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Abstract—If an attacker succeeds in planting a device in a
network, detecting the alien device can be extremely difficult.
With the intuition that every device on the data path contributes
to the end-to-end delay, we propose a simple and deterministic
measurement-based approach for detecting the insertion of a
layer-2 switch on the data path of a network operator. For this
purpose, we use commodity hardware and the standard ping
tool for collecting ICMP RTTs. To minimise inaccuracies in the
measurements, we increase timing determinism on both ICMP
source and target by using a real-time kernel on both, a dedicated
source (a Linux server) and target (an RPI4 with custom image).
Additionally, we manipulate real-time attributes for prioritising
the ping process. By using this approach on different loaded
networks: lab, campus network, research and education network
and an ISP, we are able to reliably detect that a switch was
added at the end of the path or within it. Our method yields
an excellent performance on networks with considerable cross
traffic as well as lightly loaded networks.

Index Terms—network, deterministic RTT, alien switch

I. INTRODUCTION

Protecting against man-in-the-middle attacks is key for
ensuring end-to-end security and privacy. While such attacks
are often executed using spyware and malware, there have
been a number of reports of physical attacks [1]–[4]. These
attacks involve the insertion of an alien device into the network
that can sniff or manipulate traffic often at layer one or
two. Networks that span several physical facilities can be
exposed to such incidents. Hardening access to facilities and
constant surveillance remain today’s prime approaches for
defending against physical attacks. However, if an attacker
succeeds in planting a device, detecting the alien device can be
extremely difficult. In this paper, we propose a measurement-
based approach for detecting the insertion of a device in the
data path. The key intuition behind our approach is the fact
that every device on the data path contributes to the end-to-end
delay and delay variation. This intuition applies to physical
path changes as well as to the insertion of switch elements
that operate at layer-2 and layer-3.

Detecting small changes in delay, however, requires mea-
surement tools with deterministic performance. Current tools
typically run in the user space of operating systems (OSes) and
are thus subject to jitter related to the way OSes prioritise and
schedule different processes [5], [6]. We, therefore, employ

real-time Linux kernels on commodity hardware to increase
the determinism of Internet Control Message Protocol (ICMP)
ping measurements. Having consistent delay measurements
allows us to flag changes in network paths in a statistically
significant way. This accuracy holds for a broad range of
scenarios that involves controlled lab settings, campus LAN
and various combinations of WAN. It also holds for insertion
of alien devices at different points in the topology. We believe
that our approach can be easily deployed to automatically
monitor topological changes. We hypothesise that network op-
erators have full control and knowledge of their infrastructure.
Thereby, unplanned RTTs changes can be linked to suspicious
activity.

The rest of this paper is organised as follows. After intro-
ducing switching background in section II, we discuss related
work in section III and present our approach and methodology
for detecting path changes in section IV and subsequently
evaluate the proposed method in section V. In section VI,
we discuss our results before we conclude with section VII.

II. BACKGROUND

In fixed line networks, signals are typically propagated
through Ethernet and optical fibre networks. Any change in
an all optical path will cause a change in the delay. The delay
change will however be a fixed change because optical network
elements do not involve electronic processing or buffering.
The delay change for the optical path entirely depends on the
length change of the path, i.e. 5 µs/km. Internal switching in
a node-room, involving only a few metres of change in the
path, will therefore impact the delay change in the network
path in the order of nanoseconds.

On the other hand, for layer-2 and layer-3 switches, delay
will typically vary. For example, a typical layer-2 Ethernet
switch performs a set of operations when switching each
packet. The switching fabric, which connects incoming ports
with outgoing ports, copies packets, determines outgoing ports
and then moves packets between queues. Hence, these opera-
tions involve buffering in electronic memories as well as per
packet address lookup operations and processing. The time
it takes to complete these operations will typically vary and
depend on the switch hardware architecture, its firmware and
network load. Hence, any new switch added in a network path
adds a variable delay to the end-to-end delay.978-3-903176-47-8 ©2022 European Union



The proposed method in this paper relied on the variability
of Ethernet switches delay. For instance, a benchmark mea-
surement using hardware-based accuracy device tester, shows
– for 10 runs with 64 bytes each – an average of 100 µs
and 5 ns of latency and jitter respectively for the Mikrotik
Gigabit Ethernet switch used in our experiments. The added
delay may however be masked by cross traffic as well as
measurements artefacts. Hence, for detecting such changes,
we need a measurement methodology that both minimise
measurements artefacts, e.g. timing inaccuracy, and control for
cross traffic.

III. RELATED WORK

The Transmission Control Protocol (TCP) is the most
commonly used transport-layer protocol that meets the re-
quirements of many applications [7]. Aikat et al. have shown
that TCP RTTs values within a connection vary widely [8].
Moreover, the syn based method was concluded to provide
a good estimate of RTTs that can be exploited in real time
analysis of Internet traffic [9]. However, compared to ICMP,
TCP is not always the most applicable transport for time-
critical applications [7].

Pelsser et al. found cases in which ping gave very poor
estimates of delay and recommended the use of an adaptation
of paris-traceroute which supports delay and jitter estima-
tion [10]. Marchetta et al. [11] focused on an IP Pre-specified
Timestamp based approach using a single packet to dissect the
RTT in chunks mapped to specific portions of a path. They
showed that the proposed approach can be applied on more
than 77% of the considered paths. On a security perspective,
it is possible to develop an efficient ICMP-based algorithm
protocol to detect malicious hosts that are performing ARP
spoofing attacks [12]. Moreover, Arote et al. [13] proposed
a technique based on ICMP and voting to detect and prevent
Man in The Middle (MiTM) based ARP poisoning.

Another approach to prevent MiTM, is to identify vulnera-
ble routers or abnormal behaviour router in the network [14],
[15]. A tool like NMAP (Network Mapper) [16], can help for
fingerprinting recognition of routers but has low accuracy. Fur-
thermore, machine learning techniques can be combined with
traditional approaches. In [17], the authors proposed Vesper,
a tool for detecting a MiTM via ping echo analysis using an
artificial neural network (ANN) based on autoencoders [18].
For finding the change or abnormal behaviour in the network,
Vesper sends a burst of 50 pings that is modulated according
to the MLS (Maximum Length Sequence). It then extracts a
set of features to describe the response time series and feed
them to the anomaly detector.

Vesper was tested in a LAN and for detecting the insertion
of single or multiple switches. In our work we are using a
simpler method for delay fingerprinting identifying changes
in the network path by performing deterministic delay mea-
surements using a Linux server and an RPI as the target. RPI
is well suitable for measurements [19] and is widely used
on large scale measurements such as CAIDA’s Archipelago
infrastructure [20]. Additionally our measurements are not

limited to the LAN environment. We perform experiments in
several network environments: lab (LAN), campus, research
network and an ISP.

IV. APPROACH AND METHODOLOGY

We leverage end-to-end measurements, using ICMP ping, to
characterise the delay profile of a network path. Subsequently,
we insert an Ethernet layer-2 switch and verify whether the
new delay profile is statistically different from the baseline.

A. Delay Measurements Determinism

We assume that, given that the network setup is stationary,
end-to-end delay measurements will be stable. Monitored
paths are under network operators control with full knowledge
of the infrastructure and planned changes. Thus unplanned
RTTs change – for any traffic profile – may be suspicious.
This, however, implies that we are able to control for and
minimise effects that are related to the measurement tools. For
our measurements, we use the Linux Operating System (OS).
By default, the Linux kernel executes processes in a single
execution flow (monolithic structure). This leads to delays and
inaccuracies in the timing of process scheduling. According
to [21], OS latency can be caused by major factors such as
scheduling jitter and non-preemptable sections. By assigning
the highest real-time priority to a process, the scheduling
jitter can be minimised. With kernel or device driver non-
preemptable sections disabling preemption, processes with
high real-time priority are exposed to extra delays since they
can not interrupt. For server applications, as well as for most
desktop application use-cases, this is not a challenge. However,
such unbounded delays cause jitter for time-critical appli-
cations. Particular examples of such applications are music
recordings [21], but also fine-granular delay measurements. If,
for example, a packet for delay measurement arrives while the
preemption is disabled, the time until finishing the currently
running tasks will be added to the measured delay.
Real-time ping. We can use a real-time Linux kernel for
ensuring deterministic execution time. There are different
variants of real-time kernel, including but not limited to real-
time micro-kernel (RTLinux) [22] and the RT Linux with
the CONFIG PREEMPT RT1. RTLinux requires a kernel
space real-time task to be scheduled via the micro-kernel
and real-time applications to be adapted to the micro-kernel.
CONFIG PREEMPT RT modifies the Linux kernel itself to
remove unbounded delays caused by locking and realises in-
terrupts as kernel threads. We adopt CONFIG PREEMPT RT,
because it provides the most widespread real-time Linux
approach. With the real-time Linux kernel, it is also possible
to manipulate the real-time attributes of a process. The ping
process is set to a high priority (90); eliminating scheduling
jitter; and the OS automatically set the process scheduling pol-
icy to SCHED_RR2. This policy is derived from SCHED_FIFO

1CONFIG PREEMPT RT Patch Set: https://rt.wiki.kernel.org/index.php/
CONFIG PREEMPT RT Patch.

2https://wiki.linuxfoundation.org/realtime/documentation/technical basics/
sched policy prio/start

https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch.
https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT_RT_Patch.
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/sched_policy_prio/start
https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/sched_policy_prio/start


and guarantees fair sharing of CPU time between tasks. This
ensures that the ping process will – mostly – not be subject
to blocking due to a held lock.

With ping involving two independent systems (i.e. the
source and destination), our measurements require improving
timing determinism on both ends. To this end, we have built
a custom Raspberry Pi 4 Model B (RPI4) image, optimised
with minimal packages necessary for the RPI4 to reply to
ICMP requests. To build this image for embedded systems, we
rely on Yocto and use only two recipes: yocto/zeus and
yocto-pinger3 from the Open Source Distribution (OSD)
project. Our image is mainly based on Yocto Board Support
Package (BSP) for Linux on Raspberry Pi4. The Yocto BSP
layer for RPI provides recipes for RPI4 kernels and we use
real-time kernel version 4.19. Instructions to build the image
are publicly available5.
Probe packets. Before assessing the impact of real-time
probing, we need to determine the optimal size(s) for probe
packets. Different network devices vary in the way they pro-
cess, fragment and reassemble packets, because of differences
in their Application-Specific Integrated Circuit (ASIC)s and
firmware. These differences can help inferring the addition
of new devices. We perform experiments with a wide range
of packet sizes, both in the lab and on a campus LAN. In
the lab, the RPI is a) directly connected and b) connected
through a switch to the ICMP source. For the campus network
experiments, the RPI is placed in an office on the same floor
as the ICMP source.

Figure 1 shows the distribution of Round Trip Time (RTT)s
for different probe packet sizes with non fragmented payload
in grey. Our measurements show that the largest allowed
packet size in the campus network is 9600 bytes. Packets larger
than this limit result in 100% packet loss. As expected, the
RTT increases as the payload increases but not linearly. There
are noticeable jumps at sizes that require further fragmentation.
Based on these results, we selected five packet sizes for
measurements: 56, 1400, 4000, 6800 and 9600 bytes. The
first two correspond to packets that will not be fragmented,
while the latter three will be fragmented and coincide with
the jumps - every 2800 bytes - in Figure 1. We hypothesise
that switches handle fragmentation differently, and hence the
three large packet sizes can help revealing the presence of new
devices.
Evaluating real-time ping. We perform two experiments
to verify that using a real-time kernel can indeed result
in deterministic delay measurements. We connect the ICMP
target (i.e. RPI4) and source, which is a Dell PowerEdge
R340 in a simplified topology directly to each other. For each
selected payload in both experiments, we sent 10 times, 1000
ICMP packets from the source to the RPI4 using the default
ping interval, i.e., every second.

The first experiment compares the default RPI OS6 to

3https://prima.svn.beanstalkapp.com/osd/trunk/
4https://github.com/agherzan/meta-raspberrypi/archive/zeus.zip
5https://github.com/simula/deterministic-rtt
6March 4th 2021 release
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Fig. 1: Preliminary experiments on the campus network.
Payloads 56, 1400, 4000, 6800 and 9600 have been selected
for the rest of the measurements.

the custom image with real-time kernel, while configuring
the ICMP source with a real-time kernel. More specifically,
we assign the ping process the highest priority and use the
default scheduling policy of SCHED_RR. Figure 2a shows
that the custom image running on the RPI4 provides more
deterministic RTTs (less variability) than the default Raspberry
Pi OS. Thus the median of the coefficients of variability for
all payloads is 0.0997 and 0.0782 for the default Raspberry Pi
OS and the custom image, respectively.

The second experiment compares the generic kernel on the
source to the real-time one, while running the custom image on
the RPI4. More specifically, the source use the generic kernel
5.6.19-generic7. For real-time kernel, it loads a patched version
of the same kernel, that is its patched PREEMPT RT version
5.6.19-rt118. At the time of our measurements, kernel version
5.6.19 was the latest stable kernel (with real-time version)
compatible with Ubuntu 20.04 LTS. Figure 2b shows the RTT
PDF per payload for different kernels running on the source.
The RTT timings are more consistent (higher peaks) when
using the PREEMPT RT kernel for all payloads (except for
6800 bytes) with similar median coefficients of variability for
all payloads.

In both experiments, using the PREEMPT RT kernel pro-
vides the most consistent measurements with the lowest delay
variations. This matches our goal of minimising delay vari-
ations in our measurements. The RT OS provides the most
deterministic measurements, but not always the lowest RTTs.
This is consistent with [23], stating that real-time provides
guarantees, not low speed. Previous studies show that real-time
kernel comes at the cost of performance degradation [24], [25].
In addition, PREEMPT_RT adds a typical jitter of 50µs on x86
architecture and is recommended for audio and media [26].

B. Detecting changes on the path

After configuring our measurement setup to provide stable
delay estimates, we collect end-to-end delay measurements
and continuously compare their distributions to flag statis-
tically significant changes. These changes can point to the
presence of an alien layer 2 device or a path change. To
this end, we employ the two-sided Kolmogorov–Smirnov (KS)
statistical test, for comparing samples [27]. Although compar-
ing percentiles of RTT samples seems easier, it requires the

7https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.6.19.tar.gz
8https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.6/patch-5.6.

19-rt11.patch.gz

https://prima.svn.beanstalkapp.com/osd/trunk/
https://github.com/agherzan/meta-raspberrypi/archive/zeus.zip
https://github.com/simula/deterministic-rtt
 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.6.19.tar.gz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.6/patch-5.6.19-rt11.patch.gz
https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/5.6/patch-5.6.19-rt11.patch.gz
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Fig. 2: RTTs distribution based on kernel/OS. On the source, we compared the Generic and the RT kernel of the same OS.
On the target (RPI), we compared the default Raspbian against our custom image (with RT kernel). In both cases, custom
image and RT Linux provide more consistent RTTs. For optimising for deterministic delays in the measurement equipment,
we use a custom image on the target (RPI) and RT Linux on the source, for the rest of the measurements.

introduction of variable thresholds from a scenario to another.
KS measures the distance between the sample distribution
and a baseline distribution at a certain confidence level,
whether the two samples come from different distributions.
The test assumes that the two distributions are identical (null
hypothesis). To accept or reject this null hypothesis, we use
a range of levels of significance or thresholds: 0.01 (1%) to
0.1 (10%) which include the common 5%. We reject the null
hypothesis, if the test p-value is below the threshold, that is the
distance between the two distributions can not be attributed to
random variations. Since this is a binary classification (accept
or reject), it is possible to reduce the results, when running
the test multiple times, to a confusion matrix.9

Definition 1: The confusion matrix is composed of two
dimensions: actual and predicted. actual is our ground truth
about the state of the path, which can be same (i.e. no path
change) or different (i.e. a layer-2 switch is inserted or there
is a reroute). predicted is the result of comparison between
two distributions. Positive implies that a change is detected.
A True Positive (TP) is recorded if actual is different and also
the predicted shows a different path. If the actual is same and
the predicted shows different, the result is a False Positive
(FP). False Negative (FN) occurs when the actual is different
and the predicted shows the same path. True Negative (TN)
means that the actual path is the same and the predicted is
also the same.

We use the full RTTs distribution collected per payload and
per path as an input to the KS when comparing different paths.
For same path comparisons, we randomly split the dataset into
two subsets 1000 times and compute the KS per random split.

For both different and same paths, the p-value is evaluated
according to the thresholds and we compute the ratio of
TP, TN, FP and FN. Accordingly, one can set thresholds
for the TP and TN rates to infer path changes and no path
changes, respectively. In this sequel, instead of picking such
a threshold, we show the ratios. This approach works very
well, when comparing different paths, in the lab and on the
campus network but the ratio of False Negative (different

9We use the python scipy package implementation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks 2samp.html.

actual and same predicted) increases with the noise level
(i.e. cross traffic). We discussed cross traffic impact on False
Negative vs. False Positive in section VI. The added queuing
delay then becomes a major contributor to the overall roundtrip
delay. One way to minimise FN results, is to consider only
packets that experience minimum delay, which we call lucky
packets.

Definition 2: A lucky packet is a packet forwarded through
a network path without being subject to queuing delays caused
by contention with other packets. In a busy network, the lucky
packets are expected to have the lowest RTTs.

To identify the appropriate percentage of lucky packets to
minimise FN results in busy networks, we tried several ratios
of lowest RTTs (10% to 90%) with regard to the expected
results: True Negative for identical path subset and True
Positive for different paths.

We used paths with cross traffic (ISP) and paths without
cross traffic (lab). In both cases, we compared direct and
switch as in Figure 3a for the lab and Figure 3d for the ISP. We
noticed that, starting from 50%, the percentage of predicted
True Positives continuously drops for the noisy networks.
Wide area connections carry significant traffic thus our packets
will likely experience added queuing delays. Therefore, we
use the limit of 40% of lucky packets to evaluate identical and
different paths prediction. This ratio of lucky packets can be
adjusted according to network operator traffic profiles.

In summary, our approach involves the following steps.
First, we collect deterministic round trip measurements be-
tween two devices that run real-time Linux, which we place at
the beginning and end of the segment that we are interested in
monitoring. Due to security and network usage policy, we were
not allowed to add our own switch on the campus network
and have only access to the source and the target (RPI). The
campus network is a case where the switch is in the middle of
the network path as in Figure 6. Second, we pick the luckiest
40% packets, in terms of round trip delay, from each test and
compare delay distributions across tests using the KS test.
Lastly, after conducting n measurement rounds, we estimate
the corresponding similarity rates (i.e. our confusion matrix),
which we use to infer changes on the path.
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Fig. 3: Measurement trials. Two main setup: a) lab trial, field
trials with b) campus network trial, c) research and education
network trial and d) ISP trial. Each router represents a layer-3
hop.

TABLE I: Source and target

Source Target
Hardware Dell PowerEdge R340 Raspberry PI 4 (4G)
OS Ubuntu 20.04.2 LTS OSD Linux 1.0
Kernel 5.6.19-rt11 4.19.71-rt24
Tool ping (iputils s20190709) NA
Priority 90 (SCHED_RR) NA

V. EVALUATION

Next, we evaluate the viability of using accurate end-to-end
delay measurements for detecting insertions of a single alien
switch or path changes.

A. Measurement setup

In all experiments, we use a Dell Server as a source and
a RPI4 with our custom image as a target (see Table I
for their specifications). Further, we use a widely affordable
and off-the-shelf switch: MikroTik RB1000. The switch is
inserted - on the part of the network under our control - to
emulate the addition of an alien switch. We perform identical
measurements with a Juniper EX3300 resulting in similar
outcomes. Due to space limitation, we show only the results
from the Mikrotik.

We evaluate our approach in four different scenarios, which
we illustrate in Figure 3. These are a) a controlled lab setup,
b) a campus LAN, c) a WAN over the same Research and
Education Network and d) a WAN that crosses two different
ISPs. Cases c) and d) allow us to evaluate the effectiveness
of our approach. Each scenario involves two types of experi-
ments: : α) direct where the RPI4 is directly connected to the
network and β) switch where we add one – under control –
switch on the path between the RPI4 and the source.

All measurements are automated using bash scripts to send
ICMP ECHO_REQUEST with following parameters: a) default
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Fig. 4: Lab direct vs. switch measurements. As expected
the Mikrotik switch adds some delay to the RTTs and the two
distributions are different.

TABLE II: Percentage of False and True outcomes per
experiments in the lab. These results are promising showing
that our approach succeeds in flagging same and different
paths.

Payloads
56 1400 4000 6800 9600

FP TN FP TN FP TN FP TN FP TN
D-D 2 98 3 97 3 97 3 97 3 97
S-S 3 97 3 97 3 97 3 97 3 97

FN TP FN TP FN TP FN TP FN TP
D-S 0 100 0 100 0 100 0 100 0 100

– 1s – ping interval; b) 10 experiments per payload; c) variable
payloads from 56, 1400, 4000, 6800 and 9600 per experiment;
d) 1000 ICMP packets per experiment. In total, we collect
450k RTTs: 100k RTTs from the lab, 150K RTTs from the
campus network, 100k RTTs from the research and education
network and 100k RTTs from the ISP. Finally, we use the
approach we describe in subsection IV-B, with a lucky packet
threshold of 40%, for measuring inference accuracy.

B. Lab Trial

The lab setup represents the simplest case without cross
traffic, since we fully control ongoing traffic. While adding the
switch, fragmented payloads (payloads higher than the MTU)
inflates latency by a maximum of ≈ 50 µs as in Figure 4. This
makes discriminating the two distributions easier, a fact that
is further confirmed by the KS based scoring of accuracy. For
all payload sizes, the p-value is consistently lower than 0.01.
Thus, we reject the null hypothesis that the two distributions
come from the same population.

Table II summarises the scores we obtained from the lab
tests, where we look at two cases: direct connectivity (D) and
connectivity in presence of an alien switch (S). In total, we
have three combinations. First, (D-D), here all comparisons
are expected to yield a 100% match, since the path has not
changed, that is 100% True Negative (TN). Second, (S-S)
which is similar to (D-D) in that we expect 100% TN. Finally,
(D-S), which should yield a 100% TP. The values in the table
indicate we are able to achieve 100% recall as far as the third
combination is concerned. We only mistake 3% of the first two
cases for the third one. These results are promising showing



TABLE III: Percentage of False and True outcomes per
experiments at campus network. Comparing the same exper-
iments subsets show a high ratio of TN. Comparing different
paths provides expected results (TP) except for 3rd and 5th
floors. According to campus network network topology, 5th
and 3rd floor share the same virtual switch.

Payloads
56 1400 4000 6800 9600

FP TN FP TN FP TN FP TN FP TN
3-3 3 97 4 96 3 97 2 98 3 97
4-4 2 98 2 98 2 98 3 97 3 97
5-5 3 97 4 96 2 98 4 96 3 97

FN TP FN TP FN TP FN TP FN TP
4-3 0 100 0 100 0 100 0 100 0 100
4-5 0 100 0 100 0 100 0 100 0 100
5-3 10 90 100 0 50 50 40 60 0 100
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Fig. 5: Campus Network 3rd vs 5th floor. RTTs distribution
appears very similar, but median KS p-value trends differ with
regards to fragmentation.

that our approach succeeds in flagging the insertion of layer-2
devices on the path.

C. Field trial

We focus on three scenarios with an increasing level of
uncertainty due to cross traffic and topology complexity:
campus network, WAN over the same research and education
network and a WAN through two ISPs.

1) Campus Network: Our campus network measurements
are collected from three different floors in the same building.
With this production grade network, we are not allowed to
insert our own switch in the network. We rely on the switching
infrastructure provided by the campus network. The campus
network presents a case where the switch is not - inserted -
at the end of the network path. The ICMP source is located
on the 4th floor and the ICMP target was connected at
different locations: another office on the 4th, 5th and 3rd
floor, respectively. Table III presents the scoring results ratio
for all comparisons. We compare measurements within each
individual floor and across floors. The idea is to detect cases
where the ICMP target was connected to two different floors.
Accordingly, measurements from the same floor should yield
a high TN rate, while measurements from different floors
should yield a high TP rate. The first five cases confirm
this. Comparing the 3rd and 5th floors, however, gives mixed
results.
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Fig. 6: Campus Network simplified diagram. The 3rd and
5th floors are on the same network range while the 4th floor is
on another. All switches are part of the same virtual chassis.

To better understand this, we take a closer look at the
measured RTTs as well as how they compare to each other.
Figure 5 compares the distribution of the luckiest 40% of all
packets for the 3rd and 5th floors and for different payload
sizes. Apart from the payload size of 1400 bytes, we observe
differences between the two distributions albeit very slight.

According to the campus network topology, these two floors
are managed by two different physical Juniper switches that
are combined in a virtual chassis (see Figure 6). The setup is
almost identical, however, using a range of payloads can help
flagging the slight differences. This is especially true when
using payload sizes that are likely to be fragmented.

2) Research and Education Network (REN) : To verify
whether our approach will succeed beyond the relatively
simple cases above, we experiment with wide area paths over
a Research and Education Network (REN). Here, we collect
RTTs between the campus network lab (with the source)
and a remote site (under our control with the target). More
specifically, we have carried out two types of experiments:
direct where the RPI is directly connected to the main switch
at the remote site and switch where an additional switch is
added between the main switch at the remote site and the
RPI. Running traceroute between the two sites shows that
there are seven routers in between. Table IV shows the success
percentage when comparing Direct vs. Direct, Switch vs.
Switch and Direct vs. Switch, respectively. For the first two
cases, we predominantly detect that the compared distributions
are from the same population; that is no network change. For
the third case, we also correctly detect the insertion of the
switch; that is the compared distributions come from different
populations. Hence, we are able to detect the insertion of an
alien device even when the network path is long and involves
several intermediate layer 2 and layer 3 devices.

3) ISP: From the campus network to the remote site, we
rely also on another ISP, ISP A, which peer with the research
and education network at an Internet eXchange Point, which
is depicted by the green cloud in Figure 3d. Note that we have
a link to ISP A terminated at the remote site. This network
path is longer than the Research and Education Network and
is expected to be more noisy.

We run similar measurements as the ones from the Research
and Education Network, comparing the same paths and differ-
ent paths. The first two cases confirm the expected results



TABLE IV: Percentage of False and True outcomes per
experiments from research and education network . High
ratio of expected results for both same and different paths
comparisons.

Payloads
56 1400 4000 6800 9600

FP TN FP TN FP TN FP TN FP TN
D-D 4 96 3 97 2 98 2 98 2 98
S-S 2 98 2 98 2 98 2 98 3 97

FN TP FN TP FN TP FN TP FN TP
D-S 0 100 0 100 0 100 0 100 0 100

TABLE V: Percentage of False and True outcomes per
experiments from ISP. High ratio of expected results for both
same and different paths comparisons.

Payloads
56 1400 4000 6800 9600

FP TN FP TN FP TN FP TN FP TN
D-D 4 96 2 98 3 97 2 98 2 98
S-S 2 98 2 98 2 98 2 98 2 98

FN TP FN TP FN TP FN TP FN TP
D-S 0 100 0 100 0 100 0 100 0 100

from comparing the same path: high ratio of True Negative.
Comparing direct vs. switch yields 100% of True Positive as
expected (Table V). The lucky packets approach minimises as
much as possible RTTs artefacts related to cross traffic and
provides consistent results while comparing the same path or
different paths.

4) Research and Education Network direct vs. ISP Direct:
From our campus network to the remote site, we used two
different paths: the first path goes through the Research and
Education Network and the second goes through ISP A. While
this case can easily be mapped using traceroute, we can
envision a scenario where the whole path is opaque, e.g. using
MPLS, and we only control the end points. This test mimics
such a scenario allowing us to check whether our method
can detect that a different network is used between the same
end points. Figure 7 shows the RTTs distribution from both
paths. As expected, the ISP path with four more routers has
higher RTTs for all payloads. The lucky packets comparison
approach provides 100% of expected True Positive: both paths
are clearly flagged as different for all payloads.

VI. DISCUSSION

ICMP-related artefacts. Our measurement approach may
be vulnerable to ICMP blocking and rate-limiting that some
providers do [28]. However, our methodology can be used
on an internal network while filtering external ICMP requests
from the Internet. Yet, forward and reverse paths asymmetry
can lead to False Positive and limit the accuracy of our
method. But, we assume that both paths are under the operator
control and any unplanned RTTs changes can be considered as
suspicious. In addition, our methodology is using the default
ping interval and commonly accepted payloads. Its impact
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Fig. 7: Research and Education Network direct vs. ISP
direct. ISP path produce higher RTTs and paths are different

on network performance is thus minimal and will likely by-
pass filtering rules which are typically volume/load/frequency
based.
Effects of measurement time. Measurements have been
performed in different time-slots, including rush hours, off-
peak hours, working days and weekends over the span of
several months. These different measurement environments
could significantly impact results from the campus network
to the ISP through the research and education network. To
minimise this impact, we have run each experiment ten times
per payload. Moreover, the automated bash script goes sequen-
tially through the chosen payloads. If the measured network
is heavily congested for a long time, it will affect all our
selected payloads for the current run. Similarly, rush hours
measurement impact is shared across all payloads for the
run. For paths with stable delay profiles, planned cross traffic
will result in False Positives. However, it can lead to False
Negatives for jittery paths. Thus, running measurements in
off-peak hours can increase confidence in the obtained results.
Lucky packets. By using lucky packets, filtering of RTTs
related to network high load/activity is achieved, leaving only
RTTs that faithfully describe an unloaded measured path. This
approach works well when comparing different paths, but
its utility is marginal when comparing the same path. The
repeated random splits helps to minimise corner cases where
lower RTTs from normal traffic are in one data-subset and
higher RTTs from high traffic are in the second data-subset.
Deployment considerations. Our approach runs on com-
modity hardware and does not require specialised equipment.
Moreover, it is suitable for the stationary network of an
operator. To deploy it, one may consider building out a
network of probe pairs to cover network segments of interests.
These segments can cover different locations and can help
to monitor the integrity of the network paths by detecting
unplanned RTTs changes. A practical use of the method may
be to continuously run a series of measurements, e.g. once an
hour, and then compare the delay characteristics of each series.
Clearly, the choice of number of probes presents a trade-off
between setup complexity and ability to narrow down locations
of alien devices.
Multiple alien devices. It is expected that multiple alien
devices on the same path will increase the RTTs latency and
jitter. We can speculate that our approach could help to detect



unplanned RTTs changes, but is limited as far as the evaluation
of the number of inserted alien devices is concerned.
Measured paths. Both source and target used Ethernet ports
and IPv4 addresses. All tested paths used wired links and cov-
ered a range of hops with the longest path having 11 hops as
in Figure 3d. The campus network used Juniper switches with
fiber optical links in the node room and we assumed that other
network operators used similar infrastructure. Intuitively, using
our approach on a shared wireless link will be challenging.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we have developed a method for detecting the
insertion of a switch in the network path from the perspective
of a network operator. The method is based on using com-
modity hardware and the freely available ping tool. The ping
process determinism is first increased. Secondly, we identified
packet sizes suitable for the measurements. Lastly, we filtered
out packets subject to high delay. We have evaluated our
approach in a controlled lab as well as on different networks
that include a campus local area network, wide area path across
a research and education network as well as an end to end
wide area path with two ISPs. Our results have demonstrated
that we are able to reliably detect the insertion of an alien
switch for all tested scenarios. The detection produces binary
outcomes not focusing on identifying the type of switch
inserted. Further work may include network device signature
detection and/or fingerprinting. We also plan to extend our
work by a) examining ping determinism on different real-time
kernels and/or OS and/or network cards; b) looking at other
paths changes detection methods e.g. tracking lucky packets
over time to ease the implementation and reduce overhead;
c) evaluating sensitivity accuracy with different protocols and
multiple alien devices.
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