
1

AI Anomaly Detection for
Cloudified Mobile Core Architectures

Foivos MichelinakisX†, Joan S. Pujol-RoigX‡, Sara MalacarneX∗, Min XieX∗, Thomas DreibholzX†, Sayantini
Majumdar§, Wint Yi Poe§, Georgios Patounas†, Carmen Guerrero¶, Ahmed Elmokashfi†, Vasileios Theodorou∥

∗Telenor Research, Telenor, Norway
¶Universidad Carlos III de Madrid, Spain

∥Intracom Telecom, Greece
†Simula Metropolitan Centre for Digital Engineering, Norway

‡Samsung Electronics R&D Institute, United Kingdom
§Munich Research Center, Huawei Technologies, Germany

Abstract—IT systems monitoring is a crucial process for
managing and orchestrating network resources, allowing network
providers to rapidly detect and react to most impediment causing
network degradation. However, the high growth in size and
complexity of current operational networks (2022) demands new
solutions to process huge amounts of data (including alarms) re-
liably and swiftly. Further, as the network becomes progressively
more virtualized, the hosting of NFV on cloud environments
adds a magnitude of possible bottlenecks outside the control of
the service owners. In this paper, we propose two deep learning
anomaly detection solutions that leverage service exposure and
apply it to automate the detection of service degradation and
root cause discovery in a cloudified mobile network that is
orchestrated by ETSI OSM. A testbed is built to validate these
AI models. The testbed collects monitoring data from the OSM
monitoring module, which is then exposed to the external AI
anomaly detection modules, tuned to identify the anomalies and
the network services causing them. The deep learning solutions
are tested using various artificially induced bottlenecks. The AI
solutions are shown to correctly detect anomalies and identify
the network components involved in the bottlenecks, with certain
limitations in a particular type of bottlenecks. A discussion of the
right monitoring tools to identify concrete bottlenecks is provided.

Index Terms—Anomaly Detection, Autoencoders, Deep Learn-
ing, 5G, AI, Smart Networks, Mobile Networks

I. INTRODUCTION

Identification and rectification of technical problems in mo-
bile networks is a recurring issue faced by Telecom operators
and vendors alike. Presently, with networks facing an architec-
tural paradigm shift to 5G with diverse service demands, the
need to automate the detection of bottlenecks in the network is
even direr, as the failure to identify them on time may severely
degrade Key Performance Indicators (KPIs) or violate Service
Level Agreements (SLAs). Moreover, as manual detection
and diagnostic procedures are error-prone and ineffective,
automating the profiling and correction of anomalies is critical
to handle the complexity of mobile network data. Early works
such as [1], [2] have proposed effective anomaly detection
and diagnostic frameworks to reduce human intervention in
traditional 3G/4G cellular networks, but there is a need to
extend this to the new multi-service, multi-tenant architecture.

XThese authors contributed equally to this paper.

Managed 
Entity

Knowledge

Execute

Plan

Monitor

Analyze

E-Monitor

E-Analyze

Exposure API

in
fo

rm
at

io
nw

orkflow
insight

feedback

action data data

inf
orm

ati
on

in
fo

rm
at

io
n

insight

information

Figure 1: Exposed MAPE-K Model [3]

A group of companies focused on a specific niche, such
as fish farms, eHealth, and smart cities are called vertical
customers. To assure the SLAs that are delivered to vertical
customers, it is critical to monitor, detect, identify, and resolve
the issues causing service degradation. Although Service As-
surance (SA) is inherited in network operations and manage-
ment, it is also tightly related to the customer experience. Thus,
Service Assurance should take into account the angles and
insight of customers. In [3], we proposed an exposed Monitor-
Analyze-Plan-Execute with Knowledge (MAPE-K) closed-
loop model to automate Service Assurance, as depicted in Fig-
ure 1. In this model, network operators formulate an internal
Closed Loop (CL) (green blocks) with their own monitoring,
analyzing, planning, and executing capabilities. Then, based
on the capability exposure model [4], network operators can
expose certain monitoring services to external customers, who
then combine with their external monitoring (E-Monitoring)
tools to produce a more comprehensive view of the E2E
services and provide for their own external analytics (E-
Analyzing). The external insights can be fed back into the
internal CL to enhance the internal Analyzing capabilities and
produce more customer-driven insights. Both Mobile Network
Operators (MNOs) and customers benefit from exposing the
monitoring services: i) the customers get a view into network
performance; ii) the MNOs get the customer’s insight.

Furthermore, operators are experiencing significantly in-
creasing pressure on assuring the service performance for
multiple vertical customers concurrently. The two key ele-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



2

ments of Service Assurance, monitoring and analyzing, are
not adequately scalable in the 5G context with dynamic
network slicing, as it is extremely complex and expensive
to deploy a complete full-stack monitoring framework and
support Service Assurance for all customers. Network slicing
in 5G core networks relies on virtualization technologies in-
cluding Network Function Virtualization (NFV) and Software-
Defined Networking (SDN). The monitoring framework needs
to capture the status and behaviour of different components
and services, both physical and virtual. Moreover, it should
also separate the monitoring data to differentiate between
slices (network Quality-of-Service (QoS)), between vertical
customers consuming the slicing services (vertical QoS),
between the application services of an individual customer
(application QoS), and even between the end-users running the
application services (QoE monitoring). To make monitoring
scalable, differentiation is desired. For example, monitoring
granularity can be differentiated based on the Service As-
surance task and corresponding Artificial Intelligence (AI)
solutions (e.g., low-granular monitoring for anomaly detection
vs. higher-granular monitoring for root cause analysis), which
often leads to different level of QoS guarantees.

Although the use of AI is a promising approach to deal
with network-related tasks like network management and
operations, resource allocation, service orchestration, and as-
surance in 5G networks , it remains an open question where
and how these AI solutions should be integrated within the
5G networks. Vertical-specific AI (e.g., user-experience or
QoE related, special data processing and security) is often
supplied by 3rd parties or the verticals themselves. Thus,
not directly related to network operations and not contained
in the AI framework of 5G. Instead, such AI mechanisms
can be attached to the network management systems as an
enhancement to the network AI framework. These types of
AI models collaborate with the 5G network in the following
way: the 5G network exposes network data to the vertical
AI, whereas the vertical AI provides customer/vertical insight
back into the network to improve network operations and
management.

In this work, we leverage the exposed capabilities of cloudi-
fied infrastructure to deploy external analytics tools to enhance
the network Service Assurance focusing on the components of
the core. Cloudification is a hallmark of 5G, through the use
of NFV and SDN technologies. We use the testbed of [3],
which is based on a cloudified mobile core architecture, and
focus on how we can leverage AI for anomaly detection. To
this end, we propose and evaluate two deep learning anomaly
detection solutions in an expanded set of bottleneck scenarios
and data sources proposed in [3]. We start with a primer on
anomaly detection on network data. Then, we discuss how
the MAPE-K model of service exposure can be adapted to
a mobile network, which allows external customers to access
the monitoring information of their Virtual Network Functions
(VNFs). Next, we build a mobile network testbed, which uses
a virtualized mobile core orchestrated by Open Source MANO
(OSM) [5]. The testbed models an LTE network with an EPC
core, which is typically the mobile core used in contemporary
5G architectures, i.e. 5G Non-Standalone (5G NSA). Since
its components are packaged as VNFs, our solutions can

be applied to any network that utilizes a cloudified mobile
core, such as 5G Standalone (5G SA). OSM, as an open-
source MANO platform, supports VNFs, physical network
function (PNFs), and hybrid network functions (HNF) like
Kubernetes network function (KNF). Its monitoring relies on
both, the built-in OSM MON module and external monitoring
tools. The obtained monitoring data is then exposed to an
external 3rd party AI module, which adopts two deep learning
anomaly detection solutions to ensure a big subset of Service
Assurance requirements is respected. Namely, we identify
network faults and isolate bottleneck locations. The output
of the external AI could be used to send recommendations
back to OSM, resulting in closed-loop automation. Finally,
we test the correctness of our anomaly detection approach by
inducing distinct artificial bottlenecks into the testbed. The
results show how the exposed monitoring data can be used
by the AI module to accurately detect anomalies, not only by
identifying the faulty network components but also by listing
the network metrics causing such anomalies. Thus, providing
an architectural framework and external analytics for root
cause anomaly detection systems.

The remainder of this paper is organized as follows: The
state-of-the-art is presented in Section II. In Section III, we
provide a detailed explanation of the AI anomaly detection
solutions. Section IV presents our testbed and describes the
distinct monitoring data sources and the type of bottlenecks
that are examined to stress the testbed. Section V details the
two AI anomaly detection implementations and gathers the
results obtained using the distinct bottlenecks. A discussion
on the strengths and limitations of our solution is provided
in Section VI and future research directions are given in
Section VII. Finally, conclusions are drawn in Section VIII.

II. RELATED WORK AND BACKGROUND

A. Monitoring and bottleneck identification in 5G networks
Monitoring and identification of bottlenecks is a main theme

in any system that serves users with an expectation of QoS.
There is a significant body of work tackling monitoring and
bottleneck characterization for individual components of 5G
networks, such as traditional mobile networks (e.g. [6]–[8])
and cloud computing infrastructures (e.g. [9]–[14]). Further,
there is work on bottleneck characterization and localization
in virtualized mobile networks focusing solely on the core
network, (e.g. [15]–[17]) or covering only single layers of
the architecture (e.g. optical fault localization in the 5G
vRAN [18]).

Equally important to detecting a bottleneck is the ability
to do so in an efficient manner with advanced monitoring
solutions, aiming to adapt and balance accuracy with moni-
toring overhead costs [19]–[21]. The authors of propose the
monitoring components to be instantiated within each VNF,
making their solution scalable [22]. [23] proposes a dynamic
flow monitoring solution, which adapts the monitoring interval
based on link utilization.

The aforementioned approaches only cover fragments of
what has now become the 5G landscape which brings to-
gether mobile networks, virtualized infrastructure, and cloud
computing. It is becoming clear that a holistic approach
to bottleneck identification and localization is necessary. To

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



3

that end, the authors in [24] instrument a cloudified mobile
network testbed end-to-end and on multiple layers, attempting
to provide a comprehensive approach to bottleneck char-
acterization. As a result, they provide a limited mapping
of various data sources to the examined bottlenecks and a
basic classification technique based on unsupervised methods.
In [25], authors propose a general-purpose anomaly detection
framework targeting micro-services architectures, such as the
typical Service-oriented 5G architectures. They process service
execution logs and spatial service query traces to identify
outliers.

Finally, authors in [26] introduce a blockchain-based ap-
proach for the assurance of SLA between service providers
and consumers in multi-domain network slicing environments.
They employ a MAPE-K closed-loop architecture using cloud
native operational data lakes for the continuous monitoring of
the health and status of exchanged services, combined with
smart contract-based intelligent orchestration mechanisms for
the prediction of SLA violations (i.e. analysis) and their
mitigation (i.e., planning and execution).

B. The role of AI in anomaly detection
The mounting pressure for networks to provide fast and

reliable services has made IT system monitoring a crucial tool
for network operators to manage and orchestrate the network
infrastructure. The gathered data is continuously analyzed
to detect any deviation from what is defined as normal
or expected behavior so that network operators can react
rapidly to minimize any network impact. Traditionally, the
monitoring data analysis was performed by system monitoring
experts who established threshold values based on handmade
models of normal behavior for each evaluated event. If the
measured value exceeds its associated threshold, the system
is considered to not be performing as expected, and thus an
exemption is raised so that the network administrator can take
corresponding actions. Although the threshold-based method
provides a simple and scalable solution to network operation
management, threshold-based criteria is a static solution, i.e.,
thresholds cannot adapt to variable flow patterns. It also makes
the management of dynamic traffic and network equipment
difficult, as network traffic models must be elaborated before-
hand and heuristics are used to determine the threshold values,
which usually end up being sub-optimal.

The idea of distinguishing one set of normal measures from
a set of outliers can be seen as a two-class classification prob-
lem with unbalanced data, i.e., one class (normal behavior) has
more samples than the other (abnormal behavior). To process
and monitor mobile network data, which is usually high
dimensional, several traditional machine learning methods in
the literature have already proven their efficacy. K-nearest
neighbors, clustering techniques such as K-means, or support
vector machines (SVMs) have been employed to classify data
as abnormal [27]. However, typical drawbacks of SVMs are
aligned with the usual disadvantages of classical techniques,
i.e., inability to perform well for large and noisy datasets, not
being too robust to outliers and performance sensitive to the
choice of kernels. One way to cope with large amount of data
and the high feature dimensionality of the samples that is deep
neural networks.

Recent advances in AI models have shown that for complex
high-dimensional, large and noisy datasets, autoencoders are
a reliable choice for anomaly detection. An autoencoder is
a generative unsupervised learning algorithm, usually imple-
mented by a neural network, that consists of an encoder and
a decoder network. The encoder accepts high-dimensional
input features, producing a compressed representation of the
input layer while the decoder reconstructs the compressed
input to the output. The compressed layer encapsulates the
latent features representative to the input dataset. The goal
of the autoencoder is to minimize the reconstruction loss.
It is able to detect anomalies in the data by analyzing the
magnitude of the reconstruction loss, typically comparing the
loss with a predefined threshold. To this end, [28] provides a
solution for anomaly detection using variational autoencoders.
In their work, an autoencoder is trained using the monitored
data, and the reconstruction probability of error is used to
identify the anomalies. Generative adversarial network (GAN)
is another deep learning field that has found application for
anomaly detection. In [29], the authors train a GAN archi-
tecture to generate samples following the distribution of the
provided dataset. GANs are composed of one generative and
one discriminative network, and once the training is finished,
the generative network is discarded while the discriminator
network is used to detect anomalies. Finally, the temporal
correlation between samples has also been used to identify
outliers in multivariate time series analysis. For example,
[30] provides a solution that uses recurrent neural networks
in combination with autoencoders to detect anomalies. Again,
the reconstruction error of the autoencoders is used to flag a
sequence of samples as abnormal.

More recently, these anomaly detection solutions have
been extended into communications networks. In [31],
an autoencoder is trained using Reference Signals Re-
ceived Power (RSRP) and Reference Signals Received Qual-
ity (RSRQ) values to detect cell outages in Self Organizing
Networks. The optimization objective, the reconstruction loss,
is compared with an appropriate decision threshold to predict
a potential cell outage. In [32], a novel anomaly detection
solution for network data is provided, where authors proposed
an autoencoder architecture leveraging two decoders, and
use adversarial training to identify anomalies. Finally, the
work of [33] provides a framework for anomaly detection
aimed to the particularities of network data utilizing redefined
threshold-based criteria.

In this work, a realistic 5G testbed is implemented, that
performs Management and Orchestration (MANO) stack op-
erations, using multi-layer measurements from across the
network. These measurements are then exposed to external
analytics functions, that provide advanced bottleneck detection
methodologies based on AI to accurately identify perfor-
mance bottlenecks. In particular, the proposed AI solutions
leverage deep learning to detect anomalies and identify the
root (network component) cause of them. More precisely,
we provide two solutions that adapt to the particularities of
network data and leverage a combination of the data exposed
by the distinct monitoring tools: denoising autoencoders and
convolutional-based autoencoders. The first approach lever-
ages the generalization benefits of denoising autoencoders for

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



4

anomaly detection, while the second combines convolutional
neural networks, to capture the temporal correlation between
samples and to reduce training time, and autoencoders to
detect anomalies. Once the faulty component is identified by
the external AI module, the loop from monitoring to bottleneck
detection can be closed by triggering countermeasures and
bottleneck resolution. This work showcases a framework for
a comprehensive fault resolution system that could be used in
a real-world network deployment.

III. OUR APPROACH ON A.I. ANOMALY DETECTION IN THE
CONTEXT OF NFV

A. Methodology

The methodology consists of the following parts/steps:
1) preprocessing (extract key messages from Section V.A)
2) application of anomaly detection (extract key messages

from Section V.B)
3) thresholding (extract key messages from Section V.C)
Applying the exposed MAPE-K model to the OSM system

leads to a joint CL with internal and external Monitoring
as shown in Figure 2. The internal CL is composed of
OSM components. OSM is an orchestration system capable
of supporting auto-scaling in an CL way. Its MON Collector
module collects infrastructure metrics from the Virtualized
Infrastructure Manager (VIM) (e.g., OpenStack) like CPU and
memory utilization and Virtual Machine (VM) behavior. The
collected metrics are evaluated by the MON Evaluator module
to produce alarms that trigger scaling. For example, based on
a predefined scaling policy, an alarm is sent on the Kafka bus
to notify other modules that the monitored Virtual Deployment
Unit (VDU) metric(s) have crossed the predefined thresholds.
Next, the Policy Management (POL) module, decides whether
and what scaling action should be taken. The scaling action
is executed by the Life-Cycle Management (LCM) module,
e.g., instantiating a new VDU instance or terminating the
underutilized VDU instance. In other words, the OSM com-
ponents of MON Collector, MON Evaluator, Policy Manager,
and LCM/VCA act as the four stages of the MAPE-K model
of Monitor, Analyze, Plan, and Execute, respectively. In the
sequel, we focus on the first two stages and leave the latter
two as future work. Note that the scaling policies are defined
in the VNF Description (VNFD), which can be regarded as the
knowledge base where knowledge is shared by these MAPE
stage modules. This internal MAPE-K CL is called Internal-
CL.

Since OSM allows exposure of monitoring data to external
parties, e.g., via PROMETHEUS, an external CL can be created
by extending the monitoring to external Monitoring mod-
ules, such as Traffic Monitoring and enhanced Infrastructure
Monitoring (the blocks in orange of Figure 2). In addition,
external AI modules are introduced as External Analyzer
(E-Analyzer) to run customer-driven analytics by taking the
input both from OSM and E-Monitor. The E-Analyzer results
contain customer insight or interest, which are fed back into
the OSM for further actions (e.g., revised VNFD or Day-2
reconfiguration commands). In this way, an external CL is built
up on top of the internal CL as an enhancement. Specifically,
the external CL reuses the OSM Policy Manager and LCM for

Plan and Execute, respectively. E-Monitor is jointly realized
by Traffic Monitoring and Infra Monitoring modules and E-
Analyzer is offered by 3rd party suppliers and receives data
from both OSM-internal MON Collector (via Prometheus) and
E-Monitor.

Although both external and internal CL produce insights for
further assurance actions, there is only one Planning stage, i.e.,
the OSM Policy Manager. If the internal and external insights
are contradictory, then it is up to the OSM Policy Manager
that mediates and makes the final decision to be executed.

B. Anomaly detection in network data

This subsection formally introduces the problem the exter-
nal analytics function aims to solve, and then describes the
distinct AI solutions employed to solve it.

1) Problem formulation: The goal of the architecture de-
scribed in this work is the collection of the network-related
data obtained from the different monitoring sources of the
testbed, which will be presented in detail in Section IV-B.
These samples are then exposed to external analytics func-
tion using the close-loop automation architecture described
in Section IV-A. The goal of the external analytics function
leveraged in this work is to implement an AI solution that
identifies whether a monitoring sample x ∈ Rn belongs to a
learned distribution Din. When a sample is found to belong
to a learned distribution, it is referred to as “in-distribution”
or normal sample, and otherwise it is said to be an anomaly
or belonging to Dout. Generally, it is difficult to know the
distribution of outliers, Dout, that one will encounter, thus,
we assume that Dout is unknown. Given a binary variable
y ∈ {0, 1}, the goal of the AI solution is to map each sample
x(i) to the label yi = f

(
x(i)

)
, where y = 1 translates to

anomaly and y = 0 to an in-distribution sample.
Furthermore, instead of assessing each sample individually,

the anomaly detection solution can also exploit the tempo-
ral correlation between data samples. Thus, now instead of
treating each sample individually, we can treat the problem as
a multivariate time-series analysis. To model the dependence
between each current sample and previous ones, we define the
sequence of data points wt, as a sequence of points Xi for a
time window of length K at given time t, as follows:

wt = {xt−K ,xt−K+1, . . . ,xt}. (1)

In a similar fashion as before, the goal of the AI solution is to
map each wt to a label yt, i.e., learning the mapping function
f that gives yt = f (wt).

2) Anomaly detection using autoencoders: An autoencoder
is a type of neural network trained in an unsupervised way, that
attempts to learn efficient data codings [34]. The autoencoder
aims to learn a representation (latent distribution) from a set
of data points, using dimensionality reduction. To this end, an
autoencoder is composed of two parts:

• Encoder: This component aims to learn an encoding
function fθ to map the input data x ∈ Rn to a latent
representation of the input data c = fθ (x) ∈ Rm,
m ≤ n.

• Decoder: takes as input the latent variable from the
encoder c, and aims to learn a reconstruction function

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



5

OSM

VIM 

MON 
Evaluator

Policy 
Manager VNFD

MON 
Collector

LCM/VCA

VNF
Data 

VIM
Data 

Scaling 
Metrics Alarm 

Scaling 
request

Scaling

Instantiation
NFVI 

VNFs

MME

HSS

SPGW-C

SPGW-U

Prometheus

E-Analyzer

Data 

Data 

Metrics Metrics Insight 

Traffic 
monitoring

infra 
monitoring

Internal CL

External CL

Figure 2: Architecture of joint internal and external CL based on OSM [3]

g
θ
′ to obtain a representation x̃ = g

θ
′ (c) as close as

possible to the original input data x of the encoder.

In our case, both the encoder (θ) and decoder (θ′) are
parametrized using deep neural networks. The parameters of
both networks can be optimized by minimizing the average
reconstruction error in the training phase as follows:

θ∗, θ′
∗
= argmin

θ,θ
′

1

N

N∑
i=0

L
(
x(i) − g

θ
′
(
fθ

(
x(i)

)))
, (2)

where L is a loss function such as means square error, L1-
norm, cross-entropy, etc, and N is the batch size. As autoen-
coders are feedforward neural networks, stochastic gradient
descent solutions can be used to obtain the network optimal
parameters θ∗ and θ′

∗.
Finally, in order to label a sample x as anomaly, we use the

reconstruction error and compare it to a predefined threshold,
lth, whose selection will be explained later. If the loss is below
lth, we assume that the sample belongs to the Din distribution,
otherwise we assume that it came from Dout. The label y
mapping is then given by the following pair-wise function:

yi =

{
0 if L

(
x(i) − gθ′

(
fθ

(
x(i)

)))
≤ lth

1 otherwise.
(3)

For some bottlenecks, it might be useful to have a further
granularity of the loss, i.e., we want to know what features

causes the overall loss function to increase. To this end, we
define the per-feature loss as follows:

Lxj =
1

N

N∑
i=0

L
(
x
(i)
j − g

θ
′
(
fθ

(
x(i)

))
j

)
(4)

where notation xj refers to feature j of vector x.
3) Denoising Autoencoders (DAEs): The problem of opti-

mizing Equation (2) as it is, i.e., without weight bounds, is
that DNNs might have too much capacity so that they learn
the task of copying data to inputs without extracting important
information, this is also referred to as learning a null function.
In order to not reduce our model capacity and restrict it to just
a limited number of parameters, we can use regularization
functions, or, in our case, Denoising Autoencoders (DAEs).

The idea behind DAEs is simple, the initial training data is
partially corrupted by some form of noise added to the input
vector in a stochastic manner. Then, the regular autoencoder
model is trained to predict the original, uncorrupted data point
as its output. The autoencoder is forced to undo this corruption
rather than simply copying their input, avoiding thus, the
overfitting problem. In our case, each data point is corrupted
by white Gaussian noise as:

x′ = x+ z ∼ N
(
0, σ2

)
, (5)

and then the parameters optimization becomes:

θ∗, θ′
∗
= argmin

θ,θ′

1

N

N∑
i=0

L
(
x(i) − gθ′

(
fθ

(
x′(i)

)))
(6)

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



6

4) Convolutional Autoencoders (CAEs): Convolutional
Neural Networks (CNNs) are a deep learning architecture
inspired by the structure of the human visual cortex, [35],
[36]. Two-dimensional CNNs (2D-CNNs) have gained major
success in the field of Computer Vision, for their efficient
way of performing feature learning, i.e. the reduction of
images into a form which is easier to process, without losing
features or degrading performance. Moreover, CNNs have
been extensively adopted because of their scalability to large
datasets since the number of parameters required is constant,
contrasting with classical feed forward networks, where the
number of parameters scale exponentially with the number of
features. For 1D signals, that is, time series, 1D-CNNs have
recently been proposed and immediately achieved the state-
of-the-art performance levels in several applications,including
anomaly/fault detection (see [37] for a survey). The advan-
tage of adopting 1D-CNNs lies in the fact that the model
training is highly efficient in terms of speed that allows real-
time applications [38]–[41]. Similarly to 2D-CNNs, 1D-CNNs
manage to capture important underlying patterns in the time
series data by means of a 1-dimensional filter that slides
along the temporal dimension. Throughout the paper we will
simply refer to autoencoders equipped with one-dimensional
convolutional layers as Convolutional Autoencoders (CAEs).
For CAEs the loss function to be optimized is given by
(Equation 2).

In summary, we provide two solutions that adapt to the
particularities of network data and leverage a combination of
the data exposed by the distinct monitoring tools: denoising
autoencoders and convolutional-based autoencoders. The first
approach leverages the generalization benefits of denoising
autoencoders for anomaly detection, while the second com-
bines convolutional neural networks, to capture the temporal
correlation between samples and to reduce training time, and
autoencoders to detect anomalies. Once the faulty component
is identified by the external AI module, the loop from mon-
itoring to bottleneck detection could be closed by triggering
distinct predefined policies for bottleneck resolution.

IV. EXPERIMENTS

A. Testbed
We apply the above concept to our testbed setup illustrated

in Figure 3. The Enhanced Packet Core (EPC) of the testbed
is realised as VNF by the SIMULAMET OpenAirInterface
(OAI) VNF [42]–[45]. It uses the EPC implementation of
OPENAIRINTERFACE [46] implementing a cloudified mobile
core architecture. The testbed uses LTE components, but our
approach may be generalised to any network relying on a
cloudified mobile core architecture, such as 5G SA. The
VNF is instantiated as Network Service (NS) in OSM, the
orchestration platform from ETSI. In our case, the VIM
that manages and controls the hardware and virtualization
resources in the Network Function Virtualization Infrastructure
(NFVI) is OPENSTACK [47], [48]. It instantiates the VDUs as
VMs. In this implementation, each VNF consists of exactly 1
VDU running in a dedicated VM. The EPC consists of 4 VDUs
whose details are described in [43]:

1) The Home Subscriber Server (HSS) is the central
database containing the information about users and

their subscriptions. The HSS functionalities include mo-
bility management, session establishment, user authen-
tication and access authorisation. It provides its service
to the MME via the S6a interface.

2) The Mobility Management Entity (MME) handles the
procedures of attaching and detaching as well as service
requests of User Equipment (UE) and Evolved Node Bs
(eNodeBs). It communicates with eNodeBs over the S1-
C interface, with SPGW-C over the S11 interface, and
with HSS over the S6a interface.

3) The Control Plane of the Serving and Packet Data
Network Gateway (SPGW-C) provides the control part
of a Serving Gateway (SGW) and Packet Data Net-
work Gateway (PGW). That is, OAI combines SGW
and PGW, but uses Control and User Plane Separa-
tion (CUPS). The SPGW-C handles control requests
from the MME via the S11 interface, and communi-
cation with the SPGW-U via the SXab interface.

4) The User Plane of the Serving and Packet Data Network
Gateway (SPGW-U) handles the forwarding of user
traffic between the Public Data Network (PDN) at the
SGi interface (i.e. usually the public Internet) and the
eNodeB over the S1-U interface. User traffic between
eNodeB and SPGW-U is tunnelled via GPRS Tunnelling
Protocol (GTP). The setup of user traffic tunnels is
controlled by the SPGW-C over the SXab interface.

The UE is a regular PC, running UBUNTU 20.04 LTS
“Focal Fossa”, equipped with a HUAWEI E392 4G USB
modem. NETPERFMETER [49, Section 6.3] [50], [51] is
used for generating various traffic flows (TCP and/or UDP)
between the UE and a peer server in the Internet running
UBUNTU 18.04 LTS “Bionic Beaver”. Another regular PC,
running UBUNTU 18.04 LTS “Bionic Beaver”, is used to
emulate the eNodeB. It is running the eNodeB software from
OAI, stable version 1.2.2. As Software-Defined Radio (SDR)
board, an ETTUS B210 connected via USB 3.1 is engaged.
Various traffic flows, TCP and/or UDP, are generated between
the UE PC and the server.

B. Monitoring Data Sources
We monitor the health of the system and traffic using

a variety of tools placed at every component as shown in
Figure 3. Table I provides a sample of the collected metrics.
Our monitoring tools generate a few hundred metrics, but in
the sequel, we deep dive only in the metrics that proved to be
meaningful indicators of performance degradation and only in
the components that are affected. It is possible a bottleneck
introduced in one component to be invisible in its monitoring
data, but manifest in the data of another component. For
example, packet loss at a transmitter is detected more easily
at the recipient of the traffic. We now present our data sources
in hierarchical ordered based on their granularity and resource
consumption:

a) OSM metrics: The highest level of data sources is
OSM-provided information. We use the default OSM metrics
collected by the MON Collector, which are stored in a
Prometheus Time-Series DB with a granularity of 1 s [52]. The
DB is exposed through a REST API to external consumers.
The exact variables tracked by the MON Collector vary,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



7

Figure 3: The Testbed Setup with EPC, OSM, NFVI, Packet Captures and QoS Rules

Table I: An example subset of the Monitored Metrics.

Type Metric Collection Place Description
OSM Metric Uptime Every EPC VDU Uptime of the VDU
OSM Metric CPU Processes Every EPC VDU Number of processes
OSM Metric CPU Load, current Every EPC VDU CPU load (%), current
OSM Metric CPU Load, 1/5/15 min Every EPC VDU CPU load (%), over 1/5/15 min
OSM Metric Memory Usage Every EPC VDU Memory usage (%)
OSM Metric Swap Usage Every EPC VDU Swap usage (%)
OSM Metric Disk Usage Every EPC VDU Disk usage for / partition (%)
OSM Metric Network Every EPC VDU Bytes/packets in/out, per EPC interface
SYSSTAT Metric CPU Every EPC VDU, eNodeB, UE, Server Detailed CPU usage
SYSSTAT Metric Memory Every EPC VDU, eNodeB, UE, Server Detailed memory usage
SYSSTAT Metric Swap Every EPC VDU, eNodeB, UE, Server Detailed swap usage
SYSSTAT Metric Disk Every EPC VDU, eNodeB, UE, Server Detailed disk usage
Packet Capture Metric Packets Every EPC VDU, eNodeB, UE, Server Packet capture for each interface
HIPERCONTRACER Metric Ping UE RTT between UE and server

depending on the VDU and among others, including average
CPU load, aggregated across all cores, over the past 1, 5, and
15 minutes and incoming and outgoing packets and bytes per
interface, as exposed to OSM (e.g. S11). The data comes from
two sources: NFVI metrics via OPENSTACK telemetry and
customized performance metrics via JUJU charms in OSM,
set up in KUBERNETES and running in a container of the
corresponding machine hosting OSM.

b) SYSSTAT metrics: Each VDU runs inside its own
VM. We use the system performance monitoring tool SYS-
STAT [53] in each VM of the EPC core to collect information
regarding its health. SYSSTAT’s sampling frequency is 1 s, as
for OSM, but it can collect much more detailed statistics. For
example, we are able to monitor CPU load per core and the
load metrics are further divided by the process type, such as
user and high-priority system processes and the network traffic
statistics are provided on a per-interface level. In consequence,
this leads to higher resource requirements for processing and
data storage.

c) Packet capture (traffic monitoring): We perform
packet capture through tcpdump on all the interfaces of the
EPC, the client UE, and the server the UE communicates with.
This is to a large extent the most demanding data source we
have available, enabling us to monitor traffic at the packet
level. We are able to track packets as they enter and exit a
VDU, which can be used to estimate the packet processing
delay and also check if a packet exiting a VDU arrives at the
corresponding VDU of at the other side of the link, which can
be used to estimate packet loss. In our experiments, we capture
all the traffic, but in practice, the traffic would be filtered.
Therefore, only a small selection of flows would have all their
traffic monitored. In future iterations of the testbed we consider
using a specialized tool, such as PPTmon [54], designed to
monitor VNF traffic at a much lower cost compared to packet
captures.

Finally, we can track end-to-end Application Layer statistics
such as end-to-end throughput and delay through two tools
running at the connection endpoints: the UEs and the server.
1) Our traffic generation tool NETPERFMETER generates data-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



8

B0 Baseline, with no bottleneck. Data used to train ML models
B1 VM resource overload on SPGW-U

B2 0.1% packet loss in traffic crossing SPGW-U
10% packet loss in traffic crossing SPGW-U

B3 2 Mbit/s, 250 ms delay in traffic crossing SPGW-U

B4 2 Mbit/s bandwidth limit in traffic crossing SPGW-U
10 Mbit/s bandwidth limit in traffic crossing SPGW-U

Table II: Summary of the experimental scenarios.

plane TCP/UDP traffic flows emanating from the peer server
(on the Internet) towards the UEs. NETPERFMETER can tag
the generated traffic, both TCP and UDP. Using the tags and
packet captures at each hop, various metrics – like individual
link/host delay – can be calculated. 2) We also perform
“Ping” measurements through HIPERCONTRACER [55]: every
250 ms, the UE sends an ICMP Echo Request to the server,
which is answered by an ICMP Echo Reply. It collects the
Round-Trip Time (RTT), i.e. the time span between request
and reply, to measure the network latency experienced by the
user.

C. Bottlenecks
Before training the Machine Learning (ML) models, we

need to have a clear picture of what normal behaviour is.
To this end, we define a baseline scenario B0, meant to
reflect the operation of the network under “normal” conditions.
We generate several TCP and UDP flows between the client
UE and its peer server on the Internet, which start and stop
randomly. We do not introduce any artificial load or adjust
network characteristics. Instead, the traffic flows in the setup
without any disturbance for 2 h. The dataset of this scenario
is the input of the models discussed in the sequel.

Next, we examine several different bottlenecks that may
manifest in a mobile network, which are grouped into experi-
ment scenarios. Experiment scenarios B1, B2, and B3 consist
of three phases bottlenecks, each phase lasting 300 seconds. In
the first phase (t ∈ [0, 300] sec), the testbed runs in its normal
configuration. During the subsequent phase (t ∈ [300, 600]sec)
we artificially introduce the respective bottleneck. The normal
configuration is restored in the final phase (t ∈ [600, 900]
sec) such that the network is allowed to recover. Table II
summarizes all the experimental scenarios.

Unless otherwise noted, each experiment initiates two
“user” flows between the UE and the server in the Internet:

1) TCP flow: A saturated flow of payload data from server
to UE (i.e. a download scenario).

2) UDP flow: A bidirectional flow of payload data between
server and UE, with an average of 1 Mbit/s of payload
data in each direction (50 frames/s constant, average
of 2500 Bytes/frame with negative exponential distri-
bution).

Both flows are generated by NETPERFMETER.
For bottleneck scenario B1, we are interested in testing

VM resource overload. This is a typical scenario in cloudified
environments where a co-tenant VM hosted on the same
physical server might monopolize a resource, such as CPU,
bandwidth, memory, or disk I/O. For this purpose, we pro-
vision the VM running the SPGW-U with 4 CPU cores and
3 GiB of memory. We test this scenario by running a Linux

0 200 400 600 800
Time [sec]

2.5

5.0

7.5

10.0

Bi
tr

at
e 

[M
bp

s]

UDP
TCP

Figure 4: Bitrate of incoming traffic to the UE during a B1
scenario. The vertical lines indicate the time period when the
bottleneck was active.

stress tool, called STRESS [56], inside the VM hosting the
SPGW-U and impose workload on its CPU, memory and disk
I/O resources. More specifically, we spawn 4 workers doing
heavy CPU computations, 4 workers doing file operations, and
4 workers each consuming 256 MiB of memory (i.e. 1 GiB in
total) while continuously doing memory operations. We keep
track of these metrics through PROMETHEUS and SYSSTAT.
Further, heavy bottlenecks of this kind could be indirectly
detected in the packet capture level. Figure 4 shows the effect
of the B1 bottleneck as noticed by the user. The average bitrate
of TCP drops by more than 10%, while the UDP traffic is
not much affected. Other scenarios involving packet loss have
more drastic effects on user traffic, especially TCP.

In bottleneck scenario B2, we explore two packet loss
scenarios, where we simultaneously drop packets at the egress
direction of the SPGW-U interfaces facing the SGi and S1-
U links. These two links make up the user-plane traffic
pathway from the Internet to the UE and are susceptible to
packet loss due to the large and unpredictable volumes of
data that they serve, as well as the complexities of mobile
network handovers. To this end, the first scenario represents
a faulty network interface that corrupts a big number of
packets. To emulate loss, we utilize the NETEM [57] queuing
discipline on the SPGW-U, where we set it to drop either 0.1%
(cable insulation) or 10% (faulty interface) of the outgoing
packets in each direction (i.e. towards the Internet as well as
towards the eNodeB; see Figure 2). Another possible cause
of packet loss is hardware problems. As a result, the second
packet loss scenario represents faulty cable insulation, which
due to interference corrupts a small number of packets. We
expect packet loss to be captured by metrics gathered through
PROMETHEUS and SYSSTAT as well as packet analysis.

Mobile backhaul, the transport network connecting the
mobile core and the Radio Access Network (RAN), may
lose connectivity over the default path. In such cases, the
network switches to a backup path, which may be significantly
under-provisioned to handle the typical mobile user traffic. In
bottleneck scenario B3, we assume that the network switches
its backhaul to a satellite-like link. Therefore, we account for
the presence of low-capacity links such as those provided by
satellite networks. We combine a Hierarchical Token Bucket
filter (HTB) with NETEM in the SPGW-U to restrict the
network capacity to 2 Mbit/s (by HTB) as well as to apply
a one-way delay of 250 ms (by NETEM). As with B2, the
applied QoS characteristics are symmetric, i.e. the same for
both directions.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



9

Finally, in bottleneck scenario B4, we experiment with
different link bandwidth limits, while saturating the network.
B4 deviates from the rest of the bottleneck scenarios as the
total duration of the experiments is 300 seconds and the
bottleneck is always present. We use the same bidirectional
1 Mbit/s UDP flow, described above and in addition perform
a TCP download, a TCP upload, or a bidirectional TCP traffic.
The bandwidth limits are set on the outgoing traffic of SPGW-
U and are 2 and 10 Mbit/s. It should be noted that due to the
limitations of OAI, the maximum traffic that can be transmitted
to the mobile user under normal conditions is approximately
12 Mbit/s.

V. ANALYTICS

In this section we provide the results obtained from running
the different anomaly detection autoencoder-based solutions
explained in Subsection III-B for the bottlenecks described
in Subsection IV-C. It must be noted that classical machine
learning models, such as the ARMA solution of [3], sup-
port vector machines, principal component analysis, Gaussian
mixture models, and isolation forest have also been tried, but
the performance was found to be consistently below the deep
architectures’ and thus, these results have not been included
in the analysis.

A. Data Preprocessing
An anomaly detection model is trained on each network

component independently, i.e. MME, HSS, SPGW-U and
SPGW-C (see Subsection IV-A for details), for both SYS-
STAT and OSM monitoring datasets. The models performing
anomaly detection are self-supervised, that is, they are trained
on data not containing abnormal samples (baseline scenario
B0) and are tested on each experiment with bottleneck. The
B0 baseline experiment data is split into two, training and
validation, consisting of 80% and 20% of the total data,
respectively. Models reporting the lowest loss in the validation
dataset are stored and used to obtain the results provided in
this subsection. All data is normalized between 0 and 1 using
MinMax scaler before being fed into the model. While the
OSM dataset contains only 14 features, SYSSTAT data has
more than 100, and thus, requires feature selection which is
based on variance, i.e., measures that are constant throughout
the whole experiment are discarded. Both the models outlined
below are trained using the mean square error (MSE) as loss
function, and ADAM optimizer for stochastic gradient descent.

B. Models
1) DAE: During the training phase, each sample is cor-

rupted with additive white Gaussian noise of N (0, 0.1) fol-
lowing Equation (5). The encoder inputs are processed by
three fully connected layers consisting of 64, 32, and 16
neurons units, respectively. At the decoder, the dimensionality
reduction process is reverted, so each encoded sample c is
processed by three fully connected layers of size, 16, 32, and
64. Each fully connected layer is followed by a rectified linear
unit (ReLU) activation function with a negative slope 10−2,
except for the last layer of decoder where a Sigmoid function
is used. A learning rate of lr = 1e−3 and weight decay of
wd = 1e−5 is deployed over a total of 250 episodes.

0 200 400 600 800
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

 lo
ad

Original
Reconstructed

Figure 5: Anomaly detection using CAE for bottleneck sce-
nario B1 at SPGW-U. Total CPU load metric, reported by
OSM. Green indicates window anomalies.

2) CAE: The model is fed with data collected in batches
of 60 consecutive samples each, and trained over a total of
50 epochs, after which it reaches convergence. The encoder’s
architecture for SYSSTAT (OSM) data consists of three 1D-
convolutional layers with filter size 3, stride 1 and padding
3, each followed by a rectified linear unit of slope 0.2, and
dropout of 0.2, to avoid over-fitting. The last layer of the
encoder is given by a normalization layer, using IterNorm [58].
The decoder is a mirrored version of the encoder, except for
the absence of the normalization layer. A learning rate of 1e−3
has been used.

C. Thresholding
One of the main challenges when tuning the hyper parame-

ters associated with anomaly detection solutions is the choice
of the threshold lth that will trigger a sample to be classified
as an anomaly. Thresholds are chosen based on percentiles
of the validation loss distribution, for both the total and the
per-feature loss (Equation 4). We will call these total and per-
feature thresholds. The former approach allows to easily infer
whether some network component is behaving abnormally,
while the latter permits to look into each counter and map
the anomaly to a specific metric. In order to dampen spikes
in errors, to improve accuracy and reduce false positives,
smoothing of the validation loss is commonly adopted, before
looking at the distribution and setting the threshold, [59].
Thresholds obtained from the smoothed validation loss (total
or per-feature) will be called smoothed thresholds. For both ap-
proaches, once the error distribution for the validation dataset
is obtained, the error corresponding to the 95th percentile is
chosen to be the threshold lth parameter. Once the threshold
is set, samples that show a reconstruction error above lth
are labelled as anomalies. Furthermore, depending on whether
models classify each sample individually or in a time-frame
manner, we will refer to the detected anomalies as timestamp
anomalies and window anomalies respectively.

D. Experimental results
Results for anomaly detection on the OSM dataset for

both the DAE and the CAE models on all bottlenecks were
not satisfying since for this data source the models are very
sensitive to hyperparameter tuning. This is probably due to

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



10

that most of the reported measures of OSM monitoring source
follow a time series “step-function”. The models struggle to
learn and they do not converge. Thus, OSM monitoring data
was not used for anomaly detection. Figure 5 illustrates how
the CAE model attempts to reconstruct a counter from OSM
dataset for bottleneck B1, failing to individuate the correct
anomaly region as described in the corresponding bottleneck
scenario.

1) Bottleneck B1: Both the DAE and the CAE can detect
anomalies in SYSSTAT data for bottleneck B1 happening at
SPGW-U between t ∈ [300, 600]s, while no anomalies are
reported in any other timestamp outside of that time frame,
or in any other network component. Results for the DAE are
shown in Figure 6. These plots illustrate how, based on the
total threshold, the DAE solution detects timestamp anomalies
happening at SPGW-U between t ∈ [300, 600]s, while no
anomalies are reported in any other time outside that time
frame, or in any other network component. The fact that
the DAE solution works on a per-sample basis, i.e., mapping
each sample individually to either 1 (anomaly) or 0 (normal),
explains the spurious signal seen in Figure 6a. Furthermore,
Figure 6b also shows the reconstructed signal of one of the
metrics reported by the SYSSTAT monitoring tool compared
to the original. In this case, it is a metric tracking the load
of one of the CPU cores: CPU-0. As it can be seen, the
reconstructed metric almost matches the original, showing that,
this particular metric follows the latent distribution learned
by the DAE model. In contrast, Figure 6c shows how the
reconstructed measure of another CPU core: CPU-2 matches
the original signal from time 0 to 300. At 300 a bottleneck
is introduced in the system, and thus the reconstructed and
original signal diverge significantly, causing the model to
identify an anomaly, and being able to identify the root cause
of the anomaly, which is in this case, the CPU-2 measure.
Faced with this anomaly, the network operators could react
by scaling up CPU-2, as the original measure is higher than
the reconstructed. For example they could provision the VNF
with more CPU cores or launch more instances of the VNF to
attempt load balancing. Thus, the DAE not only allow us to
detect an anomaly but also to identify the component causing
it so that infrastructure managers can react accordingly.

Results for CAE are shown in Figure 7, where a per-feature
smoothed threshold has been obtained after smoothing the per-
feature loss by taking the average loss per batch. Anomalies
have been detected for counters connected to the machine
overload, in line with the description for the B1 scenario
reported in Table II. In Figure 7 three counters reported
anomalies. A thorough description of the counters is found
in the documentation file [60]. We conclude that SYSSTAT
level metrics are enough to detect this type of bottleneck and
thus more expensive packet capture metrics are not needed.

2) Bottleneck B2: For experiment B2 no anomaly is de-
tected using the DAE model while anomalies in very few SYS-
STAT metrics are detected by the CAE model at the eNodeB.
Given that the anomalies are not present in most metrics, a
per-feature smoothed threshold was the only successful thresh-
olding technique achieved by CAE. Figure 8 reports the only
metric having an abnormal behaviour throughout the entire
window [300, 600]s where the 10% packet loss occurred. This

metric is “total number of kilobytes transmitted per second”
from the physical interface of the eNodeB facing the EPC core.
It includes traffic from both S1-U and S1-C links. Even though
we can not differentiate the traffic of these two links at this
level, traffic from S1-C is minimal, thus any anomaly should
be attributed to S1-U, the link connecting the eNodeB and
SPGW-U. The bottleneck is inserted at the IP layer and, given
that OSM places its focus on the monitoring of the hardware
of the underlying infrastructure, no OSM monitored metric
presents an abnormal behavior for this concrete bottleneck.
This type of bottleneck exemplifies that complex monitoring
solutions have to be implemented in order to understand the
current state of the network.

In this particular case, this bottleneck is more easily detected
via the Packet Capture (PCAP) files [61]. For our analysis,
we capture the full packet trace, in order to examine the
performance implications on different protocol flows. This
is clearly time- and space-consuming. A real-world operator
deployment would of course only capture the minimal required
information, e.g. certain header fields of (a representative
subset of) flows. In performance-critical environments, this
could even be realised by custom high-performance hardware,
e.g. in a Field Programmable Gate Array (FPGA) based
implementation. However, such details are out of scope for this
article. In the 0.1% packet loss case the effect in UDP traffic
is unnoticeable, but if we monitor the control flow of TCP
we can notice an increase in duplicate ACK packets signaling
a problem and the subsequent drop of bitrate from the TCP
flow. For the 10% packet loss case the effect is noticeable in
both UDP and TCP. The TCP bitrate drops to almost 0 due
to the excessive packet loss. We are also able to notice the
loss if we compare the number of incoming packets per flow
towards the SPGW-U and eNodeB. In case of fragmentation
between these two nodes, counting packets is not sufficient,
and we have to resort to measuring application payload (in
case of UDP) or sequence numbers (in case of TCP). Thus, in
this bottleneck scenario, sampling flows is a costly, but more
trustworthy approach to detect the bottleneck.

3) Bottleneck B3: The results of DAE for bottleneck B3
are shown in Figure 9a, where a small set of anomalies are
detected in the component MME around t = 400. Total
loss thresholding makes the DAE approach fail to detect the
B3 type of anomalies unless they are very steadfast, as is
happening around time 400s, explaining why anomalies for the
entire window [300, 600] were not found. The same reasoning
extend to the CAE model, and the results in Figure 10 show
that, only small subset of few samples deviate from the
expected outcome.

As above, packet captures can reveal the problem at the
expense of higher cost. We may monitor the delay between a
packet arriving at the SPGW-U and eNodeB. A sudden spike
in the delay can not be explained by increased congestion, so
it should be attributed to a link problem, especially if it affects
all the traffic crossing a link. One such example for the TCP
flow is shown in Figure 11.

4) Bottleneck B4: For experiment scenario B4, both the
DAE and CAE solutions are able to detect anomalies hap-
pening at the eNodeB using SYSSTAT monitoring data, for
almost all the duration of the experiment, as described in

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



11

0 200 400 600 800
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
An

om
al

y

(a) Anomaly detection at the SPGW-U.

0 200 400 600 800
Time (s)

0

10

20

30

40

50

60

70

CP
U

 c
or

e 
0 

(%
)

Reconstructed
Original

(b) Reconstruction of the CPU-0 metric.

0 200 400 600 800
Time (s)

0

20

40

60

80

100

CP
U

 c
or

e 
2 

(%
)

Reconstructed
Original

(c) Reconstruction of the CPU-2 metric.

Figure 6: Anomaly detection using DAE for bottleneck scenario B1 at different network components

0 200 400 600 800
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

 c
or

e 
3 

(%
)

Original
Reconstructed

(a) CPU-3 utilization metric.

0 200 400 600 800
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

 c
or

e 
2 

(%
)

Original
Reconstructed

(b) CPU-2 utilization metric.

Figure 7: Anomaly detection using CAE for bottleneck scenario B1 at component SPGW-U for different features. Green
indicates timestamp anomalies.

Section IV-C. Figure 9b shows how this component reports
data samples that are very distinct from the ones learned using
the baseline, resulting in most of the experiment samples being
labelled as abnormal. Figure 12 shows two out of the several
counters that have reported anomalies.

E. Time complexity

Both the models, DAE and CAE, used to perform anomaly
detection are trained offline, that is, sets of historical data are
collected and stored, and the models’ parameters are optimised
using the obtained data. Once the trained models are obtained,
the anomaly detection for testing occurs offline, using data
from the network where an artificial bottleneck is applied.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



12

0 200 400 600 800
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l B
yt

es
 p

er
 s

ec
on

d

Original
Reconstructed

(a) Kilobytes transmitted per second metric.

0 200 400 600 800
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l B
yt

es
 p

er
 s

ec
on

d

Original
Reconstructed

(b) Kilobytes transmitted per second metric.

Figure 8: CAE results for two different experiments in bottleneck scenario B2, for the physical eNodeB interface facing towards
the EPC core. Green indicates window anomalies.

0 200 400 600 800
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y

(a) Anomaly detection for bottleneck B3.

0 50 100 150 200 250 300 350
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
An

om
al

y

(b) Anomaly detection for bottleneck B4.

Figure 9: Results using DAE in bottleneck scenarios B3 and B4 at components MME and eNodeB.

0 200 400 600 800
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

 c
or

e 
0 

(%
)

Original
Reconstructed

(a) CPU-0 utilization measure.

0 100 200 300 400 500 600 700 800
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

 c
or

e 
2 

(%
)

Original
Reconstructed

(b) CPU-2 utilization measure.

Figure 10: Anomaly detection using CAE for bottleneck scenario B3 at MME component. Green indicates timestamp anomalies.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



13

0 200 400 600 800
Time [sec]

0

10000

20000

Ti
m

e 
de

la
y 

[m
s]

Figure 11: Time delay between packets of a TCP flow arriving
at the SPGW-U and at the eNodeB. The vertical lines indicate
the time period when the bottleneck is active.

Nevertheless, the anomaly detection could also happen online,
as the combination of data preprocessing and inference takes
around 15.78 seconds to label 300 data points from the
SYSSTAT as normal/anomaly using an Intel(R) Core(TM) i9-
9820X processor and a 2080TI NVIDIA graphic cards. The
integration between the AI solution and the testbed in a live
environment is one of the future research directions for the
authors of this work.

VI. DISCUSSION AND CHALLENGES

The results of the previous Section show that in order to get
a full overview of the network situation, multiple monitoring
sources have to be analyzed at once as no single source is
able to cover all the complex variables involved in a network
deployment. It must be noted that monitoring comes at a cost,
as resources have to be allocated to gather and store the net-
work metrics, which translates into increased operating costs.
The nature of the bottleneck dictates at which level it may
be detectable and, by extension, how costly the detection will
be. VNF monitoring tools, designed to supervise the overall
health of a VNF, perform well in detecting problems related
to the cloud infrastructure and are in general, a cheap option.
However, bottlenecks affecting traffic are often invisible to
these tools, and therefore, an approach that monitors traffic at
a lower level is necessary. Considering that network telemetry
is very resource-intensive, hence costly, these solutions cannot
be widely deployed in a network and should be aimed at a
small number of network flows. Link problems concern most
flows on the core network and thus, have a greater impact on
TCP, making TCP flows a better sampling candidate. Problems
affecting all flows should be visible in the subset of flows we
sample. Solutions relying on a smart sampling of flows have
been shown to achieve a good balance between resources and
information gathering [62], [63] and as presented in Section II
there is active research on developing solutions offering low-
level network telemetry at reduced cost. Moreover, sampling
random packets may reveal added delay and possibly packet
loss.

The fact that multiple monitoring sources are needed dic-
tates that various anomaly detection solutions must be used to
correctly detect all possible types of anomalies. As we have
shown above, a problem in the SPGW-U might manifest at the
eNodeB level. Furthermore, some problems, such as high CPU
usage, may affect the monitoring components themselves,
impacting the capacity to detect and react to system faults.
For example, a machine that is resource strained can miss

or reorder packets during a packet capture, a problem that
can hide the type of anomaly the network is facing. We
can conclude that a combination of data sources with its
corresponding anomaly detection solution, is the most reliable
way to accurately identify the true nature and location of the
bottlenecks.

In-band network telemetry [64], [65] allows the tracking of
flows behaviour that traverses the network. For example, a P4
programmable switch can add extra headers to the forwarded
packets, in order to indicate to another P4 switch to track the
same flow, enabling the detection of packet loss or delay in the
path between the two P4 switches [66]. In our experiments,
we were able to detect these events in an offline manner,
i.e., capturing the data generated at the different nodes and
computing the delay manually afterward. In future works, we
plan to deploy P4 switches, that will allow us to do part of the
processing in real-time. Similarly, tools such as PPTmon [23],
[54], may provide similar insights on the health of traffic flows
for a significantly reduced processing cost compared to packet
captures.

In this work, we focused on detecting a single bottleneck
at a time, it is expected that a real network deployment
might experience several simultaneous bottlenecks at different
parts of the network [24]. Thus, increasing the complexity
of anomaly detection as each monitoring node might report
anomalies caused by both, its own local fault and the delivered
effects of bottlenecks located at other network components.
A further extension of this analysis consists of investigating
how distributed monitoring and analytics can address these
types of situations. Finally, we only studied bottlenecks located
at the core network. In terms of QoS, bottlenecks could
occur at different segments of the network, but RAN related
problems are very different to what we study and are not easily
detectable by our available tools. In addition, we would need
access to, not easily accessible, vendor-specific logs. Therefore
RAN bottlenecks are out of scope of this study.

VII. FUTURE WORK AND RESEARCH DIRECTIONS

Identifying the bottleneck type and recognizing the bottle-
neck pattern is the first step of root cause analysis, which is the
foundation of closed-loop automation. Once the bottleneck and
potential root causes are identified, the E-Analyzer can send
the information back to the internal Analyzer (see Figure 1),
which then combines the internal analytical results to decide
what actions should be taken to deal with the root causes and
handle the bottleneck. In this way, an external closed loop is
complete, with both internal MAPE stages and external MA
(Monitoring-Analyzing) stages. In the testbed setup (Figure 2),
using the bottleneck identification outcomes, the E-Analyzer
will classify bottlenecks into two classes: compute-resource-
related (e.g., VM overloading) and network-resource-related
(e.g., bandwidth limitation, congestion). The former will be re-
turned to OSM for resource-related handlings, such as scaling
VNFs. The latter needs to be dealt with by other management
systems, like an SDN controller for connectivity management.

In order to automate the closed-loop control, integration is
necessary. In the future, the E-Monitoring and E-Analyzing
modules will be integrated with OSM such that E-Analyzer
outcomes can be fed back to OSM in real-time. OSM is open

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



14

0 50 100 150 200 250 300
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0
CP

U
 c

or
e 

0 
(%

)
Original
Reconstructed

(a) CPU-0 utilization measure.

0 50 100 150 200 250 300
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

 c
or

e 
2 

(%
)

Original
Reconstructed

(b) CPU-2 utilization measure.

Figure 12: Anomaly detection using CAE for bottleneck scenario B4 at the eNodeB for different features. Green indicates
timestamp anomalies.

to integrate with external AI/ML framework and enable more
advanced and predictive analytics from external parties, e.g.,
via AI agents [67].

Furthermore, as we move towards 6G, industry experts [68]
believe that mobile networks will use highly distributed AI,
where edge computing nodes will have their own AI resources
rather than delegating the analytics tasks to a central cloud.
Edge Intelligence (EI), as it is called, may relieve centralized
components from management and monitoring overhead. It
has the potential to significantly reduce the delay of the
MAPE-K feedback loop, allowing for scalability and better
adoption by industrial applications.

VIII. CONCLUSION

To assure the services SLA are delivered to customers, it is
critical for Telecom operators to monitor, detect, identify, and
resolve the issues causing service degradation. In this work, we
leverage the exposed capabilities of 5G networks to deploy ex-
ternal analytic tools to enhance the network Service Assurance.
To do so, a mobile network testbed is implemented, that uses
a virtualized mobile core orchestrated by OSM. Its monitoring
relies on both, the built-in OSM MON module and external
monitoring tools. These measurements are then exposed to
external analytics functions, using an adaptation of the MAPE-
K model of service exposure to mobile networks. The ex-
ternal functions then provide advanced bottleneck detection
methodologies based on AI to accurately identify performance
bottlenecks. In particular, the proposed AI solutions leverage
deep learning to detect anomalies and identify the network
component causing them. The two solutions are based on
state-of-the-art anomaly detection approaches adapted to the
particularities of network data and leverage the data exposed
by the distinct monitoring tools. The first approach leverages
denoising autoencoders, where random noise is added to the
training samples to increase generalization. On the other hand,
the second solution combines convolutional neural networks,
that capture the temporal correlation between samples, and
autoencoders to detect anomalies. Once the faulty component
is identified by the external AI module, the loop from mon-
itoring to bottleneck detection can be closed by triggering
countermeasures and bottleneck resolution. This work aims
to showcase a framework for a comprehensive fault resolution

system that could be fully integrated into a real-world network
deployment. As future work, we plan to additionally exploit
logging mechanisms from deployed softwarized network ser-
vices and explore their effectiveness in identifying faster and
more accurately the root cause of failures.

ACKNOWLEDGMENT

This work has been supported by the European Community
through the 5G-VINNI project (grant no. 815279) within the
H2020-ICT-17-2017 research and innovation program, and by
the Norwegian Research Council through the “ML4ITS –
Machine Learning for Irregular Time Series” project (grant
no. 312062) within the IKTPLUSS Researcher Project –
Transformative Research Project.

REFERENCES

[1] S. Nováczki, “An Improved Anomaly Detection and Diagnosis Frame-
work for Mobile Network Operators,” in Proceedings of the 9th IEEE
International Conference on the Design of Reliable Communication
Networks (DRCN). IEEE, 2013, pp. 234–241.

[2] B. Gajic, S. Nováczki, and S. Mwanje, “An Improved Anomaly Detec-
tion in Mobile Networks by using Incremental Time-Aware Clustering,”
in Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 2015, pp. 1286–1291.

[3] M. Xie, F. Michelinakis, T. Dreibholz, J. S. Pujol-Roig, S. Malacarne,
S. Majumdar, W. Y. Poe, and A. M. Elmokashfi, “An Exposed Closed-
Loop Model for Customer-Driven Service Assurance Automation,” in
Proceedings of the 30th IEEE European Conference on Networks and
Communications (EuCNC), 2021.

[4] 5G-VINNI, “Deliverable D3.1: Specification of Services Delivered by
Each of the 5G-VINNI Facilities,” 2019.

[5] A. Reid, A. González, A. E. Armengol, G. G. de Blas, M. Xie,
P. Grønsund, P. Willis, P. Eardley, and F.-J. R. Salguero, “OSM Scope,
Functionality, Operation and Integration Guidelines,” ETSI, White Paper,
Jun. 2019.

[6] P. Rengaraju, C.-H. Lung, F. R. Yu, and A. Srinivasan, “On QoE
Monitoring and E2E Service Assurance in 4G Wireless Networks,” IEEE
Wireless Communications, vol. 19, no. 4, 2012.

[7] N. Baranasuriya, V. Navda, V. N. Padmanabhan, and S. Gilbert,
“QProbe: Locating the Bottleneck in Cellular Communication,” in
Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies. ACM, 2015, p. 33.

[8] A. P. Iyer, L. E. Li, and I. Stoica, “Automating Diagnosis of Cellular
Radio Access Network Problems,” in Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking. ACM,
2017, pp. 79–87.

[9] J. M. A. Calero and J. G. Aguado, “MonPaaS: An Adaptive Moni-
toring Platform as a Service for Cloud Computing Infrastructures and
Services,” IEEE Transactions on Services Computing, vol. 8, no. 1, pp.
65–78, 2015.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



15

[10] Y. Li et al., “FlowRadar: A Better NetFlow for Data Centers.” in NSDI,
2016, pp. 311–324.

[11] M. Moshref et al., “Trumpet: Timely and Precise Triggers in Data
Centers,” in Proceedings of the ACM SIGCOMM Conference. ACM,
2016, pp. 129–143.

[12] L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “NFV-VITAL: A Frame-
work for Characterizing the Performance of Virtual Network Functions,”
in Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN). IEEE, 2015, pp. 93–99.

[13] P. Naik, D. K. Shaw, and M. Vutukuru, “NFVPerf: Online Performance
Monitoring and Bottleneck Detection for NFV,” in Conference on
Network Function Virtualization and Software Defined Network (NFV-
SDN). IEEE, 2016, pp. 154–160.

[14] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and P. Bahl,
“Detailed Diagnosis in Enterprise Networks,” in Proceedings of the ACM
SIGCOMM 2009 Conference on Data Communication, ser. SIGCOMM
’09. New York, NY, USA: ACM, 2009, pp. 243–254.

[15] A. S. Rajan, S. Gobriel, C. Maciocco, K. B. Ramia, S. Kapury,
A. Singhy, J. Ermanz, V. Gopalakrishnanz, and R. Janaz, “Understanding
the Bottlenecks in Virtualizing Cellular Core Network Functions,” in
nternational Workshop on Local and Metropolitan Area Networks (LAN-
MAN). IEEE, 2015, pp. 1–6.

[16] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and Dimensioning of
a Virtualized MME for 5G Mobile Networks,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 5, pp. 4383–4395, 2017.

[17] M. T. Raza, D. Kim, K.-H. Kim, S. Lu, and M. Gerla, “Rethinking LTE
Network Functions Virtualization,” in 25th International Conference on
Network Protocols (ICNP). IEEE, 2017, pp. 1–10.

[18] A. Giorgetti, K. Kondepu, A. Sgambelluri, D. Melkamu, N. Sambo,
M. Capitani, G. Landi, and L. Valcarenghi, “Demonstration of fault
localisation and recovery of optical connectivity supporting 5G vRAN,”
45th European Conference on Optical Communication (ECOC 2019),
2019.

[19] V. Sciancalepore et al., “z-TORCH: An Automated NFV Orchestration
and Monitoring Solution,” IEEE Transactions on Network and Service
Management, 2018.

[20] A. P. Iyer, L. E. Li, M. Chowdhury, and I. Stoica, “Mitigating the
Latency-Accuracy Trade-off in Mobile Data Analytics Systems,” in
Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, ser. MobiCom ’18. New York, NY, USA:
ACM, 2018, pp. 513–528.

[21] G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, and G. Pavlou, “Self-
Adaptive Decentralized Monitoring in Software-Defined Networks,”
IEEE Transactions on Network and Service Management, vol. 15, no. 4,
pp. 1277–1291, 2018.

[22] M. Mekki, S. Arora, and A. Ksentini, “A Scalable Monitoring Frame-
work for Network Slicing in 5G and Beyond Mobile Networks,” IEEE
Transactions on Network and Service Management, 2021.

[23] B.-H. Oh, S. Vural, and N. Wang, “A Lightweight Scheme of Active-
Port-Aware Monitoring in Software-Defined Networks,” IEEE Transac-
tions on Network and Service Management, vol. 18, no. 3, pp. 2888–
2901, 2021.

[24] G. Patounas, X. Foukas, A. Elmokashfi, and M. K. Marina, “Charac-
terization and Identification of Cloudified Mobile Network Performance
Bottlenecks,” IEEE Transactions on Network and Service Management,
vol. 17, no. 4, pp. 2567–2583, 2020.

[25] Y. Zuo, Y. Wu, G. Min, C. Huang, and K. Pei, “An Intelligent Anomaly
Detection Scheme for Micro-Services Architectures With Temporal and
Spatial Data Analysis,” IEEE Transactions on Cognitive Communica-
tions and Networking, vol. 6, no. 2, pp. 548–561, 2020.

[26] V. Theodorou, A. Lekidis, T. Bozios, K. Meth, A. Fernandez-Fernandez,
J. Taylor, P. Diogo, P. Martins, and R. Behravesh, “Blockchain-based
Zero Touch Service Assurance in Cross-domain Network Slicing,” in
Proceedings of the 30th IEEE European Conference on Networks and
Communications (EuCNC), Porto, Portugal, Jun. 2021.

[27] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier Detection for
Temporal Data: A Survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 9, pp. 2250–2267, 2013.

[28] J. An and S. Cho, “Variational Autoencoder-Based Anomaly Detection
using Reconstruction Probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, 2015.

[29] H. Zenati, M. Romain, C.-S. Foo, B. Lecouat, and V. Chandrasekhar,
“Adversarially Learned Anomaly Detection,” in 2018 IEEE International
conference on data mining (ICDM). IEEE, 2018, pp. 727–736.

[30] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “LSTM-based Encoder-Decoder for Multi-Sensor Anomaly
Detection,” arXiv preprint arXiv:1607.00148, 2016.

[31] P.-C. Lin, “Large-Scale and High-Dimensional Cell Outage Detection in
5G Self-Organizing Networks,” in 2019 Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference (APSIPA
ASC). IEEE, 2019, pp. 8–12.

[32] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: UnSupervised Anomaly Detection on Multivariate Time Se-
ries,” in Proceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, 2020, pp. 3395–3404.

[33] H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting AI/ML
Workflows on O-RAN RIC Platform,” in 2020 IEEE Globecom Work-
shops (GC Wkshps. IEEE, 2020, pp. 1–6.

[34] M. A. Kramer, “Nonlinear Principal Component Analysis using Autoas-
sociative Neural Networks,” AIChE journal, vol. 37, no. 2, pp. 233–243,
1991.

[35] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
and L. Jackel, “Handwritten Digit Recognition with a Back-Propagation
Network,” Advances in Neural Information Processing Systems, vol. 2,
1989.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[37] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. In-
man, “1D Convolutional Neural Networks and Applications: A Survey,”
Mechanical Systems and Signal Processing, vol. 151, p. 107398, 2021.

[38] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ECG
classification by 1-D convolutional neural networks,” IEEE Transactions
on Biomedical Engineering, vol. 63, no. 3, pp. 664–675, 2015.

[39] O. Avci, O. Abdeljaber, S. Kiranyaz, and D. Inman, “Structural damage
detection in real time: implementation of 1D convolutional neural
networks for SHM applications,” in Structural Health Monitoring &
Damage Detection. Springer, 2017, vol. 7, pp. 49–54.

[40] S. Kiranyaz, T. Ince, O. Abdeljaber, O. Avci, and M. Gabbouj, “1-D
Convolutional Neural Networks for Signal Processing Applications,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 8360–8364.

[41] I. Mitiche, A. Nesbitt, S. Conner, P. Boreham, and G. Morison, “1D-
CNN-Based Real-Time Fault Detection System for Power Asset Diag-
nostics,” IET Generation, Transmission & Distribution, vol. 14, no. 24,
pp. 5766–5773, 2020.

[42] T. Dreibholz and A. F. Ocampo, “Managing Tailor-Made Enhanced
Packet Cores for 4G/5G Testbeds in OSM with the SimulaMet Ope-
nAirInterface VNF,” OSM Hackfest, Dec. 2020.

[43] T. Dreibholz, “Flexible 4G/5G Testbed Setup for Mobile Edge Comput-
ing using OpenAirInterface and Open Source MANO,” in Proceedings
of the 2nd International Workshop on Recent Advances for Multi-
Clouds and Mobile Edge Computing (M2EC) in conjunction with the
34th International Conference on Advanced Information Networking
and Applications (AINA), Caserta, Campania/Italy, Apr. 2020, pp. 1143–
1153.

[44] ——, “A 4G/5G Packet Core as VNF with Open Source MANO and
OpenAirInterface,” in Proceedings of the 28th IEEE International Con-
ference on Software, Telecommunications and Computer Networks (Soft-
COM), Hvar, Dalmacija/Croatia, Sep. 2020.

[45] A. F. Ocampo, T. Dreibholz, M.-R. Fida, A. M. Elmokashfi, and
H. Bryhni, “Integrating Cloud-RAN with Packet Core as VNF Using
Open Source MANO and OpenAirInterface,” in Proceedings of the 45th
IEEE Conference on Local Computer Networks (LCN), Sydney, New
South Wales/Australia, Nov. 2020, Demo presentation.

[46] N. Nikaein et al., “OpenAirInterface: A flexible platform for 5G
research,” ACM SIGCOMM CCR, vol. 44, no. 5, pp. 33–38, 2014.

[47] OpenStack, “OpenStack Architecture Design Guide,” https://docs.
openstack.org/arch-design, 2018.

[48] ——, “OpenStack Operations Guide,” https://docs.openstack.org/
operations-guide/, 2019.

[49] T. Dreibholz, “Evaluation and Optimisation of Multi-Path Transport
using the Stream Control Transmission Protocol,” Habilitation Treatise,
University of Duisburg-Essen, Faculty of Economics, Institute for Com-
puter Science and Business Information Systems, Mar. 2012.

[50] ——, “NetPerfMeter: A Network Performance Metering Tool,” http:
//blog.multipath-tcp.org/blog/html/2015/09/07/netperfmeter.html, 2015.

[51] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “Evaluation of
A New Multipath Congestion Control Scheme using the NetPerfMeter
Tool-Chain,” in Proceedings of the 19th IEEE International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),
Hvar, Dalmacija/Croatia, Sep. 2011, pp. 1–6.

[52] A. U. Rehman, R. L. Aguiar, and J. P. Barraca, “Testing Virtual
Network Functions Auto-Scaling using Open-Source Management and
Orchestration,” in 2021 Telecoms Conference (ConfTELE), 2021, pp.
1–6.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

 https://docs.openstack.org/arch-design 
 https://docs.openstack.org/arch-design 
 https://docs.openstack.org/operations-guide/
 https://docs.openstack.org/operations-guide/
http://blog.multipath-tcp.org/blog/html/2015/09/07/netperfmeter.html
http://blog.multipath-tcp.org/blog/html/2015/09/07/netperfmeter.html


16

[53] S. Godard, “Performance Monitoring Tools for Linux,” https://github.
com/sysstat/sysstat, 2018.

[54] N. V. Tu, J.-H. Yoo, and J. W.-K. Hong, “PPTMon: Real-time and
Fine-grained Packet Processing Time Monitoring in Virtual Network
Functions,” IEEE Transactions on Network and Service Management,
2021.

[55] T. Dreibholz, “HiPerConTracer - A Versatile Tool for IP Connectivity
Tracing in Multi-Path Setups,” in Proceedings of the 28th IEEE Inter-
national Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Hvar, Dalmacija/Croatia, Sep. 2020.

[56] A. Waterland, “stress - tool to impose load on and stress test a
computer system,” https://github.com/resurrecting-open-source-projects/
stress, 2021.

[57] Linux Network Developers , “Netem,” https://wiki.linuxfoundation.org/
networking/netem, 2018.

[58] L. Huang, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Iterative Normalization:
Beyond Standardization Towards Efficient Whitening,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4874–4883.

[59] D. T. Shipmon, J. M. Gurevitch, P. M. Piselli, and S. T. Edwards, “Time
Series Anomaly Detection: Detection of Anomalous Drops with Limited
Features and Sparse Examples in Noisy Highly Periodic Data,” arXiv
preprint arXiv:1708.03665, 2017.

[60] S. Godard, “Sar Manual Page,” Aug. 2020.
[61] U. Lamping, R. Sharpe, E. Warnicke, and G. Combs, “Wireshark User’s

Guide,” Apr. 2020.
[62] Cisco, “Cisco IOS NetFlow,” 2021.
[63] K. Bartos, M. Rehak, and V. Krmicek, “Optimizing flow sampling

for network anomaly detection,” in 2011 7th International Wireless
Communications and Mobile Computing Conference, 2011, pp. 1304–
1309.

[64] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li,
“In-Band Network Telemetry: A Survey,” Computer Networks, vol. 186,
p. 107763, 2021.

[65] R. B. Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “Pint: Probabilistic Un-Band N etwork Telemetry,” in Proceed-
ings of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, 2020, pp. 662–680.

[66] F. Paolucci, F. Cugini, P. Castoldi, and T. Osiński, “Enhancing 5G
SDN/NFV Edge with P4 Data Plane Programmability,” IEEE Network,
vol. 35, no. 3, pp. 154–160, 2021.

[67] Francisco Javier Ramon and Subhankar Pal, “The Relation of
ENI Policy Management to Network Intelligence: Relation to
Open Source MANO (OSM),” https://docbox.etsi.org/ISG/ENI/Open/
20200925 Workshop ENI policy, Sep. 2020.

[68] E. Peltonen, M. Bennis, M. Capobianco, M. Debbah, A. Ding, F. Gil-
Casti neira, M. Jurmu, T. Karvonen, M. Kelanti, A. Kliks et al., “6G
White Paper on Edge Intelligence,” arXiv preprint arXiv:2004.14850,
2020.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3203246

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
https://github.com/resurrecting-open-source-projects/stress
https://github.com/resurrecting-open-source-projects/stress
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://docbox.etsi.org/ISG/ENI/Open/20200925_Workshop_ENI_policy
https://docbox.etsi.org/ISG/ENI/Open/20200925_Workshop_ENI_policy

	Introduction
	Related Work and Background
	Monitoring and bottleneck identification in 5G networks
	The role of AI in anomaly detection

	Our approach on A.I. anomaly detection in the context of NFV
	Methodology
	Anomaly detection in network data
	Problem formulation
	Anomaly detection using autoencoders
	Denoising Autoencoders (DAEs)
	Convolutional Autoencoders (CAEs)


	Experiments
	Testbed
	Monitoring Data Sources
	Bottlenecks

	Analytics
	Data Preprocessing
	Models
	DAE
	CAE

	Thresholding
	Experimental results
	Bottleneck B1
	Bottleneck B2
	Bottleneck B3
	Bottleneck B4

	Time complexity

	Discussion and Challenges
	Future Work and Research Directions
	Conclusion
	References

