
Simula Research Laboratory, Technical Report 2016-04 June, 2016

Towards Mutation Analysis for Use Cases
Huihui Zhang

Beihang University
100191 Beijing, China

zhhui@buaa.edu.cn

Tao Yue
Simula Research Laboratory

University of Oslo
1325 Lysaker, Norway

tao@simula.no

Shaukat Ali
Simula Research Laboratory

1325 Lysaker, Norway
shaukat@simula.no

Chao Liu
Beihang University

100191 Beijing, China

chaoliu@buaa.edu.cn

ABSTRACT

Requirements inspection is a well-known method for detecting

defects. Various defect detection techniques for requirements

inspection have been widely applied in practice such as checklist

and defect-based techniques. Use case modeling is a widely

accepted requirements specification method in practice; therefore,

inspecting defects in use case models in a cost-effective manner is

an important challenge. However, there does not exist a systematic

mutation analysis approach for evaluating inspection techniques for

use case models. As the first step towards a fully-fledged mutation

analysis for use case models, in this paper we present the

methodology we followed to systematically derive mutation

operators for use case models. More specifically, we first propose

a defect taxonomy defining 94 defect types, based on the IEEE Std.

830-1998 standard. Second, we systematically applied the basic

guide words of the standardized Hazard and Operability Study

(HAZOP) methodology to define 189 mutation operators, together

with the defect taxonomy. Last, we define a set of guidelines for

devising defect seeding strategies. The proposed methodology was

evaluated by a real world case study and six case studies taken from

the literature. Results show that all the RUCM mutation operators

are feasible to apply and the defect taxonomy is the most

comprehensive one to compare with the literature.

CCS Concepts

• Software and its engineering ➝ Software creation and

management ➝ Requirements analysis.

Keywords

Requirements Inspection; Mutation Analysis; Mutation Operator;

Hazard and Operability Study (HAZOP).

1. INTRODUCTION
Requirements Engineering (RE) is the first and the most critical

stage of a system development lifecycle as requirements guide

downstream activities of a system development, from analysis,

design, implementation all the way to testing and deployment. Use

case modeling has been widely accepted in practice as a way of

specifying requirements [1]. Therefore, ensuring the quality of use

case models in terms of well-known quality metrics (e.g.,

completeness, correctness, and ambiguity [2]) is therefore a

practical challenge to be addressed.

Requirements inspection, a particular application of software

inspection [3] for requirements documents, has been empirically

assessed and widely accepted as an effective technique of early

detection and elimination of defects in requirements [4]. Software

inspection was first introduced in [5]. Since then, various

requirements inspection methods have been proposed. Checklist-

based reading (CBR) techniques (e.g., [4]) relies on a list of

questions guiding a requirements inspector throughout a defined

inspection process. Defect-based reading (DBR) (e.g., [6])

approaches are capable of providing specific instructions to

inspectors on how to detect defects as compared with traditional

checklist techniques. Perspective-based reading methods (PBR)

(e.g., [7]) perform inspection procedures from perspectives of

different stakeholders such as developers and testers. Usage-based

reading (e.g., [8]) is based on prioritized use cases and aims to

identify defects from the perspective of end users. Controversial

evidence regarding the effectiveness of these requirements

inspection methods have been reported in the literature (e.g., [9]).

Being aware of such inconsistent evidence-based conclusions for

evaluating different requirements inspection methods, we do

believe that there is a need to introduce mutation analysis from the

testing field [10] to RE for facilitating the objective evaluation of

the cost-effectiveness of various requirements inspection methods.

Though in the literature, experiments (e.g., [9]) have been reported

for evaluating requirements inspection methods by seeding defects,

it does not exist any systematic mutation analysis in the RE

literature. Mutation analysis (also called mutation testing) is a

technique for evaluating the effectiveness of test suites [10]. The

key element of mutation analysis is mutation operators [11].

Instead of being generic, we, in this paper, concentrate on one

particular use case modeling methodology, named as Restricted

Use Case Modeling (RUCM) [12]. RUCM was initially proposed

to reduce inherent ambiguity of natural language based

specification methodologies by relying on a structured use case

template and a set of restrictions on the use of natural language and

keywords. RUCM and its extensions have been used to address

various industrial challenges such as specifying/modeling

requirements, facilitating the generation of UML analysis models,

specifying test case specifications and generating executable test

cases [13, 14]. RUCM has been also evaluated (via controlled

experiments) to be easy to use [12].

In this paper, we present our initial work towards a full-fledged

mutation analysis mechanism for evaluating RUCM-based

requirements inspection techniques. To the best of our knowledge,

this is the first initiation towards introducing mutation analysis to

use case models. More specifically, we first propose a

comprehensive defect taxonomy by following the IEEE

Recommended Practice for Software Requirements Specifications

(i.e., IEEE Std. 830-1998) [2]. The defect taxonomy defines in total

94 types of defects, which are classified into nine categories (e.g.,

Incompleteness) and applied on all the RUCM elements (e.g., flows

of events). Such a defect taxonomy is necessary because well-

defined defects are the prerequisite for developing and evaluating

an inspection approach for use case models [15, 16]. Moreover, it

is a foundation to systematically propose mutation operators.

Second, based on the defect taxonomy, by following the well-

known and standardized guide words of the Hazard and Operability

Study (HAZOP) [17], we systematically define 189 RUCM

mutation operators, which cover all the RUCM model elements and

all the defects defined in the RUCM defect taxonomy. Last, we

recommend a set of guidelines for researchers and practitioners to

devise defects seeding strategies.

mailto:tao@simula.no
mailto:shaukat@simula.no

Simula Research Laboratory, Technical Report 2016-04 June, 2016

The proposed methodology was evaluated by one real world case

study and six other case studies from the literature. In total 5588

mutants were derived by using all the mutation operators at least

once and covering all the proposed 94 defect types at least once, for

all the seven case studies. Results show that all the RUCM mutation

operators are feasible to apply. In addition, the 5588 mutants were

used to evaluate three coverage criteria for automatically

generating use case scenarios from use case models. Results show

that the derived mutants with the RUCM mutation operators are

effective in terms of differentiating the three coverage criteria.

The rest of this paper is organized as follows. Section 2 introduces

the background, followed by the related work in Section 3. RUCM

mutation analysis is presented in Section 4. In Section 5, we report

the evaluation. We conclude the paper in Section 6.

2. BACKGROUND
In [12], RUCM was proposed to model use cases. RUCM has three

key constructs: UML use case diagrams, RUCM use case template,

26 restriction rules for writing textual use case specifications. The

RUCM template is composed of a set of fields, including use case

name, brief description, pre-condition, dependencies with other use

cases, actors, basic flow and alternative flows. An alternative flow

always depends on a condition occurring in a specific step in a

reference flow, which is either the basic flow or an alternative flow.

Alternative flows are classified into three types: A specific

alternative flow refers to a specific step in the reference flow; A

bounded alternative flow refers to more than one step (consecutive

or not) in a reference flow; A global alternative flow refers to any

step in a reference flow. Figure 1 presents the use case specification

Withdraw Fund borrowed from [18] and re-specified using the

RUCM methodology and editor.

The 26 restriction rules of RUCM has two categories: 16 restriction

rules on the use of natural language and 10 restriction rules in terms

of enforcing the use of keywords for specifying control structures.

These restriction rules reduce opportunities for ambiguities in use

case specifications and help to facilitate the automated generation

of other artifacts such as UML models [19] and test cases [20, 21].

Especially, RUCM defines a set of keywords to specify conditional

logic sentences (IF-THEN-ELSE-ELSEIF-ENDIF), concurrency

sentences (MEANWHILE), condition checking sentences

(VALIDATES THAT), and iteration sentences (DO-UNTIL). As

shown in Figure 1, keyword VALIDATES THAT is used in steps

5-8, which correspond to alternative flows alt 1 and alt 2. The

connections between the basic flow and the alternative flows are

through keyword RFS. For example, RFS 8 in alternative flow alt

1 refers to step 8 of the basic flow. Notice that the keywords are

highlighted with different colors in the RUCM editor.

The Use Case Metamodel (UCMeta) was proposed to formalize

RUCM models for supporting automated analysis and generation

of other artifacts such as UML analysis models [12].

3. RELATED WORK

3.1 Mutation Analysis/Mutation Testing
Mutation analysis, also named as mutation testing and program

mutation was proposed to assess the effectiveness of test cases in

terms of the capability of discovering defects in software programs

[22]. Mutation analysis has been widely applied to source code

written in various programming languages (named as Program

Mutation [10]) such as C [23], Java [24], Ada [25]. Mutation

analysis can also be applied on program specifications, which are

often named as Specification Mutation ([10]). For example, the

authors of [26] applied mutation

analysis to validate finite state

machines. The recent survey was

conducted by Jia and Harman [10],

showing evidence that researchers

focused more on Program

Mutation than Specification

Mutation. We are not aware of any

work published in Specification

Mutation for use case models.

The traditional process of mutation

analysis for testing software

programs is executed as below [10]:

given a program 𝑝, a set of faulty

programs 𝑝′ (called mutants) is

generated based on predefined

mutation operators. The second

step is to execute a test suite 𝑇 with

generated mutants 𝑝′. Note that the

execution of 𝑇 to the original

program 𝑝 should be successful

and correct before the conduction

of any mutation analysis. If results

of running 𝑝′ are different from

results of running 𝑝, corresponding

mutants are called ‘killed’. The

mutation score (“a ratio of the

number of killed mutants over the

total number of nonequivalent

mutants [10] ”) is then calculated

and used to assess the effectiveness

of test suite 𝑇.

Figure 1. The Use Case Withdraw Fund specified in RUCM

Simula Research Laboratory, Technical Report 2016-04 June, 2016

Inspired by the traditional mutation analysis for testing, we apply

mutation analysis to RUCM models, aiming to evaluate RUCM-

based requirements inspection methods. A mutant in our context

means a defected use case model. RUCM-based requirements

inspection methods play the role as test suite in mutation testing.

3.2 Defect Taxonomies of Use Case Models
Anda and Sjøberg [16] proposed a checklist-based reading

technique to detect defects in use case models. They presented a

taxonomy of defects for use case models with a defect classification

scheme: Omission, Incorrect Fact, Inconsistency, Ambiguity, and

Extraneous Information. The comparison of our their defect

taxonomy with the RUCM defect taxonomy is discussed in Section

5.3.1. A defect taxonomy (used as a checklist) focusing on semantic

defects of use case specifications was proposed in [15]. Later, Phalp,

et al. [27] refined this taxonomy by analyzing theories of text

comprehension. Note that, as reported in [15], this taxonomy was

designed for inspecting one use case specification at a time and use

case diagrams are not covered as part of the inspection.

In [28], the authors presented a defect classification based on IEEE

Std. 830-1998 [2] for requirements specification, which lists a set

of quality metrics for specifications: consistency, completeness,

correctness, unambiguity, verifiability, changeability, traceability

and prioritization. To cover all concerns from different

stakeholders, they extended the standard scheme with

comprehensibility (easy to read), feasibility (from the perspective

of system designers) and adequate level of detail (avoiding over-

/less-information). Note that this classification is generic and most

of the defects in the classification are applicable to other

requirements specification methods.

In summary, Denger, et al. [28] defined the defect taxonomy from

a high level of abstraction by following IEEE Std. 830-1998 [2].

Therefore it is considered as a general scheme for defining the

RUCM defect taxonomy (Section 4.2). The defect taxonomy

proposed by Anda and Sjøberg [16] can be considered as an

application of the general taxonomy proposed by Denger, et al. [28],

which is specific to use case models. Cox, et al. [15] and Phalp, et

al. [27] concentrated on semantic defects of use case specifications.

Both Denger, et al. [28] and Anda and Sjøberg [16] proposed the

classifications based on the impact of different errors on the quality

of use case models, while Cox, et al. [15] and Phalp, et al. [27]

defined a set of quality indicators for evaluating use case

specifications from the perspective of error sources.

The RUCM defect taxonomy we propose in this paper is more

comprehensive and systematic as it is defined by following IEEE

Std. 830-1998 [2] and it covers all possible defects that could occur

on all RUCM model elements.

4. RUCM MUTATION ANALYSIS
The overview of the RUCM mutation analysis methodology is

presented as a conceptual model in Figure 2. The methodology is

defined to evaluate RUCM-based inspection methods. As for

mutation testing, the effectiveness of such an inspection method is

measured and evaluated with mutation scores. Taking a RUCM

model as the input, a RUCM mutation operator mutates the RUCM

model and generates a corresponding RUCM mutant, which

contains a defect. The defect seeding strategy is used to guide a

mutation seeding process to generate mutants.

In the RUCM mutation analysis methodology, defects are classified

by the RUCM defect taxonomy, which is systematically derived by

following the IEEE Std. 830-1998 standard [2]. Each RUCM

mutation operator is derived by following HAZOP [29], which is a

systematic process for analyzing any deviation of a system design,

e.g., reflected in requirements and design models from the design

intent. More specifically, based on the Extended Backus-Naur

Form [30] of UCMeta, we systematically map each RUCM element

to each basic HAZOP guide word defined in IEC 61882: 2001 [17].

We therefore define RUCM mutation operators based on the

RUCM defect taxonomy. Each RUCM mutation operator can be

derived if and only if the consequence of the corresponding

deviation of the RUCM model can be interpreted as a particular

defect defined in the RUCM defect taxonomy.

Figure 2. Overview of RUCM Mutation Analysis

In the rest of the section, we introduce the EBNF presentation

(Section 4.1) of a subset of UCMeta, followed by the RUCM defect

taxonomy (Section 4.2). We provide the RUCM mutation operators

in Section 4.3 and the defect seeding strategy in Section 4.4.

4.1 Syntax of RUCM Models in EBNF
Mutation analysis relies on syntactic modifications of original

programs [31]. Similarly, we formally define the syntax of RUCM

use case models with EBNF [30] (Figure 3). Note that we apply

EBNF in a more relaxed manner to represent the syntax of RUCM

models. For example, the terminal terms are either natural language

expressions such as ‘UC-Name’ or UCMeta model elements (e.g.,

RUCM Sentence). The EBNF representation (Figure 3) conforms

to UCMeta, which is a metamodel for formalizing RUCM models

for the purpose of automatically generating UML analysis models

and tests (Section 2). However, it largely simplified UCMeta for

the purpose of describing only RUCM model elements, on which

the RUCM mutation operators can be applied. In the rest of the

paper, one can refer to the EBNF representation for any definition

of RUCM model elements.

4.2 RUCM Defect Taxonomy

4.2.1 Definitions
We follow IEEE Std. 830-1998 [2] to derive the RUCM defect

taxonomy. The standard provides a classification of defects that

might appear in software requirements specifications (SRSs). In the

rest of this section, we introduce each of the categories defined in

the classification. In addition, we introduce two other categories of

defects borrowed from [16, 28].

Incorrectness (C1). In IEEE Std. 830-1998 [2], a SRS is correct,

“if and only if every requirement stated therein is one that the

software shall meet”. SRSs that do not describe actual needs of a

system are considered incorrect. Such defects reflect

misunderstanding of user’s intention and can be identified by a user

and/or by comparing RUCM use case specifications with other

documents (e.g., contract documents). Incompleteness (C2). As

defined in IEEE Std. 830-1998 [2], a SRS is complete if and only

if it includes all following elements: 1) all significant requirements

Simula Research Laboratory, Technical Report 2016-04 June, 2016

(e.g., functionality, performance, design constraints, attributes or

external interfaces), 2) definition of the response of the system to

all input data in all situations, and 3) full labels and references to

the figures, tables and diagrams used in the SRS. In context of

RUCM models, any omission of RUCM model elements (e.g.,

Action Step) leads to the incompleteness of a RUCM model. For

example, missing a use case directly results in the incomplete

specification of system functionalities. The RUCM methodology

itself (to certain extent) reduces the possibility of specifying

incomplete SRSs by e.g., enforcing the specification of various

types of alternative flows.

Inconsistency (C3). In IEEE Std. 830-1998 [2], consistency refers

to internal consistency, implying that there is no inconsistency

among specified individual requirements. For RUCM, we focus on

the consistency between the use case diagram and the use case

specifications of a RUCM model, and the internal consistency of a

use case specification, e.g., two steps or flows of events conflict to

each other. Ambiguity (C4). A SRS is unambiguous if and only if

every specified requirement has only one interpretation [2]. To

eliminate such defects, it requires that requirements engineers use

consistent terminologies when specifying RUCM models. As

discussed in Section 2, RUCM defines 26 restriction rules, which

help to reduce ambiguities in use case models to certain extent.

Incomprehensibility (C5). This category is borrowed from [15, 27,

28], where it states that a use case model should be understood

easily. In case of RUCM, it addresses that each specified

requirement should be comprehensible to different stakeholders

such as requirements engineers and developers.

Intestability (C6). A requirement is verifiable, if and only if “there

exists a finite process for a person or a machine to determine if the

system meets the requirement” [2]. Apparently, any ambiguous

requirement is unverifiable. RUCM has the inherent mechanism

(i.e., Pre-condition and Post-conditions) to help the verification of

each flow of events. It is important to mention that RUCM models

have been used as inputs to derive tests [13, 14]. When deriving the

RUCM defect taxonomy, we therefore put our focus on Pre-

conditions and Post-conditions of RUCM specifications from the

perspective of test engineers. Unmodifiability (C7). A SRS is

modifiable if and only if any change to it can be made “easily,

completely and consistently while retaining its structure and style”

[2]. For example, in the context of RUCM, a piece of shared

behavior should be specified as a use case and reused (via Include

and Extend), rather than be specified in different places of the use

case model. Infeasibility (C8). It is also used to characterize

unverifiable requirements from the perspective of system

developers. More specifically, this category focuses more on

requirements that cannot be implemented from the viewpoint of

system developers. Over-Specification (C9). This category is from

[16, 28] and it indicates that the given information in the use case

models is irrelevant. In our context, it states that the RUCM use

case specification should not contain unnecessary information.

4.2.2 RUCM Defect Taxonomy
The proposed definitions in Section 4.2.1 can not only be used as

quality indicators for evaluating RUCM models, but also as a

classification of defects. In this section, we present the RUCM

defect taxonomy with in total 94 defects defined (Table 1). The

taxonomy is systematically defined based on the classification

presented in Section 4.2.1.

We examined that all the RUCM elements defined in the EBNF

have been considered from the nine aspects (i.e., the nine categories

of the classification) and plausible matches (between a category

and a RUCM model element) are presented in Table 1. These

defects range from structural defects of use case models (e.g.,

relationships between use cases) to semantic defects of use case

specifications (e.g., Ambiguity (Section 4.2.1)). We encode each

defect as below:

Defect = Defect Prefix, Defect ID

Defect Prefix = Defect Category, Defect Element;

Defect Category = C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9;

Defect Element = AR | UC | R | H | F | UCM | UCS;

Defect ID = ‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’;

AR = Actor; UC = Use Case;

R = relationship between two model elements;

H = the head of a use case specification;

F = flow-of-events of a use case specification;

UCM = use case model; UCS = use case specification;

As shown in Table 1, we divide the taxonomy into two parts: one

for use case diagrams and the other for use case specifications. As

shown in the table, most of the defects are for use case

specifications, as they describe details of functionalities that use

cases are intended to specify. Inconsistency (C3) is not applicable

to use case diagrams as our context does not concern use case

modeling at different levels of abstractions and does not address

inconsistencies of various UML diagrams or models. However, it

is indeed important to capture inconsistencies between a use case

Use Case Model = Use Case Diagram, Use Case Specification;

Use Case Diagram = UCD-UseCase, UCD-Actor, UCD-Relationship;

UCD-UseCase = {UCD::Use Case}-;

UCD-Actor = {UCD::Actor}-;

UCD-Relationship = {Association}-, {UCD-Generalization | UCD-

Include | UCD-Extend}

Use Case Specification = UC-Head, Basic Flow, {Alternative

Flow};

UC-Head = Use Case, Pre-condition, Actor, {Dependency},

{Generalization};

Use Case = UC-Name, UC-BriefDescription;

UC-Name = use case name;

UC-BriefDescription = brief description of the use case;

Actor = {Prim-Actor}-, {Sec-Actor};

Prim-Actor = primary actor name;

Sec-Actor = secondary actor name;

Dependency = Include | Extend;

Generalization = {UC-Name};

Pre-condition = precondition description of the use case;

Include = “INCLUDE USE CASE”, {UC-Name}-;

Extend = “EXTENDED BY USE CASE”, {UC-Name}-;

Basic Flow = {Flow-name}, {Action Step}-, {Condition Step |

MEANWHILE | VALIDATES THAT}, Post-condition;

Alternative Flow = Flow-name, RFS, {Action Step}-, {Condition

Step | MEANWHILE}, (RESUME STEP | ABORT), Post-condition;

Flow-name = the name of a RUCM flow;

Action Step = RUCM action sentence;

MEANWHILE = Action Step, “MEANWHILE”, Action Step;

VALIDATES THAT = “VALIDATES THAT”, Action Step;

Condition Step = IF-ELSE-ENDIF | DO-UNTIL;

RFS = “RFS”, flow-name, Step-index;

Step-index = int, {“-”, int};

IF-ELSE-ENDIF = IF-THEN-ENDIF | IF-THEN-ELSE-ENDIF | IF-THEN-

ELSEIF-THEN-ENDIF | ELSE-ENDIF | ELSEIF-THEN-ENDIF;

IF-THEN-ENDIF = “IF”, condition, “THEN”, {Action step}-,

“ENDIF”;

IF-THEN-ELSE-ENDIF = “IF”, condition, “THEN”, {Action step}-,

“ELSE”, {Action step}-, “ENDIF”;

IF-THEN-ELSEIF-THEN-ENDIF = “IF”, condition, “THEN”, {Action

step}-, “ELSEIF”, condition, “THEN”, {Action step}-, “ENDIF”;

ELSE-ENDIF = “ELSE”, {Action step}-, “ENDIF”;

ELSEIF-THEN-ENDIF = “ELSEIF”, Condition, “THEN”, {Action

step}-, “ENDIF”;

DO-UNTIL = “DO”, {Action step}-, “UNTIL”, condition;

RESUME STEP = “RESUME STEP”, Step-index;

Condition = RUCM condition sentence;

ABORT = “ABORT”;

Post-condition = post-condition description of the use case;

RUCM action sentence = a RUCM Sentence describing system action;

RUCM condition sentence = a RUCM Sentence describing

conditions;

RUCM Sentence = a descriptive sentence following RUCM writing

rules (e.g., simple present tense, forbidden usage of adverbs,

adjectives, pronouns, synonyms and negatives);

int = digital-‘0’, {digital};

digital = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’;

Figure 3. Syntax of RUCM Models in EBNF

Simula Research Laboratory, Technical Report 2016-04 June, 2016

diagram and its corresponding use case models (C3UCM1).

Intestability (C6) and Infeasibility (C8) are also not applicable to

use case diagrams as they do not contain detailed descriptions of

system behaviors.

We further divide the use case specification category into two parts:

one for UC-Head and the other for Flow-of-Events. UC-Head

elements (Figure 3) includes UC-Name, UC-BriefDescription, Pre-

condition, Prim-Actor, Sec-Actor, Dependency (i.e., Include and

Exclude, with other use cases), and Generalization (with other use

cases). These elements correspond to the first section of the RUCM

template (Figure 1). All the defects defined for UC-Head are for

these model elements such as Missing Primary Actor (C2H1). As

UC-Head does not specify behaviors and therefore Infeasibility (C8)

is not applicable to them. Since Pre-condition is included as part of

UC-Head, Intestability is still applicable (C6H1).

As flows of events describe behavior of a use case specification,

defects for them focus on all the nine categories (C1-C9). Involved

elements include Basic Flow, Alternative Flow, Action Step, Post-

condition, RFS (connecting alternative flows to their reference

flows), special sentences containing RUCM keywords (e.g.,

RESUME), the sequence of Steps in a Flow-of-Events, and

Sentence. Note that there are seven defects that are related to either

general aspects of use case specifications (i.e., C2UCS1, C3UCS1-

C3UCS4) or aspects concerning multiple model elements of flows

of events (i.e., C7UCS1).

Defect C3UCM1 concerns the consistency between the use case

Table 1. RUCM Defect Taxonomy (In Total 94 Types of Defects)

Categ
ory

Use Case Diagram (UCD) Use Case Specification (UCS)

Actor Use Case Relationship UC-Head Flow-of-Events

C1 C1AR1:
Incorrect
Actor

C1UC1:
Incorrect
Use Case

C1R1: Incorrect
Generalization between
Actors
C1R2: Incorrect
Generalization between Use
Cases
C1R3: Incorrect Include
between Use Cases
C1R4: Incorrect Extend
between Use Cases
C1R5: Incorrect Association
between Actor and Use Case

C1H1: Incorrect Primary Actor
C1H2: Incorrect Secondary
Actor
C1H3: Incorrect Brief
Description
C1H4: Incorrect Pre-condition
C1H5: Incorrect Include
C1H6: Incorrect Extend
C1H7: Incorrect
Generalization

C1F1: Incorrect Basic Flow
C1F2: Incorrect Alternative
Flow
C1F3: Incorrect numbering of
steps
C1F4: Incorrect Post-condition
C1F5: Incorrect branching of
alternative flow
C1F6: Incorrect merging of
alternative flow
C1F7: Incorrect logical
relationship

C2 C2AR1:
Missing
Actor

C2UC1:
Missing
Use Case

C2R1: Missing Generalization
between Actors
C2R2: Missing Generalization
between Use Cases
C2R3: Missing Include
C2R4: Missing Extend
C2R5: Missing Association
between Actor and Use Case

C2H1: Missing Primary Actor
C2H2: Missing Secondary Actor
C2H3: Missing Brief
Description
C2H4: Missing Pre-condition
C2H5: Missing Include
C2H6: Missing Extend
C2H7: Missing Generalization

C2F1: Missing Alternative Flow
C2F2: Missing Step
C2F3: Missing RFS
C2F4: Missing post-condition
C2F5: Missing RESUME
C2F6: Missing ABORT
C2F7: Missing logical
relationship

C2UCS1: Missing UCS

C3 – C3H1: Actor is inconsistent
with its behavior in use
cases.
C3H2: Brief Description is
inconsistent with the design
intent.
C3H3: Pre-condition is
inconsistent with the design
intent.

C3F1: Basic Flow is
inconsistent with its expected
goal.
C3F2: Alternative Flow is
inconsistent with its expected
goal.
C3F3: Inconsistent definition
of references flows in an
alternative flow.
C3F4: Post-condition is
inconsistent with its expected
goal.
C3F5: The numbing of steps is
inconsistent.

C3UCS1: UCS is inconsistent with the design intent.
C3UCS2: Inconsistent terminologies used in the UCS.
C3UCS3: Description in the UCS conflicts with another one.
C3UCS4: UCS should be documented in a consistent level of
abstraction.

C3UCM1: UCD is inconsistent with its corresponding UCSs.

C4 C4AR1: The
actor name
does not
reflect
its role.

C4UC1: The
use case
name does
not
reflect
its goal.

– C4H1: Ambiguous Brief
Description
C4H2: Ambiguous Pre-condition

C4F1: Ambiguous sentence in
Basic Flow.
C4F2: Ambiguous sentence in
Alternative Flow.
C4F3: Ambiguous Post-condition.

C4UCS1: Not using the simple present tense throughout the UCS
causes ambiguity.
C4UCS2: Not avoiding the usage of adverbs, adjectives,
pronouns, synonyms and negatives causes ambiguity.

C5 C5AR1:
Incomprehe
nsible
actor name

C5UC1:
Incomprehe
nsible use
case name

– C5H1: Incomprehensible Brief
Description
C5H2: Incomprehensible Pre-
condition

C5F1: Incomprehensible sentence
of Flow-of-Events.
C5F2: Incomprehensible Post-
condition.

C6 – C6H1: The Pre-condition can
never be satisfied.

C6F1: The behavior of Flow-of-
Events can never be measured.
C6F2: The Post-condition can
never be measured.
C6F3: The Flow-of-Events should
be terminated reasonably.

C7 – C7UCS1: Alternative flows should be separated from Basic Flow.
C7UCM1: A shared system functionality should be specified as a separate use case and associated to others.

C8 – – C8F1: The behavior described in
Flow-of-Events cannot be
implemented.

C9 C9AR1:
Superfluou
s actor

C9UC1:
Superfluou
s use case

C9R1: Superfluous
Generalization between
Actors
C9R2: Superfluous
Generalization between Use
Cases
C9R3: Superfluous Include
C9R4: Superfluous Extend
C9R5: Superfluous
Association between Actor
and Use Case

C9H1: Superfluous secondary
actor
C9H2: Superfluous sentences
in Brief Description
C9H3: Superfluous sentences
in Pre-condition
C9H4: Superfluous Include
C9H5: Superfluous Extend
C9H6: Superfluous
Generalization (with other
use cases)

C9F1: Superfluous alternative
flow
C9F2: Superfluous step
C9F3: Superfluous sentence in
Post-condition.

Simula Research Laboratory, Technical Report 2016-04 June, 2016

diagram and the use case specifications. C7UCM1 relates to the

relationships between use cases. Therefore, these two defects are

defined at the scope of the whole use case model.

4.3 RUCM Mutation Operators
Mutation analysis heavily depends on mutants, which are syntactic

modifications of original programs [31], and mutation operators

play the role similar to transformation rules for generating mutants

from the original programs. We define our mutation operators for

RUCM by following a different strategy as RUCM models are

requirements, which inherently have significant differences in

terms of generating mutants. In the rest of this section, we first

present the HAZOP guide words (Section 4.1), followed by the

mechanism we used for systematically deriving the RUCM

mutation operators (Section 4.3.2). In Section 4.3.3, we present the

derived mutation operators.

4.3.1 Hazard and Operability Study (HAZOP)
HAZOP is a technique widely used to examine a process, operation,

design, and human error to identify hazards in various contexts such

as developing safety critical systems by analyzing deviations from

design intent [17]. The design intent is a baseline for applying

HAZOP and should be correct and complete as much as possible

[17]. In our context, the design intent is users’ actual needs. A

successful application of HAZOP mainly relies on two aspects [17]:

1) the identification of system elements (e.g., sensor) and their

parameters (e.g., pressure, time), and 2) a set of predefined guide

words, which should be applied to each parameter of each system

element to identify unexpected and yet reasonable deviations from

the design intent. As defined in the IEC 61882 standard [17] the

basic guide words of HAZOP include NO, MORE, LESS, AS

WELL AS, PART OF, REVERSE and OTHER THAN. We adapt

these guide words for RUCM and define each of them in Table 2.

Table 2. Adapted definitions of the HAZOP guide words

Guideword Definition
NO An intended RUCM model element is not captured. A

RUCM modeling intent is not achieved.
MORE Quantitative increase in a quantifiable RUCM element.
LESS Quantitative decrease in a quantifiable RUCM element.

AS WELL AS Spurious RUCM model elements or behavior are
included in a RUCM model.

PART OF Incomplete RUCM modeling intent is achieved.
Incomplete model element or behavior is captured.

REVERSE A logical opposite of the RUCM modeling intent,
behavior or model element is specified.

OTHER
THAN

A RUCM model is substituted by unintended/incorrect
behavior, intent or model element.

4.3.2 Mechanism for Deriving Mutation Operators
We apply the seven HAZOP guide words and identify RUCM

elements, to which the guide words are applicable. In our

mechanism, we map each HAZOP guide word to each RUCM

model element and we derive the RUCM mutation operators by

analyzing the corresponding consequences of applying them. We

illustrate the mechanism we use for deriving RUCM mutation

operators in Figure 4.

As shown in Figure 4, our mechanism is five-dimensional: 1) the

seven HAZOP guide words, 2) the RUCM elements, 3) the nine

defect categories of the RUCM defect taxonomy (e.g.,

Incorrectness (C1)), 4) the six editing operations (i.e., ADD (for

addition), DEL (for deletion), SWAP (for exchanging two

compatible elements within the RUCM model), REP (for replacing

an element with another compatible element not existing in the

RUCM model), ICR (for quantitative increase) and DEC (for

quantitative decrease)), and 5) the defects in the RUCM defect

taxonomy, which determine the consequences of the application of

an editing operation to a particular RUCM element. It is worth

mentioning that this mechanism ensures that each RUCM mutation

operator leads to exactly one type of defects defined in our defect

taxonomy, as each mutation operator is composed of three parts: an

editing operation, a RUCM model element on which the mutation

operator is applicable, and the type of a defect that the mutation

operator can lead to. The HAZOP guide words help to

systematically associate an editing operation to a defect and defect

category for a specific RUCM model element.

For example, as shown in Figure 4, we derive the mutation operator

‘DEL-AF-C2F1’ with the following steps. First, we identify the

RUCM element that a mutation operator should be applied on,

which results in an alternative flow shown in the RUCM model axis

in Figure 4. Second, we identify the editing operator that can lead

to a NO derivation from the original RUCM model (shown on the

HAZOP guide word axis). Third, applying the editing operation of

DEL on the alternative flow leads to deletion of it from the original

RUCM use case specification, which directly results in the defect

of missing the alternative flow (C2F1 of the RUCM defect

taxonomy and follows into the Incompleteness defect category

(shown as the RUCM defect taxonomy category axis of Figure 4).

We therefore define the mutation operator as ‘DEL-AF-C2F1’.

RUCM defect taxonomy category

HAZOP guide word

RUCM model element
RUCM mutation operator

DEL-AF-C2F1

DEL-AF-C2F1

RUCM defect mutation operation

RUCM model element

Figure 4. Mechanism for deriving RUCM mutation operators

Note that we carefully analyzed which HAZOP guide word is

applicable to which RUCM elements. For example, element ‘Use

Case’ refers to a lexical value: its name (i.e. UC-Name); therefore,

guide word OTHER THAN is applicable for this element by

replacing the use case name by modifying the lexical value. RUCM

elements RESUME STEP and ABORT refer to action steps

containing these two keywords. Since these two elements can only

be applied in the alternative flows and are mutually exclusive, we

thus can apply guide word OTHER THAN to substitute one with

the other. In case of Flow-of-Events, both PART OF and AS WELL

AS can be used to generate deviations, since ‘Flow-of-Events’ is

the container of RUCM steps.

Simula Research Laboratory, Technical Report 2016-04 June, 2016

Each application of a guide word to a particular RUCM element is

implemented as editing the original RUCM model. We define six

types of editing operations: adding an element (ADD), deleting an

element (DELETE), swapping two existing elements (SWAP),

replacing an element with another (REP), increasing/decreasing the

quantitative value of an element (ICR/DEC).

4.3.3 Mutation Operators
All the RUCM mutation operators are given in Table 3-Table 6. We

first explain the encoding mechanism of naming the mutation

operators:

RUCM mutation operator = Operation, -, Element, -, {Defect}-;

Operation = ADD | DEL | SWAP | REP | ICR | DEC;

Element = UC | AR | INC | EXD | ASSO | UCS | UCN | ARN | PAR |

SAR | BD | GA | GUC | SenBD | PreC | SenPreC | AF | SenAF |

BF | SenBF | PostC | SenPostC | AS | RFS | ABORT | IFELSE |

DO | VLD | MW |RFSsi | RFSflow | toABT | RES | toRES | IFELSE

| IFELSEcs | IFELSEas | DOcs | DOas;

Defect = Defect Prefix, Defect ID

Defect Prefix = Defect Category, Defect Element;

Defect Category = C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9;

Defect Element = AR | UC | R | H | F | UCM | UCS;

Defect ID = ‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’;

UC = Use Case; AR = Actor; INC = Include; EXD = Extend;

ASSO = Association; PAR = primary actor; SAR = secondary actor;

UCS = use case specification; UCN = use case name;

UCM = use case model; BD = use case brief description;

ARN = Actor name; GAR = generalization between actors;

GUC = generalization between use cases;

SenBD = sentence in BD;

PreC = pre-condition; SenPreC = sentence in PreC;

BF = Basic Flow; SenBF = sentence in BF;

AF = Alternative Flow; SenAF = sentence in AF;

Table 3. Mutation operators for Use Case Diagrams (29)

 NO AS WELL AS REVERSE OTHER THAN

UCD::Use Case DEL-UC-C2UC1 ADD-UC-C9UC1 - REP-UCN-{C1UC1, C4UC1, C5UC1}

UCD::Actor DEL-AR-C2AR1 ADD-AR-C9AR1 - REP-ARN-{C1AR1, C4AR1, C5AR1}

UCD::Include DEL-INC-C2R3 ADD-INC-C9R3 SWAP-INC-C1R3 REP-INC-C1R3

UCD::Extend DEL-EXD-C2R4 ADD-EXD-C9R4 SWAP-EXD-C1R4 REP-EXD-C1R4

UCD::Generalization DEL-AR-C2R1

DEL-UC-C2R2

ADD-AR-C9R1

ADD-UC-C9R2

SWAP-GAR-C1R1

SWAP-GUC-C1R2

REP-GAR-C1R1

REP-GUC-C1R2

UCD::Association DEL-ASSO-C2R5 ADD-ASSO-C9R5 - REP-ASSO-C1R5

Table 4. Mutation operators for UC-Head (34)

 NO AS WELL AS PART OF REVERSE OTHER THAN

UCS::Use Case - - - - -

UCS::Actor DEL-PAR-C2H1

DEL-SAR-C2H2

ADD-SAR-C9H1 - SWAP-AR-

{C1H1, C1H2}

REP-PAR-C1H1

REP-SAR-C1H2

UCS::Brief
Description

DEL-BD-C2H3 ADD-SenBD-C9H2 DEL-SenBD-C1H3

REP-SenBD-C1H3

- REP-BD-{C1H3, C3H2,

C4H1, C5H1}

UCS::Include DEL-INC-C2H5 ADD-INC-C9H4 - - REP-INC-C1H5

UCS::Extend DEL-EXD-C2H6 ADD-EXD-C9H5 - - REP-EXD-C1H6

UCS::Generalization DEL-GUC-C2H7 ADD-GUC-C9H6 - - REP-GUC-C1H7

UCS::Precondition DEL-PreC-C2H4 ADD-SenPreC-

{C9H3, C6H1}

DEL-SenPreC-{C1H4, C6H1} - REP-PreC-{C1H4, C3H3,

C4H3, C5H2, C6H1}

Table 5. Mutation operators for Flows-of-Events (54)

 NO AS WELL AS PART OF REVERSE OTHER THAN

Flow of Events - ADD-AF-C9F1 DEL-AF-C2F1 SWAP-AF-{C1F5, C3F2} -

Basic Flow - ADD-SenBF-C9F2 DEL-SenBF-{C1F1,

C2F2, C3F1, C3F5,

C6F1, C6F3, C8F1}

SWAP-SenBF-{C1F1,

C1F3, C3F1, C6F1,

C6F3, C8F1}

REP-BF-C1F1

Alternative Flow DEL-AF-C2F1 ADD-SenAF-C9F2 DEL-SenAF-{C1F2,

C2F2, C3F2, C3F5,

C6F1, C6F3, C8F1}

SWAP-SenAF-{C1F2,

C1F3, C3F2, C6F1,

C6F3, C8F1}

REP-AF-C3F2

Post-condition DEL-PostC-

C2F4

ADD-SenPostC-

{C9F3, C6F2}

DEL- SenPostC-C1F4

REP- SenPostC-C6F2

- REP-PostC-{C1F4, C3F4,

C4F3, C5F2, C6F2

Action Step DEL-AS-C2F2 - - - REP-AS-{C4UCS1,

C4UCS2, C4F1, C4F2,

C5F1, C6F1, C6F3, C6F3}

Table 6. Mutation operators for Sentences containing keywords (72)

 NO MORE LESS AS WELL AS PART OF REVERSE OTHER THAN

RFS DEL-RFS-

{C2F3,

C6F1}

ICR-RFSsi-

{C1F5, C3F3}

DEC-RFSsi-

{C1F5, C6F1}

ADD-RFSflow-

{C3F2, C3F3}

DEL-RFSflow-C3F2 SWAP-RFS-

C1F5

REP-RFS-C3F3

RESUME STEP DEL-RES-

C2F5

ICR-RESsi-

C1F6

DEC-RESsi-

C1F6

- - SWAP-RES-

C1F6

REP-RES- C1F6

REP-toABT-

C6F3

ABORT DEL-ABT-

C2F6

- - - - - REP-toRES-

C3F2

IF-ELSE-ENDIF DEL-

IFELSE-

C2F7

- - ADD-IFELSEcs-

{C1F7, C6F1,

C8F1}

ADD-IFELSEas-

C9F2

DEL-IFELSEcs-C1F7

DEL-IFELSEas-{C1F1,

C1F2 C2F2, C3F1,

C3F2 C3F5, C6F1,

C6F3, C8F1}

SWAP-

IFELSE-

{C1F1, C6F1}

REP-IFELSE -

{C1F1, C6F1}

DO-UNTIL DEL-DO-

C2F7

- - ADD-DOcs-

{C1F7, C6F1,

C8F1}

ADD-DOas-

C9F2

DEL-DOcs-C1F7

DEL-DOas-{C1F1,

C1F2 C2F2, C3F1,

C3F2 C3F5, C6F1,

C6F3, C8F1}

- REP-DO-

{C1F1, C6F1}

VALIDATES
THAT

DEL-VLD-

C1F5

- - - - REP-VLD-

{C6F1, C8F1}

REP-VLD-

{C6F1, C8F1}

MEANWHILE DEL-MW-

{C3F1,

C3F2}

- - - - SWAP-MW-

{C1F1, C1F2,

C3F1, C3F2,

C6F1, C8F1}

REP-MW-

{C1F1, C1F2,

C3F1, C3F2,

C6F1, C8F1}

Simula Research Laboratory, Technical Report 2016-04 June, 2016

PostC = post-condition; SenPostC = sentence in PostC;

AS = Action step; VLD = VALIDATES THAT; MW = MEANWHILE;

RFS = sentence RFS; RFSsi = step index of RFS;

RFSflow = reference flow name of RFS;

ABORT = sentence ABORT; toRES = changing ABORT to RESUME STEP;

RES = RESUME STEP; toABT = changing RES to ABORT;

IFELSE = IF-SELSE-ENDIF; IFELSEcs = condition sentence in IF-

ELSE-ENDIF; IFELSEas = Action Step in IF-ELSE-ENDIF;

DO = DO-UNTIL; DOcs = condition sentence in DO-UNITL;

DOas = Action step in DO-UNITL;

A combination of a HAZOP guide word and a RUCM element

could introduce different types of defects, which therefore leads to

the definition of various mutation operators. To save space, in

tables Table 3-Table 6, we use the ‘{ }’ to embrace all

corresponding mutation operators. For example, REP-UCN-

{C1U1, C4U1, C5U1} (Table 3) denotes three mutation operators,

i.e., REP-UCN-C1U1, REP-UCN- C4U1, REP-UCN- C5U1.

Table 3 presents all the 29 mutation operators derived for use case

diagrams. One example is SWAP-INC-C1R3, which indicates the

application of the REVERSE guide word to the RUCM element

Include, meaning that the swapping of the roles of two use cases

connected by the Include relationship (from being included into

including, or vice versa) results in C1R3 of the Incorrectness

category. Note that guide words MORE and LESS are not

applicable to use case diagrams, as they are for quantifiable RUCM

elements. AS WELL AS is also not applicable as all the RUCM

elements in use case diagrams do not contain other elements.

Table 4 shows all the 34 mutation operators derived for the UC-

Head of a RUCM use case specification, i.e., participating actors,

the relationships with other use cases, its brief description and the

pre-condition. Same as for use case diagrams, guide words MORE

and LESS are not applicable. Since the brief description and pre-

condition of a RUCM use case specification can contain one or

more sentences, guide word PART OF is applicable when DEL or

REP are used to modify the original use case specification.

We report all the 54 mutation operators derived for RUCM flows

of events in Table 5. Same as for use case diagrams and UC-Heads,

guide words MORE and LESS are not applicable. Table 6 reports

all the 72 mutation operators derived for sentences containing

RUCM keywords (e.g., VALIDATES THAT) in use case

specifications. Since keywords ‘RFS’ and ‘RESUME STEP’ are

followed by step numbers of flows of events, guide words MORE

and LESS are then applicable, consequences of which are

implemented by applying editing operations ICR and DEC on the

step numbers of the sentences containing RFS and RESUME STEP.

4.4 Guidelines for Defect Seeding Strategies
Mutant reduction is an important issue for practical application of

mutation analysis [31]. As summarized in [10], four techniques are

widely used for reducing the total number of mutants: Mutant

Sampling, Mutant Clustering, Selective Mutation, and Higher

Order Mutation. Mutation Sampling randomly chooses a small

subset of mutants. Mutant Clustering applies clustering algorithms

to perform selection. Selective Mutation aims to reduce the number

of mutants by selecting a subset of mutation operators to apply

based on certain selection criteria. Higher Order Mutation aims to

find rare but valuable higher order mutants. Inspired by the

literature, we define a set of guidelines for defining a cost-effective

defect seeding strategy below.

Guideline 1: Defects might have different levels of Importance at

different contexts. For example, C1F5 (incorrect branching of

alternative flows from the basic flow) might be considered more

important than C1R5 (incorrect association between an actor and a

use case) from the perspective of developers. The property of

Importance of a defect (and therefore a mutation operator) can be

used for implementing a Selective Mutation strategy in the context

of the RUCM mutation analysis. One can also define Importance

for the defect categories. For example, in certain contexts,

Incompleteness is considered more important than Unmodifiability.

Guideline 2: Each RUCM mutation operator is associated with

exactly one type of defects (Section 4.3.3), implying that each

mutant corresponds to a specific defect type. In the context of

RUCM mutation operators, there is no possibility of producing

Equivalent Mutants that are syntactically different but semantically

identical to the original RUCM model from which they are created

[10]. This is because of the reason that we do not execute the

specifications as is the case of code.

Guideline 3: Some defects can only be seeded manually and effort

required to apply the mutation operators to seed defects might be

different. For example, it is more difficult to apply ‘ADD-AF-C9F1’

than ‘DEL-SAR-C2H2’, because the former needs to insert a

complete alternative flow to a use case specification while the latter

just deletes one of the secondary actors from a use case

specification. Therefore, defining a cost-effective defect seeding

strategy by using the RUCM mutation operators is critical. Cost is

mainly about manual effort required to seed defects and

effectiveness is about the effectiveness of killing mutants of a

particular requirements inspection approach under evaluation. Cost

can be reduced by applying various mutation reduction techniques

such as Selective Mutation.

Guideline 4: One defect type might be covered by multiple

mutation operators applying on different RUCM model elements.

For example, C1F3 (incorrect numbering of steps) can be realized

by both SWAP-SenBF-C1F3 (swapping two sentences of the basic

flow) and SWAP-SenAF-C1F3 (swapping two sentences of an

alternative flow). So, it is important to find a defect seeding strategy

to eliminate Redundant Mutants that are redundant if their

outcomes are the same as with other mutants, or can be

derived/predicted based on the outcomes of other mutants [32]. For

example, one defect seeding strategy is to include either SWAP-

SenBF-C1F3 or SWAP-SenAF-C1F3, but not both. One can also

define a more coarse-grained strategy by treating all the mutation

operators leading to various defects (e.g., DEL-UC-C2UC1 and

DEL-PostC-C2F4) of the same category as redundant defects.

Guideline 5: Our mechanism for deriving the RUCM mutation

operators (Section 4.3.2) can enable easy selection of RUCM

mutation operators based on the nine defect categories. All the

RUCM mutation operators are naturally clustered into nine

categories, each of which corresponds to a defect category of the

RUCM defect taxonomy. Depending on the inspection problem at

hand, we can only select the category required for inspection. In

addition, we can also select the RUCM mutation operators based

on RUCM model elements, on which each mutation operator is

applied. For example, if a requirements inspection method only

focuses on inspecting a use case specification, then mutation

operators defined for use case diagrams (presented in Table 3)

should be excluded.

5. EVALUATION

5.1 Case Studies
To evaluate the proposed approach, one real world case study and

six other case studies from the literature are used in our evaluation.

Their characteristics are summarized in Table 7. As shown in Table

7, in total, we managed to mutate 38 use cases as indicated by the

number of Basic Flow as each use case has exactly one basic flow.

Simula Research Laboratory, Technical Report 2016-04 June, 2016

Our industrial case study is a Navigation System (NAS), which

controls and guides an aircraft, based on control law computation

that takes data sampled from sensors as input and sends commands

to actuators. To evaluate our approach, we selected 11 use cases of

the system as the original requirements. Notice that the case study

has been used to evaluate our previous work [33]. The other six

case studies are ATM (Banking System) [18], CMS (Crisis

Management System) [34], CPD (Car Part Dealer System) [19], VS

(Video Store system) [19], CDS (Cab Dispatching system) [19] and

PAY (Payroll System) [19]. These case studies have been used to

in our previous work ([12, 19]) to evaluate the RUCM methodology

and the transformation from RUCM to UML analysis models.

Table 7. Characteristics of the Case Studies*

Model Element Case Study Total

S1 S2 S3 S4 S5 S6 S7

#Actor 7 2 2 4 8 3 4 30

#Include 4 3 0 2 5 0 4 18

#Extend 2 0 0 0 0 0 0 2

#Generalization 2 0 0 0 0 0 0 2

#Association 7 4 2 4 8 3 6 34

#Basic Flow 11 4 1 6 7 1 8 38

#Alternative Flow 28 7 7 12 12 3 12 81

#RFS 28 7 7 12 12 3 12 81

#RESUME STEP 20 1 7 5 7 4 8 52

#ABORT 8 7 1 8 5 0 9 38

#IF-ELSE-ENDIF 23 3 12 8 2 6 12 66

#DO-UNTIL 2 0 3 6 3 1 0 15

#VALIDATES THAT 36 10 1 5 11 3 14 80

#MEANWHILE 8 1 1 1 2 2 0 15

#Pre-condition 11 4 1 6 7 1 8 38

#Post-condition 39 11 8 18 19 4 20 119
*S1: NAS, S2: ATM, S3: CMS, S4: CPD, S56: NGP, S6: PAY, S7: VS

5.2 Research Questions
Our evaluation aims to answer the following three research

questions: RQ1: How complete is the proposed defect taxonomy as

compared to existing ones? RQ2: Are all the RUCM mutation

operators feasible to apply? RQ3: Can the generated mutants be

useful in terms of evaluating various coverage criteria for

generating use case scenarios from use case models?

5.3 Results and Discussion

5.3.1 Results for RQ1
RQ1 aims at answering if the RUCM defect taxonomy is complete

in terms of covering defects commonly observed in use case models.

To answer this question, we compared the RUCM defect taxonomy

with the four taxonomies in the literature: [15, 16, 27, 28]. Results

show that the RUCM defect taxonomy is complete as it covers all

the defects classified in the four taxonomies. In addition, the

RUCM defect taxonomy is applicable to entire use case models

including both use case diagrams and use case specifications.

Moreover, our defect taxonomy either defines additional defect

types or provides more precisely definitions as compared with these

four taxonomies. Though the taxonomy proposed by Anda and

Sjøberg [16] is also applicable for entire use case models, the

RUCM defect taxonomy defines more defect types, e.g.,

Intestability and each defect type has a precise definition tightly

related to RUCM elements. Moreover the RUCM defect taxonomy

was systematically defined by following IEEE Std. 830-1998 [2]

(Section 4.2). Though the taxonomy in [28] was proposed by

following the same standard, the RUCM taxonomy provides a more

precisely definition for each defect type and it is more preferable

for investigating different inspection.

5.3.2 Results for RQ2

We present all the defects/mutants seeded for the seven use case

models of the seven case studies in Table 8. We derived in total

5588 mutants, including 1279 Incorrectness (C1) defects, 1048

Incompleteness (C2) defects, 633 Inconsistency (C3) defects, 871

Ambiguity (C4) defects, 499 Incomprehensibility (C5) defects, 328

Intestability (C6) defects, 101 Unmodifiability (C7) defects, 81

Infeasibility (C8) defects and 748 Over-Specification (C9) defects.

From Table 8, one can observe that some defect types can be

simulated via multiple mutation operators; some defect types can

only be realized by one particular mutation operator; and some

types of defects need multiple mutation operators to implement. For

example, as shwon in Table 8, the mapping betewen mutation

operator REP-ARN-C1AR1 and the defect type of C1AR1 is one to

one. In our case studies, in total, the muration operator was applied

30 times to generate 30 mutants that lead to the same type of defects,

i.e., C1AR1. For defect type C1F3, it was realized via SWAP-SenBF-

C1F3 and SWAP-SenAF-C1F3 and we applied them 142 and 264

times respectively, as shown in Table 8. For the specical defect

types such as C7UCM1, multiple mutation operators should be used

together to realize them. In our cases studies, as shown in Table 8,

we applied both ADD-SenBF-C9F2 and DEL-SenAF-C2F2 to seed

defects of the C7UCS1 type. For the other six types of defects (i.e.

C2UCS1, C3UCS1, C3UCS2, C3UCS3, C3UCS4, and C3UCM1), one

can choose different mutation operators to realize. For example, we

applied DEL-PAR-C2H1 to realize C3UCM1. In general, we

simulated 5588 defects by applying all the 189 RUCM mutation

operators at least once to cover all the 94 defect types at least once.

Results and our experience show that all the RUCM mutation

operators are feasible to apply.

5.3.3 Results for RQ3
To answer RQ3, we used the 5588 mutants derived for the seven

case studies (RQ2) to evaluate the performance of three coverage

criteria for generating use case scenarios from use case models. The

three RUCM coverage criteria are All Condition coverage, All

FlowOfEvents coverage and All Sentence coverage [33]. To

evaluate these three coverage criteria, we define Mutation Score

(MS) as: 𝑀𝑆 = (# 𝑜𝑓 𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠) (# 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑒𝑒𝑑𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠)⁄ .

Results of the evaluation are presented in Figure 5. The generated

mutants worked well in terms of evaluating the performance

(mutation score) of the three coverage criteria. For the C1 defects,

the All Condition coverage criterion achieved the highest mutation

score (0.95), followed by the All FlowsOfEvents coverage criterion

(0.83) and the All Sentences coverage criterion achieved the lowest

mutation score 0.67. For other defect categories (C2-C8), we can

observe the similar patterns. This is reasonable because the All

Condition coverage criterion generates more use case scenarios

than the other two. These experiment results clearly show that the

mutants derived with the RUCM mutation operators worked well

for differentiating the performance of the different RUCM use case

scenario coverage criteria in terms of mutation scores.

5.3.4 Overall Discussion
DeMillo et al. [11], who initiated the mutation technique, addressed

that “formulating a complete set of mutation operators is a

necessary requirement for program mutation to be deductive [11].”

We believe that the generation of mutation operators by following

Simula Research Laboratory, Technical Report 2016-04 June, 2016

a rigorous approach is the first crucial step for any mutation

Table 8. Results for RQ2

Mutation Operator Mutants Mutation Operator Mutants Mutation Operator Muta
nts

Mutation Operator Mutant
s

REP-ARN-C1AR1 30 DEL-AR-C2AR1 30 REP-ARN-C3H1 30 ADD-SenPreC-C6H1 15

REP-UCN-C1UC1 38 DEL-UC-C2UC1 38 REP-BD-C3H2 38 DEL-SenPreC-C6H1 20

SWAP-GAR-C1R1 2 DEL-AR-C2R1 2 REP-PreC-C3H3 38 REP-PreC-C6H1 3

REP-GAR-C1R1 6 DEL-UC-C2R2 30 DEL-SenBF-C3F1 15 DEL-SenBF-C6F1 36

SWAP-GUC-C1R2 6 DEL-INC-C2R3 18 SWAP-SenBF-C3F1 4 SWAP-SenBF-C6F1 8

REP-GUC-C1R2 8 DEL-EXD-C2R4 2 REP-BF-C3F1 2 DEL-SenAF-C6F1 18

SWAP-INC-C1R3 12 DEL-ASSO-C2R5 34 DEL-IFELSEas-C3F1 2 SWAP-SenAF-C6F1 7

REP-INC-C1R3 16 DEL-PAR-C2H1 12 SWAP-IFELSE-C3F1 1 REP-AS-C6F1 1

SWAP-EXD-C1R4 6 DEL-SAR-C2H2 18 REP-IFELSE-C3F1 1 DEL-RFS-C6F1 8

REP-EXD-C1R4 10 DEL-BD-C2H3 38 DEL-DOas-C3F1 4 DEC-RFSsi-C6F1 7

REP-ASSO-C1R5 11 DEL-PreC-C2H4 38 REP-DO-C3F1 2 ADD-IFELSEcs-C6F1 1

SWAP-AR-C1H1 3 DEL-INC-C2H5 18 SWAP-MW-C3F1 3 DEL-IFELSEas-C6F1 14

REP-AR-C1H1 9 DEL-EXD-C2H6 2 REP-MW-C3F1 1 SWAP-IFELSE-C6F1 1

SWAP-AR-C1H2 6 DEL-GUC-C2H7 2 DEL-MW- C3F1 3 REP-IFELSE-C6F1 1

REP-AR-C1H2 12 DEL-AF-C2F1 119 SWAP-AF-C3F2 2 ADD-DOcs-C6F1 1

REP-SenBD-C1H3 18 DEL-AS-C2F2 85 DEL-SenAF-C3F1 22 DEL-DOas-C6F1 12

DEL-SenBD-C1H3 12 DEL-SenBF-C2F2 34 SWAP-SenAF-C3F2 4 REP-DO-C6F1 1

REP-BD-C1H3 8 DEL-SenAF-C2F2 81 REP-AF-C3F2 2 REP-VLD-C6F1 1

DEL-SenPreC-C1H4 25 DEL-IFELSEas-C2F2 30 ADD-RFSflow-C3F2 2 SWAP-MW-C6F1 1

REP-PreC-C1H4 13 DEL-DOas-C2F2 8 DEL-RFSflow-C3F2 13 REP-MW-C6F1 1

REP-INC-C1H5 18 DEL-RFS-C2F3 81 REP-toRES-C3F2 1 ADD-SenPostC-C6F2 86

REP-EXD-C1H6 4 DEL-PostC-C2F4 119 DEL-IFELSEas-C3F2 16 REP-SenPostC-C6F2 24

REP-GUC-C1H7 4 DEL-RES-C2F5 52 DEL-DOas-C3F2 12 REP-PostC-C6F2 9

DEL-SenBF-C1F1 15 DEL-ABT-C2F6 38 SWAP-MW-C3F2 3 DEL-SenBF-C6F3 21

SWAP-SenBF-C1F1 4 DEL-IFELSE-C2F7 66 REP-MW-C3F2 1 SWAP-SenBF-C6F3 4

REP-BF-C1F1 2 DEL-DO-C2F7 15 DEL-MW-C3F2 3 DEL-SenAF-C6F3 7

DEL-IFELSEas-C1F1 2 C2UC1: DEL-UC 38 ICR-RFSsi-C3F3 22 SWAP-SenAF-C6F3 2

SWAP-IFELSE-C1F1 1 Total in C2 1048 ADD-RFSflow-C3F3 8 REP-AS-C6F3 1

REP-IFELSE-C1F1 1 REP-UCN-C4UC1 38 REP-RFS-C3F3 2 REP-toABT-C6F3 3

DEL-DOas-C1F1 4 REP-BD-C4H1 119 REP-PostC-C3F4 119 DEL-IFELSEas-C6F3 7

REP-DO-C1F1 2 REP-PreC-C4H2 119 DEL-SenBF-C3F5 5 DEL-DOas-C6F3 7

SWAP-MW-C1F1 3 REP-AS-C4F1 76 DEL-SenAF-C3F5 5 Total in C6 328

REP-MW-C1F1 4 REP-AS-C4F2 162 DEL-IFELSEas-C3F5 5 DEL-SenBF-C8F1 25

DEL-SenAF-C1F2 89 REP-PostC-C4F3 119 DEL-DOas-C3F5 21 SWAP-SenBF-C8F1 3

SWAP-SenAF-C1F2 81 REP-AS-C4UCS1 119 C3UCS1:REP-UCN-C1UC1 38 DEL-SenAF-C8F1 7

DEL-IFELSEas-C1F2 66 REP-AS-C4UCS2 119 C3UCS2:REP-AS-C4F1 119 SWAP-SenAF-C8F1 7

SWAP-MW-C1F2 6 Total in C4 871 C3UCS4:REP-AS-C4F1 26 ADD-IFELSEcs-C8F1 11

REP-MW-C1F2 9 REP-ARN-C5AR1 30 C3UCM1:DEL-PAR-C2H1 38 DEL-IFELSEcs-C8F1 7

SWAP-SenBF-C1F3 142 REP-UCN-C5UC1 38 Total in C3 633 ADD-DOcs-C8F1 7

SWAP-SenAF-C1F3 264 REP-BD-C5H1 38 C7UCS1: ADD-SenBF-

C9F2, DEL-SenAF-C2F2

81

DEL-DOcs-C8F1 7

DEL-SenPostC-C1F4 26 REP-PreC-C5H2 38 REP-VLD-C8F1 4

REP-PostC-C1F4 12 REP-AS-C5F1 236 C7UCM1: ADD-SenBF-

C9F2, DEL-SenAF-C2F2,

DEL-SenBF-C9F2

20 SWAP-MW-C8F1 1

SWAP-AF-C1F5 21 REP-PostC-C5F2 119 REP-MW-C8F1 2

ICR-RFSsi-C1F5 30 Total in C5 499 Total in C7 101 Total in C8 81

DEC-RFSsi-C1F5 22 DEL-IFELSEcs-C1F7 36 ADD-AR-C9AR1 38 ADD-INC-C9H4 14

SWAP-RFS-C1F5 8 ADD-DOcs-C1F7 15 ADD-UC-C9UC1 7 ADD-EXD-C9H5 7

DEL-VLD-C1F5 15 DEL-DOcs-C1F7 15 ADD-AR-C9R1 8 ADD-GUC-C9H6 12

ICR-RESsi-C1F6 24 ADD-IFELSEcs-C1F7 55 ADD-UC-C9R2 12 ADD-AF-C9F1 76

DEC-RESsi-C1F6 20 ADD-SenBD-C9H2 38 ADD-INC-C9R3 6 ADD-SenBF-C9F2 56

SWAP-RES-C1F6 3 ADD-SenPreC-C9H3 119 ADD-EXD-C9R4 6 ADD-SenAF-C9F2 101

REP-RES-C1F6 5 ADD-SenPostC-C9F3 119 ADD-ASSO-C9R5 30 ADD-IFELSEas-C9F2 66

Total in C1 1279 ADD-DOas-C9F2 15 ADD-SAR-C9H1 18 Total in C9 748

Figure 5. Mutation scores for the three coverage criteria of each defect category

0.95 0.93
0.86

0.91 0.92

0.82
0.78

0.91 0.93

0.83
0.79

0.71

0.82
0.76

0.61 0.63

0.82 0.81

0.67
0.61

0.53

0.64
0.58

0.52
0.46

0.51

0.64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1 C2 C3 C4 C5 C6 C7 C8 C9

M
u

ta
ti

o
n

 S
co

re

Defect Category
All Condition All FlowOfEvents All Sentence

Simula Research Laboratory, Technical Report 2016-04 June, 2016

analysis and it is especially true for the fault/defect injection based

evaluation of use case inspection techniques.

The RUCM mutation operators are designed and expressed

specifically for RUCM models; however, they are suitable for other

use case models. The mutation operators for use case diagram can

be applied directly to any UML use case diagram. The mutation

operators for specifications are applicable for other use case

templates without requiring significant modification as the RUCM

use case template captures the most common constructs of use case

templates in the literature. It is worth mentioning that our five

dimensional mechanism for deriving the mutation operators is a

rigorous method (following the HAZOP [17] and IEEE Std. 830-

1998 [2] standards), and it might be useful for other researchers to

propose their particular mutation operators. The results of our case

studies show that the RUCM mutation operators worked well for

generating effective mutants. However further empirical studies are

needed in the future.

6. CONCLUSION
Requirements quality is critical for the final success of any non-

trivial system development. Requirements inspection is a

commonly method applied in practice to ensure requirements

quality, especially when they are documented in natural language.

Use case modelling is natural language based modeling approach

for specifying requirements in a structured way and therefore an

increasing attention is given to use case inspection methods.

However, in the literature lacks a comprehensive defect taxonomy

for use case models and mutation analysis has not been

systematically introduced for evaluating various requirements

inspection methods. In this paper, we demonstrated a novel and

systematic approach to propose a comprehensive defect taxonomy

based on a systematic study of the IEEE Std. 830-1998

requirements standard. By applying the hazard and operability

study (HAZOP) technique, we rigorously devised a set of mutation

operators and provide a set of guidelines on how to devise cost-

effective defect seeding strategies with the proposed mutation

operators Our approach was evaluated by a set of case studies.

Results show that the proposed mutation operators are

comprehensive and effective.

7. REFERENCES

[1] Neill, C. J. and Laplante, P. A. 2003. Requirements

engineering: the state of the practice. IEEE software. 20, 6

(Nov. 2003), 40-45.

[2] IEEE 1998. IEEE Recommended Practice for Software

Requirements Specifications. IEEE Std. 830-1998.

[3] Fagan, M. E. 1986. Advances in software inspections. IEEE

Transactons on Software Engineering. 12, 7 (1986), 744-751.

[4] Miller, J., Wood, M., and Roper, M. 1998. Further

experiences with scenarios and checklists. Empirical

Software Engineering. 3, 1 (Marcch 1998), 37-64.

[5] Fagan, M. E. 1976. Design and code inspections to reduce

errors in program development. IBM Systems Journal. 15, 3

(1976), 182-211.

[6] Porter, A., Votta Jr, L. G., and Basili, V. R. 1995. Comparing

detection methods for software requirements inspections: A

replicated experiment. Software Engineering, IEEE

Transactions on. 21, 6 (June 1995), 563-575.

[7] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull,

F., Sørumgård, S., et al. 1996. The empirical investigation of

perspective-based reading. Empirical Software Engineering.

1, 2 (January 1996), 133-164.

[8] Thelin, T., Runeson, P., Wohlin, C., Olsson, T., and

Andersson, C. 2004. Evaluation of Usage-Based Reading—

Conclusions after Three Experiments. Empirical Software

Engineering. 9, 1-2 (March 2004), 77-110.

[9] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,

B., and Wesslén, A. 2012. Are the Perspectives Really

Different?: Further Experimentation on Scenario-Based

Reading of Requirements. In Eds. Springer, 175-200.

[10] Jia, Y. and Harman, M. 2011. An analysis and survey of the

development of mutation testing. Software Engineering,

IEEE Transactions on. 37, 5 649-678.

[11] DeMillo, R., Lipton, R., and Sayward, F. 1979. Program

mutation: A new approach to program testing. Infotech State

of the Art Report, Software Testing. 2, 107-126.

[12] Yue, T., Briand, L. C., and Labiche, Y. 2013. Facilitating the

transition from use case models to analysis models: Approach

and experiments. ACM Transactions on Software

Engineering and Methodology (TOSEM). 22, 1 (February

2013), 5.

[13] Yue, T. and Ali, S. 2012. Bridging the gap between

requirements and aspect state machines to support non-

functional testing: industrial case studies. In Eds. Springer,

133-145.

[14] Wang, C., Pastore, F., Goknil, A., Briand, L., and Iqbal, Z.

2015. Automatic generation of system test cases from use

case specifications. In Proceedings of the Proceedings of the

2015 International Symposium on Software Testing and

Analysis ACM, 385-396.

[15] Cox, K., Aurum, A., and Jeffery, R. 2004. An experiment in

inspecting the quality of use case descriptions. Journal of

Research and Practice in Information Technology. 36, 4 211-

229.

[16] Anda, B. and Sjøberg, D. I. 2002. Towards an inspection

technique for use case models. In Proceedings of the

Proceedings of the 14th international conference on Software

engineering and knowledge engineering ACM, 127-134.

[17] IEC 2001. IEC 61882: 2001: Hazard and operability studies

(HAZOP studies). Application guide. In Proceedings of the

British Standards Institute

[18] Gomaa, H. 2000. Designing concurrent, distributed, and

real-time applications with UML. Addison-Wesley.

[19] Yue, T., Briand, L. C., and Labiche, Y. 2015. aToucan: An

Automated Framework to Derive UML Analysis Models

from Use Case Models. ACM Transactions on Software

Engineering and Methodology (TOSEM). 24, 3 13.

[20] Yue, T., Ali, S., and Zhang, M. 2015. RTCM: a natural

language based, automated, and practical test case generation

framework. In Proceedings of the Proceedings of the 2015

International Symposium on Software Testing and Analysis

ACM, 397-408.

[21] Zhang, M., Yue, T., Ali, S., Zhang, H., and Wu, J. 2014. A

Systematic Approach to Automatically Derive Test Cases

from Use Cases Specified in Restricted Natural Languages.

In Eds. Springer, 142-157.

[22] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. 1978. Hints

on test data selection: Help for the practicing programmer.

Computer. 4 34-41.

[23] Shahriar, H. and Zulkernine, M. 2008. Mutation-based

testing of buffer overflow vulnerabilities. In Proceedings of

the Computer Software and Applications, 2008.

COMPSAC'08. 32nd Annual IEEE International IEEE, 979-

984.

[24] Chevalley, P. and Thévenod-Fosse, P. 2003. A mutation

analysis tool for Java programs. International journal on

software tools for technology transfer. 5, 1 90-103.

Simula Research Laboratory, Technical Report 2016-04 June, 2016

[25] Offutt, A. J., Voas, J., and Payne, J. 1996. Mutation

operators for Ada. Techniqual Report.

[26] Fabbri, S. C., Delamaro, M. E., Maldonado, J. C., and

Masiero, P. C. 1994. Mutation analysis testing for finite state

machines. In Proceedings of the Software Reliability

Engineering, 1994. Proceedings., 5th International

Symposium on IEEE, 220-229.

[27] Phalp, K. T., Vincent, J., and Cox, K. 2007. Assessing the

quality of use case descriptions. Software Quality Journal.

15, 1 69-97.

[28] Denger, C., Paech, B., and Freimut, B. 2005. Achieving high

quality of use-case-based requirements. Informatik-

Forschung und Entwicklung. 20, 1-2 11-23.

[29] Kletz, T. A. 1999. HAZOP and HAZAN: identifying and

assessing process industry hazards. IChemE.

[30] ISO 1996. ISO/IEC 14977: 1996 (e), information technology

syntactic metalanguage extended bnf. International

Organization for Standardization.

[31] Offutt, A. J. and Untch, R. H. 2001. Mutation 2000: Uniting

the orthogonal. In Eds. Springer, 34-44.

[32] Just, R. and Schweiggert, F. 2015. Higher accuracy and

lower run time: efficient mutation analysis using non‐
redundant mutation operators. Software Testing, Verification

and Reliability. 25, 5-7 490-507.

[33] Zhang, H., Yue, T., Ali, S., and Liu, C. 2015. Facilitating

Requirements Inspection with Search-Based Selection of

Diverse Use Case Scenarios. In Proceedings of the 9th EAI

International Conference on Bio-inspired Information and

Communications Technologies (BICT) (Columbia University,

NY, USA). ACM, (In Press).

[34] Capozucca, A., Cheng, B., Georg, G., Guelfi, N., Istoan, P.,

Mussbacher, G., et al. 2011. Requirements Definition

Document For A Software Product Line Of Car Crash

Management Systems. ReMoDD repository, at http://www.

cs. colostate. edu/remodd/v1/content/bcms-requirements-

definition.

