost
function in a given contract of time). Even if extensions exist to
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handle constraint optimization problems (e.g., Max-SAT), usual
SAT- or SMT- solvers do not necessarily implement these extensions.
On the contrary, constraint programming integrates time-aware
optimization methods on discrete combinatorial problems in its
foundations, which makes it more flexible to tackle optimisation
problems within an industrial process [33].

(iii) Since the model is used to predict the expected outputs of the IPS
processing of a timed-event sequence, exact methods are manda-
tory. Despite the efficiency of search-based test data generation
techniques [28], the absence of a guarantee of the satisfiability of
the constraints (e.g., no possible detection of unsatisfiability or no
guarantee of the determination of satisfiability for complex con-
straint sets) was regarded by us as a sufficient reason to discard
these techniques. On the contrary, constraint programming offers
a theoretical guarantee on the assessment of satisfiability [39]. We
should also mention that, since industrial adoption was set up as
an essential goal, we felt that deterministic methods would be more
appropriate than probabilistic approaches of constraint solving to
convince engineers.

It is worth noticing that CP solvers are usually hosted by a pro-
gramming language e.g., Prolog, Java or C++. Thus, they have to be
flexible to facilitate their integration into applications, and incremental,
i.e., constraints can be submitted at different stages of the parsing process.
The constraint model can be structured by using high-level programming
features such as predicate or method invocation, recursive and virtual
calls, backtracking or inheritance, and so on.

We implemented our mathematical model using the finite domain
constraint solving library of SICStus Prolog, called clpfd [5]. This library
is well maintained and up-to-date with respect to the last advances in
constraint programming solving, which was a sufficient reason to select it
for industrial adoption. The clpfd solver is fully hosted and integrated
within the Prolog programming language and is called incrementally during
Prolog program execution. We used a compiled version of the model. To
integrate the model with ABB’s existing test framework, we also built
a front-end layer in Python. This front-end layer can be used by test
engineers with no prior knowledge of constraint programming or Prolog
and also allows us to integrate with our existing build and test servers

70



Paper 1 8. Empirical Evaluation

based on Microsoft Team Foundation Server. A schematic overview of the
architecture is shown in Figure 6.

8 Empirical Evaluation

The constraint model introduced in Section 5 has been thoroughly evalu-
ated to validate its ability to generate test sequences for CIRs in a realistic
industrial environment. Our objective was to quantify the benefits and
drawbacks of introducing a new testing strategy in a continuous integration
process, after having deployed it within ABB’s testing facilities.

This section presents the main research questions (RQs) (Section 8.1)
addressed so far in our empirical evaluation. It details the experimental
results and their analysis (Section 8.2). It evaluates several threats to the
validity of the results and discuss their importance (Section 8.6). Finally,
this section concludes with an analysis of several lessons learnt when
deploying this approach in an industrial environment (Section 8.8).

8.1 Research Questions

The introduction of a new test strategy (i.e., a constraint-based model)
into a strong validation process always raises many research questions
regarding its adoption. Our empirical evaluation addressed three main
research questions, covering the following.

RQ1 (efficiency of the search heuristics): Questioning the effi-
ciency of the constraint model to generate test sequences is of
primary importance. Among several parameters, the selection of
search heuristics turned out to be a key factor of the strategy’s
efficiency. Observing that different search heuristics can lead to
completely distinct results, we conducted a systematic comparative
study of several representative search heuristics to respond to this
research question.

RQ2 (model scalability): The scalability of the model to generate re-
alistic test sequences is also a main question. To introduce the
constraint model into a continuous integration environment, manag-
ing the model solving time was crucial. Evaluating this solving time
for different settings appeared to be the best way to evaluate the
model’s scalability.
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RQ3 (Adoption in an industrial environment): Finally, evaluating
the capabilities of the model to find previously found bugs and also
its ability to uncover new faults in an industrial, realistic validation
process was also considered a crucial research question. In response
to this research question, we determined that the only way was to
put the constraint model to work for a period of time and evaluate
its potential through a systematic analysis. Essentially, we saw this
work as mandatory to prepare the model for industrial adoption on
a larger scale.

8.2 Experimental Setup

In response to the three research questions, we developed two different
constraint models. The first model, denoted CM1, is a highly configurable
and general model that includes several measurement and analysis tools.
The model CM1 is mainly made for use from within the SICStus environ-
ment. The second model, denoted CM2, is highly tuned and optimized
for the industrial production environment. It is callable from an external
Python framework and contains all the functions to generate realistic test
sequences and test oracles. To answer RQ1, we configured one experiment
that systematically analyzed all possible combinations of variable orderings
for defining the search heuristics combined with different configurations of
the model. The goal of this experiment was to identify a search heuristic
that could be further tested on the CM2 model. In the second experiment,
we used the results from the first experiment on the CM2 model to answer
RQ2.

In the following, we give a detailed account of our observations and
findings.

8.3 RQ1, Experiment 1

Our first experiment is divided into three sub-experiments, using three
distinct configurations:
{SeqLen, λ,Channels,MinTrigSep,MinBrushSep} = {7, 3, 3, 3, 1} for
Exp1a. For Exp1b and Exp1c we use respectively {10, 5, 5, 3, 1} and
{20, 10, 5, 1, 1}. Since experiment Exp1b and Exp1c are just slight varia-
tions of Exp1a, we present only the final results for these, while for Exp1a
we also present detailed setup and execution results.
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Figure 8: Logical overview of experiment Exp1a. The experiment includes the use of
three actuator outputs (channels), a test sequence of length 7 (SeqLen), and a lookup
table size of size 3 (λ).

Experiment Exp1a uses a minimal configuration with three channels,
j ∈ [1, 3], as illustrated in Figure 8, yet is complex enough to provide
significant and meaningful results. Each channel has the following charac-
teristics: Minj = 0, Maxj = 3, and D+

j ,D
−
j ∈ [−3, 3]. The brush table

has λ = 3 rows and, since there are three channels, L becomes a 3 × 3
matrix, as shown in Figure 8. At runtime, the model can freely choose a
linear or a fixed delay for each channel j, using Kj ∈ [0, 1] (see (5)). For
all three channels, this adds up to the following sequence of variables that
need to be labeled by the constraint solver:

C = (D+
1 , D

−
1 ,K1, D

+
2 , D

−
2 ,K2, D

+
3 , D

−
3 ,K3)

In the context of a constraint solver, the term labeling denotes the process
of selecting a value from the legal domain of a variable and assigning it to
the variable such that all constraints are fulfilled.

Note that we use parentheses to denote ordered sequences and
brackets to denote unordered sets. For a constraint solver, the order in
which the variables are labeled is of crucial importance for efficiency.

The variables in L take on the values in the range [Minj ,Maxj ].
Finally, we specified that none of the channels should slave channel 1, as
explained in Section 5.5; that is, we set PreT ime = 0 and PostT ime = 0.
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We also setMinTrigSep = 3, MinBrushSep = 1, andMinOverlapT ime =
1. The expected input for Exp1a is a sequence of index-time pairs denoted
(B1, t1, . . . , B7, t7). Each pair (Bi, ti) is sent as an individual input to node
M in Figure 8. Figure 9 shows an example of an optimal solution found
by our method for Exp1a. In this case an optimal solution means that
the constraint solver has found the lowest possible value for t7 while still
satisfying the constraints.

In Exp1a, the expected test sequence is of length N = 7 and the
goal was to elicit an overlap on C2 between events 5 and 6, as shown
in Figure 5(b) and described in Section 6.2. Thus, we engineered the
experiment to elicit an overlap scenario. We chose this scenario because it
is the most difficult to obtain.

Another goal with experiment 1 was to find the shortest test se-
quence able to elicit the error scenario, since minimizing the duration of
the test sequence allows test engineers to run more tests. Consequently,
our constraint model is used in combination with a time-aware cost opti-
mization process, where the goal is to minimize tN , the duration of the
test sequence, in a given contract of time. We used a timeout value of
180 seconds of computation time for all three sub-experiments.

In this context, an optimal solution is an assignment of values to all
the variables such that all constraints are satisfied and tN is minimized.
If sufficient time is allocated, the minimization process can provide an
optimality certificate. In most cases, this certificate is not required and the
process returns an optimal or sub-optimal solution without any certificate.
For a solution without a certificate, there is no way to evaluate the
distance to the true optimal value of the cost function. If insufficient
time is allocated, the solver sometimes reports a failure, indicating that it
has been unable to find a solution. These cases are obviously the most
problematic ones.

As mentioned earlier, the order in which the variables and values
are selected for labeling is a critical parameter for the efficiency of the
constraint- solving process in clpfd. In this experiment, we defined search
heuristics based on distinct choices of the variable and value selection.

8.3.1 Variable Selection Heuristics

Based on previous definitions, we propose various sequences with distinct
variable orderings. We first consider the four possible orderings between
Bi and ti, denoted as follows:
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Figure 9: An optimal solution for Exp1a. The cost function used by the solver is
minimize(t7), where the optimal solution is t7 = 15. The number next to each black
dot (•) represents the value of the actuator output to apply at that time instance. The
configuration of each actuator output is to the right of each actuator output’s time axis
(D+, D−, and K).

Biti = (. . . , Bi, ti, Bi+1, ti+1, . . .)

tiBi = (. . . , ti, Bi, ti+1, Bi+1, . . .)

Bi = (B1, . . . , Bi, . . .)

ti = (t1, . . . , ti, . . .) (12)

We now define the following two sequences of variables from L in vector
form:

L = vec(L) = (L1,1, L1,2, L1,3, L2,1, L2,2, L2,3, L3,1, L3,2, L3,3, . . .)

LT = vec(LT ) = (L1,1, L2,1, L3,1, L1,2, L2,2, L3,2, L1,3, L2,3, L3,3, . . .)

If we now combine all the sequences of variables and define all the combi-
nations of sets such that each set contains exactly the same variables but
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the sequences that each set contains are different, we obtain

G1 = {C,L,Biti} G3 = {C,L, tiBi} G5 = {C,L, ti, Bi}
G2 = {C,LT , Biti} G4 = {C,LT , tiBi} G6 = {C,LT , Bi, ti} (13)

where G1, G2, G3 and G4 are sets of cardinality 3, while G5 and G6 are of
cardinality 4. Considering all possible combinations of these sets yields
4 ·3! + 2 ·4! = 72 distinct possibilities. Note that all the resulting orderings
are pairwise distinct. In our experiments Exp1a, Exp1b, and Exp1c, we
systematically explored the results on these 72 distinct search heuristics.

8.3.2 Value Selection Heuristics

To find solutions with clpfd, each variable has to take on a value in
its domain. Exhaustively exploring the domain can be realized through
several strategies e.g., starting from the middle of the domain, picking
a value at random from the domain. For the sake of simplicity, we only
explored the following two simple strategies.

up: If x ∈ [a, b], then explore the domain from the smallest value to the
largest (i.e., x = a, x = a+ 1, . . .x = b).

down: If x ∈ [a, b], then explore the domain from the largest value to the
smallest (i.e., x = b, x = b− 1, . . .x = a).

Other value selection heuristics were briefly explored without finding
significant improvements, so we concluded that these two strategies were
the most important to evaluate.

8.3.3 Result for Experiment 1

To classify the results on the 72 measurements, four different categories
were defined, from the most useful to the least interesting:

(i) (Optimal): An optimal solution is found and an optimality certifi-
cate is obtained within the contract of time, that is, optimality is
proven.
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Table 1: Summary of results for experiment 1, where we classify the search heuristics
into four categories. The timeout was set to 180 seconds for all experiments. A more
detailed graphical presentation of Exp1a is given in Figure 10.

Search direction

up down

Exp1a Exp1b Exp1c Exp1a Exp1b Exp1c

1©Optimal 24 6 0 20 2 0

2©Optimal, timeout 6 0 2 0 0 2

3©Sub-optimal 0 7 2 6 18 2

4©No solution 42 59 68 46 52 68

Total 72 72 72 72 72 72

(ii) (Optimal, timeout): An optimal solution is found but no certifi-
cate is provided, that is, optimality is not proven.

(iii) (Sub-optimal): A sub-optimal solution is found but the search
timed out. This means that optimality is neither reached nor proven.

(iv) (No solution): No solution is found within the contract of time.

Category 3 (sub-optimal) still represents interesting heuristics, since a
solution is found but, since optimality is not reached, this category is less
interesting than Category 2. Note that to distinguish between Categories
2 and 3, we have to know the optimal value of the cost function in advance.
This is possible for the simple problems in experiment 1, but not in
experiment 2 or whenever the model is used in production.

Figure 10 shows a detailed depiction of all executions of Exp1a,
where the four categories are represented. For Category 1, the graph
shows the time needed to find an optimal solution, while for Categories
2 to 4, timeout is reached. These categories are grouped together and
classified through a qualitative difference. These results are summarized
in Table 1.
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Experiment 1a, search direction down

Figure 10: A graphical presentation of the results for Exp1a from Table 1. The colored
circles on the left axis correspond to the descriptions in Table 1.

8.3.4 Analysis of Experiment 1

For Exp1a, we obtain in total 42 heuristics where no solution is found, six
heuristics where the search finds an optimal solution without any proof
certificate, and finally 24 heuristics where an optimal solution is found
and proven to be optimal. Furthermore, from Figure 10, among the 24
successful heuristics, the time needed to find and prove optimality ranges
from 0.7 seconds to 149.4 seconds. Generally speaking, the two graphs in
Figure 10 show that the value selection heuristics up is more interesting
than down. This results from the fact that when selecting first largest
values for all the variables, longer sequences are privileged.

We found that only two variable selection search heuristics per-
form acceptably for the three sub-experiments, namely, (LT , Bi, C, ti)
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and (L,Bi, C, ti), the first having a slight advantage. Even if these two
heuristics do not always give the best results in terms of CPU time, they
can both be used in combination with the up value selection heuristic
for the three sub- experiments. This result can be explained by the fact
that first giving the values for the brush table (i.e., LT or L) drastically
reduces the size of the search space by withdrawing numerous choice
points originating from the table. The remaining sequence (Bi, C, ti) is
also important, but most probably for technical reasons involving the
shape of the constraints. Selecting one of these two heuristics answers
RQ1 by providing a solid foundation for the analysis of search heuristics in
the context of constraint-based test sequence generation. Based on these
results, we selected (LT , Bi, C, ti) for the second part of our empirical
evaluation, dedicated to answering RQ2 and RQ3.

8.4 RQ2, Experiment 2

To answer RQ2, we examine how scalable the proposed model is with
respect to the heuristics discovered in experiment 1. Scalability in the
context of timed test sequence generation for CIRs can be understood as
1) determining the largest test sequences the model is able to generate
within a reasonable time, 2) determining the impact of the brush table
size on the time needed to generate a test sequence, and 3) determining
the optimal contract of time to be allocated to the minimization process.

To answer these questions, we ran experiments with λ =(10, 15, 20)
and SeqLen= (50, 100, 150, 200, 250, 300), which yields 18 different configu-
rations. Each configuration was systematically executed using all timeout
values in the range [2, 30] seconds, in addition to 60 seconds, 120 seconds,
180 seconds, and 600 seconds. For each timeout value, the ability to find
a solution and the value of tN that was found were reported.

8.4.1 Analysis of Experiment 2

Figure 11 relates the test sequence duration, tN , to the solving time, ts,
for 15 different configurations. Note that the model could not be solved
for λ = 10 in combination with large values of SeqLen within the time
contract of 600 seconds. For this reason, only three results are reported for
λ = 10, namely, those where SeqLen ≤ 150. For λ = 15 and λ = 20, we
got results for all combinations of SeqLen. Note also that all executions,
except for λ = 10, SeqLen = 150, provided a sub-optimal solution within
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Figure 11: How well the model minimizes the duration of the test sequence, tN , if
more time is added to the solving process, ts.

80



Paper 1 8. Empirical Evaluation

10 seconds. In fact, most of the executions generated a first solution in
less than three seconds.

This result is encouraging for our desired deployment in a continuous
integration environment. On the one hand, a test sequence where tN is
minimized is highly desirable but, on the other hand, allocating a very long
contract of time to reach this objective is counterproductive in continuous
integration, since this will result in a reduction in the number of tests that
can be executed. The trade-off relation can be precisely computed and
represented as follows, with a test efficiency factor E that tells us how
much time can be spent in the solving phase to obtain as many changes
in Bi as possible:

E =
SeqLen

tN + ts
(14)

In Figure 12, we plot the efficiency factor for all the tested configurations.
As the plot shows, the maximum efficiency is obtained after two seconds
to 12 seconds of solving time. Thus, if the model is generated and solved
solely for a single execution, there is no benefit running the solver longer
to obtain a better solution. As an example, consider the case with λ = 10
and SeqLen = 50. For this case, the first value found is tN = 9.99 seconds
and, by running the model an additional 30 seconds, we obtain a solution
that executes in only tN = 3.05 seconds, that is, a 30% reduction from
the first solution. Clearly, this is wasted effort if the solution is used only
once. However, if the generated model and the solution is meant to serve
multiple consecutive test runs, it may be advantageous to run the solver
longer to further reduce tN .

In conclusion, unless a test sequence can be reused multiple times,
there is not much to gain from extending the solving phase.

8.5 RQ3, Deployment, and Industrial Adoption

We now address our last research question, whether our proposed model
can be implemented in a real industrial setting. We divide this question
into three parts:

• Is the model able to detect new errors?

• Is the model able to detect old errors that were reintroduced into
the IPS?

• Does the proposed JITTG framework behave as expected?
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Figure 12: Efficiency factor E for the executions in Figure 11. When the model is
run in a continuous integration environment, there is little to gain from running the
model more than around 10 seconds.

8.5.1 New Errors Detected

This section describes the errors found immediately after we introduced
the new model. These are errors that were in the IPS for some time and
were only detected by the new model. We found a total of three previously
unknown errors in the IPS. Two of the errors were directly related to the
behavior of the IPS, while the last was related to how a PC tool presents
online diagnostics for a live system.

8.5.2 Detection of Old Errors

To further validate the robustness of the model, a collection of old, pre-
viously detected errors were reintroduced into the source code with the
intention of verifying that the model was able to detect the errors. The
selected errors were chosen by searching ABB’s bug tracking system, by
interviewing ABB’s test engineers, and through discussions with the IPS’s
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Table 2: Historical data on old bugs that were reintroduced to test the model.

Bug#a Time in systemb Time to solvec Time to validated

44432 5–10 years 1–2 hours 1 day

44835 5–10 years 2–4 days 1 day

27675 6–12 months 1–2 months 1–2 weeks

28859 6–12 months 2–3 months 2–3 weeks

28638 4–6 months 1–2 weeks 2–3 weeks

a The bug number in ABB’s bug tracking system.
b How long the bug was present in the IPS before it was discovered.

Numbers are based on estimates.
c How long it took from the time the bug was discovered until it was

fixed.
d How long it took to validate that the bug had actually been fixed.

For many bugs, this involved testing time spent at customer facilities.

main architect. Most of the errors were originally discovered at customer
sites while staging a production line or after the production line was set
into production. The chosen errors are mainly related to timing errors
of painting events and several of the errors can be classified as errors
that appear when the IPS is part of a large configuration with many
components.

The chosen errors are summarized in Table 2. This table shows
historical data on how long it took to detect the error, how long it took
to fix the error, and how long it took to validate that the error had in
fact been fixed. Note that these numbers cannot be accurately specified;
they represent reasonable estimates. In particular, errors related to how
long a bug has been in the system are difficult to estimate. However, by
interviewing the main architect of the IPS and the lead test engineer, we
have high confidence in the numbers presented.
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8.6 Threats to Validity

In this section, we discuss threats to validity for our experiments and
how we address these. A possible threat to conclusion validity (i.e., when
factors that can influence the conclusion drawn from the experiments) lies
in the absence of a systematic analysis of all possible search heuristics
in response to RQ1. Actually, we adopted a systematic analysis for
variable selection heuristics by examining all 72 possible combinations of
variable orderings, but we only compared two heuristics (up/down). In
response to RQ2, we selected only a subset of possible parameter settings.
Therefore there is another threat to conclusion validity, since nothing
guarantees that another specific setting might exhibit different results.
To reduce this threat, we adopted parameter settings that are realistic
for the application of the constraint model in question and we responded
to RQ2 by using CM2, which is the production model. Note also that
our empirical evaluation, in response to RQ3, is realized in a production
environment, which considerably reduces any concern about conclusion
validity.

An external validity threat of our empirical evaluation concerns
the generalization of the results. Indeed, the models we developed for
the experiments (i.e., CM1 and CM2) are specific to ABB’s IPS timed
sequence generation problem and cannot be easily generalized to other
test generation problems. Such a threat is common in any software
engineering empirical study and cannot really be reduced without applying
the technology to other case studies. However, general-purpose constraint
modeling languages and tools, such as SICStus Prolog and its clpfd

library [5], address this threat and permit us to draw some generalizable
perspectives from this work.

8.7 Comparison of Test Methods

As previously mentioned, our new MBT strategy cannot entirely replace
current testing methods, but it represents an excellent supplement for
identifying bugs at a much earlier stage in the development process.
Nonetheless, we can still compare the different methods quantitatively.
Table 3 shows the results of our comparison. As we can see from this
table, our new test strategy provides a huge improvement in the number of
activations that can be tested within a reasonable time frame, which is not
possible with existing testing methods. If we also include automation in
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Table 3: Comparison of constraint-based testing versus current test methods.

Activation
w/oscilloscope

Paint on paper
Constraint-
based test

Setup timea 1-2 hourse 3-4 hourse 1-2 minf

Activations per
testb

1 5-10 >100

Repetition timec 5 sec 10 min < 1 sec

Interpretation
timed

< 1 mine 2-4 mine < 1 secf

Synchronized
with mechanical
robot

Yes Yes No

Can run
standalone after
initial setup

Yes No Yes

a Setup time is defined as the time it takes to configure a test. This time
includes upgrading the software, configuring the IPS, and loading the test.

b The number of physical outputs that are verified with respect to time in one
test.

c Time needed to repeat two identical tests.
d Time needed to inspect and interpret the result.
e Manual task performed by a test engineer.
f Automated task performed by a computer.

all aspects of testing, our strategy performs much better than our current
test methods. However, it is important to note that our new method does
not involve a mechanical robot and this must be regarded as a weakness.

8.8 Lessons Learnt

Based on experience from about one year of live production in ABB
Robotics software development environment, we report the following
lessons learned, based on experience gathered through development and
deployment of the test framework and discussions with test engineers:

Higher confidence when changing critical parts:
Based on developer feedback, there is now less worry about applying
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changes to critical parts of the code. Previously, such changes
involved significant planning efforts and had to be coordinated with
the test engineers responsible for executing tests. With the new
testing framework in place, it is easy to apply a change, deploy a
new build with the corresponding execution of tests, and inspect the
results. If the change causes unwanted side effects, the change is
rolled back to keep the build “green.”

Simple front-end, complex back-end:
By using Python [34] as the front-end interface to the constraint
solver and keeping the interface that a test engineer is exposed to as
simple as possible, we can utilize personnel with a minimal computer
science background. Both Francis, Brand, and Stuckey [16] and
Banda et al. [1] recognize that constraint programming has a steep
learning curve. Even with training limited to introduction to the
famous classical problems such as SEND+MORE=MONEY and
the N-Queens problem [27], the test engineers have received enough
training to use the constraint solver from Python without major
problems.

Less focus on legacy and manual tests:
A positive side effect of introducing MBT is that the focus in the
organization has shifted from a great deal of manual testing toward
more automatic testing. Even for products beyond the scope of this
paper, the introduction of fully automatic test suites has inspired
other departments to focus more on automatic testing.

Putting everything in the source control repository:
In our work, we never perform any installation on any build server.
After a build server is installed with its continuous integration
software, absolutely everything is extracted from the source control
repository, as recommended in [15]. By strictly adhering to this
philosophy, it is possible to utilize large farms of build servers. For
example, ABB Robotics has access to large farms of build servers
located in Norway, Sweden, India, and China and it is possible to
schedule builds on these servers without any prior installation of
special build tools. This is also the case for the new constraint
programming-based tool presented in this paper. We consider the
effort to develop, deploy and fully integrate our constraint-based
testing tools quite demanding, but very efficient in the long run.
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Keeping tests in sync with the source code and hardware:
The combination of adding everything to the source control repos-
itory and JITTG is that we experience fewer problems with tests
generating false errors due to a mismatch. We still have other test
suites that do not have this tight integration and these tests can
therefore occasionally produce false errors. The main advantage of
this synchronization is experienced if a roll-back to an older version
is required. In this case both the production source code and the
test code is reverted to the older version.

9 Conclusions

In this paper, we present a new testing strategy for validating the tim-
ing aspects of distributed control systems for CIRs. A constraint-based
mathematical model is given to automatically generate test cases through
constraint solving and continuous integration techniques. The model is
fully implemented and deployed within an industrial continuous integration
environment. Interestingly, the constraint-based model is solved online
as part of the continuous integration process. We call the online solving
process JITTG.

Using JITTG guarantees that software, configuration, and hardware
are kept in sync with the generated test cases. To our knowledge, this is
the first time a constraint-based model using JITTG has been deployed
in a continuous integration environment. The paper also answers three
research questions, using the results of a thorough empirical evaluation
obtained from testing a CIR system. Using a generic model that omits
some technicalities, we find an ideal parameterization for constraint solving
concerning variable and value ordering heuristics.

This ideal parameterization is then used on a production-grade
model that is deployed at ABB’s testing facilities and empirically evaluated
during the validation of CIRs. This evaluation reveals that our testing
strategy could not only find reinjected old faults found in previous test
campaigns, but could also discover new faults. By observing that the time
taken to generate a single test case in the continuous integration process
typically ranges from two seconds to 13 seconds, we demonstrate that
our strategy is faster and more effective than current test methodologies
used at ABB. However, it is worth noting that our empirical evaluation
does not include moving robots as part of the evaluation, which would
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be necessary to fully convince stakeholders of the takeaway value of our
approach.

A weakness of our approach is related to the absence of guaran-
tees with respect to model coverage. In other words, the generated test
sequences does not necessarily cover every possible transition between
different spray patterns. Even if this is not an industrial requirement, we
believe that improving our strategy to achieve a certain test coverage is
clearly an interesting research perspective.

In addition, investigating the use of our constraint-based model for
other applications, such as robotized gluing, sealing, or welding, is also
part of further work.

Acknowledgments This work is funded by the Norwegian Research
Council under the Industrial PhD Program (222010), the Certus SFI grant
(http://www.certus-sfi.no), and ABB Robotics.

Appendix

In Table 4 we summarize the notation used in the mathematical model
for the IPS.
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Table 4: Notation for the parameters in the production model.

Parameter Test control parameters

N The size of the input sequence.
i The i-th sequence, i ∈ [1, N ].
j Channel number j ∈ [1, 5].

λ
The number of different spray patterns in the model, or entries
in the lookup table L.

e
A subscript e specifies at which sequence i a scenario should
start.

c
A subscript c specifies on which channel j a scenario should
appear.

MinBrushSep
The minimum time between two spray pattern changes,
ti − ti−1 ≥MinBrushSep.

MinTrigSep
The minimum time between two actuator output changes for
some channel j.

MinOverlapT ime The minimum time an overlap should be in the overlap scenario.

BurstT ime
The minimum time a burst of changes should last in the burst
scenario.

BurstLen The number of changes to use in the burst scenario.
IllegalV al Value to use for the shutdown scenario.

Parameter Parameters from the robot controller

Bi The value i-th spray pattern in the test sequence.
ti The time of the i-th spray pattern in the test sequence.

Parameter Global parameters in the IPS

PreT ime
Disturbance time between channel 1 and channels 2–4 for
P = 0→ P > 0.

PostT ime
Disturbance time between channel 1 and channels 2–4 for
P > 0→ P = 0.

L Brush table with λ rows; each row has five tuples.

Parameter Parameters for each channel

Maxj The maximum value channel j can have.
Minj The minimum value channel j can have.

D+
j

Parameter used to calculate timing for increasing value of the
output on channel j.

D−j
Parameter used to calculate timing for decreasing value of the
output on channel j.

Kj
Boolean value deciding whether or not a channel should user
linear delay calculations.

Pj,i The activation value for the i-th output on channel j.
tj,i The activation time for the i-th output on channel j.
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Abstract:
Designing industrial robot systems for welding, painting, and assembly
is challenging because they are required to perform with high precision,
speed, and endurance. ABB Robotics has specialized in building highly
reliable and safe robotized paint systems based on an integrated process
control system. However, current validation practices are primarily limited
to manually designed test scenarios. In this context, testing the control
system’s timing behavior is particularly challenging, since paint activation
must be synchronized with the robot’s motion control.

To overcome these challenges, we have developed and deployed a cost-
effective, automated test generation technique based on constraint program-
ming, aimed at validating the process control system’s timing behavior.
We designed a constraint optimization model in SICStus Prolog, using
arithmetic and logic constraints, in addition to global constraints. The
model has been integrated into ABB’s testing process, based on a fully
automated continuous integration environment. This allows the model to
be solved on demand prior to test execution, which permits us to obtain
the most optimal and diverse set of test scenarios for the present system
configuration.

The model has been part of ABB’s testing process for 18 months of daily
operation and we have collected data on its performance and bug-finding
capabilities. We report on these aspects along with our experiences and
the improvements gained by the new testing process.

1 Introduction

Developing reliable software for complex industrial robots (CIRs) is a com-
plex task because typical robots are comprised of numerous components,
including computers, field-programmable gate arrays (FPGAs), and sensor
devices. These components typically interact through a range of different
interconnection technologies, such as Ethernet and dual-port RAM, de-
pending on the delay and latency requirements on their communications.
As the complexity of robot control systems continues to grow, developing
and validating software for CIRs are becoming increasingly difficult. For
robots performing process-intensive tasks such as painting, gluing, or
sealing, the problem is even worse, since their dedicated process control
systems are loosely coupled with the robot motion control system. A key
feature of robotized painting is the ability to precisely activate the process
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equipment along a robot’s programmed path. ABB Robotics (ABB),
Norway, develops and validates integrated painting control systems (IPS)
for CIRs and are constantly improving their testing processes to deliver
more reliable products.

Current practices for validating the IPS software involve designing
and executing manual test scenarios. However, to reduce the costs of
testing and to improve product quality, there is potential in automating
the generation of test scenarios and executing them frequently.

In this paper, we report on our use of constraint programming (CP)
over finite domains to automatically generate test scenarios in the form of
timed event sequences for the IPS and execute them within a continuous
integration (CI) process [7]. Building on initial ideas presented by Mossige,
Gotlieb, and Meling [21, 20], we developed a constrained optimization
model in SICStus Prolog clpfd [3] to help test the IPS under operational
conditions.

Due to the IPS’s online configurability, test scenarios must be repro-
duced on a daily basis. This means that indispensable trade-offs between
optimality and efficiency must be found to increase the capabilities of
the Continuous Integration process to reveal software defects as early as
possible. While using CP to generate model-based test scenarios is not
entirely new [5, 14], to our knowledge, this is the first time that a CP
model and its solving process have been designed and integrated into a
Continuous Integration environment to test complex distributed systems.

In previous work [21, 20], we focused on the software testing aspects
of the Continuous Integration process, while in this paper we focus on
the CP aspects of the testing process. However, for this paper to be self-
contained, we include some content from our previous work pertaining to
the background of robotized painting and the IPS. In addition, some of
the equations and the notation used in our previous work are changed to
better match common CP practices.

The rest of the paper is organized as follows: Section 2 introduces
robotized painting along with an example serving as a basis for describing
the mathematical relations involved. Section 3 describes ABB’s current IPS
testing practices and the rationale behind our validation choices. Section 4
presents the CP model with its decision variables, test objectives, and
optimization principle. Section 5 explains how the model and its solving
process are implemented and included in the Continuous Integration
process. Section 6 presents the output of our model compared to manually
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generated test sequences. Section 7 discusses related work on using CP
for software validation purposes. Finally, Section 8 discusses some lessons
learned, summarizing the impact of using CP in ABB’s industrial context.
This latter section also presents ideas for further work.

2 Robotized Painting

This section briefly introduces robotized painting and highlights some of
the challenges faced when testing such systems. A robot system dedicated
to painting typically consists of two main parts: the robot controller,
responsible for moving the mechanical arm, and the IPS, responsible
for controlling the physics of the paint process, that is, controlling the
activation and deactivation of several physical processes such as paint
pumps, air flows, and air pressure and to synchronize these with the
motion of the robot arm. A spray pattern is defined as the combination of
the different physical processes, each of which may have different response
times. For instance, a pump may have a response time in the range
40–50 ms, while the airflow response time is in the range 100–150 ms. The
IPS can adjust for these differences using sophisticated algorithms that
have been analyzed and tuned over the years to serve different needs. In
this paper, we focus on validating the IPS’s timing behaviors.

2.1 Example of Robotized Painting

We now provide a concrete example of how a robot controller communicates
with the IPS to generate a spray pattern along the robot’s path. A
schematic overview is shown in Figure 1, where the node marked robot
controller is the CPU interpreting a user program and controlling the
robot’s servo motors to move it. The example is realistic but simplified to
keep the explanations as simple as possible. Figure 1 shows an example
user program. The first instruction, MoveL p1, moves the robot to the
Cartesian coordinate p1. The next two SetBrush instructions tell the robot
to apply spray pattern number 1 when it reaches x = 200 mm on the
x-plane and to apply spray pattern number 2 when it reaches x = 300 mm.
Both SetBrush instructions tell the IPS to carry out a specific behavior
when the physical robot arm is at a given position. The last instruction
(PaintL) starts the robot’s movement from the current position p1 to p2

and activates the painting process. The v800 argument to PaintL denotes
the speed of the movement, that is, 800 mm/s.
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Robot
Controller

IPS master
PreT ime
PostT ime

C2
D+

2 ,D−2 ,K2

C1
D+

1 ,D−1 ,K1

C3
D+

3 ,D−3 ,K3

MoveL p1;

SetBrush 1 \x := 200;

SetBrush 2 \x := 300;

PaintL p2, v800;

User program

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

L =

(Bi, ti)

(Pi,1
, ti)

(Pi,2, t
′
i)

(P
i,3 , ti)

Lookup(Bi) (LBi,1, LBi,2, LBi,3)
Pi,1, ti,1

Pi,2, ti,2

Pi,3, ti,3

Figure 1: Logical overview of a robot controller and the IPS.

Assume now that the path from p1 to p2 results in a movement in a
Cartesian coordinate system from x = 0 mm to x = 500 mm, that is, a
straight line of length 500 mm. The robot controller interprets the user
program ahead of the robot’s actual physical movement and, since the
robot moves at a constant speed of 800 mm/s here, the robot controller can
estimate when it will be at a specific position. If the movement starts at
time t = 0, the robot controller will compute, based on the robot’s speed,
that the two SetBrush activations should be triggered at t1 = 250 ms and
t2 = 375 ms, where t1 and t2 correspond to x = 200 mm and x = 300 mm,
respectively.

The robot controller now sends the following messages to the IPS
master: (B1 = 1, t1 = 250), (B2 = 2, t2 = 375), which means apply spray
pattern 1 at 250 ms and spray pattern 2 at 375 ms. The messages are sent
around 200 ms before the actual activation time, or at ≈ 50 ms for spray
pattern 1 and at ≈ 175 ms for spray pattern 2. Note that the IPS may
receive the second message before the first spray pattern is scheduled for
execution, which means that the IPS must handle a queue of scheduled
spray patterns.

2.2 IPS Master

When the IPS receives a message from the robot controller, it first de-
termines the physical outputs associated with the logical spray pattern
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number. Many different spray patterns can be generated based on factors
such as paint type or equipment in use. In the IPS, each spray pattern is
translated into three to six different physical actuator outputs that must
be activated at appropriate times, possibly different from each other.

As exemplified in Figure 1, we may use three different actuator
outputs (C1, C2, C3). The value of each actuator output for a given
spray pattern is resolved by using a brush table, which is a simple lookup
table. In this example, L(B1 = 1) returns (L1,1, L1,2, L1,3) while L(B2 = 2)
results in (L2,1, L2,2, L2,3). Given the result of a lookup in L, the IPS master
will pass these values to each actuator output along with its activation
time t′i, which may be different from the original time ti received from the
robot controller. This adjustment can be formalized as follows:

t′i =

ti − PreT ime if Pi−1,1 = 0 ∧ Pi,1 6= 0

ti − PostT ime if Pi−1,1 6= 0 ∧ Pi,1 = 0
(1)

which shows that the activation time of an actuator output may be
adjusted by a constant factor (PreT ime, PostT ime), depending on changes
applied to another actuator’s output. The rationale behind this is that
some physical processes can affect the timing of other physical processes.
For example, in robotized painting the process of turning on or off the
paint fluid affects the timing of the air control process. In our current
example from Figure 1, the timing of C2 is influenced by changes in C1.
This means that the activation time t′i sent to C2 is calculated based on
(1), while the activation time sent to C1 and C3 is the time ti received
from the robot controller, that is, the time is forwarded without any
adjustments.

2.3 Activation of Actuator Outputs

As previously mentioned, many of the physical processes in painting involve
slow physical processes, such as starting a pump motor, filling a hose with
air, or opening a solenoid valve. To compensate for these physical process
delays, the actuator output calculates an adjusted activation time ti,j ,
that accounts for this time in an effort to overcome the physical process
delay. While still referring to Figure 1, we now present how an activation
message sent by the IPS master is processed by the receiving actuator
output. In the following, we consider the message (Pi,j , ti) sent from the
IPS master to actuator output j, whose current actuator output is Pi,j−1.
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The IPS can adopt two different strategies to compute this com-
pensation time. The first is to adjust the time by a fixed delay, D+ for a
positive change and D− for a negative change. This strategy is typically
used for solenoid valves and other actuators that have a fixed process delay.
The second strategy uses a linear timing function, where the duration
of the compensation is linear with the change in physical output. This
strategy is typically used for pumps and air flows. For example, changing
the speed of a pump motor from 100 rpm to 300 rpm takes longer than
changing it from 100 rpm to 200 rpm.

The following equation combines both the fixed delay and the linear
delay strategies into a single compensation function, where the value of K
determines whether fixed or linear compensation is to be applied:

ti,j =



ti −D−j if Pi−1,j < Pi,j ∧Kj = 0

ti −D+
j if Pi−1,j > Pi,j ∧Kj = 0

ti −D−j · (Pi,j − Pi−1,j) ·Mj if Pi−1,j < Pi,j ∧Kj = 1

ti −D+
j · (Pi−1,j − Pi,j) ·Mj if Pi−1,j > Pi,j ∧Kj = 1

ti−1,j otherwise

(2)

where Mj = 1
Maxj−Minj

is a constant factor calculated based on the

physical minimum and maximum values that can be applied to actuator
output j. They are determined by the properties of the physical equipment,
such as the pumps and valves.

2.4 Physical Layout of the IPS

Figure 1 only shows the logical connections in a possible IPS configuration.
In real applications, each component (IPS master, C1, C2, C3) can
be located on a different embedded controller, interconnected through
an industrial-grade network. As such, the different components may be
located at different physical locations on the robot, depending on the
physical process for which it is responsible.

2.5 Example Summary

To wrap up the example given in Section 2.1, we enrich it with realistic
values and visualize both the configuration and the actual output data.
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This visualization will be used later to explain error scenarios and describe
the results obtained using the IPS’s CP model.

We first specify values for the brush table as follows:

L =

 0 0 0

100 75 150

500 150 175


This corresponds to a configuration where the robot can use two different
spray patterns in addition to the zero spray pattern, which is used to
deactivate all the actuators. In this example, C1 is the actuator output
controlling a paint pump, whose working range is from zero to 500 ml/min.
This gives us Min1 = 0 and Max1 = 500. The terms C2 and C3 are
both actuators for air flow control with the limits Min2 = 0, Max2 = 200,
Min3 = 0, and Max3 = 200. For C1, we use linear timing compensation
(K1 =1), while both C2 and C3 uses a fixed delay (K2 =K3 =0). In this
example, C1 affects the timing of C2 and thus we set PreT ime = 80 and
PostT ime = −50. A complete overview of this configuration is shown on
the right and bottom portions of Figure 2. The figure also illustrates, on
M’s timeline, that the IPS is instructed to change to spray pattern B1 = 1
at t1 = 250 and then change to spray pattern B2 = 2 at t2 = 375. The
corresponding actuator outputs for the different channels are also shown
on separate timelines.

From a tester’s perspective, the challenge in this example is to
generate test configurations, decide the order and timing of the different
spray patterns, and validate each physical output with the corresponding
timing.

In this section, we have provided an overview of how the IPS works
together with a robot controller to generate spray patterns along a moving
path. We have also described how the IPS can compensate for process
delays in an actuator output, with both fixed delay compensation and
compensation based on the change of another actuator output. Finally,
we have introduced graphical notation to illustrate spray patterns and
their corresponding actuator outputs.
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M

C1

C2

C3

L =

 0 0 0

100 75 150

500 150 175



D+
1 = 50

D−
1 = 50

K1 = 1

D+
2 = 80

D−
2 = −50

K2 = 0

D+
3 = 90

D−
3 = −60

K3 = 0

PreTime = 80

PostTime = −50

t0 = 0

B0 = 0

t1 = 250

B1 = 1

t2 = 375

B2 = 2

t0,1 = 0

P0,1 = 0

t0,2 = 0

P0,2 = 0

t0,3 = 0

P0,3 = 0

t1,1 = 240

P1,1 = 100

t1,2 = 90

P1,2 = 75

t1,3 = 160

P1,3 = 150

t2,1 = 335

P2,1 = 500

t2,2 = 295

P2,2 = 150

t2,3 = 285

P2,3 = 175

Figure 2: Graphical presentation of the configuration and actuator outputs of the
example given in Section 2.1. A complete spray pattern is indicated by the black
dots connected with a line. The black dots on the bottom timeline, M, represent the
desired/programmed time at which a new spray pattern should appear and the dots on
the Cn timelines represent the actual activation times of the different actuator outputs.

3 Testing the IPS

Current IPS testing practices involve considerable manual labor, including
setting up physical machinery and collecting observations from manually
performed test scenarios. Due to their manual nature, these test scenarios
are also costly to perform, even when conducted only once per release
cycle. Performing the test scenarios with such a low frequency also results
in substantially higher development costs for new versions of the IPS,
since correcting software defects late in the development process may
require developers to recall source code changes made at early stages of
development. Even worse, if a software failure is observed during operation
at a customer’s site, the costs are even higher, since corrections may need
to take place at the customer’s physical location. In addition to the above
concerns, having a distributed control system mounted on a physical robot
makes the validation process unnecessarily complex.
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3.1 Continuous Integration

The concerns highlighted in the previous section call for a new set of tools
to reduce the costs of testing advanced systems, such as IPS. One such
tool is Continuous Integration.

Continuous Integration is a software engineering practice aimed at
uncovering software defects at the earliest possible stage of development
by regularly building the system and executing tests automatically [7].
In this respect, good engineering practice requires developers to submit
only small source code changes frequently instead of large sets of changes
occasionally. Together with this practice, Continuous Integration has
been shown to be very efficient at uncovering defects when developers are
geographically distributed or large teams are involved.

3.2 Testing in a Continuous Integration Environment

Compared to traditional software testing, running a test scenario in a
Continuous Integration environment has additional requirements. In
particular, as pointed out by Fowler and Foemmel [7], controlling the total
round-trip time is crucial for successful Continuous Integration deployment.
Here, the round-trip time refers to the time it takes for a developer to
submit a change to the source control repository and obtain feedback from
the build and test processes. Thus, to keep the round-trip time as short as
possible, we have identified a few areas where special care must be taken:

• Test complexity. In Continuous Integration, a less accurate but
fast test is usually preferred over a slow but accurate test. In practice,
a test must satisfy the so-called good enough criterion, frequently
used in the industry [26].

• Solving time. Constraint-based optimization is usually a time-
consuming task, especially if a global optimum is sought [17]. Thus,
when used in Continuous Integration, a time-contracted optimiza-
tion procedure is imperative. In other words, it is important to
have precise control over the time needed to compute the optimum,
potentially sacrificing solution quality.

• Execution time. We observe that the test execution time is de-
pendent on the length of the test sequence, that is, the number of
test scenarios. This must be accounted for, together with the time
needed to generate the test sequence.
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In essence, there is a trade-off between the time spent executing a test
sequence and the time needed to generate the test sequence (its solving
time). Thus, to integrate CP into a Continuous Integration process, we
need to strike a balance between the solving and execution times.

4 CP Model of the IPS

We now present the CP model we use to generate IPS test cases. We
note that test models, as proposed in model-based testing [27], are usually
limited in scope. They are not intended to reflect the full behavior of the
system they represent. In this case, we confine ourselves to modeling the
IPS’s timing behavior to build an efficient CP model for generating test
scenarios. The model will generate configuration and test inputs to the
IPS such that the output values with corresponding time values for each
actuator output correspond to a given test scenario.

We built two different IPS CP models. One is an industrial strength
model, named CM1, which has been integrated into ABB’s CI process.
This model includes detailed paint domain knowledge, which makes it
hard for a non-expert to understand. Thus, we also developed a simplified
model, named CM2, without the paint domain knowledge. This model,
which must be considered a pure research model, is also more flexible
and can generate test scenarios that are not executable on a real system
but demonstrates the principles. Many of the examples in this paper
are generated by using CM2. Both CM1 and CM2 can be found in
Mossige [19].

4.1 Decision Variables and Domains

For a given test scenario, the CP model will generate a solution comprised
of a set of decision variables. The decision variables for the CP model of
the IPS is organized into the following four categories:

(i) Variables of the input sequence I,

(ii) Configuration variables C,

(iii) Variables of the brush table L, and

(iv) The expected output of each actuator output with its corresponding
time, also known as the oracle [28], O.
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Formally, the test input sequence I corresponds to ((B0, t0), . . . , (BN , tN )),
where N is the length of the test sequence. The domain of Bi and ti is
given as Bi ∈ [1, BTabSize] and ti ∈ [0,MaxT ime]. The input parameters
N , BTabSize, and MaxTime are typically provided as constants to the
model when the solving process is launched.

Given α number of actuators, the configuration variables C contain
parameters for the IPS master and for each actuator output, which are
used in the timing compensation functions (1) and (2):

C = [PreT ime, PostT ime,D+
1 , D

−
1 ,K1, . . . , D

+
α , D

−
α ,Kα]

The domain of the variables in C is given by user-configurable constants
to the model at runtime. The typical range used by the IPS is ±500 ms
for PreT ime, PostT ime, D+, and D−. The domain of Ki is, of course,
[0, 1].

In the brush table L, the number of columns corresponds to the num-
ber of actuator outputs, α, and the number of rows is the user-configurable
parameter BTabSize. The domain of each row in L is extracted from Min
and Max from the corresponding actuator output. During a test scenario,
this is done by querying the physical actuator output before the solving
process begins.

Finally, for test oracle O, a given input (Bi, ti) produces an output
Pi,j and a corresponding time ti,j for each actuator output j. More
precisely, (Bi, ti) 7→

(
(Pi,1, ti,1), . . . , (Pi,α, ti,α)

)
for i ∈ [0, N ]. The domain

for O is given by Pi,j ∈ [Minj ,Maxj ] and ti,j ∈ [0,MaxT ime], ∀i,∀j.

4.2 Additional Constraints

The constraints given in (1) and (2) represent the main calculation of
the constraint model, describing the IPS’s timing behavior. However,
additional constraints are needed to capture the ordering of events or the
relations between the time instances. Specifically, for the input sequence I,
the time of each input must be higher than the previous input. Specifying
the minimal duration between two subsequent time instances is possible
through the user-defined parameter MinBrushSep:

∀i, ti+1 − ti ≥MinBrushSep ∧ ti ≥ 0 (3)
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Similar constraints are also specified for the oracle’s variables but, instead,
the MinTrigSep configuration parameter is used to specify the separation:

∀i, j, ti+1,j − ti,j ≥MinTrigSep ∧ ti,j ≥ 0 (4)

Finally, we need to consider the IPS’s boundary conditions, that is, the
initial state of the IPS prior to test execution and its final state after test
execution. Generally, leaving any actuator outputs in a non-zero state
after the test has finished is undesirable. Hence, the following constraints
are also included in the model:

∀j, B0 = 0, t0 = 0, P0,j = 0, t0,j = 0, BN = 0, PN,j = 0 (5)

4.3 Test Scenarios

We have identified several distinct test scenarios, three of which are
shown in Figure 3. The scenarios overlap and kill brush represent failure
conditions, where the IPS is forced into an error state. When generating
such scenarios, our objective is to check whether the IPS can respond
correctly, for example, by initiating shutdown or generate an error message.
The normal scenario represents acceptable behavior and is aimed at
validating that the IPS behaves as expected. Whenever the CP model is
solved, a scenario is given as a test objective to the solver and the solving
process aims to find a variable assignment that can drive the execution of
the IPS toward the corresponding scenario.

The overlap scenario is used several times throughout the paper,
since it is the hardest to find and therefore corresponds to the most difficult
objective to solve for the CP model. By referring to (6) and Figure 3(b)
the following explains the scenario in more detail. Recall from Section 2.1
that the IPS can queue a sequence of actuator output changes. However, it
is possible that an activation message arriving later at the actuator output
can result in output activation earlier than an already scheduled message.
Formally, this means that a situation is possible where ti,j > ti+1,j .

There are several ways such an overlap scenario can occur. It can
be due to rapid switching between spray patterns, which may be caused
by an increase in the robot’s speed, for example, from v800 to v1000. It
can also be caused by using a PreT ime/PostT ime configuration or the
use of different configurations of the actuator output (D+, D−, K). The
IPS is designed to handle these issues by sending an appropriate error
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message to the control system and possibly issue a shutdown. From a
testing perspective, it is important to be able to generate such a scenario
to ensure that the IPS behaves as expected, no matter what caused the
overlap. The constraints for enforcing an overlap on actuator output j
between time instance e and e+ 1 are given by

te,j − te+1,j ≥MinOverlapT ime

te+1,j − te−1,j ≥MinTrigSep (6)

te+2,j − te,j ≥MinOverlapT ime

R

C3

C2

C1

(a) Normal.

R

C1

(b) Overlap.

R

C1
STOP

(c) Kill.

Figure 3: Test scenarios considered as test objectives. The horizontal axis represents
time and the black dots correspond to output activations. A specific spray pattern is a
collection of output activations and is visualized by a line connecting the black dots.

Last, in the kill scenario we try to force the IPS into an error state caused
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by an actuator output failing. When an actuator output fails, an error
message is reported back to the IPS master. Depending on the setup,
the IPS can choose different strategies to handle the error state, such as
shutting down, issuing a warning, or ignoring the error. In our model, we
only make sure that an actuator output is able to enter an illegal state by
ensuring that a special value, IllegalV al, is produced on a specific actuator
output, t, at a specific output instance k:

Pt,k = IllegalV al (7)

The model does not cover the actual shutdown behavior, since this is very
configuration specific. We found it more appropriate to validate the IPS’s
behavior in the part that compares the oracle with the actual actuator
outputs.

4.4 Requirements for Test Case Generation

Our first requirement for generating test cases is that they can be repro-
duced upon every test execution, so as to document failure cases and to
help debug the IPS system. The second requirement pertains to diversity
in the solution of the CP model. That is, when generating a test case
for one of the scenarios, there should be some diversity in the solution,
so as to increase the probability of exposing an error-prone scenario. In
addition to diversity, we also want to avoid generating useless solutions,
for example a solution for which the oracle, O, provides actuator outputs
that are always zero, irrespective of the other decision variables, I, L, and
C. Such as solution has no practical value, since it does not correspond
to a possible behavior of the IPS. Furthermore, past experience with
debugging the timing behavior of the IPS, has revealed that executions
involving multiple concurrent transitions on different actuator outputs,
tends to be more error-prone. Hence, it is desirable to specifically target
such executions when generating test cases.

A common approach to introduce diversity is to use a pseudo-random
generator, however our other requirements makes this difficult. This is
since the various decision variables must be tweaked appropriately to avoid
generating useless solutions, and to target the types of solutions that are
known to be the most error-prone. Thus to satisfy the above requirements,
in the following we present several techniques for adding diversity to the
relevant decision variables.
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4.4.1 Variations in the Input Sequence

When trying to broaden the scope of the solution space, the first thing
to consider is to introduce variation in the input sequence to the IPS,
denoted I = ((B0, t0), . . . , (BN , tN )). With respect to the solution, the
actual time ti when a spray pattern is applied is largely irrelevant, as long
as the constraint in (3) is satisfied. Thus, we only consider variations in
brush selection, Bi.

An obvious rule is to ensure that any pair of consecutive brush
selections differ, i.e., ∀i, Bi 6= Bi+1. But this does not guarantee that all
the brushes in L will be tested. However we can improve the diversity by
using the global constraint nvalue, to require that all elements in L are used
at least once: nvalue( BTabSize, B ). Unfortunately, this won’t produce the
desired diversity in using different elements from L, as illustrated with the
following example: Consider an input sequence with B = B1, . . . , B10 and
L of size 4. By using nvalue( BTabSize, B ) in combination with Bi 6= Bi+1,
a typical solution may be: B = [1, 2, 1, 2, 1, 2, 1, 2, 3, 4]. As the example
shows, elements 1 and 2 are over-represented due to the Bi 6= Bi+1

constraint.

In order to avoid such brush sequences, we need a way to
measure the diversity, and hence we define the notion of diversity
entropy (DE) as follows: Given a sequence of integers, DE is the
product of the number of occurrences of each value in the sequence.
For example, DE([0, 1, 0, 1, 0, 1, 0, 1, 2, 3]) = 4 · 4 · 1 · 1 = 16, while
DE([0, 1, 2, 1, 2, 3, 1, 3, 2, 3]) = 1 · 3 · 3 · 3 = 27. With this example, we see
that the first solution, respecting both previously mentioned constraints,
has lower diversity entropy than the second solution does.

We therefore propose another approach in which we use the
global_cardinality constraint to improve the diversity entropy. By specify-
ing the minimum number of times an index of L must appear in the input
sequence, we increase the solution’s diversity entropy. If we now repeat
the previous example but use global_cardinality, we obtain the following:

global_cardinality( [B1,...,B10], [1-N1,2-N2, 3-N3, 4-N4] )

N1 #>= Ob, N2 #>= Ob, N3 #>= Ob, N4 #>= Ob

A typical solution here would be B = [1, 2, 1, 2, 1, 2, 3, 4, 3, 4] for Ob=2

This implementation approach has been shown to be flexible enough to
consider solutions with a satisfactory DE. In our actual implementation,
the parameter of Ob has been made available as a configurable parameter
that can be set by the user.
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4.4.2 Varying the Brush Table Entries

In order to exercise the entire operating area of each of the actuator
outputs, it is also important to vary the entries of the brush table. When
validation engineers create these tables manually, they try to ensure that
the entire operating area of the actuator output is used, including that
both Min and Max of each actuator output are part of L. They also
try to ensure that multiple transitions on the actuator outputs occur
simultaneously. That is, some actuator outputs transitions from high to
low, while other actuator outputs transition from low to high.

By considering the entries in L as points in a hypercube of α
dimensions, Rα, we would prefer each point in the cube to have as large a
Euclidian distance as possible from the other points in the cube, that is,

maximize(minimum(|L(i)− L(j)|) ∀i, j, i 6= j) (8)

However, we observed that this approach is too costly to compute in
practice and we prefer a more light-weight approach. Since each column
of L corresponds to one specific actuator output, we ensure that the
maximum and minimum of the actual actuator output are present in that
column through the use of the global constraints maximum and minimum. In
addition, the all_min_dist [24] constraint is used to ensure that all the
values in that specific column are spread out by a user-configurable factor.
Together these three constraints ensure that each column in L exhibits
reasonably good variation.

To introduce variation between the row entries in L, additional
constraints are used to make sure that at least one transition exists where
all except one value is changed. For example, from Figure 1, if two entries
are [L1,i, L2,i, L3,i] and [L1,j , L2,j , L3,j ], then i and j should exist such
that L1,i < L1,j ∧ L2,i ≥ L2,j ∧ L3,i ≥ L3,j and so on for other entries.
This approach does not maximizing the distance between each entry in
a hypercube, but it turns out to perform fairly well together with the
scenarios presented earlier. Further improvements on this is left for future
work.

4.4.3 Variation in Configuration Values

The configuration generated for a specific test scenario includes the val-
ues for each actuator output (D+,D−,K) and the value for IPS master
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(PreT ime, PostT ime). In many setups, validation engineers select these
values manually without questioning the error-proneness of a given config-
uration with respect to another. By adding simple constraints for each
actuator output, such that D+ 6= D− ∧D− 6= 0 ∧D+ 6= 0, we offer an
opportunity for the CP model to introduce diversity in the configuration
values as well. By using the global constraint all_different (D+

1 , . . . , D
+
C ),

and so on, we also enforce diversity between the actuator output values.
For the PreT ime and PostT ime values, a similar strategy is employed:
PreT ime 6= PostT ime ∧ PreT ime 6= 0 ∧ PostT ime 6= 0. It is worth not-
ing that these variation strategies have served the good enough principle
well, since introducing diversity is important but not at the cost of losing
efficiency.

4.5 Implementation Details

This section briefly reviews some of the implementation details we used for
our model. For lower-level details related to implementation, we mainly
refer to Mossige [19]. We start by describing how the mapping from Bi to
P1,i, . . . , Pα,i is carried out before presenting how the model can choose
between the use of fixed delay and linear delay. From our example in
Section 2.1, we have:

L =

L1,1 L1,2 L1,2

L2,1 L2,2 L2,2

L3,1 L3,2 L3,2


By using of the global constraint element [29], we can now easily express
the physical output value for each actuator output, as follows:

element([L1,1, L2,1, L3,1], Bi, Pi,1),
element([L1,2, L2,2, L3,2], Bi, Pi,2),
element([L1,3, L2,3, L3,3], Bi, Pi,3),

The model provides the choice between using linear delay or fixed
delay for the actuator outputs, unless specified differently by the user. If
we consider actuator output m, the activation time tn,m is given by (2).
As we can see from (2), there are five possible outcomes: two in which the
physical output value increases, two in which it decreases, and finally one
outcome in which there is no change. In the latter case, the time value
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is kept to the last value. In our implementation, all five outcomes are
calculated and the model selects one outcome based on reification.

4.6 Search and Optimization

We now briefly present the optimization function and the search heuristics
used in our model. In our framework, finding optimal solutions that
respect the given constraints is the most interesting. The optimal solution
here means a sequence of timed events I = ((B0, t0), . . . , (BN , tN )) with
the shortest execution time, that is, where tN is minimized. This means
that we increase the number of tests that can be executed in a limited
period. Of course, finding the global minimum of tN is interesting from an
intellectual perspective, but not really necessary in our industrial setting.

As mentioned in Section 3.2, managing the time needed to generate
and execute test sequences when running tests in a CI environment is of
crucial importance. Considering the test sequence above, we see that the
test’s execution time can be roughly estimated to be tN . This means that
the total time used is roughly ts + tN , where ts corresponds to the model’s
solving time.

To illustrate the benefit of minimizing tN , we provide a small ex-
ample. Figure 4 shows two different solutions for the same test objective.
The test objective is to generate an overlap on C2 between outputs 4 and
5. The upper part of the figure shows one possible solution without mini-
mizing tN . In the lower part, we show a minimized solution, which in this
case is also an optimal solution where tN has reached a global minimum.
As shown in this example, the execution time goes from t6 = 13 to t6 = 10,
which means that the use of optimization can provide significant shorter
execution times for test sequences.

Knowing that the constrained optimization model tends to minimize
tN , the goal is therefore to manage the time needed to find an optimal
solution. CP offers means to control the optimization time taken by using
a branch-and- bound procedure. That is, we can give a contract of time
to this procedure and it returns the current feasible solution after the
contract of time has passed. We find this option very useful in finding a
compromise between the time spent on solving and the time spent on the
test’s execution.

113



4. CP Model of the IPS Paper 2

M

C1

C2

C3

D+
1 = −3

D−
1 = −3

K1 = 0

D+
2 = −3

D−
2 = 2

K2 = 1

D+
3 = −3

D−
3 = −3

K3 = 0

L =


0 0 0

1 2 3

2 1 4

3 3 1

t
0

=
0

B
0

=
0

0

0

0

t
1

=
1

B
1

=
1

1

2

3

t
2

=
5

B
2

=
0

0

0

0

t
3

=
7

B
3

=
3

3

3

1

t
4

=
9

B
4

=
0

0

0

0

t
5

=
1
1

B
5

=
2

2

1

4

t
6

=
1
3

B
6

=
0

0

0

0

M

C1

C2

C3

D+
1 = −3

D−
1 = −3

K1 = 1

D+
2 = −1

D−
2 = 2

K2 = 1

D+
3 = −2

D−
3 = −2

K3 = 1

L =


0 0 0

1 3 2

2 4 3

3 1 4

t
0

=
0

B
0

=
0

0

0

0

t
1

=
1

B
1

=
2

2

4

3

t
2

=
4

B
2

=
1

1

3

2

t
3

=
6

B
3

=
2

2

4

3

t
4

=
7

B
4

=
0

0

0

0

t
5

=
8

B
5

=
3

3

1

4

t
6
7
=

1
0

B
6
7
=

0

0

0

0

MinBrushSep : 1

MinTrigSep : 2

MinOverlapTime : 1

PreTime : 0

PostTime : 0

Figure 4: Two solutions to the overlap scenario from Figure 3(b) generated by using
the CM2 model. The configuration and parameters with fixed values are shown at the
bottom. On the right of each graph, we list both parameters and variables found by
the solver. The upper graph shows a non-optimal solution, while the lower graph shows
an optimal solution with respect to minimize(t6).
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4.7 Search Heuristics

When searching for solutions, many heuristics can be used in CP. Observing
the absence of evident structure in our CP model, we considered variable
ordering as the first element to examine systematically. To extract useful
information, we considered 72 distinct static variable orderings depending
on rearrangements of the decision variables (I,L,C) [20]. In addition
to this systematic exploration, we used as a reference two well-known
dynamic variable orderings, namely, first-fail and first-fail constraint [3].
We also tested both the ascending and descending search directions of the
domain. This analysis and the experiments revealed two points:

(i) While both first-fail approaches are effective for sequences with few
events, they fail for long sequences.

(ii) For search heuristics with static variable orderings, we can group
the result into three groups H1, H2, and H3:

• H1 = (C,L, I′) (L,C, I′) (C,LT, I′),(LT,C, I′),
• H2 = (B,L,C,T), (B,LT,C,T), (L,B,C,T), (LT,B,C,T)

• H3 = the other 64 tested combinations

where I′ = (t1, B1, t2, B2, . . .), B = (B1, B2, . . .), T = (t1, t2, . . .), and
LT = transp(L).

H1 is the only heuristic able to produce a solution within an ac-
ceptable timeframe for small brush tables combined with long test
sequences, for example, BTabSize = 10, SeqLen = 200. For config-
urations of long test sequences combined with large brush tables,
for example, BTabSize = 40, SeqLen = 600, H2 is the only heuristic
able to generate a solution within a reasonable time. The result
for H3 is either no solution at all or a solution only for very small
instances.

4.8 Performance of the Variable Heuristics

We now discuss the model’s performance, including a deeper discussion of
the heuristics used and how they behave with and without optimization.
Recalling that H1 and H2 represent two different groups of variable
orderings with similar performance, the difference between H1 and H2

regarding total execution time, ts + tN , is shown in Figure 5(a), with two
different brush table sizes. This experiment reveals that
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(i) H1 produces a relative small value for tN by using more time than
H2 does.

(ii) H2 produces a larger value for tN but is faster than H1.
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Figure 5

We also compare H1 and H2 when minimizing the overall time of a
test sequence, that is, minimize(tN ). Figure 5(b) shows that H2 provides
the first solution faster than H1 and that the quality of the solution is
better when more time is allocated to the optimality search. For H1,
Figure 5(b) shows that there is no gain in minimizing tN .

For the setup where the test sequence is of length N = 100 and the
brush table is of size 10, we see that the solver must run for ≈ 60 s before
H2 gives a smaller tN than for H1. For the setup of N = 200 with a brush
table of size 40, the solver must run for ≈ 600 s before break-even occurs.

From the results of Figure 5(a) and Figure 5(b), no strong conclusion
can be drawn when it comes to selecting between H1 and H2. If a test
sequence is generated for multiple uses, that is, the same test sequence is
reused multiple times, then using H2 is beneficial at the price of allocating
more time to the optimization procedure. On the contrary, if a single
usage is targeted, as in the Continuous Integration process, then using H1

should be preferred, considering than the total time ts + tN is the actual
target of our test generation and execution procedure. Consequently, at
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ABB, we decided to keep the choice between these two heuristics as an
option in our CP model. From a practical point of view, it permits the
validation engineers to better tune the test generation process according
to their needs.

4.9 Evaluation of Heuristics

We now give a deeper explanation of the difference between H1 and H2.
We look at both the solution provided without the use of optimization
and solutions provided when using optimization. Recall from Section 4.7
that the end of the sequence of variables is as follows:

H1 = (. . . , tN−2, BN−2, tN−1, BN−1, tN , BN )

H2 = (. . . , t0, . . . , tN−1, tN )

The variables related to the brush table and configuration parameters are
located at the start of the sequence. We observe that the values selected
for both groups of variables will be identical for both H1 and H2 in the
non-optimized solution. The values are determined solely based on the
diversity constraints, as explained in Section 4.4. The main difference
between H1 and H2 is the way the values of Bi and ti are selected.

4.9.1 H1 Heuristics with No Optimization

For the H1 ordering of the variables, the values of ti and Bi are assigned
by alternating between ti and Bi, that is, . . . , tN−1, BN−1, tN , BN . In
Figure 6, we gave an example of how the last phase of the search with
the use of H1 heuristics will look like. In this example, the brush table
and configuration parameters were already assigned values earlier in the
search process. This means that the “shape” of the next spray pattern is
given just by selecting the next Bi. We now assume that the next variable
to label is t3. Since t2 = 5 ∧MinBrushSep = 1, we will obtain t3 = 6 as
the first possible legal value t3 can have. As further shown in Figure 6,
the initial domain of B3 is 1,2, and 3. However, B3 = 1 will be removed
from the domain since that would result in t2,2 = 6 ∧ t3,2 = 6, which
breaks the MinTrigSep = 2 constraint. B3 = 2 will also be removed from
the domain, since it will lead to t2,2 = 6 ∧ t3,2 = 7, which also breaks
the MinTrigSep = 2 constraint. This leaves us with B3 = 3. This spray
pattern breaks none of the MinTrigSep constraints and the labeling can
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continue where t4 is labeled. As we see in this small example, the value of
ti will be assigned the smallest possible value based on the available Bi.
However, if the selected value for ti results in an empty domain for Bi,
backtracking will occur and a larger value of ti is tried.

M
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0 1 2 3 4 5 6 7 8

1

2

3

Figure 6: Labeling by using the H1 heuristics. If t3 = 6, we see that the domain of
B3 is reduced from [1,2,3] to [3] and thus H1 selects B3 = 3.

4.9.2 H2 Heuristics with No Optimization

For H2, the values of Bi are assigned early in the search process and will be
considered fixed in this example. In the example in Figure 7, we consider
the point in time where H2 = (. . . , B3 = 1, B4 = 2, B5 = 3, . . . , t0 =
0, t1 = 1, t2 = 5, t3 =?, t4 =?, t5 =?). To label t3 is only a matter of
selecting a high enough value to make sure that the MinBrushSep and
MinTrigSep constraints are maintained. Given that B3 = 1, we see that
to not break any of the MinBrushSep or MinTrigSep constraints, the
first possible value is t3 = 8.

4.9.3 H1 Heuristics with Optimization

We now change to using H1 with optimization (minimize(tN )), as shown
in Figure 5(b). We observe that after the first solution is found, the value
of tN is not reduced much, since more time is used to find a more optimized
solution. In the example shown in Figure 5(b), the only difference between
the first solution provided and the last (when the search is stopped) is

118



Paper 2 4. CP Model of the IPS

the ordering of the Bi values with the corresponding ti values. Since C
and L are at the top of the search space, the backtracking will take a long
time to reach those values and thus provide a potential better result; this
heuristic will not perform well if we require a significantly lower value of
tN at the end of the search compared to the initial value of tN . In the
example given in Figure 5(b), the backtracking never reaches far enough
back to try other values for C of L.

4.9.4 H2 Heuristics with Optimization

The H2 heuristic has the C variables assigned just before the ti values.
As explained in Section 4.9.2, when assigning a value to the next ti,
the smallest value is selected based on the available domain of Bi. By
backtracking further back in the search tree, the first possible value that
impacts tN consists of the configuration parameters in C. In the example
shown in Figure 5(b), the values of an actuator output configuations (D+,
D− or K) is changed in each step of the graph. At the time the search is
stopped, the difference between the first solution found and the solution
at the point where the search is stopped consists of only changes in ti and
C.
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Figure 7: Labeling by using the H2 heuristics. Since B3 = 1 from earlier in the search,
the only possible value for t3 that does not violate the MinBrushSep and MinTrigSep
constraints is t3 = 8.

4.9.5 Heuristics H1 and H2

We have described some of the differences between H1 and H2. While H1

provides a rather good initial solution, it will not improve much if more
time is allocated to the search. This is explained by the fact that the
initial ti, Bi ordering is quite good. To achieve a better solution requires
a change in C and L. However, for larger test sequences, those variables
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are too far away in the search tree to be reached within a reasonable time.
For H2, we also explained why a first solution is reached quite quickly by
just giving a value to the ti variables. When optimizing with the use of
H2, the improvements are gained when backtracking reaches the values in
C.

As we have seen by the use of both H1 and H2, the values of L
will never change in the experiments we performed. The values of L are
simply given by the constraint for variation as explained in Section 4.4.
For practical use at ABB, the use of H1 and H2 provides a good balance
and covers more than what is expected or required in an industrial setting.

5 Implementation and Exploitation

This section details our implementation of the CP model [19] with SICStus
Prolog and its clpfd library [3] and its exploitation in the Continuous
Integration process at ABB. It also provides insights into the rationale
behind the selection of CP instead of other possible techniques.

5.1 Selection of CP and the CP Solver

The IPS’s mathematical model could have been implemented with tech-
niques other than CP, including SAT or SMT solving [22], local search
techniques for test data generation [18], or mixed integer programming
(MIP) [13]. We briefly review the reasons why we discarded these other
techniques:3

(i) The selected technique had to be flexible enough to accommodate
the many alternatives in the IPS’s dynamic configuration. CP offers
a higher degree of flexibility to handle disjunctive constraint sys-
tems by allowing the use of backtracking, reification, or constructive
disjunction [25].

(ii) Time-constrained optimization was essential in our industrial context
to accommodate the Continuous Integration process. SAT and SMT
solving are very efficient in handling Boolean and theory-based satis-
fiability problems [22], but they are not tuned to solve optimization

3Note that no general claim is made, just specific claims to illuminate our choice of
CP in the case of validating the IPS.
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problems (i.e., to minimize a cost function in a given contract of
time). Even if extensions exist to handle optimization problems,
classical off-the-shelf SMT solvers do not provide implementations
of these extensions. On the contrary, CP integrates time-aware
optimization methods in discrete combinatorial problems.

(iii) Since the model is used to predict the IPS’s expected outputs, the
use of exact methods was mandatory. Despite the efficiency of
local search techniques for test data generation [18], the absence of
guarantee on the satisfiability of the constraints (e.g., no possible
detection of unsatisfiability or guarantee on the determination of
satisfiability for complex constraint sets) was sufficient to discard
these techniques.

(iv) The input formats of the constraint solver had to be easily tunable to
accommodate the high-level tuning of IPS parametrization. SAT and
SMT solvers adopt specific formats as inputs (e.g., SMTLIB formats),
while CP solvers are usually hosted by a programming language (e.g.,
Prolog, Java, or C++) that includes high-level programming features
such as predicate/method invocation, recursivity, and inheritance.

(v) The availability of global constraints to implement diversity in the
test sequences was a strong advantage, even if, to be honest, we
discovered it after our choice was made.

We found that SICStus 4.2.3 in combination with clpfd responded well
to our industrial requirements and we decided to use it as the back end
and Python 2.7 as the front end.

5.2 Overall Implementation

The complete system contains around 2000 lines of Prolog code, 300
lines of C code (an interface DLL between Python and SICStus), and,
finally, around 3000 lines of Python code. A schematic overview of the
implementation and how it is executed can be found in Figure 8.

The modeling part of the project began in early 2013, at the be-
ginning, just using the user interface of SICStus. In April 2013, the first
running model was available on a desktop for the generation of the IPS’s
test sequences, running over a single embedded board. In May 2013, the
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Figure 8: Integration between the test server and the IPS.

model was integrated into the source control repository and the first auto-
matic test was run in a full Continuous Integration environment. From
May 2013 to October 2013, the system was further extended to cover
testing over complete distributed systems (i.e., several embedded boards)
of the IPS. Today, the model is used in the Continuous Integration process
and solved daily. It generates test sequences for 11 different physically
embedded IPS boards. For testing in the fully distributed setting, we
currently run the model on a single physical setup but we run 10 different
configurations on this setup. To summarize, the number of measurable
activations of physical actuator outputs shows that around 20,000 distinct
test scenarios are executed in each individual Continuous Integration cycle.
This means that these test scenarios are executed at least once every 24
hours.

5.3 Model Execution

Test execution is typically triggered by a build server upon a successful
build of the IPS software. These steps are illustrated in Figure 8 and
explained as follows:

(i) Build. The software build is scheduled to run every night or a
developer can manually trigger a build.

(ii) Upgrade. All connected embedded controllers are upgraded with
the newly built software. Failure at this step aborts the complete
cycle.
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(iii) Configure. A configuration fetched from the source control reposi-
tory is loaded into the IPS. The configuration describes the intercon-
nections of the embedded boards and the properties of the specific
paint setup.

(iv) Query and solve the model. Data retrieved from the IPS to-
gether with a test objective is fed into the CP model. This means
reading the Min and Max values from each actuator output in
addition to the upper and lower legal limits for all the D+ and D−

parameters. This enables us to keep the generated test in sync with
changes in the newly built software, changes in the configuration,
and even changes in the physical lab equipment.

(v) Run the test. Finally, the actual test is executed by first applying
the configuration parameters generated by the model (C and L) to
the physical setup and then applying the generated test sequence (I).
The test is completed by comparing the times and physical outputs
of each actuator output with the model generated oracle, O, and
report the results back to the software developers.

5.4 Using the Flexibility of CP

As described in the previous sections, we designed the model to be flexible
enough and to be able to generate realistic test sequences. In particular,
introducing diversity by applying global constraints between the variables
has been a key factor in satisfying our industrial requirements. However,
the CP model can also handle specific parameter values, directly provided
by the validation engineers, who do not have a strong knowledge of CP.
This is simply implemented by guarding the posting of each constraint
with groundness conditions. For example, recall Section 4.4.3, where we
described how we introduce variations in C. We also described that in
some setups validation engineers require the use a very specific set of
configuration values. This can easily lead to unwanted errors. As an
example, suppose a validation engineer wants to use D+ = 0, D− = 0 for a
specific actuator output. However, the constraints for enforcing variation
require D+ 6= D−. Thanks to the Prolog commodity, our Python front
end can provide value to any variable in the model and prevent spurious
constraints that would slow down the solving process or prevent a solution.
This solution has also been shown to help validation engineers achieve
a better understanding of how the model works. Generally, validation
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engineers are told to assign values to any parameter in the model. The
model will assign any parameters the validation engineer does not.

6 Evaluation

This section compares our model with manually generated test sequences.
To perform a controlled experiment, a reference group (RG) was consti-
tuted, composed of five highly skilled development engineers, field engineers
with a deep domain knowledge of IPS and robotized painting. The same
task with the same test objectives was given to both the CP model and
the RG. Unfortunately, even for small test sequences, it was impossible
for the RG to generate test sequences that could be compared with the
results provided by the CP model, so we had to reduce the ambition of
this controlled experiment, as explained below.

6.1 Setup, Constraints, and Test Objectives

As explained in Section 4.3, the overlap scenario is an important test
objective to apply to the IPS. We also explained that an overlap scenario
can be caused by several different reasons. In our experiment, we identified
three different basic ways the overlap can be introduced. The first two are
by fixed and linear delay, respectively, in an actuator output, and the last
is when one actuator output influences another actuator output through
(1).

Our initial plan was to make a one-to-one comparison between how
the CP model generates a test sequence compared to how the RG does the
same task with exactly the same input constraints. However, it became
quickly apparant that it is impossible for a human to generate the same
test sequences as the CP model does within a reasonable amount of time.
None of the members in the RG were able to follow all the constraints
given. We even gave the RG a tool based on an MS Excel sheet with
which they could work by trial and error while watching the result on a
graph similar to that shown in Figure 2.

We therefore decided to give the RG lesser requirements with respect
to the constraints than those used in the CP model. The following
requirements and setup were common to both the RG- and the CP-
generated test sequences:
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• The basis system is a three-channel system based on the setup found
in Figure 1.

• C2 is influenced by C1 through (1).

• The minimum and maximum values for C1, C2, and C3 are, re-
spectively, zero and four.

• The timing separation between each input in the test sequence, ti,
should be at least one; MinBrushSep = 1.

• The timing separation between each actuator output, ti,j , should be
at least two; MinTrigSep = 2.

• The complete test sequence should be of size seven;
((B0, t0), . . . , (B6, t6)).

• There should be an overlap on C2 between B3 and B4, as shown
in Figure 3(b), and the size of the overlap should be at least one,
MinOverlapT ime = 1, as in (6).

Initially, we also had the following requirements for both the RG- and CP-
generated sequences, but we ended up setting the following constraints
as absolute to the CP model while merely encouraging the RG to follow
them:

• The test sequence should be as short as possible; minimize(t7).

• The whole range of each actuator output should be present in L;
that is, each row in L should contain zero and four.

• None of the entries in L should be identical; L(i) 6= L(j),∀i, j, i 6= j.

• All the entries in L should be used in I.

• The configuration parameters (C) should have diversity, as described
in Section 4.4.3.

With the constraints given, we asked the RG and the CP model to generate
three different test sequences with the following objectives:

(i) To generate an overlap whose source is due to a fixed delay in C2
and no use of PreT ime/PostT ime, which means that the following
parameters were given a fixed value: K2 = 0, P reT ime = 0 and
PostT ime = 0.
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(ii) To generate an overlap whose source is due to a linear delay in
C2 and no use of PreT ime/post, which means that the following
parameters were given a fixed value: K2 = 1, P reT ime = 0 and
PostT ime = 0.

(iii) To generate an overlap whose source is due to the use of PreT ime/
PostT ime, which means that the following parameters were given a
fixed value: D+

2 = 0 and D−2 = 0

6.2 Results

For reference, we added the solution provided by the CP model and one
typical solution provided by the RG. Figure 9 shows the solution for
test objective 1 (overlap caused by a fixed delay). Figure 10 shows the
solution for test objective 2 (overlap caused by linear delay). Finally,
Figure 11 shows the solution for test objective 3 (overlap caused by
PreT ime/PostT ime).

Table 1 summarizes the results given by the CP model with the
average of what the RG generated.

The conclusions we can draw from this experiment are as follows:

(i) None of the RG solutions were able to fulfill all the required con-
straints when given a limited amount of time to set up the test
sequence. Even when provided with an Excel sheet that allowed for
an approach based on trial and error.

(ii) The diversity of L in the manual solutions was acceptable. However,
it must be noted that since L is small (3x4 ) and the span of possible
values is small (Min =0, Max =4), it is not a difficult task to
manually generate L so that diversity is maintained.

(iii) The largest problem for the RG was to maintain the relevant con-
figurations of the two other actuator outputs (C1 and C3). The
validation engineers favored setting all the parameters of C1 and
C3 to zero to reduce the complexity of the problem.

(iv) None of the manually generated sequences obtained an optimal result
with respect to tN .
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Figure 9: Top: The solution generated by CM2 for test objective 1, overlap caused
by fixed delay in C2. Bottom: One of the solutions generated by the RG. As we can
see, the manual solution sets all parameters for C1 and C3 to zero. For both examples,
PreT ime = 0 and PostT ime = 0

.
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Figure 10: Top: The solution generated by CM2 for test objective 2, overlap caused
by linear delay in C2. Bottom: One of the solutions generated by the RG. As we
can see, the manual solution sets all the parameters for C1 and C3 to zero. For both
examples, PreT ime = 0 and PostT ime = 0
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Figure 11: Top: The solution generated by CM2 for test objective 3, overlap caused
by PreT ime/PostT ime. Bottom: One of the solutions generated by the RG. As we
can see, the manual solution sets all the parameters for C1, C2, and C3 to zero.
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Table 1: CP based versus manually generated test sequences.

Fixed delay Linear delay Pre/post

CP
Avg.
user

CP
Avg.
user

CP
Avg.
user

tN 11a 14.4 11a 15.2 10a 14.4

Solving time 45s 310s 21s 471s 11s 367s

L constraints okb 100% 60% 100% 80% 100% 80%

Avg. Euclidian dist. in L c 4.1 3.6 4.1 3.9 4.1 3.9

C constraints okd 100% 0% 0% 0% 0% 0%

a Proven optimal value.
b The number of the solutions able to fulfill the constraints given for
L as described in Section 6.

c How the entries in L are separated according to (8).
d The number of solutions able to fulfill the constraints given for C

as described in Section 6.

(v) All the RG solutions were able to use all the entries in L and achieved
diversity comparable to that of the CP-based solution. However, the
sizes of L and of the test sequence in our experiment are small and
not even close to the numbers used in, for example, Figure 5(b) or
the size of the problems used in daily operation at ABB.

7 Related Work

If we consider the test execution part of a Continuous Integration cycle,
various testing activities could, in principle, be included. For example,
automatic test case generation, test suite minimization, or prioritization [6,
4, 15, 2, 11] could be included to reduce the time needed to execute a test
suite without reducing the quality of the overall test process. Interestingly,
Hill, Schmidt, Porter, and Slaby [12] report on the inclusion of system
execution modeling tools to test distributed real-time systems as part
of Continuous Integration. However, to the best of our knowledge, very
few results evaluate the impact of including more testing activities in
Continuous Integration. Our work, incorporating systematic automated
test case generation methodology in Continuous Integration, is a first step

130



Paper 2 8. Lessons Learned and Further Work

toward more automation in the software validation of complex software
control systems.

7.1 CP and Validation Purposes

The use of CP for automatic test case generation has been around for a
long time (e.g., [5], [9], [16], [23]). Gotlieb et al. [10] developed a CP model
for automatic test case generation for C programs. This model captures
the operational semantics of a subset of C, including conditionals, loops,
pointers, and function calls, and performs test input generation by solving
the model. Similarly, Marre [16] developed GATeL, a constraint-based
testing tool able to generate test cases for the LUSTRE synchronous
languages. In both approaches, CP is used along with techniques to
fine-tune the search process in a flexible way. More recently, Di Alesio et
al. [5] adopted a similar approach to generate stress tests for real-time
applications. They constructed a complex constraint declarative model
implementing the behavior of a priority-based real-time operating system,
where the goal is to find worst case scenarios with respect to deadline
misses. Other recent work by Balck et al. [14] shares some interesting
commonalities with our CP model. The authors use a CP model to
generate replay scenarios for a public warning system service as part of
the Long Term Evolution (LTE) 4G standard.

The approach proposed in this paper differs in that none of these
constraint models are included in a Continuous Integration process and
none of the constraint-solving processes are launched at testing time. Such
integration requires that the constraint solving time be carefully controlled.

8 Lessons Learned and Further Work

This section concludes the paper by discussing some lessons learned at
ABB from our experience with introducing CP in ABB’s standardized
Continuous Integration. This section also outlines a couple of ideas for
further work.

8.1 CP for Validation Engineers

As previously stated, the validation of robotized painting involves a fair
amount of intensive manual work. Therefore, it is necessary to replace
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parts of this validation process with automation, which is perceived by
validation engineers as a means to strengthen the process. However, this
also comes with drawbacks. Two factors must be distinguished: (1) Au-
tomation through the Continuous Integration process, including
the automatic building of software, software upgrades, test execution, and
results reporting, and (2) test generation through the use of CP,
which permits validation engineers to focus on validating other parts of
the CIRs.

Point (1) does not have any drawbacks except for the effort required
to set up the Continuous Integration process. From an industrial per-
spective, point (2) is the most critical, especially because (a) validation
engineers are not yet sufficiently trained in CP to change the model with-
out help and (b) validation engineers are usually reluctant to trust any
tool that produces results which are very difficult to compute by hand
or with an easily understandable process. Another concern [1, 8] is that
many optimization problems require expert knowledge. To reduce the
risks, we decided to build a Python front end for our CP model to hide
some of the details from the validation engineers. We also organized basic
training in CP with simple and understandable examples to facilitate its
adoption. Of course, we do not claim that these actions are a recipe for
general CP adoption, but we observe that it worked well in the context of
ABB’s IPS validation.

8.2 Actual Defects Found with the CP Model

After the model was put into production at ABB, it immediately detected
two new unknown defects related to the IPS’s timing aspects. These
defects were, however, classified as non-critical, since they correspond
to very unlikely scenarios. Digging into the causes of these defects, we
saw that they had been present in the IPS for several years without any
significant consequences and that they had been spotted by the CP model
by enforcing diversity in the selection of test sequences. These defects were
corrected and the test sequences used for spotting them were introduced
into our non-regression test suite.

To validate the CP model, we also reintroduced five old, historical
defects into the source control repository. These defects were known by
the validation engineers to be extremely hard to find. After a round of
experiments, the CP model produced test sequences that spotted all five
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defects. This was considered strong justification for the continued use of
the CP model in production.

8.3 Return on Investment with the Use of CP

Computing the return on investment of the use of CP for ABB’s IPS
validation is not easy. One could possibly measure the number of defects
found with and without the CP model during the validation of a new IPS
release. It is also possible to compare the human effort required in both
cases. However, another important factor is the increased confidence of the
engineers in the validation process, a factor that is very difficult to measure.
After the introduction of the CP model in production, we observed much
higher confidence among the engineers in the testing framework, which
has increased their appetite to perform necessary code re-factoring. They
are more willing to make critical but necessary changes in the software
and they rely on the test framework to detect undesired side effects. If a
side effect is discovered, they can simply roll back the change.

In the long term, we expect the benefits of using CP to be recognized
as a way to increase the general quality of the testing process, since
necessary re-factoring will be performed before the technical depth grows
beyond control.

8.4 Further Work

Gaining a better understanding of the benefits of CP in IPS validation is
crucial in depicting our experience as a success story. For that, we have
to pursue our analysis of the experimental results obtained with different
search heuristics. We also have to multiply the industrial case studies
within ABB to ensure the CP model’s generality.

Introducing diversity in the selection of test sequences is important
in our application to generate appropriate tests. This can be achieved
by using more dedicated global constraints. By creating a global con-
straint that would balance the solutions over the brush table, we can
capture the needs of validation engineers. In our context, balancing would
mean enforcing the absence of systematic repetition and constraining the
number of different values taken on by the variables (in the spirit of the
global_cardinality constraint).

An extension of this work consists of scheduling the test case exe-
cution over the available time in a CI cycle. We feel that this scheduling
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problem requires more than a simple application of classical scheduling al-
gorithms and deserves a complete study and the creation of tuned solutions.
This is the more prospective extension of our work.
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Abstract:
When testing large-scale systems with hundreds of test cases in a continu-
ous integration environment, it is crucial to minimize the round-trip time,
that is, the time from when a source code change is committed until the
test results are reported back to the developer. To this end, scheduling as
many test case executions as possible in the minimum amount of time is
essential to increasing the effectiveness of continuous integration in the
software development process.

This paper introduces TC-Sched, a cost-effective method for test ex-
ecution scheduling on multiple machines with constraints on accessible
resources, such as measurement devices or network equipment. The
method uses as input a test suite, a set of execution units, and a set of
shared resources and produces an execution schedule. The schedule guar-
antees that each test will be executed once and minimizes the round-trip
time, that is, the time it takes to solve the schedule and execute it.

TC-Sched has undergone extensive experimental evaluation on both
randomly generated test suites and industry test suites. Our results provide
evidence that TC-Sched conducts efficient and effective test execution
scheduling and is suitable for deployment in a continuous integration
process. To the authors’ knowledge, this is the first time that a fully
automated solution to the test execution scheduling problem has been
successfully addressed.

1 Introduction

Continuous integration (CI) aims to uncover defects in the earlier stages
of software development by frequently building, integrating, and testing
software-intensive systems. The process may include running integra-
tion tests involving real system components. In the last decade, CI has
been recognized as an effective and efficient process to improve software
quality [9, 15], while keeping verification costs at an acceptable level [19].

As pointed out by Fowler [10], compared to more traditional testing
methods, running a test case in CI requires tight control over the round-
trip time, that is, the time from when a source code change is committed
until the success or failure of the build and test processes is reported back
to the developer. By keeping the round-trip time short, CI can serve as
an efficient and effective tool for software quality control, especially for
distributed development teams.
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Admittedly, the easiest way to minimize the round-trip time is
simply to execute as many tests as possible in the shortest amount of time,
that is, by running them in parallel on multiple machines. However, in a
scenario with hundreds of tests, targeting different machine architectures
and operating systems, and that relies on global resources such as costly
measurement instruments or network devices with limited availability,
limits are placed on the set of tests that can be executed in parallel. Thus,
computing a schedule for test case execution that minimizes the round-
trip time under these restrictions is a challenging optimization problem.
Since test cases have different execution times and use distinct global
resources that are locked during test case execution, finding an optimal
schedule is almost impossible by hand. The basic approach would require
an exhaustive examination of all the possible schedules to select an optimal
one, but this approach is, of course, infeasible, since the number of test
cases, machines, and resources would quickly exceed a few units.

Automatic test case execution scheduling is crucial in CI, but it has
also applications in the context of embedded systems design and valida-
tion. When multiple architectures and operating systems are considered,
and when the system is tested with real system components with limited
resources, the precise scheduling of the execution of test cases becomes
important for ensuring product quality. An increasing number of organi-
zations are facing this scheduling challenge due to platform multiplication
and the necessity of shortening the time to market of innovative products.

Formally, consider a set of test cases T = {t1, . . . , tn} with corre-
sponding execution durations, d1, . . . , dn. These durations can be slightly
over-estimated to account for small variations between the different ma-
chines available for test case execution. A set G of global resources
{g1, . . . , go}, and a set of machines M = {m1, . . . ,mm}. We use n to
denote the number of test cases and m to denote the number of machines
available to run test cases. We also have a function f : T −→M which
assigns to each test case one or several machines which can execute the test
case. We define the optimal test case scheduling (OTS) as the optimization
problem of finding an execution ordering and assignment of all test cases
to machines, such that each test case is executed once, no global resource
is used by two test cases at the same time, and the overall test execution
time, Tt, is minimized. We define Tt as the time used to solve the schedule
(Ts) plus the time used to execute the schedule (C∗), Tt = Ts + C∗

Such an assignment and ordering (i.e., a solution to the problem)
can be described either by a time- discretized table containing a line per
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Table 1: Test suite for example.

Test Duration Executable on Use of global resource

t1 2 m1,m2,m3 -

t2 4 m1,m2,m3 g1

t3 3 m1,m2,m3 g1

t4 4 m1,m2,m3 g1

t5 3 m1,m2,m3 -

t6 2 m1,m2,m3 -

t7 1 m1 -

t8 2 m2 -

t9 3 m3 -

t10 5 m1,m3 g2

machine or a starting time for each test case and its assignment to a given
machine.

Example

By referring to the test suite in Table 1, we present a small scheduling
example. Let T be the set {t1, . . . , t10}, G be the global resources {g1, g2},
and M be {m1,m2,m3}. The possible machines on which each test case
in T can run is given in Table 1. This table can be extracted from the
analysis of test scripts which usually specify the set of machines capable
of execution this test case, in addition to other information related to the
test case.

As stated in Table 1, by sharing the same resource g1, test cases
t2, t3, t4 cannot be executed at the same time, even if their execution
is scheduled on different machines. Furthermore, since t7 can only be
executed on m1, t8 on m2, t9 on m3, and t10 on m1 or m3, we have to
solve a complex scheduling problem. One possible optimal schedule in this
example is given in Figure 1, where the time needed to execute the test
campaign is C∗ = 11. For this small problem the solving time, Ts, can be
assumed to be very short, so the total execution time will be Tt ≈ C∗.

An objective of this paper is to introduce a method for solving this
problem efficiently where the efficiency is demonstrated by an extensive
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t

1 2 3 4 5 6 7 8 9 10 11 12

m1

m2

m3

t1 t7 t2(g1) t3(g1)

t4(g1) t5 t6 t8

t9 t10(g2)

C∗

Figure 1: An optimal solution to the scheduling problem given in Table 1. Test cases
in light gray indicate that they require exclusive access to a global resource.

experimental evaluation on real case studies extracted from CI-driven
processes.

1.1 Existing solutions and related work

To the best of our knowledge, the problem mentioned above has not
yet been systematically addressed and existing solutions include much
manual work. In industrial settings, validation engineers manually design
the scheduling of test case execution by allocating test case execution to
certain machines at given times or following a given order. In practice, they
manage the constraints as an aggregate and try to find the best compromise
in terms of the time needed to schedule precisely the execution of test cases
and the benfit of finding a better approximation of the minimum execution
time. Keeping this process manual in a CI environment is paradoxical,
since every activity should, in principle, be automated [15]. Furthermore,
this is a time-consuming and error-prone activity: It is not uncommon for
tests to fail during nightly builds because a critical resource is unavailable
due to parallel access attempts.

Finally, it is common that a varying number of machines are available
for running tests. This means that machines can be added or removed
from the machine pool on daily basis.

Nevertheless, naive automated solutions can be proposed to address
the test scheduling problem. For each test case to execute, a machine can
be selected at random or based on its current minimum timespan. We
are not aware of any tools implementing these methods in a CI process,
but we have compared the method proposed in this paper with these two
naive methods in our experimental evaluation.
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Scheduling problems have been studied in other contexts for decades,
and an extensive body of research exists. The scheduling domain is di-
vided into several areas ranging from CPU scheduling in operating systems
to scheduling of workforces in a construction project. The scheduling
problem described above, belongs to a scheduling category named resource-
constrained project scheduling (RCPS). Brucker and Knust [6] have for-
mulated RCPS as follows4. Given a time horizon [0, H], n operations, and
r renewable resources, let a constant amount of ck units of resource k be
available at any time t = 0, . . . , H. Let operation i be processed in di time
units. During this time period a constant amount of ri,k units of resource
k is occupied. Furthermore, consider that precedence constraints given by
a set A of relations i→ j, meaning that operation j cannot start before
operation i has completed.

Over the years, RCPS has been addressed by both the constraint
programming community (CP) and the operation research (OR) commu-
nity. Lombardi and Milano [12] point out that neither CP nor OR can
claim to be the best approach, they both perform equally well. However,
the clear trend in both CP and OR is to solve such problems with hybrid
approaches where techniques are integrated, like, for instance, the work
by Schutt el al [17]. RCPS is considered to be a generalization of machine
scheduling problems where job shop scheduling (JSS) is one of the best
known [11]. JSS is the special case of RCPS where each operation uses
exactly one resource.

1.2 Flexible Job Shop Scheduling

Flexible Job Shop Scheduling (FJSS) [5] is an generalization and extension
of the JSS. JSS is defined as a set J = {J1, . . . , Jn} of n jobs to be
scheduled. Each job Ji consists of a fixed sequence of operations Oi =
{Oi,1, . . . , Oi,hi} where the precedences are given by the order in the set.
Each operation Oi,k has to be processed on a predetermined machine
Mi,k ∈ M where the necessary processing time is given by the machine.
To extend the formalism from JSS to FJSS we say that each operation
Oi,k can be processed either on a subset Mi,k ⊆M (partial flexibility) or
on all machines (Mi,k =M, total flexibility). The FJSS is known to be
NP-hard [3].

4Adapted to the notation of this article.
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1.3 OTS vs FJSS

While OTS is closely related to FJSS, there are some important differences:

• In OTS, all machines are considered to be uniform. This is a
relaxation compared to FJSS, enabling specialized approaches.

• Each job in OTS consists of only one operation, while in FJSS
one job can contain several operations, where there are precedences
between the operations.

• For OTS, some operations may require exclusive access to a global
resource, preventing other operations from running at the same time.

1.4 Contributions of the paper

In this paper, we introduce TC-Sched, a cost-effective method for solving
the optimal test scheduling problem. Our method uses the Cumula-
tives [1, 4] global constraint and efficient search techniques from the
constraint programming domain. These ingredients are crucial to 1) auto-
matically filtering invalid test execution schedules, that is, schedules that
do not respect at least one of the constraints, and 2) searching among
possible valid schedules, those that minimize the global test execution time
(i.e., makespan). This paper contains an extensive experimental evaluation
conducted over both randomly generated test suites and actual test suites
used to test two industrial software systems, namely, a robotized painting
system and a video conferencing system. The first and most important
goal of our experimental evaluation is to demonstrate the scalability of
the proposed approach up to CI processes involving hundreds of test cases
and tens of machines, which corresponds to a realistic development envi-
ronment. A secondary objective of our evaluation is to demonstrate the
cost-effectiveness of integrating our approach within an actual CI process.
To the best of our knowledge, this is the first time the problem of test case
execution scheduling has been extended to a software testing problem and
a fully automated solution proposed to address it in the context of CI.

1.5 Paper Outline

The rest of the paper is organized as follows: Section 2 provides a for-
mal definition of the optimal test scheduling problem and reviews some
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background on the Cumulatives global constraint. Section 3 presents
our method for solving the optimal test scheduling problem. Section 4
describes our implementation, while Section 5 presents our experimental
evaluation. Finally, Section 6 and Section 7 conclude the paper with some
perspectives.

2 Notation and Background

This section starts by giving a formal definition of the OTS problem.
We will also present the Cumulatives global constraint, and how a test
case execution can be modeled as a scheduling problem. Finally, we will
describe how global resources can expressed as quasi-machines.

2.1 Optimal Test Case Execution Scheduling

Optimal test case scheduling (OTS) is an optimization problem
(T ,G,M, d, g, f), where T = {t1, . . . , tn} is a set of test cases along with
a function d : T −→ N giving each test case a duration di; a set of
global resources G = {g1, . . . , go} along with a function g : T −→ G that
describes which resources are used by each test case; and a set of machines
M = {m1, . . . ,mm} and a function f : T −→ M that assigns to each
test case, a set of machines on which it can be executed. The function
d is usually obtained by measuring the execution time of each test case
in previous test campaigns and by over-approximating each duration.
Interestingly, this function does not need to be computed by hand, since
its computation can be fully automated within the CI process.

The problem addressed in this paper aims to execute each test case
once, while minimizing the total execution time of the test cases. That is,
to find an assignment a : T −→M an execution order for each machine
to run its test cases.

In its most basic version, the OTS problem requires the following
constraints to be strictly enforced.

• Non-cumulative scheduling: Two test cases cannot be executed
at the same time on a single machine.

• Non-preemptive scheduling: The execution of a test case cannot
be temporarily interrupted for the running machine to execute
another test case instead.
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• Non-shared resources: When a test case uses a global resource,
no other test case using the same resource can be executed at the
same time.

• Machine-independent execution time: The execution time of a
test case is assumed to be independent of the machine on which it is
executed on. This is a reasonable assumption for test cases in which
the time is dominated by external physical factors such as a robot’s
motion, the opening of a valve, or sending an Ethernet frame. Such
test cases typically have execution times that are uncorrelated with
machine performance (e.g., CPU type, CPU frequency, operating
system). In any case, a sufficient over-approximation of the execution
time will satisfy the assumption.

There are cases where the OTS problem can be trivially solved.
When there is only a single machine available, executing all the test
cases in sequence, without regard for their execution order solves the
problem. Indeed, the global execution time remains unchanged, whatever
the execution order. Similarly, when there are no global resources and
when test cases can be executed on any available machine, then a simple
round-trip algorithm that consists in allocating the longest test cases first
to the available execution machine solves the OTS problem. Note that
these cases are trivially handled by our approach presented in this paper.

2.2 The Cumulatives Constraint

The Cumulatives constraint [4] is a powerful tool for modeling cumula-
tive scheduling of multiple operations on multiple machines, where each
operation can be set up to consume a given amount of a resources, and
each machine can be set up to provide a given amount of resources. Here,
Cumulatives([O1, . . . , On], [c1, . . . , cm)]) constrains n (abstract) opera-
tions on m (abstract) machines such that the total resource consumption
on each machine mj does not exceed the given threshold cj at any time
[8]. An operation Oi is typically represented by a tuple5 (Si, di, Ei, ri,Mi)
where Si (resp. Ei) is a variable that denotes the starting (resp. ending)
instant of the operation, di is a constant representing the total duration

5Throughout the paper, lower-case characters are used to represent constants and
upper-case characters are used to represent variables.
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of the operation, ri is a constant representing the amount of resource used
by the operation.

When used in the context of finite domain constraint solving [16],
the variables Si, Ei and Mi are integer variables, with values from bounded
domains. Typically, Si and Ei have values within esti . . . leti, where esti
denotes the operation’s earliest starting time and leti denotes its latest
ending time and leti ≥ esti + di. The variable Mi is bounded by the
number of machines available, [1,m]. However, by reducing the domain of
Mi it is possible to force a specific operation to be scheduled on a subset
of the available machines, or even to one specific machine.

It is worth noting that this formalization implicitly uses discrete time
instants. Indeed, since esti and leti are integers, a function associating
each time instant to the current executed operations can automatically
be constructed from this. Formally, if j represents an instant in time, we
have:

rji =

{
ri if Si ≤ j < Si + di

0 otherwise

The constraint Cumulatives([O1, . . . , On], [c1, . . . , cm]) holds if and only
if, for every operation Oi, Si+di = Ei and, for all instants j, rj1+ . . .+rjn ≤
cMi .

In fact, Cumulatives([O1, . . . , On], [c1, . . . , cm]) captures a disjunc-
tive relation between possible scenarios and applies deductive reasoning
to the possible values in the domains of its variables. This constraint
provides a cost-effective process for pruning the search space of some of
its impossible schedules. When combined with a labeling process, which
assigns values to the variables Si and Mi, it allows us to find feasible
schedules, that satisfy all the constraints.

2.3 Modeling Test Case Execution Scheduling

This section shows how the Cumulatives constraint can be used to model
a schedule. In this small example, we disregard the use of global resources,
and the constraints that some operations can only be executed on a subset
of the available machines, since that will be covered in Section 2.4.

By referring to the schedule in Figure 1, we have ten operations
O = {O1, . . . , O10} and three available machines. By encoding the data
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from Table 1, we get O1 = (S1, 2, E1, 1,M1), O2 = (S2, 4, E2, 1,M2),. . .,
O10 = (S10, 5, E10, 1,M10), c1 = 1, c2 = 1,c3 = 1. Note that each operation
has a resource consumption of one and all three machines have a resource
capacity of one. This implies that one machine can only execute one
operation at a time. Although the Cumulatives constraint can handle
all combinations of resource consumptions / resource bounds, we only
consider cases where each machine can execute one operation at a time in
this paper.

Calling Cumulatives([O1, O2, . . . , O10], [c1, c2, c3]) within a finite
domains constraint solver leads to an assignment of S1, E1,M1 , S2, E2,M2,
. . ., S10, E10,M10 such that the constraints are satisfied. A possible solution
is shown in Figure 1.

2.4 Introducing Global Resources

As explained above, global resources corresponding to physical equipment
such as valves or air sensors, measurement instruments, or network devices,
have limited and exclusive access. In the OTS formulation, two test cases
cannot access them at the same time, so that, this needs to be modeled as
additional constraints. Note that the use of global resources must not be
confused with the resource consumption or resource bounds of operations
and machines.

The naive approach to prevent two operations from being assigned
overlapping execution times, is to consider constraints over the start and
stop times of the operations. For instance, if O1 and O2 can’t be executed
at the same time since both require exclusive access to a global resource,
then the constraint E1 ≤ S2 ∨ E2 ≤ S1 can be added to the model.
However, it is possible to model the same in a more elegant way by using
the Cumulatives constraint again.

Referring to the example in Figure 1, there are ten operations to be
scheduled on three machines. There are also two global resources, g1 and
g2. The basic scheduling constraint is set up as explained in Section 2.3.
However, to model the global resources, we can treat each resource as
a new quasi-machine shown as mg1 corresponding to cg1 = 1 and mg2

corresponding to cg2 = 1. For each operation requiring a global resource,
we create a “mirrored” operation of the corresponding quasi-machine:
Og1 = {O′2, O′3, O′4} and Og2 = {O′10}. Finally, we can express the schedule
in one single constraint: Cumulatives(O ∪Og1 ∪Og2 , [c1, c2, c3, cg1 , cg2 ]).
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Figure 2: Modelling global resources by creating quasi-machines and using the Cumu-
latives constraint

For each operation in Og1 and Og2 we also reuse the same domain variables
for start-time, duration and end-time such that the operation O4 will
be forced to have the same start-time / end-time as O′4, while they are
scheduled on two different machines m2 and mg1 . What this simple
example serves to illustrate, is that we can easily model global constraints
by creating quasi-machines for each global resource.

3 The TC-Sched method

This section describes our method, coined TC-Sched, for solving the OTS
problem. It is a time-constrained cumulative scheduling constraint-based
technique because 1) it allows us to keep fine-grained control on the time
allocated to the constraint solving process (i.e., time-constrained), 2) it
encodes exclusive resource use with constraints (i.e., constraint-based), and
3) it solves the problem by using the Cumulatives constraint. The TC-
Sched method is composed of three elements, namely, the constraint model
described in Section 3.1, the search procedure described in Section 3.2,
and the time-constrained minimization process described in Section 3.3.

3.1 Constraint Model

In our framework, we encode the OTS problem with a single
Cumulatives(O, C) constraint, using the scheme introduced in Sec-
tion 2.4, and a search procedure able to find an optimal schedule among
many feasible schedules.
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Each test case ti is encoded by an operation (Si, di, Ei, 1,Mi) where
the variables Si and Ei are the starting and ending times, respectively,
of the test case execution; the constant di is the duration of the test
case; and the variable Mi represents the actual machine that will used to
schedule the execution of test cases. Suppose there are three machines
available for test case execution, numbered 1, 2, and 3; then, to say that
ti can be executed on any machine, we just add the domain constraint
Mi ∈ {1, 2, 3}, whereas to say that ti can only be executed on machine 1,
we replace Mi by {1}.

Using the approach of treating global resources as quasi-machines,
each global resource gj used by a test case ti is encoded by an additional
operation (Si, di, Ei, 1, gj).

Finally, O is simply the array of all such operations, and C is an
array of 1s of length equal to the number of machines plus the number of
global resources.

To make the constraint model complete, we introduce the variable
MakeSpan representing the completion time of the entire schedule and
seek to minimize it. Thus, MakeSpan is lower bounded by the ending
time of each individual test case. Finally, we state a search procedure,
called the labeling process. By selecting a variable to enumerate first and
a value to assign to it, the labeling process explores the search space of
possible solutions to find one that optimizes a cost function. The generic
model is captured by (1):

Cumulatives(O, C)∧
∀1 ≤ i ≤ n : Mi ∈ f(ti)∧
∀1 ≤ i ≤ n : Ei ≤MakeSpan∧
Label(Minimize(MakeSpan), [S1,M1, . . . , Sn,Mn])

(1)

Note that the labeling process considers both the starting times and the
machine assignment of test cases to machines, whereas the ending times
depend functionally on the starting times. Thus, a solution of the OTS
problem can be obtained by searching among these variable assignments.
Note also that the selection of the variable to enumerate first and the
value to select first can be tuned by using different search strategies. The
next subsection presents the the strategy we have found to be the best.

The optimal schedule shown in Figure 1 results from solving the
constraint model instance (2), where the three machines and the two
global resources map to 1, 2, 3, 4, 5, respectively.
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Cumulatives( [(S1, 2, E1, 1,M1)

, (S2, 4, E2, 1,M2), (S2, 4, E2, 1, 4)

, (S3, 3, E3, 1,M3), (S3, 3, E3, 1, 4)

, (S4, 4, E4, 1,M4), (S4, 4, E4, 1, 4)

, (S5, 3, E5, 1,M5)

, (S6, 2, E6, 1,M6)

, (S7, 1, E7, 1, 1)

, (S8, 2, E8, 1, 2)

, (S9, 3, E9, 1, 3)

, (S10, 5, E10, 1,M10), (S10, 5, E10, 1, 5)

], [1, 1, 1, 1, 1])∧
M1 ∈ 1 . . . 3 ∧ · · · ∧M6 ∈ 1 . . . 3 ∧M10 ∈ {1, 3}∧
E1 ≤MakeSpan ∧ · · · ∧ E10 ≤MakeSpan∧
Label(Minimize(MakeSpan), [S1,M1, . . . , Sn,Mn])

(2)

By solving this constraint model with a finite domain constraint solver
(taking no time for this example on a standard machine), we obtain the
following optimal solution:

S1 = 0, S2 = 4, S3 = 8, S4 = 0, S5 = 4, S6 = 7,

S7 = 2, S8 = 9, S9 = 0, S10 = 3,

M1 = 1,M2 = 1,M3 = 1,M4 = 2,M5 = 2,M6 = 2,

M7 = 1,M8 = 2,M9 = 3,M10 = 3,MakeSpan = 11

3.2 Search Procedure

The search procedure attempts to assign values to variables such that all the
constraints are satisfied and the cost function is minimized. Many different
strategies can be used to explore the search space but it is well known
that programming the search strategy to depend on the characteristics of
the scheduling problem to be solved, is the most effective approach [18].

Starting from the idea that allocating the most demanding test cases
first, that is, first pick the test cases requiring the highest number of global
resources, breaking ties by picking the test case with the longest duration,
we encoded our own search strategy, called test case duration splitting.
The strategy is based on the dichotomic division of the search space and
allows the process to be backtracked at any step if an inconsistency is
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detected. At each individual step, test case duration splitting works as
follows:

(i) Select one test case ti using the above selection rule.

(ii) Compute esti + di, where earliest starting time of ti, denoted Si,
and its duration, di. Add the new constraint Si < esti + di to the
constraint model. If an inconsistency is detected, then backtrack to
this step and add instead Si ≥ esti + di to the constraint model.

(iii) Assign Si to the lowest possible value of its current domain, that
is, Si = esti, and check whether the rest of the constraints are still
satisfiable. If an inconsistency is detected, then backtrack to the
initial choice and try esti + 1, esti + 2 and so on, until esti + di − 1.

(iv) If the constraints are satisfiable with one of these assignments, then
also assign Mi to the first machine on which ti can be run, where
Mi > Mi−1. If this fails, try Mi ≤ Mi−1. If this assignment does
not violate any constraints, then move on to the next test case by
going back to step 1.

The action done in step 4 has shown to be particularly effective in a
CI context. By preferring a different machine from the one that the
previous test case was assigned to, we achieve that the first solution found,
before using branch and bound for minimization of MakeSpan, is a good
compromise between solving time of the schedule, and execution time of
the schedule which is one of the key factors in CI.

By also keeping the option to backtrack at any step, the search
strategy presented above maintains completeness. This means that, in
principle, the overall search space can be explored even if, ideally, only
a small fraction would have to explored to find an optimal schedule. A
formal proof of this statement is outside the scope of this paper, but a
sketch can be obtained by observing the following:

(i) By using test-case duration splitting, all the test cases will be assigned
a starting time Si and a machine Mi.

(ii) By successively considering Si < esti+di, Si ≥ esti+di and Si = esti,
Si = esti + 1, and so on, all the possible assignments will eventually
be considered.
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3.3 Time-constrained Minimization

This process is the third necessary ingredient of the TC-Sched method. It is
based on a classical branch-and-bound procedure [16], which consists in, in
our case, estimating a candidate minimum value Ĉ of MakeSpan and, each
time a branch in the search tree is considered (e.g., Si = esti + 1), pruning
the search tree by using the constraint MakeSpan < Ĉ to search among
the remaining candidate solutions. Subtrees of the search space where
MakeSpan ≥ Ĉ are irrelevant to finding a better candidate minimum
and can be eliminated without further examination. This process proved
extremely powerful at finding optimal schedules to solve the OTS problem,
as detailed in the experimental section. However, when the number of
test cases grows to be several hundred, finding an optimal schedule may
become an intractable problem6 and actually, approximating the global
minimum (i.e., a quasi-optimum) is acceptable in practice. In the TC-
Sched method, we considered a time-constrained version of this process
to be more appropriate. The principle of this version is to allocate a
contract of time (ranging from a few milliseconds to a couple of minutes)
to the minimization process to find a quasi-optimum. Since the branch-
and-bound procedure maintains a current candidate minimum during the
search process, it can return this candidate upon interruption of the
process. An important question, however, is the selection of the most
appropriate contract of time to be allocated to the minimization process.
This question is addressed specifically in the experimental evaluation.

4 Implementation and Exploitation

This section details our implementation of the TC-Sched method. It
also discusses the challenges of inserting the TC-Sched method into a CI
environment.

4.1 Implementation

We implemented the TC-Sched method in SICStus Prolog [7], a constraint
logic programming environment. An implementation of the Cumulatives
constraint is provided in its clpfd library [8], which also embeds an
efficient constraint solver over finite domains. The clpfd library provides

6The general cumulative scheduling problem is known to be NP-hard [2].
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an implementation of the time-constraint branch-and-bound procedure.
Using this library, we designed a generic and parametrizable constraint
model for the TC-Sched method. The model is generic because it takes
as input an OTS problem specified in a generic format and returns an
optimal or quasi-optimal schedule. The clpfd API also allowed us to
express our own search strategy. The setup of this strategy, as explained
in Section 3.2, results from a long period of trial and error.

4.2 Insertion of TC-Sched into a Continuous Integration
environment

An overview of the TC-Sched method inserted within a CI environment is
shown in Figure 3. Since TC-Sched is designed to run as part of the CI
cycle, we now introduce some important suggestions to the developer of
the testing infrastructure:

• First, given that first-hand information on the execution time of
each test case is crucial to the TC-Sched method, the infrastructure
has to automatically monitor and store historical data about test
case execution. For each test campaign run in a CI cycle, we suggest
measuring the actual execution time of each test case and reusing
this information to set up the OTS problem to be solved in the next
cycle. Using over-estimation we can easily compute a schedule that
will account for differences in machines used for test case execution.
We do not claim that such estimation can be done for all types of
test, because for many test cases the duration is highly dependent
on the speed of the machines they are executed on. However, there
exist large groups of test cases where the duration can either be
calculated[14] ahead of testing or measured.

• Second, given that machines are constantly added or removed from
the pool of available machines, it is important to design a constraint
model that is highly configurable at testing time. We have seen
examples where developers have embedded systems as part of their
development environment in the office. During the day, the embed-
ded system is reserved for the developer. However, during the night
or when the developer is not using the embedded system, the embed-
ded system can be included as part of the CI testing infrastructure.
This means that, in practice, the constraint model has to be tuned
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to handle specific execution machines and must be solved at each CI
cycle. This also entails precisely controlling the solving time with
respect to the test execution time to preserve the advantages of this
approach.

• Finally, as shown in Figure 4, by knowing the calculated schedule
from the previous CI (CIn−1) cycle, the constraint model takes into
account earliest start-time for each machine in the next CI cycle
(CIn). This will help generating a more efficient schedule compared
to setting equal earliest starting time for all machines.

TC-Sched
Test case
execution

Repository

m1

mm

Figure 3: Integration of TC-Sched into a CI environment. The test case schedule
solved by TC-Sched is transmitted for execution to the different machines in the machine
pool, m1, . . . ,mm. The results including actual test case durations are then feed back
into the repository.

A complete test campaign in a CI cycle is typically initiated upon a
successful build of the software being tested. The next step is to query the
the machine pool to obtain a list of available machines. After all available
machines are updated with the newly built software, our TC-Sched model
takes as input data from the test cases of the campaign and historical data
about execution times, from the storage repository. After TC-Sched has
calculated an optimal (or quasi-optimal) schedule, the result is handed
over to a dedicated dispatch server that is responsible for executing each
test according to the calculated schedule. Finally, after the test execution
process is finished, the repository is updated with the current test case
execution times and the overall result of the test campaign is reported
back to the CI environment. Of course, minimizing the round-trip time
entails prioritizing the notification of the developers in case the software
system fails.
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t

1 2 3 4 5 6 7 8 9

m1

m2

t1 t3 t2

t2 t3 t1

CIn−1 CIn

Figure 4: One CI cycle continuing the previous. Earliest starting time of each machine
is computed from the latest end time of the previous CI cycle.

5 Experimental evaluation

This section presents our findings from experimentally evaluating TC-
Sched. To this end, we address the following three research questions:

• RQ1: How does the first solution provided by TC-Sched compare
with simpler scheduling methods in terms of schedule execution
time?

• RQ2: For TC-Sched, will an increased investment in the solving
time reduce the overall time of a CI cycle? This question is about
finding the most appropriate trade-off between the solving time and
the execution time of the test campaign.

• RQ3: Can TC-Sched scale up to industrial OTS problems?

All experiments reported on in this paper were performed on a 2.4 GHz
Intel Core i7 processor, running Windows 7.

5.1 Experimental Artifacts

To answer RQ1, we implemented two simple scheduling methods, referred
to as the greedy method and the random method.

The random method works as follows: It first picks a test case
at random and then picks a machine at random such that no resource
constraints are violated. Finally, the test case is assigned the lowest
possible start time on the selected machine.
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The greedy method is more advanced. We start by assigning to a
machine the test case with the highest resource demand and continue to
assign test cases with decreasing resource demand. Finally, test cases with-
out any resource demands are assigned to machines. For each assignment,
the machine that can provide the earliest starting time is selected. Note
that none of the two methods employ backtracking to improve upon the
initial solution.

The reason why we have chosen to compare with these two methods
is twofold: 1) As explained in Section 1.1, we are not aware of any
previously published work related to test case execution scheduling, which
means that there is no baseline to compare against ; 2) From cooperation
with our industrial partners, we know that this is, in the best case, the
level currently used in industry (i.e., non-optimal schedules computed
manually).

To answer both RQ2 and RQ3, we have considered randomly gener-
ated benchmarks and industrial case studies.

Although there exist several excellent benchmark test suites for both
JSS and FJSS like [20] and [3], they cannot be used as a comparison
baseline. In fact, the OTS problem has not only theoretical differences
with these problems as pointed out in Section 1.3, but it also has a different
encoding format, meaning that there is no trivial translation between FJSS
to OTS and conversely. To tame this difficulty, we developed a benchmark
library containing 840 randomly generated OTS problems. The library is
structured by the data collected from three different real-world test suites,
provided by our industrial partners: a test suite for video conferencing
systems (VCS) [13], a test suite for integrated painting systems (IPS) [14],
and a test suite for a mobile application called TV-everywhere.

The VCS test suite contained 132 test cases and 74 machines were
used to execute them. The duration of the test cases varied from 13 seconds
(s) to 4 hours, where the vast majority of the tests had a duration between
100 s and 800 s.

The IPS test suite contained 33 test cases, with durations ranging
from 1 s to 780 s, with 16 distinct execution units. There were two global
resources for this test suite, namely, an airflow meter and a simulator for
an optical encoder.

TV-everywhere is a mobile application that allows users to watch TV
on tablets, smart phones, and laptops. Its test suite only contained manual
test cases. However, it serves as a useful example of a test suite with
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Table 2: Randomly generated test suites.

# of tests

20 30 40 50 100 500

#
m

ac
h
in

es

100 - - - - - TS11

50 - - - - TS8 TS12

20 - TS2 TS4 TS6 TS9 TS13

10 TS1 TS3 TS5 TS7 TS10 TS14

a large number of constraints limiting the number of possible execution
units for each test case.

Based on data gleaned from the above industry test suites, we
generated 14 test suites, denoted TS1-TS14, by varying the number of
test cases, |T |, and the number of execution units, |M |. Table 2 gives
an overview of the generated test suites. For each test suite, we also
varied the number of global resources, |R| = {3, 5, 10}. Thus, for test suite
TSx, we may write TSxR3, TSxR5, or TSxR10 to indicate the number of
resources.

Then, for each of the 14 · 3 variants, we generate 20 test suites at
random. That is, the duration of the test cases, their use of resources, and
available execution units were all selected at random. Therefor, in total,
we generated 14 · 3 · 20 = 840 different test suites. More specifically, based
on our findings from the three industrial test suites, the following rules
were used to generate the random test suites:

• Duration: The duration of each test case was chosen randomly
between 1 s and 800 s.

• Resources: Each test case had a 30 % chance of using a global
resource. The number of resources was chosen randomly between 1
and |R|.

• Execution units: A total of 80 % of the tests were considered
to be executable on all machines, while the remaining 20 % were
executable on a smaller subset of machines. For these tests, the
number of machines on which each test case could be executed was
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selected randomly between 1 % and 40 % of the number of available
machines. This means that a test case was executable either on all
machines (part of the 80 % group) or only on at most 40 % of the
machines.

Many of the generated test suites had long durations. In our experience,
this reflects quite well the situation faced by many companies, whose tests
are of a similar nature.

5.2 RQ1: How does TC-Sched compare with simpler
scheduling approaches?

To compare our TC-Sched method with the greedy and random methods,
we record the first solution provided by TC-Sched. We name this solution
C∗f . The last solution found by TC-Sched, named C∗l is either a proved
optimal solution, or the best solution found after optimizing for 5 minutes.
For each of the 840 test suites, we compute the differences between the
random and greedy , C∗f and greedy and C∗l and greedy where greedy is the
baseline of 100 %. The values are summarized in Figure 5 except for the
values of random, which turn out to be 30 %− 60 % higher than greedy .

From this experiment, we find that for all test suites except for TS1,
C∗f is better then greedy . We also see that for large test suites (TS11-TS14)
the difference between C∗f and C∗l is negligible. This means that there is
almost no benefit obtained from running the solver for a longer time, once
an initial solution has been found.

5.3 RQ2: Will an increased investment in solving time
reduce the total execution time?

This RQ aims to find an appropriate trade-off between the time spent
solving the constraint model, Ts, and the time spent executing the schedule,
C∗. As mentioned in Section 1, the round-trip time is a critical factor
in CI and it has to be kept as short as possible. The crucial question
addressed here is to find the time limit which can be used as a time-out
for the constraint solver in order to generate a schedule which is (quasi-)
optimal with respect to total execution time, Tt. It means that there exist
schedules where it is beneficial to terminate the solving process before
finding of a global optimal schedule. By compromising the finding of a
global optimum, one minimizes the overall round-trip time.
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As mentioned above, our TC-Sched method can be given a contract
of time to find a quasi-optimal solution when minimizing the time taken
by the schedule. More precisely, four possible outcomes can be obtained
with this time-constrained process.

• No solution with proof: The OTS problem has no solution, be-
cause the interaction between the constraints and TC-Sched actually
demonstrates that the OTS problem is unsatisfiable.

• No solution without proof: TC-Sched was not able to find a so-
lution within the given contract of time. This means that there could
be a solution, but the time allocated to the search was insufficient
to draw any conclusions.

• Quasi-optimal solution: At the end of the time contract, a solu-
tion is returned, meaning that TC-Sched calculated an estimate for
the optimum but was interrupted while trying to prove the solution’s
optimality.

• Optimal solution: Before the end of the time contract, TC-Sched
returns an optimal solution. This means that TC-Sched has found a
guaranteed global optimum, assuming its search heuristic is complete.

Each solution i generated by TC-Sched can be represented with a tuple
(C∗i , Ts,i) where C∗i is the makespan of solution i and Ts,i is the time the
solver spent getting to solution i. The goal of RQ2 is to find the value
of Ts,i that minimizes (C∗i + Ts,i),∀i and use this value as the contract of
time.

To answer RQ2, we executed TC-Sched on all 840 test suites, with
a time contract of 5 minutes. During this process, we recorded all interme-
diate results from the start of the search to the end to be able to calculate
the optimal value of Ts for each test suite.

In Figure 6 we have shown the distribution in solving time for the
first solution found by TC-Sched, the last solution and also how the optimal
value of Ts is distributed. For the group of 600 test suites containing up
to 100 test cases (TS1-TS10), the results show that an optimal solution
with respect to the total execution time, Tt is found in Ts < 5 s for 95.5 %
of the test suites. If we extend the search time to Ts < 10 s, the number
grows to 97.1 % of the test suites. For this group, the worst case optimal
solving time was Ts = 162.4 s. It is also worth mentioning that the worst
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case for the first solution provided by TC-Sched is less than 0.5 s, which
means that a solution is always found in less then 0.5 s.

For the group of 240 test suites containing 500 test cases (TS11-
TS14), the results show that an optimal solution with respect to the total
execution time, Tt is found in Ts < 180 s for 78.7 % of the test suites. For
Ts < 240 s 96.6 % of the test suites, an optimal Tt is found.

5.4 RQ3: Can TC-Sched scale up to solve industrial OTS
problems?

To answer RQ3, we considered two industrial OTS contexts: IPS, a test
suite for testing a distributed paint control system for complex industrial
robots, developed at ABB Robotics, Norway, and VCS, a test suite for
commercial video conferencing systems, developed by CISCO Systems,
Norway. Both test suites were mentioned in Section 5.1, and both case
studies were developed in a CI environment.

When applying TC-Sched to the IPS test suite, we found the first
quasi-optimal solution, C∗ = 1079 s at Ts = 20 ms. During the next
900 ms, TC-Sched found an additional 111 quasi-optimal solutions before
a guaranteed optimal solution, C∗ = 780 s, was found at Ts = 930 ms. So,
to integrate the IPS test suite into a CI cycle, the best compromise was
obtained when C∗ = 780 s, since Ts was negligible in this case.

For the VCS test suite, an initial quasi-optimal solution, C∗ =
25773 s was found at Ts = 534 ms, while another 63 solutions were found
during the next 33 s. A guaranteed optimal solution was found at Ts =
33.2 s, where C∗ = 14637 s. As for the IPS test suite, the best compromise
was obtained when C∗ was minimized, yielding Tt = 33.2 + 14637 s.

In summary, TC-Sched can easily be applied to the two industrial
test suites and in both cases the best compromise is achieved when C∗ is
minimized.

5.5 Threats to validity

Despite the extensive amount of experiments performed to evaluate TC-
Sched, several threats to validity exist.

To answer RQ1 and RQ2, we built a random generator for OTS
problems. The degree to which this generator is representative of real-world
test suites can be questioned, especially when it comes to interpreting its
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results. To mitigate such concerns, we fed the generator with meta-data
from the three industrial test suites introduced in Section 5.1. Even
though some of the parameters for the generated test suites were randomly
selected, the size of the test suites, the number of execution units, the
density of various data, and the use of global resources corresponded
exactly to the industrial test suites.

As mentioned earlier, the current practice in industry is to manually
craft the test case execution schedule. We note that the complexity of
test schedules grows with the number of test cases, making it difficult
to handcraft such schedules. To reduce the complexity of the problem,
validation engineers tend to bundle several test cases into fewer but long-
running tests. In our experimental evaluation, we decided to focus on
test cases with random durations. However, further work is needed to
determine the correlation between the duration of each test case execution
and the solving time allocated to TC-Sched. If the complexity of manual
test case scheduling can be offloaded to a fully automated deployment
of TC-Sched, then we believe that this will lead developers to produce
many more test cases of short duration. With many short-lived test cases
that can be individually scheduled, we may be able to produce even more
efficient schedules.

To answer RQ1, we compared TC-Sched with our own implemen-
tations of two simple methods, namely, greedy and random. This is an
internal threat, since we did not attempt to optimize these methods, which
could prove to be more efficient in some situations. Furthermore, it would
have been preferable to compare our TC-Sched with other implementations
but, unfortunately, we were unable to find any scheduling tools with the
necessary capabilities to perform automated test case scheduling with
multiple machines and resources.

6 Further work

As mentioned in Section 1.1, the automatic dynamic scheduling of test
case execution as part of a CI environment is a new trend. However,
many extensions can be foreseen.

Priorities. Adding execution priority to the test cases is an interesting
feature that could be handled in TC-Sched in the future. In fact,
prioritizing the execution of the most interesting test cases during the next
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CI cycle would permit the validation engineers to further minimize the
round-trip time. These priorities could be defined using fault detection
capabilities, the execution time during a current CI cycle, and so on. Our
TC-Sched method is currently indifferent with respect to these elements
and we feel that some optimization opportunities may be found if these
objectives are taken into account.

Sharable resources. With TC-Sched, we consider global resources
in a simple way: Each resource is non-sharable, unique, and counted
as one in the cumulative formalization of the OTS problem. This
is a simplification since current industrial practices include pools of
different resources. As an example, consider an infrastructure with
two external instruments, where one of them is used by a running test
case and another test case requires these two instruments to be used
at the same time. An interesting extension of TC-Sched is, first, to
consider non-unitary resources and to find schedules that keep the sum
of resources under a given threshold. Thanks to the Cumulatives
constraint, this is an easy extension of TC-Sched. Second, we could
consider sharable resources, meaning that a global resource could be
shared among two, three, or more test cases. This would require many
modifications in the TC-Sched method, with the introduction of complex
inequality constraints between test case execution times. This exten-
sion would also open the door for scheduling more complex test campaigns.

Setup time. When a machine switches from executing a test case in
one group of test cases to a test case belonging to another group, then a
setup time is usually necessary to reconfigure the machine and to load new
configuration files. This setup cost is currently ignored in TC-Sched. An
extension with setup time of the underlying constraint model of TC-Sched,
would allow us to carry out more fine-grained test execution scheduling.

Other solving methods. As previously mentioned, scheduling has been
addressed by the research community for a long time. There exist several
other promising techniques as alternatives to use of CP. Comparing our
current approach against techniques like Mixed-Integer Linear Program,
genetic and tabu search algorithms is an interesting topic for further work.

166



Paper 3 7. Conclusion

7 Conclusion

This paper introduced TC-Sched, a Constraint Programming method to
solve the optimal test suite scheduling (OTS) problem, where test cases can
be executed on multiple execution machines and use global resources. The
TC-Sched method is driven by use of a constraint called Cumulatives
and a time-aware minimization process, and it is based on our design
of a dedicated search strategy, called test case duration splitting. Our
TC-Sched method is examined in the context of integration within a CI
environment. According to our knowledge, this is the first time that the
OTS problem has been rigorously formalized and a (time-aware) constraint-
based method proposed to solve it. An experimental evaluation performed
over 840 generated test suites revealed that TC-Sched outperforms simple
automated test scheduling methods with respect to total execution time
when the number of test cases grows up to hundreds. By considering
the trade-off between the solving time and the total execution time,
the evaluation also permits us to find the best compromise to allocate
time-contracts to the solving process. Finally, by using TC-Sched with
two industrial test suites, we demonstrated that finding the guaranteed
optimal test execution time is not outside the scope of TC-Sched and thus
allocating a few seconds to the solving process during each CI cycle is the
best compromise. Further work on TC-Sched includes the implementation
of test case priority, consideration of non-unitary sharable global resources,
and integration of setup times to reconfigure the machines from one setup
to another.
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