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ABSTRACT
We present a GPU based implementation for tissue-scale 3D sim-
ulations of the human cardiac ventricle using a physiologically
realistic cell model. Computational challenges in such simulations
arise from two factors, the first of which is the sheer amount of
computation when simulating a large number of cardiac cells in a
detailed model containing 104 calcium release units, 106 stochasti-
cally changing ryanodine receptors and 1.5 × 105 L-type calcium
channels per cell.

Additional challenges arise from the fact that the computational
tasks have various levels of arithmetic intensity and control com-
plexity, which require careful adaptation of the simulation code
to the target device. By exploiting the strengths of the GPU, we
obtain a performance that is far superior to that of the CPU, and
also significantly higher than that of other state of the art manycore
devices, thus paving the way for detailed whole-heart simulations
in future generations of leadership class supercomputers.
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1 INTRODUCTION
A realistic simulation of the human heart tissue requires the pre-
cise replication of all the intracellular and intercellular processes
including the electrophysiology of the heart. Modeling a cardiac
cell is a challenging task because of its complex interior structure.
However, the understanding of the cardiac cell processes and their
properties has increased significantly in the last decades. Models
of cardiac cells of different species at different levels of detail have
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been developed in order to understand the cause of various heart
diseases.

Due to the computational demands of realistic cell models, it
is challenging to perform tissue scale cardiac simulations at this
level of detail. A human heart has around 2× 109 cells [1]. Each cell
has about 106 ryanodine receptors (RyR) and 105 L-type calcium
channels that are distributed among 104 calcium release units. New
realistic simulations with detailed cell models of calcium handling
at the tissue or organ level are now becoming computationally
feasible due to the increased power of modern supercomputers.

Due to their massive parallelism, tissue-level simulations can
take advantage of hardware accelerators. Motivated by the compu-
tational power of the GPU, we enable massively parallel simulations
of calcium circulation at the dyad-level and implement the 3D Hu-
man Tissue-Scale model on heterogeneous clusters.

2 PHYSIOLOGICAL BACKGROUND
At the tissue-scale, electrical activity is modeled as a reaction-
diffusion equation called the monodomain model. It is a simplifica-
tion of a more accurate binomial modeling under the assumption
that conductivity in extracellular space is proportional to conduc-
tivity in the intracellular space. It is governed by the monodomain
equation (1):

∂Vm
∂t
=
−Iion
Cm

+ Dx
∂2Vm
∂x2

+ Dy
∂2Vm
∂y2

+ Dz
∂2Vm
∂z2
. (1)

Here, Vm is the membrane potential and Iion is the algebraic sum
of all the currents provided by the underlying multiscale cell model
of calcium handling. Cm = 1µFcm−2 is the membrane capacitance
of the cell. Dx = Dy = Dz = 0.2mm2/ms are the voltage diffusion
coefficients in x , y and z-dimensions respectively. The solution
domain is modeled as a 3D uniform grid of cardiac cells.

To solve Equation (1) we use an operator-splitting approach [17].
The equation is split into two parts: the diffusion part, which is
solved using the finite difference method and the Iion part which
is computed by solving the cell model.

We use the stochastic multiscale calcium cycling model [5] that
replicates calcium release processes at the dyadic and the whole-
cell level. Moreover, we combine it with the O’Hara-Rudy (ORd)
model [16] to reproduce the cardiac ventricular action potential
of a healthy human heart. The multiscale cell model is shown in
Figure 1.

In the model a cell consists of 10000 calcium release units or
dyads arranged as a 100 × 10 × 10 grid. Calcium release units are
coupled by diffusion. Each dyad contains five calcium distribution
compartments: myoplasm, sub-membrane space, dyadic space, net-
work sarcoplasmic reticulum and junctional sarcoplasmic reticulum
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Figure 1: The multiscale myocyte model from [5]. Calcium
release occurs in the dyadic space, which contains RyRs and
L-type voltage gated calcium channels. Each RyR can be in
one of four states at any given time.

(JSR). Calcium release occurs in the dyadic space, which consists of
15 L-type calcium channels (LCCs) and 100 RyRs.

Each RyR can be in one of four states labeled C1, C2, C3, and O1.
The channel is open and calcium is released from it during the state
O1. The probability of the transition from one state to another is
related to the local calcium concentration. Thus, stochastic methods
are needed to represent the state of calcium channels numerically.

Since L-type calcium channels and RyRs are handled similarly,
we focus on the simulation of RyR state transitions. In [6] it was
shown that an efficient way of obtaining the number of RyRs that
changed state in the current time step is to take two samples from
binomial distributions for each of the four states. We thus use the
binomial distribution sampling method presented in [8].

The binomial cumulative distribution function is defined as fol-
lows:

F (k,n,p) = Pr (X ≤ k ) =
k∑
i=1

(
n

k

)
pk (1 − p)n−k ,

where
(
n

k

)
=

n!
k!(n − k )! .

(2)

In Equation (2), k is the number of successes in n trials with the
individual probability of success p. Let xi be the number of RyRs
in the state i and ki j the number of RyRs transitioning from the
state i to the state j. We take one sample from binomial distribution
B (n,p) with n = xi and p = pi j to compute the number of RyRs
transitioning from state i to state j. Then, we take another sample

to compute the number of RyRs transitioning from state i to state l
with n = xi −ki j and p = pil /(1−pi j ). The final number of RyRs in
the next time step is obtained by adding the RyRs that transitioned
from the neighbour states to the state i as shown in Equation 3. If
no transition happens, the RyR remains in its original state.

xt+1i = xti − k
t
i j − k

t
il + k

t
ji + k

n
li (3)

Moreover, in [8] the optimized implementation of the binomial dis-
tribution sampling function was described. The distribution func-
tion is computed iteratively by subtracting from random number r .
The computation stops when the smallest k satisfying the condition
r ≤ F (k,n,p) is found.

3 IMPLEMENTATION OF THE SIMULATOR
The general structure of the program is outlined in Listing 1. On
each GPU the computation is parallelized at the dyad-level. Thus,
in each time step we let one CUDA thread perform the computation
of one dyad. The cell voltage diffusion, which does not consume a
significant amount of time, is performed on the CPU. Communi-
cation between CPU and GPU is accomplished by CUDA memory
copying operations. After each time step the voltage values of the
cells are copied from device to host and the updated values are
copied back to the device for the next time step. The CPUs use
MPI to exchange subdomain boundary voltage values among the
nodes. While it would be possible to use GPUDirect [12] to ex-
change these values directly between the GPUs, this operation is
not performance critical. We thus communicate via the CPUs for
compatibility reasons.

3.1 Code Structure
As shown in the pseudo code, the CUDA initialization and memory
transfers from host to device are performed before the time loop.
The data needed for the computation remains on the device for
the lifetime of the program. The cell computation is performed at
each time step. The current voltage value is copied from host to
device, then the dyad computation is executed on the device, and
the computed voltage is copied back to the host. After each time
step diffusion of intercellular voltage concentrations between the
cells according to Equation (1) is performed.

Structure of the program
(1) Initialization
(2) Memory allocation on device
(3) Memory copy from host to device
(4) For T time steps do:
(a) Cell computation

(i) Copy voltage from host to device
(ii) Dyad computation on the device
(iii) Copy voltage from device to host

(b) Cell diffusion

Listing 1: Program structure of the simulator. All cells are
initialized from physiological constants stored in the code.
Due to the large number of cells/dyads, only the dyad com-
putation is performance critical. Typically T is set to 10,000
which amounts to a single heartbeat.
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Figure 2: Data assignment to the threads. The rectangles rep-
resent threads defined via grid composition. Cell_thread ID
represents the threads corresponding to a block, while
Cell ID represents all dyads in a cell. The thick vertical line
defines the boundary from threads corresponding to two dif-
ferent blocks. The dashed line defines the end of cell data.
Threads in the striped areas are idle.

3.2 Thread configuration
The correct assignment of the data to the threads is important for
maximizing utilization of the GPU. We arrange threads as a one
dimensional (1D) grid. Consequently, data is arranged as 1D arrays.
By empirical search, we found that 128 threads is the optimal block
size to perform computation on cells with 10000 calcium release
units on all tested architectures. This requires 79 thread blocks for
a single cell since one thread performs computation of one dyad.

Most of the dyad-level computations are independent of each
other, so any calculation performed on calcium release units of
one cell cannot influence results of another cell. This means that
computations performed by different threads do not overlap. Thus,
threads that perform dyadic computations on the different cells can
be placed in the same thread block.

However, execution of the functions that involve more complex
computations, such as diffusion, or usage of the shared memory,
such as reduction, cannot have threads corresponding to different
cells in the same block, because it would cause data overlapping
between cells. Thus, we choose to associate each thread block with
a single cell and increase the grid accordingly. Thus, we use more
threads than dyads in a cell, and the last block in each cell contains
some threads that are idle during the computation as shown in
Figure 2.

In our model one calcium release unit requires 29 double values.
Including cell data and temporary values, one cell requires about 3
MB of data in total. Device memory generally limits the number
of cells we can place on a single GPU to between 1500 and 5000,
depending on thememory of the GPU.While it is possible to directly
access CPU memory from the GPU, doing so severely reduces
performance.

3.3 Tissue-Level parallelization
The cardiac ventricle tissue is represented as a 3D Cartesian grid of
cardiac cells, which is distributed among the nodes and GPUs. Each
GPU is assigned a cuboid subdomain of uniform size. We thus place
one MPI process per GPU on the nodes. To perform the diffusion
using a finite difference approach, each cell needs to have access
to the voltage values corresponding to its neighbors in all three

spatial dimensions. During each time step the computed whole-cell
voltage values are transferred from device to host and the diffusion
computation is performed on the CPU. However, since the global
domain is decomposed into the smaller sub-domains that are as-
signed to the different MPI-processes, the diffusion computation is
also distributed between different processes. This requires commu-
nication between the MPI-processes to provide access to the data
from the neighboring cells. The communication is performed as a
standard halo exchange. We introduce ghost cells at the boundary
points that hold the voltage values that correspond to the neighbor
cells located in the sub-domain assigned to the neigbouring process.
At each time step after the diffusion computation, we exchange
voltage values along the faces of the sub-domains. This is done via
MPI messages [13] between the host CPUs.

4 DYAD LOOP IMPLEMENTATION
Dyad loop takes up more than 99% of the simulation time, therefore
our code optimizations focus exclusively on this loop. The dyad-
level computation is divided into seven parts, as detailed in Listing
2. Each part is executed on the device by launching one or more
kernel functions synchronously. The different kernels are described
below in detail.

For each dyad on the device do:
(1) Random number generation
(2) L-type calcium channel simulation
(3) RyR probability calculation
(4) RyR opening computation
(5) Ca concentration computation
(6) Dyad diffusion
(7) Reduction

Listing 2: Structure of the dyad computation loop. In the
typical case of 10000 dyads, each of the seven kernels is
launched synchronously with 79 blocks of 128 threads per
cell. The last 112 threads perform no computation.

4.1 Random number generation
The sampling from binomial distributions requires drawing a ran-
domly generated number from a uniform distribution in the range
between 0 and 1. There are eight potential transitions in the RyR
channels and two possible transitions in the L-type calcium chan-
nels. Therefore, ten random numbers are generated per dyad. Since
in our model each cell contains 10,000 calcium release units, 100,000
random numbers per cell are generated in each time step. We pre-
compute the necessary random numbers at each time step using
the NVIDIA CUDA Random Number Generation library (cuRAND)
[2], which provides a high performance GPU-accelerated random
number generation. No further optimization was performed on this
code.

4.2 L-type calcium channel simulation
In the naive implementation, the L-type calcium channel simulation
consists of two kernels. The first calculates the L-type calcium
channel state transition probabilities. This requires a small amount
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of regular computation. The second computes the openings of 15 L-
type calcium channels in each dyad by sampling from the binomial
distribution using the calcium state transition probabilities. This
operation is irregular since the number of compute steps for the
sampling always depends on the random numbers generated.

In order to avoid redundant memory accesses, L-type channel
transition probability calculation and opening computation were
fused into the same kernel function. The computed probabilities
and random numbers can thus be stored in the shared memory,
which helps to lower the number of registers. This resulted in a
significant performance benefit.

4.3 RyR probability calculation
The RyR probability calculation kernel computes the state transition
probabilities for RyR channels and Ca, Na, and K currents. The main
computation is decomposed into four smaller device functions,
which are called and executed on the device.

To compute the entire cell value of the currents, we use a re-
duction operation. The basic approach would be to have separate
kernels for the main computation and for the reduction. Because
the reduction operation requires two kernel launches, in total three
kernel launches would have to be performed. Since kernel launces
are expensive, we merge the partial-reduction on the dyad-level
with the RyR probability calculation in our implementation. More-
over, considering that the RyR opening computation is independent
of the entire cell currents, we delay the final block reduction until
the Ca concentration computation is executed, where another re-
duction takes place, and perform both reductions simultaneously.
As a result, only one kernel function is launched to perform the
RyR probability calculation.

The main computation requires a large number of double preci-
sion floating point division operations. The Kepler GPU uses nu-
merically implemented division based on basic instructions, which
is computationally expensive. As an alternative, CUDA provides
intrinsic functions, which use fewer instructions but are less precise
than the standard functions. In our implementation, we interchange
division operation with multiplication by the intrinsic reciprocal
rounded to the nearest value, which speeds up the computation. We
found that the loss of accuracy from using these functions was neg-
ligible. Similar to the probability calculation of the L-type chanels,
this kernel consists of heavy regular computations.

4.4 RyR opening computation
The RyR opening kernel function computes eight possible transi-
tions between the four RyR states. For each state, a thread checks
if there are any RyRs in that states and if the state is not empty, the
thread reads two random numbers from the global memory and
samples from the binomial distribution in a similar way as in the
L-type channel simulation kernel function.

The binomial sampling method requires a power operation,
which is computationally expensive. In our implementation, the
value of the exponent always ranges from 0 to 100, which makes
it cumbersome to interchange the power operation with a simple
direct multiplication. It also makes this computation more irreg-
ular than the L-type opening, where the exponent is fixed at 15.
To improve computational performance, it is beneficial to adopt

bit-wise operations. The exponent is bit-wise compared with the
smallest possible exponent, which in this case is one. If the bit exists
in both operands, the power of one becomes a part of the combina-
tion of power functions. The binary left shift is performed on the
smallest exponent in order to compare the next bit of the exponent.
Thus, to compute the power of 100, it is enough to perform bit-wise
computation seven times, because a100 = a4 × a32 × a64.

4.5 Ca concentration computation
The calcium concentration kernel computes the Ca release flux
in the dyads, Na-Ca exchanger currents, Ca currents, Ca Pump
currents and Ca concentration. The implementation consists of two
parts: main kernel and reduction kernel. The former is decomposed
into several smaller device functions in order to limit the use of
registers and thus increase occupance. Doing so had a large impact
on the performance of this kernel. Moreover, in order to reduce
kernel launch overhead, the partial-reduction is merged with the
main computation.

Elements that are common for a cell and variables that are ac-
cessed more than once by a thread are loaded into the shared mem-
ory. The power of two and division operations are substituted by
multiplications. For divisions that cannot be interchanged with
multiplications, we use the CUDA intrinsic functions that compute
the reciprocal of a variable in round-towards-nearest mode. The
main kernel contains by far the largest regular computation in
the simulation. Thus, its performance is closely tied to the GPUs
floating point capability.

The reduction kernel operates on partially reduced data across
the blocks of threads and sends the final result as the entire cell value
to the corresponding cell. The kernel function is called only once.
To obviate unnecessary kernel launch overheads, the reduction
over partially reduced items of the RyR probability calculation
function is combined with the reduction of the Ca concentration
computation. Thus, the reduction kernel operates on the Ca, Na, K,
Na-Ca, Ca Pump currents and on the SR Ca release flux.

4.6 Dyad diffusion
This kernel computes the Ca diffusion between dyads of a cell. It
follows the basic structure of a three-dimensional stencil computa-
tion. Two-dimensional diffusion method was adopted from [10] and
[18]. The main idea is to organize threads into 2D blocks and use a
loop to obtain the coordinate in the third dimension. Each thread
operates on several grid points which are placed Nx × Ny distance
apart, assuming that z is the slowest varying dimension. Moreover,
the points (x, y, z-1) and (x, y, z) are cached into the registers and
only the point (x, y, z+1) is read from the global memory at every
iteration. In addition, we utilize the read-only cache since the buffer
containing input grid is used only for the read operations.

To avoid checks for the x-y boundary conditions inside the loop,
we introduce four distinct distances in directions x − 1, x + 1, y − 1
and y + 1. This allows us to check the boundary conditions and
adjust the distances before the for-loop.

Since we use registers to cache values over z-direction, we can
initialize values for the boundary z = 0 before the loop. For the
other boundary, z = Nz − 1, we construct an if test inside the loop
and check the boundary condition at every iteration.



GPU-based Acceleration of Detailed Tissue-Scale Cardiac Simulations GPGPU-11, February 24–28, 2018, Vienna, Austria

Accelerator K20 K20X K40 P100
Architecture Kepler Kepler Kepler Pascal
# of SMs 13 14 15 56
Memory size 5 GB 6 GB 12 GB 16 GB
Peak DP, GFLOPs 1170 1310 1430 4700
Peak BW [GB/s] 208 250 288 720
STREAM [GB/s] 151 181 218 557

Table 1: An architectural overview of the K20, K20X, K40
and P100 GPU accelerators. STREAM refers to the sustained
memory bandwith benchmark in [11]. All other values are
specified by the vendor.

4.7 Reduction kernel
The entire cell calcium concentration is computed using a reduction
operation, which passes over O (N ) input elements and generates
O (1) results. The majority of the computations corresponding to
the estimation of the calcium concentration are executed on the
dyad-level. To represent calcium level in a cell, we average local
calcium concentrations across the dyads and assign them to the
corresponding cell.

The CUDA UnBound library (CUB) [4] provides an implementa-
tion with amultitude of algorithmic strategies of the state-of-the-art
algorithms in parallel for arbitrary data types and widths of paral-
lelism. In our implementation we use the BlockReduce class that
supports several functions which perform parallel reduction of
items partitioned across the CUDA threads.

We have implemented the reduction operation as two kernel
solution. For the first kernel launch, each thread contributes with
two elements and use only half of the grid size for the computation.
For the second kernel launch, first addition is performed during
the global load, threads contribute with one element and perform
reduction on already partially reduced data.

5 EXPERIMENTAL EVALUATION
5.1 Setup and test hardware
The performance was tested on three different NVIDIA Tesla GPU
accelerators of the Kepler architecture, i.e. the K20, K20X, and K40,
and on P100 GPUs of the new Pascal architecture. Their hardware
specifications are shown in Table 1. The Kepler memory hierarchy
[14] consists of shared memory, L1 and L2 caches, read-only cache,
and the device memory. Each streaming multiprocessor (SM) has
64 KB of on-chip memory that is divided between shared memory
and L1 cache. For example, the on-chip memory can be partitioned
as 48 KB of the shared memory and 16 KB of the L1 cache or vice
versa. The size of the L2 cache is 1536 KB (1280 KB for the K20). It
is shared across the device. Each thread can access up to 255 32-bit
registers, but each SM is limited to 65536 such registers. Thus, a
high register count per thread limits the number of threads that
can be active concurrently. For the data that is only being read,
Kepler introduces a hardware-managed 48 KB read-only data cache
(known as texture cache in previous GPU generations), which can
be directly accessed by the SM.

In contrast to Kepler, Pascal [3] has 64 KB of dedicated shared
memory on each SM. It has a combined L1 and read-only cache of

64 KB. The L2 cache has been increased to 4096 KB. The number
of registers per SM remains the same as for Kepler, but due to the
increased number of SMs, the total number of registers is far larger.

Shared memory is on-chip memory that can be accessed by all
the threads in a thread block. It is private to each block, and it has
a life-time of the block execution. Shared memory has a far higher
bandwidth and a lower latency than the device memory. It allows
faster access to data that is reused in the thread block and can serve
as a communication channel between the threads in a block.

Data that is used as a read-only for the duration of the kernel
function can be stored in the read-only cache. Like the shared
memory, it is considerably faster than the device memory, but it
does not require explicit management by the programmer. The
compiler can automatically access data that is flaged as read-only
via the read-only cache andminimize redundant access to the global
memory which can benefit the performance of bandwidth-limited
kernels.

For all experiments, we use a fixed time step of 0.05 ms. To
discretize the diffusion terms in Equation (1), we use a fixed spatial
mesh resolution of 0.5 mm. To evaluate the performance of the
separate kernel functions on the device, we run the tests for a single
time step. Our first set of experiments aims at benchmarking the
kernels individually on the K20 GPU. To this end, each kernel was
executed five times and the fastest time was selected. We measure
kernel execution time only, excluding the cost of data transfer.

5.2 Code optimization impact by kernel
We first investigate the impact of the code optimizations discussed
in Section 4. Our baseline is a GPU code derived from the CPU
code presented in [6] via a straightforward manual code translation.
The optimized code was obtained by developing and testing the
optimizations described above. In Figure 3, we show the impact
of these optimizations by kernel. The largest improvements are
achieved on Dyad diffusion and Ca concentration computation
functions. The total reduction in running time after all optimizations
of these functions were 57% and 45% respectively. The running time
of L-type was reduced by 35%, RyR probability calculation by 19%,
RyR opening computation by 15% and Reduction by 33%. Note
that the baseline code does not contain any obvious performance
impediments such as unnecessary data transfers, which would
result in far larger improvements.

Most of these improvements come from judicious use of shared
memory and read only cache. Smaller contributions come from
the use of CUDA’s intrinsic reciprocals, and from the replacement
of the power function that uses bit-wise operations. Numerous
smaller optimizations also added up to an improvement of similar
magnitude. An overview is shown in Figure 4.

5.3 Single GPU cell computation speed
A test on a single K20X GPU was performed to find out how the
number of cells affects the speed of the cell computation. To de-
termine the speed of the cell computation, we use a metric called
number of cell computations per second (CC/sec), which is simply
the number of cells × number of time steps divided by execution
time for the entire application. Figure 5 shows the obtained results.
The speed of computation increases with the number of cells, since
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Figure 3: Comparison between naive and optimized imple-
mentations on Kepler K20.

Figure 4: Impact of different optimization techniques. Note
that most memory accesses are coalesced by default due to
the choice of data structures even in the naive implementa-
tion.

a small number will not utilize the GPU fully. In addition, the ker-
nel launch and other overheads are amortized over the number
of cells. The same is true for the computation of the per cell cal-
cium concentrations, hundreds of which can be run in parallel at
no additional running time cost. Thus, computation for a single
cell is extremely slow. The speed rises rapidly when increasing the
number of cells from one to ten. Further expanding the number
of cells, we increase the speed. It becomes almost stable when the
number of cells reaches 1000.

5.4 Performance evaluation on different GPUs
As most kernels are memory bound, we use the attained memory
bandwidth to evaluate the implementation. The results are shown
in Table 2 and Figure 6. The STREAM measured bandwidth can be
considered an upper bound on performance. Clearly, most kernels

Figure 5: Speed of the cell computation on one K20X GPU.
The graph shows the dependency between the performance
of the computation and the number of cells on oneGPU. The
performance is given in CC/sec. 1872 cells is the maximum
number of cells that can be contained in the memory of the
K20X.

come relatively close to this performance, which implies that our
implementation is close to the maximum attainable performance.
Attained memory bandwidth and execution time of the individual
kernels on all four GPUs are shown in Table 2 and Figure 6. Even
though the achievable memory bandwidth is 20% higher on K20X
than on K20, most of the kernel functions achieve no more than 15%
higher bandwidth. The same behavior can be seen on K40, which
has 44% higher peak memory bandwidth than K20, but for most of
the individual functions, the attained bandwidth has not increased
significantly. However, for the P100 performance is over 3 times
higher compared to the Kepler cards, more than the increased peak
bandwidth would suggest.

The Ca concentration computation benefits most from the in-
creased computational power of the faster GPUs. Because of the
large memory bandwidth and even larger computational speed on
P100, the kernel execution time decreases by a factor of 4 there.

The reduction kernel function achieves 100% STREAMmeasured
memory bandwidth on K20 and K20X, but for K40 and P100 it
attains only 87%. Most of the kernels executed on K20 and K20X
achieve the performance that is close to the attainable maximum.
The difference between attained and STREAMmeasured bandwidth
increases with the speed of the hardware.

As we can see, the performance on K20, K20X, and K40 do not
differ substantially. The attained performance is close to 20000
CC/sec. However, simulations on P100 have shown significant im-
provements. The attained performance increased 3.5 times overall.

5.5 Multi-GPU scaling experiments
We verify the strong and weak scalability of our simulator on GPU-
equipped clusters. We use the K20X equipped nodes of Abel, a
supercomputer operated by the University of Oslo [15], and Epic,
a small cluster featuring P100 cards at NTNU Trondheim. In both
cases, a maximum of 8 nodes with 2 NVIDIA GPUs each is available.
As usual, we run the experiments for 10,000 time steps using 10,000
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Kernel function K20 K20X K40 P100

Random number gen. 11.27 11.14 10.05 3.95
L-type channel sim. 7.25 6.16 5.77 1.95
RyR probability calc. 10.22 8.98 8.69 2.83
RyR opening comp. 12.5 10.58 9.9 3.3
Ca concentration comp. 26.46 23.49 21.48 6.37
Dyad diffusion 8.53 7.25 6.93 2.56
Reduction 4.88 4.00 3.88 1.23
Total time 81.11 71.6 66.7 22.19
Attained performance 19950 20740 22000 69300

Table 2: Individual kernel time measurements in ms on
different GPUs using 1500 cells. Performance is given in
CC/sec.

Figure 6: Individual kernel bandwidth measurements on
different GPUs using 1500 cells. STREAM indicates the
STREAMmeasured performance for different devices.

dyads per cell. Both machines are equipped with FDR InfiniBand
interconnects, and we use CUDA 8.0 on both. Experiments where
run using Intel icc 17.2 and Intel MPI 5.0.2 on Abel, and GCC 5.4
and OpenMPI 1.10 on Epic. The number of nodes used ranges from
1 to 8, and thus from 2 to 16 GPUs. Results for a single GPU were
already discussed in Section 5.4.

The performance of weak and strong scaling tests is shown in
Figure 7. For the P100 GPUs a grid of size 32×16×16 cells was used
on each node, which amounts to 4096 cells per GPU. The tissue size
for 8 nodes thus becomes 64 × 32 × 32 cells. However, as shown in
Figure 5, once the number of cells per GPU is high enough, the actual
number has very little impact on the performance. The weak scaling
attains almost 100% efficiency in every test case due to the low
amount of communication between the nodes and the expensive
computation. For the strong scaling test on P100 GPUs the tissue
size was fixed at 16 × 16 × 16 cells, which is equivalent to that of
the weak scaling experiment for a single GPU. The communication
overhead becomes more visible for the larger number of compute
nodes in the strong scaling experiment because each node performs

Figure 7: Performance under weak and strong scaling for
P100 and K20X GPUs. Performance is given in CC/sec.

a smaller amount of the computation. In addition, the number of
cells per GPU becomes so low that it affects the computation speed
of the GPU, losing about 8% of its maximum performance at 8 nodes.

For K20X GPUs the experiments were performed using smaller
grids of cells due to the limited amount of memory. We used 1872
cells in a 18× 13× 8 grid per GPU for the weak scaling experiments,
which constitutes the maximum feasible number. In order to keep
the number of cells from getting too small, we use twice that number
as a basis for the strong scaling experiment, which results in 234
cells per GPU when using all 16 GPUs. The scaling test results show
the same behavior for K20X as for P100 GPUs. We see that almost
the same performance is achieved using both weak and strong
scaling. The linearly increasing curves indicate a good scaling for
both P100 and K20X GPUs.

6 CARDIAC SIMULATIONS
In addition to testing performance, we run a series of experiments
to assert the quality of the physiological simulation. In these exper-
iments, we simulate a slab of tissue of size 12mm × 12mm × 12mm
for different numbers of dyads in a cell. As before, the time step
is set to dt = 0.05ms , the cycle length is 500 ms, and the spatial
mesh resolution is dx = dy = dz = 0.5mm, which results in a total
of 13,824 cells.

6.1 Paced action potential
In order to verify the model, we perform simulations of a slab of
cardiac tissue under normal conditions. The y-z plane is stimulated
at t = 50ms , which causes a paced action potential in a cell. The
action potential is shown in Figure 8. During normal paced heart
beat when the membrane voltage reaches positive values, L-type
channels became active and extracellular calcium flows into the
dyad. The calcium activates RyRs, which release a greater calcium
flow from the calcium stores inside the sarcoplasmic reticulum.
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Figure 8: Paced beat of a cell under healthy conditions. The
figure shows paced action potential (left) and intracellular
calcium concentration (right). The tissue was stimulated at
t = 50ms, basic cycle length is 500ms.

6.2 Spontaneous action potential
We perform tissue simulations under abnormal conditions by open-
ing all RyRs at t = 50 ms for 100 ms . Open RyRs release a high
calcium flow, which causes a spontaneous action potential in a cell.
The spontaneous action potential is shown in Figure 9. Initially,
intracellular calcium has a steep rise when there is a steep deple-
tion of JSR. However, under abnormal conditions, we have a slower
calcium release as JSR is refilled from NSR, and we have a linear
increase of calcium concentration until the RyRs are closed. The
calcium release activates Na-Ca exchange current, which slowly
increases the voltage at the beginning. When the voltage reaches
a certain threshold, L-type Ca current and fast Na currents are
activated and this forms a spontaneous action potential, which can
lead to arrhythmias.

6.3 Effect of the number of dyads
Figure 8 shows that under normal conditions the amount of released
calcium is proportional to the number of dyads in a cell. Conse-
quently, if a cell contains a small number of dyads, the calcium
release will be small and the repolarization phase will be short.

As depicted in Figure 9, the spontaneous action potential fails
when the number of dyads employed in a cell is small. Under the
abnormal conditions, a great number of dyads in a cell leads to a
great number of open RyRs. Thus, we have a large calcium release,
shown in the plots of intracellular calcium concentration. On the
other hand, a small number of dyads leads to a small calcium release,
which lowers the ability to trigger an action potential in a cell. This
leads to a conclusion that the accuracy of the simulation depends
on the number of dyads and a cell model of 10000 dyads is required
to achieve the results that comply with theoretical assumptions.

7 CONCLUSION
The general aim of using the computational models of the human
heart is to develop a precise perception of the role played by distur-
bances of calcium handling in cardiac arrhythmias. The multiscale
myocyte model [5] was adopted to develop a 3D Tissue-Scale sim-
ulator which can be used to investigate various dysfunctions of
subcellular calcium release processes and action potential propaga-
tion. We performed physiologically realistic simulations in order to
evaluate the selected model and show the scientific purpose of the
cardiac simulator. The same model was implemented and tested

Figure 9: Spontaneous beat of a cell. The figure shows spon-
taneous action potential (left) and intracellular calcium con-
centration (right). At t = 50ms all RyRs were open for 100ms.

on CPUs and Xeon Phis in previous research [6–9]. While these
implementations showed good scaling over 400 nodes, our new
results show that with careful optimizations, the Pascal generation
of NVIDIA GPUs provides even better performance. The Intel Xeon
Phi 7250 reached about 44,000 cell computations per second, which
is about 35% less than the P100. In addition, based on the announced
performance characteristics, we expect that the upcoming Volta
generation will be at least another 25% faster than Pascal. Thus,
the upcoming Summit supercomputer with more than 4,600 nodes
containing 6 V100 Volta GPUs each would be capable of perform-
ing more than 2 billion cell computations per second. If data can
be efficiently swapped between NVRAM, CPU, and GPU memory,
detailed organ scale cardiac simulations would finally be within
reach.
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