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ABSTRACT 

Requirements inspection is a well-known method for detecting 

defects. Various defect detection techniques for requirements 

inspection have been widely applied in practice such as checklist 

and defect-based techniques. Use case modeling is a widely 

accepted requirements specification method in practice; therefore, 

inspecting defects in use case models in a cost-effective manner is 

an important challenge. However, there does not exist a systematic 

mutation analysis approach for evaluating inspection techniques for 

use case models. As the first step towards a fully-fledged mutation 

analysis for use case models, in this paper we present the 

methodology we followed to systematically derive mutation 

operators for use case models. More specifically, we first propose 

a defect taxonomy defining 94 defect types, based on the IEEE Std. 

830-1998 standard. Second, we systematically applied the basic 

guide words of the standardized Hazard and Operability Study 

(HAZOP) methodology to define 189 mutation operators, together 

with the defect taxonomy. Last, we define a set of guidelines for 

devising defect seeding strategies. The proposed methodology was 

evaluated by a real world case study and six case studies taken from 

the literature. Results show that all the RUCM mutation operators 

are feasible to apply and the defect taxonomy is the most 

comprehensive one to compare with the literature.  

CCS Concepts 

• Software and its engineering ➝ Software creation and 

management ➝ Requirements analysis. 
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Requirements Inspection; Mutation Analysis; Mutation Operator; 

Hazard and Operability Study (HAZOP). 

1. INTRODUCTION 
Requirements Engineering (RE) is the first and the most critical 

stage of a system development lifecycle as requirements guide 

downstream activities of a system development, from analysis, 

design, implementation all the way to testing and deployment. Use 

case modeling has been widely accepted in practice as a way of 

specifying requirements [1]. Therefore, ensuring the quality of use 

case models in terms of well-known quality metrics (e.g., 

completeness, correctness, and ambiguity [2]) is  therefore a 

practical challenge to be addressed. 

Requirements inspection, a particular application of software 

inspection [3] for requirements documents, has been empirically 

assessed and widely accepted as an effective technique of early 

detection and elimination of defects in requirements [4]. Software 

inspection was first introduced in [5]. Since then, various 

requirements inspection methods have been proposed. Checklist-

based reading (CBR) techniques (e.g., [4]) relies on a list of 

questions guiding a requirements inspector throughout a defined 

inspection process. Defect-based reading (DBR) (e.g., [6]) 

approaches are capable of providing specific instructions to 

inspectors on how to detect defects as compared with traditional 

checklist techniques. Perspective-based reading methods (PBR) 

(e.g., [7]) perform inspection procedures from perspectives of 

different stakeholders such as developers and testers. Usage-based 

reading (e.g., [8]) is based on prioritized use cases and aims to 

identify defects from the perspective of end users. Controversial 

evidence regarding the effectiveness of these requirements 

inspection methods have been reported in the literature (e.g., [9]).  

Being aware of such inconsistent evidence-based conclusions  for 

evaluating different requirements inspection methods, we do 

believe that there is a need to introduce mutation analysis from the 

testing field [10] to RE for facilitating the objective evaluation of 

the cost-effectiveness of various requirements inspection methods. 

Though in the literature, experiments (e.g., [9]) have been reported 

for evaluating requirements inspection methods by seeding defects, 

it does not exist any systematic mutation analysis in the RE 

literature. Mutation analysis (also called mutation testing) is a 

technique for evaluating the effectiveness of test suites [10]. The 

key element of mutation analysis is mutation operators [11].  

Instead of being generic, we, in this paper, concentrate on one 

particular use case modeling methodology, named as Restricted 

Use Case Modeling (RUCM) [12]. RUCM was initially proposed 

to reduce inherent ambiguity of natural language based 

specification methodologies by relying on a structured use case 

template and a set of restrictions on the use of natural language and 

keywords. RUCM and its extensions have been used to address 

various industrial challenges such as specifying/modeling 

requirements, facilitating the generation of UML analysis models, 

specifying test case specifications and generating executable test 

cases [13, 14]. RUCM has been also evaluated (via controlled 

experiments) to be easy to use [12].  

In this paper, we present our initial work towards a full-fledged 

mutation analysis mechanism for evaluating RUCM-based 

requirements inspection techniques. To the best of our knowledge, 

this is the first initiation towards introducing mutation analysis to 

use case models. More specifically, we first propose a 

comprehensive defect taxonomy by following the IEEE 

Recommended Practice for Software Requirements Specifications 

(i.e., IEEE Std.  830-1998) [2]. The defect taxonomy defines in total 

94 types of defects, which are classified into nine categories (e.g., 

Incompleteness) and applied on all the RUCM elements (e.g., flows 

of events). Such a defect taxonomy is necessary because well-

defined defects are the prerequisite for developing and evaluating 

an inspection approach for use case models [15, 16]. Moreover, it 

is a foundation to systematically propose mutation operators. 

Second, based on the defect taxonomy, by following the well-

known and standardized guide words of the Hazard and Operability 

Study (HAZOP) [17], we systematically define 189 RUCM 

mutation operators, which cover all the RUCM model elements and 

all the defects defined in the RUCM defect taxonomy. Last, we 

recommend a set of guidelines for researchers and practitioners to 

devise defects seeding strategies. 
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The proposed methodology was evaluated by one real world case 

study and six other case studies from the literature. In total 5588 

mutants were derived by using all the mutation operators at least 

once and covering all the proposed 94 defect types at least once, for 

all the seven case studies. Results show that all the RUCM mutation 

operators are feasible to apply. In addition, the 5588 mutants were 

used to evaluate three coverage criteria for automatically 

generating use case scenarios from use case models. Results show 

that the derived mutants with the RUCM mutation operators are 

effective in terms of differentiating the three coverage criteria. 

The rest of this paper is organized as follows. Section 2 introduces 

the background, followed by the related work in Section 3. RUCM 

mutation analysis is presented in Section 4. In Section 5, we report 

the evaluation. We conclude the paper in Section 6. 

2. BACKGROUND 
In [12], RUCM was proposed to model use cases. RUCM has three 

key constructs: UML use case diagrams, RUCM use case template, 

26 restriction rules for writing textual use case specifications. The 

RUCM template is composed of a set of fields, including use case 

name, brief description, pre-condition, dependencies with other use 

cases, actors, basic flow and alternative flows. An alternative flow 

always depends on a condition occurring in a specific step in a 

reference flow, which is either the basic flow or an alternative flow. 

Alternative flows are classified into three types: A specific 

alternative flow refers to a specific step in the reference flow; A 

bounded alternative flow refers to more than one step (consecutive 

or not) in a reference flow; A global alternative flow refers to any 

step in a reference flow. Figure 1 presents the use case specification 

Withdraw Fund borrowed from [18] and re-specified using the 

RUCM methodology and editor.  

The 26 restriction rules of RUCM has two categories: 16 restriction 

rules on the use of natural language and 10 restriction rules in terms 

of enforcing the use of keywords for specifying control structures. 

These restriction rules reduce opportunities for ambiguities in use 

case specifications and help to facilitate the automated generation 

of other artifacts such as UML models [19] and test cases [20, 21]. 

Especially, RUCM defines a set of keywords to specify conditional 

logic sentences (IF-THEN-ELSE-ELSEIF-ENDIF), concurrency 

sentences (MEANWHILE), condition checking sentences 

(VALIDATES THAT), and iteration sentences (DO-UNTIL). As 

shown in Figure 1, keyword VALIDATES THAT is used in steps 

5-8, which correspond to alternative flows alt 1 and alt 2. The 

connections between the basic flow and the alternative flows are 

through keyword RFS. For example, RFS 8 in alternative flow alt 

1 refers to step 8 of the basic flow. Notice that the keywords are 

highlighted with different colors in the RUCM editor. 

The Use Case Metamodel (UCMeta) was proposed to formalize 

RUCM models for supporting automated analysis and generation 

of other artifacts such as UML analysis models [12].  

3. RELATED WORK 

3.1 Mutation Analysis/Mutation Testing 
Mutation analysis, also named as mutation testing and program 

mutation was proposed to assess the effectiveness of test cases in 

terms of the capability of discovering defects in software programs 

[22]. Mutation analysis has been widely applied to source code 

written in various programming languages (named as Program 

Mutation [10]) such as C [23], Java [24], Ada [25]. Mutation 

analysis can also be applied on program specifications, which are 

often named as Specification Mutation ([10]). For example, the 

authors of [26] applied mutation 

analysis to validate finite state 

machines. The recent survey was 

conducted by Jia and Harman [10], 

showing evidence that researchers 

focused more on Program 

Mutation than Specification 

Mutation. We are not aware of any 

work published in Specification 

Mutation for use case models.  

The traditional process of mutation 

analysis for testing software 

programs is executed as below [10]: 

given a program 𝑝, a set of faulty 

programs 𝑝′  (called mutants) is 

generated based on predefined 

mutation operators. The second 

step is to execute a test suite 𝑇 with 

generated mutants 𝑝′. Note that the 

execution of 𝑇  to the original 

program 𝑝  should be successful 

and correct before the conduction 

of any mutation analysis. If results 

of running 𝑝′  are different from 

results of running 𝑝, corresponding 

mutants are called ‘killed’.  The 

mutation score (“a ratio of the 

number of killed mutants over the 

total number of nonequivalent 

mutants [10] ”) is then calculated 

and used to assess the effectiveness 

of test suite 𝑇. 

 

Figure 1. The Use Case Withdraw Fund specified in RUCM 
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Inspired by the traditional mutation analysis for testing, we apply 

mutation analysis to RUCM models, aiming to evaluate RUCM-

based requirements inspection methods. A mutant in our context 

means a defected use case model. RUCM-based requirements 

inspection methods play the role as test suite in mutation testing.  

3.2 Defect Taxonomies of Use Case Models 
Anda and Sjøberg [16] proposed a checklist-based reading 

technique to detect defects in use case models. They presented a 

taxonomy of defects for use case models with a defect classification 

scheme: Omission, Incorrect Fact, Inconsistency, Ambiguity, and 

Extraneous Information. The comparison of our their defect 

taxonomy with the RUCM defect taxonomy is discussed in Section 

5.3.1. A defect taxonomy (used as a checklist) focusing on semantic 

defects of use case specifications was proposed in [15]. Later, Phalp, 

et al. [27] refined this taxonomy by analyzing theories of text 

comprehension. Note that, as reported in  [15], this taxonomy was 

designed for inspecting one use case specification at a time and use 

case diagrams are not covered as part of the inspection.  

In  [28], the authors presented a defect classification based on IEEE 

Std. 830-1998 [2] for requirements specification, which lists a set 

of quality metrics for specifications: consistency, completeness, 

correctness, unambiguity, verifiability, changeability, traceability 

and prioritization. To cover all concerns from different 

stakeholders, they extended the standard scheme with 

comprehensibility (easy to read), feasibility (from the perspective 

of system designers) and adequate level of detail (avoiding over-

/less-information). Note that this classification is generic and most 

of the defects in the classification are applicable to other 

requirements specification methods. 

In summary, Denger, et al. [28] defined the defect taxonomy from 

a high level of abstraction by following IEEE Std. 830-1998 [2]. 

Therefore it is considered as a general scheme for defining the 

RUCM defect taxonomy (Section 4.2). The defect taxonomy 

proposed by Anda and Sjøberg [16] can be considered as an 

application of the general taxonomy proposed by Denger, et al. [28], 

which is specific to use case models. Cox, et al. [15] and Phalp, et 

al. [27] concentrated on semantic defects of use case specifications. 

Both Denger, et al. [28] and Anda and Sjøberg [16] proposed the 

classifications based on the impact of different errors on the quality 

of use case models, while Cox, et al. [15] and Phalp, et al. [27] 

defined a set of quality indicators for evaluating use case 

specifications from the perspective of error sources.  

The RUCM defect taxonomy we propose in this paper is more 

comprehensive and systematic as it is defined by following IEEE 

Std. 830-1998 [2] and it covers all possible defects that could occur 

on all RUCM model elements.  

4. RUCM MUTATION ANALYSIS 
The overview of the RUCM mutation analysis methodology is 

presented as a conceptual model in Figure 2. The methodology is 

defined to evaluate RUCM-based inspection methods. As for 

mutation testing, the effectiveness of such an inspection method is 

measured and evaluated with mutation scores. Taking a RUCM 

model as the input, a RUCM mutation operator mutates the RUCM 

model and generates a corresponding RUCM mutant, which 

contains a defect. The defect seeding strategy is used to guide a 

mutation seeding process to generate mutants. 

In the RUCM mutation analysis methodology, defects are classified 

by the RUCM defect taxonomy, which is systematically derived by 

following the IEEE Std. 830-1998 standard [2]. Each RUCM 

mutation operator is derived by following HAZOP [29], which is a 

systematic process for analyzing any deviation of a system  design, 

e.g., reflected in requirements and design models from the design 

intent. More specifically, based on the Extended Backus-Naur 

Form [30] of UCMeta, we systematically map each RUCM element 

to each basic HAZOP guide word defined in IEC 61882: 2001 [17]. 

We therefore define RUCM mutation operators based on the 

RUCM defect taxonomy. Each RUCM mutation operator can be 

derived if and only if the consequence of the corresponding 

deviation of the RUCM model can be interpreted as a particular 

defect defined in the RUCM defect taxonomy. 

 

Figure 2. Overview of RUCM Mutation Analysis 

In the rest of the section, we introduce the EBNF presentation 

(Section 4.1) of a subset of UCMeta, followed by the RUCM defect 

taxonomy (Section 4.2). We provide the RUCM mutation operators 

in Section 4.3 and the defect seeding strategy in Section 4.4. 

4.1 Syntax of RUCM Models in EBNF 
Mutation analysis relies on syntactic modifications of original 

programs [31]. Similarly, we formally define the syntax of RUCM 

use case models with EBNF [30] (Figure 3). Note that we apply 

EBNF in a more relaxed manner to represent the syntax of RUCM 

models. For example, the terminal terms are either natural language 

expressions such as ‘UC-Name’ or UCMeta model elements (e.g., 

RUCM Sentence). The EBNF representation (Figure 3) conforms 

to UCMeta, which is a metamodel for formalizing RUCM models 

for the purpose of automatically generating UML analysis models 

and tests (Section 2). However, it largely simplified UCMeta for 

the purpose of describing only RUCM model elements, on which 

the RUCM mutation operators can be applied. In the rest of the 

paper, one can refer to the EBNF representation for any definition 

of RUCM model elements.  

4.2 RUCM Defect Taxonomy 

4.2.1 Definitions 
We follow IEEE Std. 830-1998 [2] to derive the RUCM defect 

taxonomy. The standard provides a classification of defects that 

might appear in software requirements specifications (SRSs). In the 

rest of this section, we introduce each of the categories defined in 

the classification. In addition, we introduce two other categories of 

defects borrowed from  [16, 28]. 

Incorrectness (C1). In IEEE Std. 830-1998 [2], a SRS is correct, 

“if and only if every requirement stated therein is one that the 

software shall meet”. SRSs that do not describe actual needs of a 

system are considered incorrect. Such defects reflect 

misunderstanding of user’s intention and can be identified by a user 

and/or by comparing RUCM use case specifications with other 

documents (e.g., contract documents). Incompleteness (C2). As 

defined in IEEE Std. 830-1998 [2], a SRS is complete if and only 

if it includes all following elements: 1) all significant requirements 
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(e.g., functionality, performance, design constraints, attributes or 

external interfaces), 2) definition of the response of the system to 

all input data in all situations, and 3) full labels and references to 

the figures, tables and diagrams used in the SRS. In context of 

RUCM models, any omission of RUCM model elements (e.g., 

Action Step) leads to the incompleteness of a RUCM model. For 

example, missing a use case directly results in the incomplete 

specification of system functionalities. The RUCM methodology 

itself (to certain extent) reduces the possibility of specifying 

incomplete SRSs by e.g., enforcing the specification of various 

types of alternative flows.  

Inconsistency (C3). In IEEE Std. 830-1998 [2], consistency refers 

to internal consistency, implying that there is no inconsistency 

among specified individual requirements. For RUCM, we focus on 

the consistency between the use case diagram and the use case 

specifications of a RUCM model, and the internal consistency of a 

use case specification, e.g., two steps or flows of events conflict to 

each other. Ambiguity (C4). A SRS is unambiguous if and only if 

every specified requirement has only one interpretation [2]. To 

eliminate such defects, it requires that requirements engineers use 

consistent terminologies when specifying RUCM models. As 

discussed in Section 2, RUCM defines 26 restriction rules, which 

help to reduce ambiguities in use case models to certain extent. 

Incomprehensibility (C5).  This category is borrowed from [15, 27, 

28],  where it states that a use case model should be understood 

easily. In case of RUCM, it addresses that each specified 

requirement should be comprehensible to different stakeholders 

such as requirements engineers and developers. 

Intestability (C6). A requirement is verifiable, if and only if “there 

exists a finite process for a person or a machine to determine if the 

system meets the requirement” [2]. Apparently, any ambiguous 

requirement is unverifiable. RUCM has the inherent mechanism 

(i.e., Pre-condition and Post-conditions) to help the verification of 

each flow of events. It is important to mention that RUCM models 

have been used as inputs to derive tests [13, 14]. When deriving the 

RUCM defect taxonomy, we therefore put our focus on Pre-

conditions and Post-conditions of RUCM specifications from the 

perspective of test engineers. Unmodifiability (C7). A SRS is 

modifiable if and only if any change to it can be made “easily, 

completely and consistently while retaining its structure and style” 

[2]. For example, in the context of RUCM, a piece of shared 

behavior should be specified as a use case and reused (via Include 

and Extend), rather than be specified in different places of the use 

case model. Infeasibility (C8). It is also used to characterize 

unverifiable requirements from the perspective of system 

developers. More specifically, this category focuses more on 

requirements that cannot be implemented from the viewpoint of 

system developers. Over-Specification (C9). This category is from 

[16, 28] and it indicates that the given information in the use case 

models is irrelevant. In our context, it states that the RUCM use 

case specification should not contain unnecessary information. 

4.2.2 RUCM Defect Taxonomy 
The proposed definitions in Section 4.2.1 can not only be used as 

quality indicators for evaluating RUCM models, but also as a 

classification of defects. In this section, we present the RUCM 

defect taxonomy with in total 94 defects defined (Table 1). The 

taxonomy is systematically defined based on the classification 

presented in Section 4.2.1. 

We examined that all the RUCM elements defined in the EBNF 

have been considered from the nine aspects (i.e., the nine categories 

of the classification) and plausible matches (between a category 

and a RUCM model element) are presented in Table 1. These 

defects range from structural defects of use case models (e.g., 

relationships between use cases) to semantic defects of use case 

specifications (e.g., Ambiguity (Section 4.2.1)). We encode each 

defect as below: 

Defect = Defect Prefix, Defect ID 

Defect Prefix = Defect Category, Defect Element; 

Defect Category = C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9; 

Defect Element = AR | UC | R | H | F | UCM | UCS; 

Defect ID = ‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’; 

AR = Actor; UC = Use Case;  

R = relationship between two model elements;  

H = the head of a use case specification;  

F = flow-of-events of a use case specification;  

UCM = use case model; UCS = use case specification; 

As shown in Table 1, we divide the taxonomy into two parts: one 

for use case diagrams and the other for use case specifications. As 

shown in the table, most of the defects are for use case 

specifications, as they describe details of functionalities that use 

cases are intended to specify. Inconsistency (C3) is not applicable 

to use case diagrams as our context does not concern use case 

modeling at different levels of abstractions and does not address 

inconsistencies of various UML diagrams or models. However, it 

is indeed important to capture inconsistencies between a use case 

Use Case Model = Use Case Diagram, Use Case Specification; 

Use Case Diagram = UCD-UseCase, UCD-Actor, UCD-Relationship; 

UCD-UseCase = {UCD::Use Case}-; 

UCD-Actor = {UCD::Actor}-; 

UCD-Relationship = {Association}-, {UCD-Generalization | UCD-

Include | UCD-Extend} 

Use Case Specification = UC-Head, Basic Flow, {Alternative 

Flow}; 

UC-Head = Use Case, Pre-condition, Actor, {Dependency}, 

{Generalization}; 

Use Case = UC-Name, UC-BriefDescription; 

UC-Name = use case name; 

UC-BriefDescription = brief description of the use case; 

Actor = {Prim-Actor}-, {Sec-Actor}; 

Prim-Actor = primary actor name; 

Sec-Actor = secondary actor name; 

Dependency = Include | Extend; 

Generalization = {UC-Name}; 

Pre-condition = precondition description of the use case; 

Include = “INCLUDE USE CASE”, {UC-Name}-; 

Extend = “EXTENDED BY USE CASE”, {UC-Name}-; 

Basic Flow = {Flow-name}, {Action Step}-, {Condition Step | 

MEANWHILE | VALIDATES THAT}, Post-condition; 

Alternative Flow = Flow-name, RFS, {Action Step}-, {Condition 

Step | MEANWHILE}, (RESUME STEP | ABORT), Post-condition; 

Flow-name = the name of a RUCM flow; 

Action Step = RUCM action sentence; 

MEANWHILE = Action Step, “MEANWHILE”, Action Step; 

VALIDATES THAT = “VALIDATES THAT”, Action Step; 

Condition Step = IF-ELSE-ENDIF | DO-UNTIL; 

RFS = “RFS”, flow-name, Step-index; 

Step-index = int, {“-”, int}; 

IF-ELSE-ENDIF = IF-THEN-ENDIF | IF-THEN-ELSE-ENDIF | IF-THEN-

ELSEIF-THEN-ENDIF | ELSE-ENDIF | ELSEIF-THEN-ENDIF; 

IF-THEN-ENDIF = “IF”, condition, “THEN”, {Action step}-, 

“ENDIF”; 

IF-THEN-ELSE-ENDIF = “IF”, condition, “THEN”, {Action step}-, 

“ELSE”, {Action step}-, “ENDIF”; 

IF-THEN-ELSEIF-THEN-ENDIF = “IF”, condition, “THEN”, {Action 

step}-, “ELSEIF”, condition, “THEN”, {Action step}-, “ENDIF”; 

ELSE-ENDIF = “ELSE”, {Action step}-, “ENDIF”; 

ELSEIF-THEN-ENDIF = “ELSEIF”, Condition, “THEN”, {Action 

step}-, “ENDIF”; 

DO-UNTIL = “DO”, {Action step}-, “UNTIL”, condition; 

RESUME STEP = “RESUME STEP”, Step-index; 

Condition = RUCM condition sentence; 

ABORT = “ABORT”; 

Post-condition = post-condition description of the use case; 

RUCM action sentence = a RUCM Sentence describing system action; 

RUCM condition sentence = a RUCM Sentence describing 

conditions; 

RUCM Sentence = a descriptive sentence following RUCM writing 

rules (e.g., simple present tense, forbidden usage of adverbs, 

adjectives, pronouns, synonyms and negatives); 

int = digital-‘0’, {digital}; 

digital = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’; 

Figure 3. Syntax of RUCM Models in EBNF 
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diagram and its corresponding use case models (C3UCM1). 

Intestability (C6) and Infeasibility (C8) are also not applicable to 

use case diagrams as they do not contain detailed descriptions of 

system behaviors.  

We further divide the use case specification category into two parts: 

one for UC-Head and the other for Flow-of-Events. UC-Head 

elements (Figure 3) includes UC-Name, UC-BriefDescription, Pre-

condition, Prim-Actor, Sec-Actor, Dependency (i.e., Include and 

Exclude, with other use cases), and Generalization (with other use 

cases). These elements correspond to the first section of the RUCM 

template (Figure 1). All the defects defined for UC-Head are for 

these model elements such as Missing Primary Actor (C2H1). As 

UC-Head does not specify behaviors and therefore Infeasibility (C8) 

is not applicable to them. Since Pre-condition is included as part of 

UC-Head, Intestability is still applicable (C6H1). 

As flows of events describe behavior of a use case specification, 

defects for them focus on all the nine categories (C1-C9). Involved 

elements include Basic Flow, Alternative Flow, Action Step, Post-

condition, RFS (connecting alternative flows to their reference 

flows), special sentences containing RUCM keywords (e.g., 

RESUME), the sequence of Steps in a Flow-of-Events, and 

Sentence. Note that there are seven defects that are related to either 

general aspects of use case specifications (i.e., C2UCS1, C3UCS1-

C3UCS4) or aspects concerning multiple model elements of flows 

of events (i.e., C7UCS1).  

Defect C3UCM1 concerns the consistency between the use case 

Table 1. RUCM Defect Taxonomy (In Total 94 Types of Defects) 

Categ
ory 

Use Case Diagram (UCD) Use Case Specification (UCS) 

Actor Use Case Relationship UC-Head Flow-of-Events  

C1 C1AR1: 
Incorrect 
Actor  

C1UC1: 
Incorrect 
Use Case 

C1R1: Incorrect 
Generalization between 
Actors 
C1R2: Incorrect 
Generalization between Use 
Cases 
C1R3: Incorrect Include 
between Use Cases 
C1R4: Incorrect Extend 
between Use Cases 
C1R5: Incorrect Association 
between Actor and Use Case 

C1H1: Incorrect Primary Actor 
C1H2: Incorrect Secondary 
Actor 
C1H3: Incorrect Brief 
Description 
C1H4: Incorrect Pre-condition 
C1H5: Incorrect Include 
C1H6: Incorrect Extend 
C1H7: Incorrect 
Generalization 

C1F1: Incorrect Basic Flow 
C1F2: Incorrect Alternative 
Flow 
C1F3: Incorrect numbering of 
steps 
C1F4: Incorrect Post-condition 
C1F5: Incorrect branching of 
alternative flow 
C1F6: Incorrect merging of 
alternative flow 
C1F7: Incorrect logical 
relationship 

C2 C2AR1: 
Missing 
Actor 

C2UC1: 
Missing 
Use Case  

C2R1: Missing Generalization 
between Actors 
C2R2: Missing Generalization 
between Use Cases 
C2R3: Missing Include  
C2R4: Missing Extend 
C2R5: Missing Association 
between Actor and Use Case 

C2H1: Missing Primary Actor 
C2H2: Missing Secondary Actor 
C2H3: Missing Brief 
Description 
C2H4: Missing Pre-condition 
C2H5: Missing Include  
C2H6: Missing Extend  
C2H7: Missing Generalization 

C2F1: Missing Alternative Flow 
C2F2: Missing Step 
C2F3: Missing RFS 
C2F4: Missing post-condition 
C2F5: Missing RESUME 
C2F6: Missing ABORT 
C2F7: Missing logical 
relationship 

C2UCS1: Missing UCS 

C3 – C3H1: Actor is inconsistent 
with its behavior in use 
cases. 
C3H2: Brief Description is 
inconsistent with the design 
intent. 
C3H3: Pre-condition is 
inconsistent with the design 
intent. 

C3F1: Basic Flow is 
inconsistent with its expected 
goal. 
C3F2: Alternative Flow is 
inconsistent with its expected 
goal. 
C3F3: Inconsistent definition 
of references flows in an 
alternative flow. 
C3F4: Post-condition is 
inconsistent with its expected 
goal. 
C3F5: The numbing of steps is 
inconsistent. 

C3UCS1: UCS is inconsistent with the design intent. 
C3UCS2: Inconsistent terminologies used in the UCS. 
C3UCS3: Description in the UCS conflicts with another one. 
C3UCS4: UCS should be documented in a consistent level of 
abstraction. 

C3UCM1: UCD is inconsistent with its corresponding UCSs.  

C4 C4AR1: The 
actor name 
does not 
reflect 
its role. 

C4UC1: The 
use case 
name does 
not 
reflect 
its goal. 

– C4H1: Ambiguous Brief 
Description 
C4H2: Ambiguous Pre-condition 

C4F1: Ambiguous sentence in 
Basic Flow. 
C4F2: Ambiguous sentence in 
Alternative Flow. 
C4F3: Ambiguous Post-condition. 

C4UCS1: Not using the simple present tense throughout the UCS 
causes ambiguity. 
C4UCS2: Not avoiding the usage of adverbs, adjectives, 
pronouns, synonyms and negatives causes ambiguity. 

C5 C5AR1: 
Incomprehe
nsible 
actor name 

C5UC1: 
Incomprehe
nsible use 
case name 

– C5H1: Incomprehensible Brief 
Description 
C5H2: Incomprehensible Pre-
condition 

C5F1: Incomprehensible sentence 
of Flow-of-Events. 
C5F2: Incomprehensible Post-
condition. 

C6 – C6H1: The Pre-condition can 
never be satisfied.  

C6F1: The behavior of Flow-of-
Events can never be measured. 
C6F2: The Post-condition can 
never be measured. 
C6F3: The Flow-of-Events should 
be terminated reasonably. 

C7 – C7UCS1: Alternative flows should be separated from Basic Flow. 
C7UCM1: A shared system functionality should be specified as a separate use case and associated to others. 

C8 – – C8F1: The behavior described in 
Flow-of-Events cannot be 
implemented. 

C9 C9AR1: 
Superfluou
s actor 

C9UC1: 
Superfluou
s use case 

C9R1: Superfluous 
Generalization between 
Actors 
C9R2: Superfluous 
Generalization between Use 
Cases 
C9R3: Superfluous Include  
C9R4: Superfluous Extend 
C9R5: Superfluous 
Association between Actor 
and Use Case 

C9H1: Superfluous secondary 
actor 
C9H2: Superfluous sentences 
in Brief Description 
C9H3: Superfluous sentences 
in Pre-condition 
C9H4: Superfluous Include  
C9H5: Superfluous Extend  
C9H6: Superfluous 
Generalization (with other 
use cases) 

C9F1: Superfluous alternative 
flow 
C9F2: Superfluous step 
C9F3: Superfluous sentence in 
Post-condition. 

 



Simula Research Laboratory, Technical Report 2016-04                                                                                                                    June, 2016 

diagram and the use case specifications. C7UCM1 relates to the 

relationships between use cases. Therefore, these two defects are 

defined at the scope of the whole use case model.  

4.3 RUCM Mutation Operators 
Mutation analysis heavily depends on mutants, which are syntactic 

modifications of original programs [31], and mutation operators 

play the role similar to transformation rules for generating mutants 

from the original programs. We define our mutation operators for 

RUCM by following a different strategy as RUCM models are 

requirements, which inherently have significant differences in 

terms of generating mutants. In the rest of this section, we first 

present the HAZOP guide words (Section 4.1), followed by the 

mechanism we used for systematically deriving the RUCM 

mutation operators (Section 4.3.2). In Section 4.3.3, we present the 

derived mutation operators.   

4.3.1 Hazard and Operability Study (HAZOP) 
HAZOP is a technique widely used to examine a process, operation, 

design, and human error to identify hazards in various contexts such 

as developing safety critical systems by analyzing deviations from 

design intent [17]. The design intent is a baseline for applying 

HAZOP and should be correct and complete as much as possible 

[17]. In our context, the design intent is users’ actual needs. A 

successful application of HAZOP mainly relies on two aspects [17]: 

1) the identification of system elements (e.g., sensor) and their 

parameters (e.g., pressure, time), and 2) a set of predefined guide 

words, which should be applied to each parameter of each system 

element to identify unexpected and yet reasonable deviations from 

the design intent. As defined in the IEC 61882 standard [17] the 

basic guide words of HAZOP include NO, MORE, LESS, AS 

WELL AS, PART OF, REVERSE and OTHER THAN. We adapt 

these guide words for RUCM and define each of them in Table 2. 

Table 2. Adapted definitions of the HAZOP guide words  

Guideword Definition 
NO An intended RUCM model element is not captured. A 

RUCM modeling intent is not achieved. 
MORE Quantitative increase in a quantifiable RUCM element.  
LESS Quantitative decrease in a quantifiable RUCM element. 

AS WELL AS Spurious RUCM model elements or behavior are 
included in a RUCM model. 

PART OF Incomplete RUCM modeling intent is achieved. 
Incomplete model element or behavior is captured. 

REVERSE A logical opposite of the RUCM modeling intent, 
behavior or model element is specified. 

OTHER 
THAN 

A RUCM model is substituted by unintended/incorrect 
behavior, intent or model element. 

4.3.2 Mechanism for Deriving Mutation Operators 
We apply the seven HAZOP guide words and identify RUCM 

elements, to which the guide words are applicable. In our 

mechanism, we map each HAZOP guide word to each RUCM 

model element and we derive the RUCM mutation operators by 

analyzing the corresponding consequences of applying them. We 

illustrate the mechanism we use for deriving RUCM mutation 

operators in Figure 4. 

As shown in Figure 4, our mechanism is five-dimensional: 1) the 

seven HAZOP guide words, 2) the RUCM elements, 3) the nine 

defect categories of the RUCM defect taxonomy (e.g., 

Incorrectness (C1)), 4) the six editing operations (i.e., ADD (for 

addition), DEL (for deletion), SWAP (for exchanging two 

compatible elements within the RUCM model), REP (for replacing 

an element with another compatible element not existing in the 

RUCM model), ICR (for quantitative increase) and DEC (for 

quantitative decrease)), and 5) the defects in the RUCM defect 

taxonomy, which determine the consequences of the application of 

an editing operation to a particular RUCM element. It is worth 

mentioning that this mechanism ensures that each RUCM mutation 

operator leads to exactly one type of defects defined in our defect 

taxonomy, as each mutation operator is composed of three parts: an 

editing operation, a RUCM model element on which the mutation 

operator is applicable, and the type of a defect that the mutation 

operator can lead to. The HAZOP guide words help to 

systematically associate an editing operation to a defect and defect 

category for a specific RUCM model element.   

For example, as shown in Figure 4, we derive the mutation operator 

‘DEL-AF-C2F1’ with the following steps. First, we identify the 

RUCM element that a mutation operator should be applied on, 

which results in an alternative flow shown in the RUCM model axis 

in Figure 4. Second, we identify the editing operator that can lead 

to a NO derivation from the original RUCM model (shown on the 

HAZOP guide word axis). Third, applying the editing operation of 

DEL on the alternative flow leads to deletion of it from the original 

RUCM use case specification, which directly results in the defect 

of missing the alternative flow (C2F1 of the RUCM defect 

taxonomy and follows into the Incompleteness defect category 

(shown as the RUCM defect taxonomy category axis of Figure 4). 

We therefore define the mutation operator as ‘DEL-AF-C2F1’.  

RUCM defect taxonomy category

HAZOP guide word

RUCM model element
RUCM mutation operator

DEL-AF-C2F1

DEL-AF-C2F1

RUCM defect mutation operation

RUCM model element

 

Figure 4.  Mechanism for deriving RUCM mutation operators 

Note that we carefully analyzed which HAZOP guide word is 

applicable to which RUCM elements. For example, element ‘Use 

Case’ refers to a lexical value: its name (i.e. UC-Name); therefore, 

guide word OTHER THAN is applicable for this element by 

replacing the use case name by modifying the lexical value. RUCM 

elements RESUME STEP and ABORT refer to action steps 

containing these two keywords. Since these two elements can only 

be applied in the alternative flows and are mutually exclusive, we 

thus can apply guide word OTHER THAN to substitute one with 

the other. In case of Flow-of-Events, both PART OF and AS WELL 

AS can be used to generate deviations, since ‘Flow-of-Events’ is 

the container of RUCM steps.  



Simula Research Laboratory, Technical Report 2016-04                                                                                                                    June, 2016 

Each application of a guide word to a particular RUCM element is 

implemented as editing the original RUCM model. We define six 

types of editing operations: adding an element (ADD), deleting an 

element (DELETE), swapping two existing elements (SWAP), 

replacing an element with another (REP), increasing/decreasing the 

quantitative value of an element (ICR/DEC).  

4.3.3 Mutation Operators 
All the RUCM mutation operators are given in Table 3-Table 6. We 

first explain the encoding mechanism of naming the mutation 

operators: 

RUCM mutation operator = Operation, -, Element, -, {Defect}-; 

Operation = ADD | DEL | SWAP | REP | ICR | DEC; 

Element = UC | AR | INC | EXD | ASSO | UCS | UCN | ARN | PAR | 

SAR | BD | GA | GUC | SenBD | PreC | SenPreC | AF | SenAF | 

BF | SenBF | PostC | SenPostC | AS | RFS | ABORT | IFELSE | 

DO | VLD | MW |RFSsi | RFSflow | toABT | RES | toRES | IFELSE 

| IFELSEcs | IFELSEas | DOcs | DOas; 

Defect = Defect Prefix, Defect ID 

Defect Prefix = Defect Category, Defect Element; 

Defect Category = C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9; 

Defect Element = AR | UC | R | H | F | UCM | UCS; 

Defect ID = ‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’; 

UC = Use Case; AR = Actor; INC = Include; EXD = Extend; 

ASSO = Association; PAR = primary actor; SAR = secondary actor; 

UCS = use case specification; UCN = use case name; 

UCM = use case model; BD = use case brief description;  

ARN = Actor name; GAR = generalization between actors; 

GUC = generalization between use cases; 

SenBD = sentence in BD; 

PreC = pre-condition; SenPreC = sentence in PreC;  

BF = Basic Flow; SenBF = sentence in BF;  

AF = Alternative Flow; SenAF = sentence in AF;  

Table 3. Mutation operators for Use Case Diagrams (29) 

 NO AS WELL AS REVERSE OTHER THAN 

UCD::Use Case DEL-UC-C2UC1 ADD-UC-C9UC1 - REP-UCN-{C1UC1, C4UC1, C5UC1} 

UCD::Actor DEL-AR-C2AR1 ADD-AR-C9AR1 - REP-ARN-{C1AR1, C4AR1, C5AR1} 

UCD::Include DEL-INC-C2R3 ADD-INC-C9R3 SWAP-INC-C1R3 REP-INC-C1R3 

UCD::Extend DEL-EXD-C2R4 ADD-EXD-C9R4 SWAP-EXD-C1R4 REP-EXD-C1R4 

UCD::Generalization DEL-AR-C2R1 

DEL-UC-C2R2 

ADD-AR-C9R1 

ADD-UC-C9R2 

SWAP-GAR-C1R1 

SWAP-GUC-C1R2 

REP-GAR-C1R1 

REP-GUC-C1R2 

UCD::Association DEL-ASSO-C2R5 ADD-ASSO-C9R5 - REP-ASSO-C1R5 

Table 4. Mutation operators for UC-Head (34) 

 NO AS WELL AS PART OF REVERSE OTHER THAN 

UCS::Use Case - - - - - 

UCS::Actor DEL-PAR-C2H1 

DEL-SAR-C2H2 

ADD-SAR-C9H1 - SWAP-AR-

{C1H1, C1H2} 

REP-PAR-C1H1 

REP-SAR-C1H2 

UCS::Brief 
Description 

DEL-BD-C2H3 ADD-SenBD-C9H2 DEL-SenBD-C1H3 

REP-SenBD-C1H3 

- REP-BD-{C1H3, C3H2, 

C4H1, C5H1} 

UCS::Include DEL-INC-C2H5 ADD-INC-C9H4 - - REP-INC-C1H5 

UCS::Extend DEL-EXD-C2H6 ADD-EXD-C9H5 - - REP-EXD-C1H6 

UCS::Generalization DEL-GUC-C2H7 ADD-GUC-C9H6 - - REP-GUC-C1H7 

UCS::Precondition DEL-PreC-C2H4 ADD-SenPreC-

{C9H3, C6H1} 

DEL-SenPreC-{C1H4,  C6H1} - REP-PreC-{C1H4, C3H3, 

C4H3, C5H2, C6H1} 

Table 5. Mutation operators for Flows-of-Events (54) 

 NO AS WELL AS PART OF REVERSE OTHER THAN 

Flow of Events - ADD-AF-C9F1 DEL-AF-C2F1 SWAP-AF-{C1F5, C3F2} - 

Basic Flow - ADD-SenBF-C9F2 DEL-SenBF-{C1F1, 

C2F2, C3F1, C3F5, 

C6F1, C6F3, C8F1} 

SWAP-SenBF-{C1F1, 

C1F3, C3F1, C6F1, 

C6F3, C8F1} 

REP-BF-C1F1 

Alternative Flow DEL-AF-C2F1 ADD-SenAF-C9F2 DEL-SenAF-{C1F2, 

C2F2, C3F2, C3F5, 

C6F1, C6F3, C8F1} 

SWAP-SenAF-{C1F2, 

C1F3, C3F2, C6F1, 

C6F3, C8F1} 

REP-AF-C3F2 

Post-condition DEL-PostC-

C2F4 

ADD-SenPostC-

{C9F3, C6F2} 

DEL- SenPostC-C1F4 

REP- SenPostC-C6F2 

- REP-PostC-{C1F4, C3F4, 

C4F3, C5F2, C6F2 

Action Step DEL-AS-C2F2 - - - REP-AS-{C4UCS1, 

C4UCS2, C4F1, C4F2, 

C5F1, C6F1, C6F3, C6F3} 

Table 6. Mutation operators for Sentences containing keywords (72) 

 NO MORE LESS AS WELL AS PART OF REVERSE OTHER THAN 

RFS DEL-RFS-

{C2F3, 

C6F1} 

ICR-RFSsi-

{C1F5, C3F3} 

DEC-RFSsi-

{C1F5, C6F1} 

ADD-RFSflow-

{C3F2, C3F3} 

DEL-RFSflow-C3F2 SWAP-RFS-

C1F5 

REP-RFS-C3F3 

RESUME STEP DEL-RES-

C2F5 

ICR-RESsi-

C1F6 

DEC-RESsi- 

C1F6 

- - SWAP-RES-

C1F6 

REP-RES- C1F6 

REP-toABT-

C6F3 

ABORT DEL-ABT-

C2F6 

- - - - - REP-toRES-

C3F2 

IF-ELSE-ENDIF DEL-

IFELSE-

C2F7 

- - ADD-IFELSEcs-

{C1F7, C6F1, 

C8F1} 

ADD-IFELSEas-

C9F2 

DEL-IFELSEcs-C1F7 

DEL-IFELSEas-{C1F1, 

C1F2 C2F2, C3F1, 

C3F2 C3F5, C6F1, 

C6F3, C8F1} 

SWAP-

IFELSE- 

{C1F1, C6F1} 

REP-IFELSE -

{C1F1, C6F1} 

DO-UNTIL DEL-DO-

C2F7 

- - ADD-DOcs-

{C1F7, C6F1, 

C8F1} 

ADD-DOas- 

C9F2 

DEL-DOcs-C1F7 

DEL-DOas-{C1F1, 

C1F2 C2F2, C3F1, 

C3F2 C3F5, C6F1, 

C6F3, C8F1} 

- REP-DO- 

{C1F1, C6F1} 

VALIDATES 
THAT 

DEL-VLD-

C1F5 

- - - - REP-VLD- 

{C6F1, C8F1} 

REP-VLD- 

{C6F1, C8F1} 

MEANWHILE DEL-MW-

{C3F1, 

C3F2} 

- - - - SWAP-MW- 

{C1F1, C1F2, 

C3F1, C3F2, 

C6F1, C8F1} 

REP-MW- 

{C1F1, C1F2, 

C3F1, C3F2, 

C6F1, C8F1} 
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PostC = post-condition; SenPostC = sentence in PostC;  

AS = Action step; VLD = VALIDATES THAT; MW = MEANWHILE;  

RFS = sentence RFS; RFSsi = step index of RFS;  

RFSflow = reference flow name of RFS;  

ABORT = sentence ABORT; toRES = changing ABORT to RESUME STEP; 

RES = RESUME STEP; toABT = changing RES to ABORT; 

IFELSE = IF-SELSE-ENDIF; IFELSEcs = condition sentence in IF-

ELSE-ENDIF; IFELSEas = Action Step in IF-ELSE-ENDIF; 

DO = DO-UNTIL; DOcs = condition sentence in DO-UNITL; 

DOas = Action step in DO-UNITL; 

A combination of a HAZOP guide word and a RUCM element 

could introduce different types of defects, which therefore leads to 

the definition of various mutation operators. To save space, in 

tables Table 3-Table 6, we use the ‘{ }’ to embrace all 

corresponding mutation operators. For example, REP-UCN-

{C1U1, C4U1, C5U1} (Table 3) denotes three mutation operators, 

i.e., REP-UCN-C1U1, REP-UCN- C4U1, REP-UCN- C5U1. 

Table 3 presents all the 29 mutation operators derived for use case 

diagrams. One example is SWAP-INC-C1R3, which indicates the 

application of the REVERSE guide word to the RUCM element 

Include, meaning that the swapping of the roles of two use cases 

connected by the Include relationship (from being included into 

including, or vice versa) results in C1R3 of the Incorrectness 

category. Note that guide words MORE and LESS are not 

applicable to use case diagrams, as they are for quantifiable RUCM 

elements. AS WELL AS is also not applicable as all the RUCM 

elements in use case diagrams do not contain other elements.  

Table 4 shows all the 34 mutation operators derived for the UC-

Head of a RUCM use case specification, i.e., participating actors, 

the relationships with other use cases, its brief description and the 

pre-condition. Same as for use case diagrams, guide words MORE 

and LESS are not applicable. Since the brief description and pre-

condition of a RUCM use case specification can contain one or 

more sentences, guide word PART OF is applicable when DEL or 

REP are used to modify the original use case specification.  

We report all the 54 mutation operators derived for RUCM flows 

of events in Table 5. Same as for use case diagrams and UC-Heads, 

guide words MORE and LESS are not applicable. Table 6 reports 

all the 72 mutation operators derived for sentences containing 

RUCM keywords (e.g., VALIDATES THAT) in use case 

specifications. Since keywords ‘RFS’ and ‘RESUME STEP’ are 

followed by step numbers of flows of events, guide words MORE 

and LESS are then applicable, consequences of which are 

implemented by applying editing operations ICR and DEC on the 

step numbers of the sentences containing RFS and RESUME STEP.  

4.4 Guidelines for Defect Seeding Strategies 
Mutant reduction is an important issue for practical application of 

mutation analysis [31]. As summarized in [10],  four techniques are 

widely used for reducing the total number of mutants: Mutant 

Sampling, Mutant Clustering, Selective Mutation, and Higher 

Order Mutation. Mutation Sampling randomly chooses a small 

subset of mutants. Mutant Clustering applies clustering algorithms 

to perform selection. Selective Mutation aims to reduce the number 

of mutants by selecting a subset of mutation operators to apply 

based on certain selection criteria. Higher Order Mutation aims to 

find rare but valuable higher order mutants. Inspired by the 

literature, we define a set of guidelines for defining a cost-effective 

defect seeding strategy below. 

Guideline 1: Defects might have different levels of Importance at 

different contexts. For example, C1F5 (incorrect branching of 

alternative flows from the basic flow) might be considered more 

important than C1R5 (incorrect association between an actor and a 

use case) from the perspective of developers. The property of 

Importance of a defect (and therefore a mutation operator) can be 

used for implementing a Selective Mutation strategy in the context 

of the RUCM mutation analysis. One can also define Importance 

for the defect categories. For example, in certain contexts, 

Incompleteness is considered more important than Unmodifiability. 

Guideline 2: Each RUCM mutation operator is associated with 

exactly one type of defects (Section 4.3.3), implying that each 

mutant corresponds to a specific defect type. In the context of 

RUCM  mutation operators, there is no possibility of producing 

Equivalent Mutants that are syntactically different but semantically 

identical to the original RUCM model from which they are created 

[10]. This is because of the reason that we do not execute the 

specifications as is the case of code. 

Guideline 3: Some defects can only be seeded manually and effort 

required to apply the mutation operators to seed defects might be 

different. For example, it is more difficult to apply ‘ADD-AF-C9F1’ 

than ‘DEL-SAR-C2H2’, because the former needs to insert a 

complete alternative flow to a use case specification while the latter 

just deletes one of the secondary actors from a use case 

specification. Therefore, defining a cost-effective defect seeding 

strategy by using the RUCM mutation operators is critical. Cost is 

mainly about manual effort required to seed defects and 

effectiveness is about the effectiveness of killing mutants of a 

particular requirements inspection approach under evaluation. Cost 

can be reduced by applying various mutation reduction techniques 

such as Selective Mutation. 

Guideline 4: One defect type might be covered by multiple 

mutation operators applying on different RUCM model elements. 

For example, C1F3 (incorrect numbering of steps) can be realized 

by both SWAP-SenBF-C1F3 (swapping two sentences of the basic 

flow) and SWAP-SenAF-C1F3 (swapping two sentences of an 

alternative flow). So, it is important to find a defect seeding strategy 

to eliminate Redundant Mutants that are redundant if their 

outcomes are the same as with other mutants, or can be 

derived/predicted based on the outcomes of other mutants [32]. For 

example, one defect seeding strategy is to include either SWAP-

SenBF-C1F3 or SWAP-SenAF-C1F3, but not both. One can also 

define a more coarse-grained strategy by treating all the mutation 

operators leading to various defects (e.g., DEL-UC-C2UC1 and 

DEL-PostC-C2F4) of the same category as redundant defects.  

Guideline 5: Our mechanism for deriving the RUCM mutation 

operators (Section 4.3.2) can enable easy selection of RUCM 

mutation operators based on the nine defect categories. All the 

RUCM mutation operators are naturally clustered into nine 

categories, each of which corresponds to a defect category of the 

RUCM defect taxonomy. Depending on the inspection problem at 

hand, we can only select the category required for inspection. In 

addition, we can also select the RUCM mutation operators based 

on RUCM model elements, on which each mutation operator is 

applied. For example, if a requirements inspection method only 

focuses on inspecting a use case specification, then mutation 

operators defined for use case diagrams (presented in Table 3) 

should be excluded.  

5. EVALUATION 

5.1 Case Studies 
To evaluate the proposed approach, one real world case study and 

six other case studies from the literature are used in our evaluation. 

Their characteristics are summarized in Table 7. As shown in Table 

7, in total, we managed to mutate 38 use cases as indicated by the 

number of Basic Flow as each use case has exactly one basic flow. 



Simula Research Laboratory, Technical Report 2016-04                                                                                                                    June, 2016 

Our industrial case study is a Navigation System (NAS), which 

controls and guides an aircraft, based on control law computation 

that takes data sampled from sensors as input and sends commands 

to actuators. To evaluate our approach, we selected 11 use cases of 

the system as the original requirements. Notice that the case study 

has been used to evaluate our previous work [33]. The other six 

case studies are ATM (Banking System) [18], CMS (Crisis 

Management System) [34], CPD (Car Part Dealer System) [19], VS 

(Video Store system) [19], CDS (Cab Dispatching system) [19] and 

PAY (Payroll System) [19]. These case studies have been used to 

in our previous work ([12, 19]) to evaluate the RUCM methodology 

and the transformation from RUCM to UML analysis models. 

Table 7. Characteristics of the Case Studies* 

Model Element Case Study Total 

S1 S2 S3 S4 S5 S6 S7 

#Actor 7 2 2 4 8 3 4 30 

#Include 4 3 0 2 5 0 4 18 

#Extend 2 0 0 0 0 0 0 2 

#Generalization 2 0 0 0 0 0 0 2 

#Association 7 4 2 4 8 3 6 34 

#Basic Flow 11 4 1 6 7 1 8 38 

#Alternative Flow 28 7 7 12 12 3 12 81 

#RFS 28 7 7 12 12 3 12 81 

#RESUME STEP 20 1 7 5 7 4 8 52 

#ABORT 8 7 1 8 5 0 9 38 

#IF-ELSE-ENDIF 23 3 12 8 2 6 12 66 

#DO-UNTIL 2 0 3 6 3 1 0 15 

#VALIDATES THAT 36 10 1 5 11 3 14 80 

#MEANWHILE 8 1 1 1 2 2 0 15 

#Pre-condition 11 4 1 6 7 1 8 38 

#Post-condition 39 11 8 18 19 4 20 119 
*S1: NAS, S2: ATM, S3: CMS, S4: CPD, S56: NGP, S6: PAY, S7: VS 

5.2 Research Questions 
Our evaluation aims to answer the following three research 

questions: RQ1: How complete is the proposed defect taxonomy as 

compared to existing ones? RQ2: Are all the RUCM mutation 

operators feasible to apply? RQ3: Can the generated mutants be 

useful in terms of evaluating various coverage criteria for 

generating use case scenarios from use case models? 

5.3 Results and Discussion 

5.3.1 Results for RQ1 
RQ1 aims at answering if the RUCM defect taxonomy is complete 

in terms of covering defects commonly observed in use case models. 

To answer this question, we compared the RUCM defect taxonomy 

with the four taxonomies in the literature: [15, 16, 27, 28]. Results 

show that the RUCM defect taxonomy is complete as it covers all 

the defects classified in the four taxonomies. In addition, the 

RUCM defect taxonomy is applicable to entire use case models 

including both use case diagrams and use case specifications. 

Moreover, our defect taxonomy either defines additional defect 

types or provides more precisely definitions as compared with these 

four taxonomies. Though the taxonomy proposed by Anda and 

Sjøberg [16] is also applicable for entire use case models, the 

RUCM defect taxonomy defines more defect types, e.g., 

Intestability and each defect type has a precise definition tightly 

related to RUCM elements. Moreover the RUCM defect taxonomy 

was systematically defined by following IEEE Std. 830-1998 [2] 

(Section 4.2). Though the taxonomy in [28] was proposed by 

following the same standard, the RUCM taxonomy provides a more 

precisely definition for each defect type and it is more preferable 

for investigating different inspection. 

5.3.2 Results for RQ2 

We present all the defects/mutants seeded for the seven use case 

models of the seven case studies in Table 8. We derived in total 

5588 mutants, including 1279 Incorrectness (C1) defects, 1048 

Incompleteness (C2) defects, 633 Inconsistency (C3) defects, 871 

Ambiguity (C4) defects, 499 Incomprehensibility (C5) defects, 328 

Intestability (C6) defects, 101 Unmodifiability (C7) defects, 81 

Infeasibility (C8) defects and 748 Over-Specification (C9) defects. 

From Table 8, one can observe that some defect types can be 

simulated via multiple mutation operators; some defect types can 

only be realized by one particular mutation operator; and some 

types of defects need multiple mutation operators to implement. For 

example, as shwon in Table 8, the mapping betewen mutation 

operator REP-ARN-C1AR1 and the defect type of C1AR1 is one to 

one. In our case studies, in total, the muration operator was applied 

30 times to generate 30 mutants that lead to the same type of defects, 

i.e., C1AR1. For defect type C1F3, it was realized via SWAP-SenBF-

C1F3 and SWAP-SenAF-C1F3 and we applied them 142 and 264 

times respectively, as shown in Table 8. For the specical defect 

types such as C7UCM1, multiple mutation operators should be used 

together to realize them. In our cases studies, as shown in Table 8, 

we applied both ADD-SenBF-C9F2 and DEL-SenAF-C2F2 to seed 

defects of the C7UCS1 type. For the other six types of defects (i.e. 

C2UCS1, C3UCS1, C3UCS2, C3UCS3, C3UCS4, and C3UCM1), one 

can choose different mutation operators to realize. For example, we 

applied DEL-PAR-C2H1 to realize C3UCM1. In general, we 

simulated 5588 defects by applying all the 189 RUCM mutation 

operators at least once to cover all the 94 defect types at least once. 

Results and our experience show that all the RUCM mutation 

operators are feasible to apply.  

5.3.3 Results for RQ3 
To answer RQ3, we used the 5588 mutants derived for the seven 

case studies (RQ2) to evaluate the performance of three coverage 

criteria for generating use case scenarios from use case models. The 

three RUCM coverage criteria are All Condition coverage, All 

FlowOfEvents coverage and All Sentence coverage [33]. To 

evaluate these three coverage criteria, we define Mutation Score 

(MS) as: 𝑀𝑆 =  (# 𝑜𝑓 𝑘𝑖𝑙𝑙𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠) (# 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑒𝑒𝑑𝑒𝑑 𝑚𝑢𝑡𝑎𝑛𝑡𝑠)⁄ . 

Results of the evaluation are presented in Figure 5. The generated 

mutants worked well in terms of evaluating the performance 

(mutation score) of the three coverage criteria. For the C1 defects, 

the All Condition coverage criterion achieved the highest mutation 

score (0.95), followed by the All FlowsOfEvents coverage criterion 

(0.83) and the All Sentences coverage criterion achieved the lowest 

mutation score 0.67. For other defect categories (C2-C8), we can 

observe the similar patterns. This is reasonable because the All 

Condition coverage criterion generates more use case scenarios 

than the other two. These experiment results clearly show that the 

mutants derived with the RUCM mutation operators worked well 

for differentiating the performance of the different RUCM use case 

scenario coverage criteria in terms of mutation scores.  

5.3.4 Overall Discussion 
DeMillo et al. [11], who initiated the mutation technique, addressed 

that “formulating a complete set of mutation operators is a 

necessary requirement for program mutation to be deductive [11].” 

We believe that the generation of mutation operators by following 
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a rigorous approach is the first crucial step for any mutation 

Table 8.  Results for RQ2 

Mutation Operator Mutants Mutation Operator Mutants Mutation Operator Muta
nts 

Mutation Operator Mutant
s 

REP-ARN-C1AR1 30 DEL-AR-C2AR1 30 REP-ARN-C3H1 30 ADD-SenPreC-C6H1 15 

REP-UCN-C1UC1 38 DEL-UC-C2UC1 38 REP-BD-C3H2 38 DEL-SenPreC-C6H1 20 

SWAP-GAR-C1R1 2 DEL-AR-C2R1 2 REP-PreC-C3H3 38 REP-PreC-C6H1 3 

REP-GAR-C1R1 6 DEL-UC-C2R2 30 DEL-SenBF-C3F1 15 DEL-SenBF-C6F1 36 

SWAP-GUC-C1R2 6 DEL-INC-C2R3 18 SWAP-SenBF-C3F1 4 SWAP-SenBF-C6F1 8 

REP-GUC-C1R2 8 DEL-EXD-C2R4 2 REP-BF-C3F1 2 DEL-SenAF-C6F1 18 

SWAP-INC-C1R3 12 DEL-ASSO-C2R5 34 DEL-IFELSEas-C3F1 2 SWAP-SenAF-C6F1 7 

REP-INC-C1R3 16 DEL-PAR-C2H1 12 SWAP-IFELSE-C3F1 1 REP-AS-C6F1 1 

SWAP-EXD-C1R4 6 DEL-SAR-C2H2 18 REP-IFELSE-C3F1 1 DEL-RFS-C6F1 8 

REP-EXD-C1R4 10 DEL-BD-C2H3 38 DEL-DOas-C3F1 4 DEC-RFSsi-C6F1 7 

REP-ASSO-C1R5 11 DEL-PreC-C2H4 38 REP-DO-C3F1 2 ADD-IFELSEcs-C6F1 1 

SWAP-AR-C1H1 3 DEL-INC-C2H5 18 SWAP-MW-C3F1 3 DEL-IFELSEas-C6F1 14 

REP-AR-C1H1 9 DEL-EXD-C2H6 2 REP-MW-C3F1 1 SWAP-IFELSE-C6F1 1 

SWAP-AR-C1H2 6 DEL-GUC-C2H7 2 DEL-MW- C3F1 3 REP-IFELSE-C6F1 1 

REP-AR-C1H2 12 DEL-AF-C2F1 119 SWAP-AF-C3F2 2 ADD-DOcs-C6F1 1 

REP-SenBD-C1H3 18 DEL-AS-C2F2 85 DEL-SenAF-C3F1 22 DEL-DOas-C6F1 12 

DEL-SenBD-C1H3 12 DEL-SenBF-C2F2 34 SWAP-SenAF-C3F2 4 REP-DO-C6F1 1 

REP-BD-C1H3 8 DEL-SenAF-C2F2 81 REP-AF-C3F2 2 REP-VLD-C6F1 1 

DEL-SenPreC-C1H4 25 DEL-IFELSEas-C2F2 30 ADD-RFSflow-C3F2 2 SWAP-MW-C6F1 1 

REP-PreC-C1H4 13 DEL-DOas-C2F2 8 DEL-RFSflow-C3F2 13 REP-MW-C6F1 1 

REP-INC-C1H5 18 DEL-RFS-C2F3 81 REP-toRES-C3F2 1 ADD-SenPostC-C6F2 86 

REP-EXD-C1H6 4 DEL-PostC-C2F4 119 DEL-IFELSEas-C3F2 16 REP-SenPostC-C6F2 24 

REP-GUC-C1H7 4 DEL-RES-C2F5 52 DEL-DOas-C3F2 12 REP-PostC-C6F2 9 

DEL-SenBF-C1F1 15 DEL-ABT-C2F6 38 SWAP-MW-C3F2 3 DEL-SenBF-C6F3 21 

SWAP-SenBF-C1F1 4 DEL-IFELSE-C2F7 66 REP-MW-C3F2 1 SWAP-SenBF-C6F3 4 

REP-BF-C1F1 2 DEL-DO-C2F7 15 DEL-MW-C3F2 3 DEL-SenAF-C6F3 7 

DEL-IFELSEas-C1F1 2 C2UC1: DEL-UC 38 ICR-RFSsi-C3F3 22 SWAP-SenAF-C6F3 2 

SWAP-IFELSE-C1F1 1 Total in C2 1048 ADD-RFSflow-C3F3 8 REP-AS-C6F3 1 

REP-IFELSE-C1F1 1 REP-UCN-C4UC1 38 REP-RFS-C3F3 2 REP-toABT-C6F3 3 

DEL-DOas-C1F1 4 REP-BD-C4H1 119 REP-PostC-C3F4 119 DEL-IFELSEas-C6F3 7 

REP-DO-C1F1 2 REP-PreC-C4H2 119 DEL-SenBF-C3F5 5 DEL-DOas-C6F3 7 

SWAP-MW-C1F1 3 REP-AS-C4F1 76 DEL-SenAF-C3F5 5 Total in C6 328 

REP-MW-C1F1 4 REP-AS-C4F2 162 DEL-IFELSEas-C3F5 5 DEL-SenBF-C8F1 25 

DEL-SenAF-C1F2 89 REP-PostC-C4F3 119 DEL-DOas-C3F5 21 SWAP-SenBF-C8F1 3 

SWAP-SenAF-C1F2 81 REP-AS-C4UCS1 119 C3UCS1:REP-UCN-C1UC1 38 DEL-SenAF-C8F1 7 

DEL-IFELSEas-C1F2 66 REP-AS-C4UCS2 119 C3UCS2:REP-AS-C4F1 119 SWAP-SenAF-C8F1 7 

SWAP-MW-C1F2 6 Total in C4 871 C3UCS4:REP-AS-C4F1 26 ADD-IFELSEcs-C8F1 11 

REP-MW-C1F2 9 REP-ARN-C5AR1 30 C3UCM1:DEL-PAR-C2H1 38 DEL-IFELSEcs-C8F1 7 

SWAP-SenBF-C1F3 142 REP-UCN-C5UC1 38 Total in C3 633 ADD-DOcs-C8F1 7 

SWAP-SenAF-C1F3 264 REP-BD-C5H1 38 C7UCS1: ADD-SenBF-

C9F2, DEL-SenAF-C2F2 

81 

 

DEL-DOcs-C8F1 7 

DEL-SenPostC-C1F4 26 REP-PreC-C5H2 38 REP-VLD-C8F1 4 

REP-PostC-C1F4 12 REP-AS-C5F1 236 C7UCM1: ADD-SenBF-

C9F2, DEL-SenAF-C2F2, 

DEL-SenBF-C9F2 

20 SWAP-MW-C8F1 1 

SWAP-AF-C1F5 21 REP-PostC-C5F2 119 REP-MW-C8F1 2 

ICR-RFSsi-C1F5 30 Total in C5 499 Total in C7 101 Total in C8 81 

DEC-RFSsi-C1F5 22 DEL-IFELSEcs-C1F7 36 ADD-AR-C9AR1 38 ADD-INC-C9H4 14 

SWAP-RFS-C1F5 8 ADD-DOcs-C1F7 15 ADD-UC-C9UC1 7 ADD-EXD-C9H5 7 

DEL-VLD-C1F5 15 DEL-DOcs-C1F7 15 ADD-AR-C9R1 8 ADD-GUC-C9H6 12 

ICR-RESsi-C1F6 24 ADD-IFELSEcs-C1F7 55 ADD-UC-C9R2 12 ADD-AF-C9F1 76 

DEC-RESsi-C1F6 20 ADD-SenBD-C9H2 38 ADD-INC-C9R3 6 ADD-SenBF-C9F2 56 

SWAP-RES-C1F6 3 ADD-SenPreC-C9H3 119 ADD-EXD-C9R4 6 ADD-SenAF-C9F2 101 

REP-RES-C1F6 5 ADD-SenPostC-C9F3 119 ADD-ASSO-C9R5 30 ADD-IFELSEas-C9F2 66 

Total in C1 1279 ADD-DOas-C9F2 15 ADD-SAR-C9H1 18 Total in C9 748 

 

 

Figure 5. Mutation scores for the three coverage criteria of each defect category 
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analysis and it is especially true for the fault/defect injection based  

evaluation of use case inspection techniques.  

The RUCM mutation operators are designed and expressed 

specifically for RUCM models; however, they are suitable for other 

use case models. The mutation operators for use case diagram can 

be applied directly to any UML use case diagram. The mutation 

operators for specifications are applicable for other use case 

templates without requiring significant modification as the RUCM 

use case template captures the most common constructs of use case 

templates in the literature. It is worth mentioning that our five 

dimensional mechanism for deriving the mutation operators is a 

rigorous method (following the HAZOP [17] and IEEE Std.  830-

1998 [2] standards), and it might be useful for other researchers to 

propose their particular mutation operators. The results of our case 

studies show that the RUCM mutation operators worked well for 

generating effective mutants. However further empirical studies are 

needed in the future. 

6. CONCLUSION 
Requirements quality is critical for the final success of any non-

trivial system development. Requirements inspection is a 

commonly method applied in practice to ensure requirements 

quality, especially when they are documented in natural language. 

Use case modelling is natural language based modeling approach 

for specifying requirements in a structured way and therefore an 

increasing attention is given to use case inspection methods. 

However, in the literature lacks a comprehensive defect taxonomy 

for use case models and mutation analysis has not been 

systematically introduced for evaluating various requirements 

inspection methods. In this paper, we demonstrated a novel and 

systematic approach to propose a comprehensive defect taxonomy 

based on a systematic study of the IEEE Std. 830-1998 

requirements standard. By applying the hazard and operability 

study (HAZOP) technique, we rigorously devised a set of mutation 

operators and provide a set of guidelines on how to devise cost-

effective defect seeding strategies with the proposed mutation 

operators Our approach was evaluated by a set of case studies. 

Results show that the proposed mutation operators are 

comprehensive and effective.  

7. REFERENCES 

[1]   Neill, C. J. and Laplante, P. A. 2003. Requirements 

engineering: the state of the practice. IEEE software. 20, 6 

(Nov. 2003), 40-45.  

[2]   IEEE 1998. IEEE Recommended Practice for Software 

Requirements Specifications. IEEE Std. 830-1998.  

[3]   Fagan, M. E. 1986. Advances in software inspections. IEEE 

Transactons on Software Engineering. 12, 7 (1986), 744-751.  

[4]   Miller, J., Wood, M., and Roper, M. 1998. Further 

experiences with scenarios and checklists. Empirical 

Software Engineering. 3, 1 (Marcch 1998), 37-64.  

[5]   Fagan, M. E. 1976. Design and code inspections to reduce 

errors in program development. IBM Systems Journal. 15, 3 

(1976), 182-211.  

[6]   Porter, A., Votta Jr, L. G., and Basili, V. R. 1995. Comparing 

detection methods for software requirements inspections: A 

replicated experiment. Software Engineering, IEEE 

Transactions on. 21, 6 (June 1995), 563-575.  

[7]   Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, 

F., Sørumgård, S., et al. 1996. The empirical investigation of 

perspective-based reading. Empirical Software Engineering. 

1, 2 (January 1996), 133-164.  

[8]   Thelin, T., Runeson, P., Wohlin, C., Olsson, T., and 

Andersson, C. 2004. Evaluation of Usage-Based Reading—

Conclusions after Three Experiments. Empirical Software 

Engineering. 9, 1-2 (March 2004), 77-110.  

[9]   Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, 

B., and Wesslén, A. 2012. Are the Perspectives Really 

Different?: Further Experimentation on Scenario-Based 

Reading of Requirements. In Eds. Springer, 175-200. 

[10] Jia, Y. and Harman, M. 2011. An analysis and survey of the 

development of mutation testing. Software Engineering, 

IEEE Transactions on. 37, 5 649-678.  

[11] DeMillo, R., Lipton, R., and Sayward, F. 1979. Program 

mutation: A new approach to program testing. Infotech State 

of the Art Report, Software Testing. 2, 107-126.  

[12] Yue, T., Briand, L. C., and Labiche, Y. 2013. Facilitating the 

transition from use case models to analysis models: Approach 

and experiments. ACM Transactions on Software 

Engineering and Methodology (TOSEM). 22, 1 (February 

2013), 5.  

[13] Yue, T. and Ali, S. 2012. Bridging the gap between 

requirements and aspect state machines to support non-

functional testing: industrial case studies. In Eds. Springer, 

133-145. 

[14] Wang, C., Pastore, F., Goknil, A., Briand, L., and Iqbal, Z. 

2015. Automatic generation of system test cases from use 

case specifications. In Proceedings of the Proceedings of the 

2015 International Symposium on Software Testing and 

Analysis ACM, 385-396. 

[15] Cox, K., Aurum, A., and Jeffery, R. 2004. An experiment in 

inspecting the quality of use case descriptions. Journal of 

Research and Practice in Information Technology. 36, 4 211-

229.  

[16] Anda, B. and Sjøberg, D. I. 2002. Towards an inspection 

technique for use case models. In Proceedings of the 

Proceedings of the 14th international conference on Software 

engineering and knowledge engineering ACM, 127-134. 

[17] IEC 2001. IEC 61882: 2001: Hazard and operability studies 

(HAZOP studies). Application guide. In Proceedings of the 

British Standards Institute  

[18] Gomaa, H. 2000. Designing concurrent, distributed, and 

real-time applications with UML. Addison-Wesley. 

[19] Yue, T., Briand, L. C., and Labiche, Y. 2015. aToucan: An 

Automated Framework to Derive UML Analysis Models 

from Use Case Models. ACM Transactions on Software 

Engineering and Methodology (TOSEM). 24, 3 13.  

[20] Yue, T., Ali, S., and Zhang, M. 2015. RTCM: a natural 

language based, automated, and practical test case generation 

framework. In Proceedings of the Proceedings of the 2015 

International Symposium on Software Testing and Analysis 

ACM, 397-408. 

[21] Zhang, M., Yue, T., Ali, S., Zhang, H., and Wu, J. 2014. A 

Systematic Approach to Automatically Derive Test Cases 

from Use Cases Specified in Restricted Natural Languages. 

In Eds. Springer, 142-157. 

[22] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. 1978. Hints 

on test data selection: Help for the practicing programmer. 

Computer. 4 34-41.  

[23] Shahriar, H. and Zulkernine, M. 2008. Mutation-based 

testing of buffer overflow vulnerabilities. In Proceedings of 

the Computer Software and Applications, 2008. 

COMPSAC'08. 32nd Annual IEEE International IEEE, 979-

984. 

[24] Chevalley, P. and Thévenod-Fosse, P. 2003. A mutation 

analysis tool for Java programs. International journal on 

software tools for technology transfer. 5, 1 90-103.  



Simula Research Laboratory, Technical Report 2016-04                                                                                                                    June, 2016 

[25] Offutt, A. J., Voas, J., and Payne, J. 1996. Mutation 

operators for Ada. Techniqual Report.  

[26] Fabbri, S. C., Delamaro, M. E., Maldonado, J. C., and 

Masiero, P. C. 1994. Mutation analysis testing for finite state 

machines. In Proceedings of the Software Reliability 

Engineering, 1994. Proceedings., 5th International 

Symposium on IEEE, 220-229. 

[27] Phalp, K. T., Vincent, J., and Cox, K. 2007. Assessing the 

quality of use case descriptions. Software Quality Journal. 

15, 1 69-97.  

[28] Denger, C., Paech, B., and Freimut, B. 2005. Achieving high 

quality of use-case-based requirements. Informatik-

Forschung und Entwicklung. 20, 1-2 11-23.  

[29] Kletz, T. A. 1999. HAZOP and HAZAN: identifying and 

assessing process industry hazards. IChemE. 

[30] ISO 1996. ISO/IEC 14977: 1996 (e), information technology 

syntactic metalanguage extended bnf. International 

Organization for Standardization.  

[31] Offutt, A. J. and Untch, R. H. 2001. Mutation 2000: Uniting 

the orthogonal. In Eds. Springer, 34-44. 

[32] Just, R. and Schweiggert, F. 2015. Higher accuracy and 

lower run time: efficient mutation analysis using non‐
redundant mutation operators. Software Testing, Verification 

and Reliability. 25, 5-7 490-507.  

[33] Zhang, H., Yue, T., Ali, S., and Liu, C. 2015. Facilitating 

Requirements Inspection with Search-Based Selection of 

Diverse Use Case Scenarios. In Proceedings of the 9th EAI 

International Conference on Bio-inspired Information and 

Communications Technologies (BICT) (Columbia University, 

NY, USA). ACM, (In Press). 

[34] Capozucca, A., Cheng, B., Georg, G., Guelfi, N., Istoan, P., 

Mussbacher, G., et al. 2011. Requirements Definition 

Document For A Software Product Line Of Car Crash 

Management Systems. ReMoDD repository, at http://www. 

cs. colostate. edu/remodd/v1/content/bcms-requirements-

definition.  

 


