
 

	

Simula Research Laboratory, Technical Report 2016-15  Feb. 2017 

Specifying Uncertainty in Use Case Models in Industrial Settings 
 

Man Zhang1, Tao Yue1,2, Shaukat Ali1, Bran Selic1 
1Simula Research Laboratory 

2University of Oslo 
{man, tao, shaukat, bselic}@simula.no 

Oscar Okariz3, Roland Norgren4, Karmele Intxausti5 
3ULMA Handling Systems,4Future Position X, 5Ikerlan 
ookariz@manutencion.ulma.es, roland.norgren@fpx.se, 

KIntxausti@ikerlan.es
 

 
Abstract— Latent uncertainty in the context of software-
intensive systems (e.g., Cyber-Physical Systems (CPSs)) 
demands explicit attention right from the start of development. 
Use case modeling—a commonly used method for specifying 
requirements in practice, should also be extended for explicitly 
specifying uncertainty. To this end, we extend the Restricted 
Use Case Modeling (RUCM) methodology and its supporting 
tool to specify uncertainty as part of system requirements. 
Such uncertainties include those caused by insufficient domain 
expertise of stakeholders, disagreements among them, and 
known uncertainties pertaining to assumptions about the 
environment of the system. The extended RUCM, called U-
RUCM, inherits the features of RUCM, such as automated 
analyses and generation of models, to mention but a few. 
Consequently, U-RUCM provides all the key benefits offered 
by RUCM (i.e., reducing ambiguities in requirements), but in 
addition, it allows specification of uncertainties with the 
possibilities of reasoning and refining existing ones and even 
uncovering unknown ones.  

We evaluated U-RUCM in the context of the U-Test project 
[1], with two industrial CPS case studies. Evaluation results 
showed that, with U-RUCM, we were able to get a significantly 
better and more precise characterization of the uncertainties 
involved compared to RUCM. This suggests that U-RUCM is 
an effective tool for dealing with uncertainty in requirements 
engineering. We present our experience, lessons learned, and 
future challenges based on the two industrial case studies.   

Index Terms—Use Case Modeling, Belief, Uncertainty. 

I.  INTRODUCTION 
The problem of uncertainty in software-intensive systems 
such as Cyber-Physical Systems (CPSs)), is familiar to the 
requirements engineering community. However, it has not 
been adequately addressed and, therefore, it lacks both 
methodological and tool support in both the literature and in 
practice. In their well-known use case modeling book, 
Bittner and Spence [2] pointed out that it is important to take 
the time to fill out missing areas and drill down into 
uncertainty. Uncertainty can be due to diverse causes, such 
as insufficient domain expertise or lack of information. 
Given the significant increases in the complexity of modern 
CPS and the diversity of the environments in which they are 
deployed, it is becoming critical to address uncertainty up 
front; that is, right from the start of development. This 
includes not only uncertainties about the requirements, but 
also uncertainties about its assumed operating environment.  

Uncertainty in requirements has been studied in the 
context of dynamically adaptive systems in the presence of 
environmental uncertainty [3, 4]. Several goal-driven 
solutions [5, 6] have been proposed to handle uncertainty in 
similar contexts. Partial model-based solutions (e.g., [7, 8]) 

have been developed to support early requirements and 
architecture decision making. However, after conducting a 
literature review, we did not find any use case modeling 
methodology that explicitly handles uncertainty. Having 
such a methodology is important since use case modeling is 
a commonly used technique for specifying requirements in 
practice [7]. In our view, because uncertainty is a common 
phenomenon in requirements engineering, it is best to 
address it explicitly by identifying, qualifying, and, where 
possible, quantifying uncertainty.  

The need for such a methodology arose in the context of 
the EU project U-Test, which focused on testing CPSs under 
uncertainty. The first key step in this project was to collect 
use cases with known uncertainties for two industrial CPSs 
and their environments. This was done with three industrial 
partners (Future Position X1, ULMA2 and Ikerlan3, which are 
among the authors of this paper). The ultimate aim was to 
use these use cases as the starting point to create test-ready 
models to support automated testing of CPSs under 
uncertainty. To this end, we first introduced the RUCM 
methodology to our industrial partners and then extended it 
to enable specification of uncertainties. This led to the design 
of the U-RUCM methodology, which, to the best of our 
knowledge is the first use case modeling methodology that 
explicitly addresses uncertainty.  

As noted, U-RUCM is based on a practical use case 
modeling solution, called Restricted Use Case Modeling 
(RUCM) [9, 10]. RUCM was initially proposed by Yue et al., 
for reducing inherent ambiguity in textual Use Case 
Specifications (UCSs) and to enable automated generation of 
UML models [10]. Later on, RUCM was extended to address 
various industrial challenges, including requirements-based 
testing [11] and use-case based requirements inspection [12]. 
RUCM and its extensions have been used to address 
industrial challenges from various domains (e.g., 
telecommunication [11, 13, 14], automotive [15]).  

To structure and specify uncertainties in use case models, 
two templates were proposed for specifying Belief Use Case 
Specifications (BUCS) and uncertainties. A BUCS annotates 
the UCS with uncertainty information, including the source 
of uncertainty, the degree (measurement) of uncertainty, the 
risk of uncertainty, etc., as perceived by stakeholders and 
based on available evidence. Such models can be 
automatically generated as instances of a formal U-RUCM 
metamodel. 

Evaluation of U-RUCM based on the two industrial case 
studies revealed that, with U-RUCM, we were able to 
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significantly improve on the characterization and 
understanding of uncertainties in the requirements (up to 306% 
and 512% for the two case studies) compared to base RUCM. 
In this paper, we summarize practical lessons learned in the 
course of this evaluation and also discuss future challenges.   

The rest of the paper is organized as follows: Section II 
presents the background, followed by the related work 
(Section III). The U-RUCM templates and keywords are 
explained in Section IV, followed by its formalization 
(Section V). The tool support and recommended 
methodology are given in Section VI. Section VII reports 
user experience, evaluation, lessons learned and future 
challenges. We conclude the paper in Section VIII. 

II. BACKGROUND AND RUNNING EXAMPLE 

A. U-Model 
To help us understand the nature of uncertainty in the general 
context of software engineering, in our previous work [16] 
we developed a conceptual model called U-Model to define 
uncertainty and its associated concepts. The U-Model was 
developed based on an extensive review of existing literature 
on uncertainty from several disciplines including philosophy, 
healthcare and physics, and two industrial case studies from 
the two industrial partners of the U-Test project. Some of the 
U-Model concepts were further extended for supporting 
Model-Based Testing (MBT) of CPSs under uncertainty. 
More specifically, we developed the Uncertainty Modeling 
Framework [17] for supporting MBT of CPSs, which 
contains a UML profile, called the UML Uncertainty Profile 
(UUP), for specifying and measuring uncertainties as part of 
UML models. UUP was derived based on the U-Model. 
UncerTum has been successfully used for discovering 
unknown uncertainties [17, 18] and generating test cases 
[19]. 

The U-Model takes a subjective approach to representing 
uncertainty. This means that uncertainty is modeled as a state 
(i.e., worldview) of some agents (called BeliefAgents), who, 
for whatever reason, do not have complete and fully accurate 
knowledge about some subjects of interest. In the U-Model, 
a Belief is an abstract concept, but it can be expressed in 
concrete form via one or more explicit BeliefStatements (a 
concrete and explicit specification of some Belief held by a 
BeliefAgent about possible phenomena or notions belonging 
to a given subject area). Uncertainty (i.e., lack of confidence) 
represents a state of affairs whereby a BeliefAgent does not 
have full confidence in a belief that it holds. This may be due 
to any number of factors: lack of information, inherent 
variability in the subject matter, ignorance, or even due 
physical phenomena such as the Heisenberg uncertainty 
principle. While Uncertainty itself is an abstract concept, it 
can be quantified by a corresponding Measurement, which 
expresses in some concrete form the subjective degree of 
uncertainty that the agent ascribes to a BeliefStatement. As 
the latter is a subjective notion, a Measurement should not be 
confused with the degree of validity of a BeliefStatement. 
Instead, it merely indicates the level of confidence that the 
agent has in a statement. 

B. Restricted Use Case Modeling (RUCM) 

RUCM encompasses a use case template and 26 restriction 
rules for specifying textual UCSs [35]. RUCM aims to be 
easy to use, to reduce ambiguity and improve understanding, 
and to facilitate automated analysis. Results of two 
controlled experiments support these expectations [34, 35]. 
A RUCM UCS has one basic flow and, optionally, one or 
more alternative flows. An alternative flow always depends 
on a condition occurring in a specific step of another flow 
(referred to as the reference flow). We classify alternative 
flows into three types: A specific alternative flow refers to a 
specific step in the reference flow; a bounded alternative 
flow refers to more than one step (consecutive or not) in the 
reference flow; a global alternative refers to any step in the 
reference flow. For specific and bounded alternative flows, a 
RFS (Reference Flow Step) section specifies one or more 
(reference flow) step numbers. For example, as shown in 
Appendix A, the use case has one basic flow, called Normal. 
The specific alternative flow of DetectIntrusion branches out 
from step 10 of the basic flow Normal, as indicated by 
keyword RFS and plus “Normal 10”. The global alternative 
flow CallPolice is triggered whenever the branching 
condition “The Alarm has been triggered for more than 5 
minutes”. The bounded alternative flow of 
FailOnEnablingMonitoring refers to steps 5-7 of the basic 
flow Normal, as indicated by “URFS Normal 5-7”. URFS is 
a new keyword introduced to U-RUCM and will be 
discussed in Section IV. 

RUCM defines a set of keywords to specify sentences 
that involve conditional logic (IF-THEN-ELSE-ELSEIF-
ENDIF), concurrency (MEANWHILE), condition checking 
(VALIDATES THAT), and iteration (DO-UNTIL). UCMeta 
is a metamodel that can be used to formalize textual RUCM 
to facilitate automated analyses and generation of UML 
analysis models [9, 20]. UCMeta is specified using the 
OMG’s standard Meta-Object Facility (MOF) [21], while the 
formalization of RUCM models to UCMeta instances is done 
automatically, as described in [9].  

Since RUCM was initially proposed by Yue et al. [22] in 
2009, multiple extensions have been proposed. A restricted 
test case modeling methodology was presented in [9] to 
automatically generate executable test cases. In [23], Wang 
et al. also presented another RUCM-based approach to 
automatically generate test cases from use case models. Both 
of these approaches have been evaluated using real industrial 
case studies. Wu et al. [24] extended RUCM for specifying 
safety requirements in the domain of safety-critical systems. 
The authors of [25] presented an approach for facilitating 
feature-oriented requirements validation in the context of 
automotive systems, where RUCM was used to specify 
system features. 

C. Running Example 
We illustrate U-RUCM using a modified version of the 
SafeHome case study provided in [26]. The SafeHome 
system implements various security and safety features in 
smart homes, including intrusion detection, fire detection, 
and flooding. One of the key functionalities of the system is 
that a homeowner activates the monitoring function of the 
system, which continuously checks for intrusions until it is 
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explicitly disabled. During monitoring, any occurrence of an 
intrusion should be detected, immediately followed by 
sending an intrusion notification to the homeowner and the 
activation of an alarm. The corresponding use case for this 
example, named Monitor Windows and Doors, is shown in 
Appendix A.  

III. RELATED WORK 
Runtime detection, monitoring, reasoning, and managing of 
requirements, generally referred to as being requirements-
aware, is necessary in self-adaptive systems [27], due to 
inherent changes of operational environments and contextual 
uncertainties. For this purpose, RELAX [3, 4] – a 
representative requirements specification and reasoning 
solution – was proposed to support development of 
requirements for dynamically adaptive systems with 
environmental uncertainty. RELAX consists of a set of 
keywords, which are classified into Modal operators (e.g., 
SHALL), temporal operators (e.g., BEFORE), ordinal 
operators (e.g., AS MANY) and uncertainty operators (e.g., 
ENV). Uncertainty factors aim to indicate where a relaxation 
of requirements is warranted and, therefore, adaptive 
behavior is needed. Based on a structured natural language 
based notation, the authors also proposed a methodology for 
relaxing SHALL statements with the RELAX keywords. In 
addition, RELAX requirements can be formalized using 
fuzzy logic and reasoning can be performed, when needed.  

RELAX has been also integrated with goal-modeling 
notations (i.e., KAOS [28]) to allow for fuzzy goals [3]. 
Along the same line, Luciano et al. [5] proposed FLAGS for 
enabling the specification of adaptive goals, which are of two 
types: crisp goals (specified via linear temporal logic) and 
fuzzy goals (specified using a fuzzy temporal logic). Chen et 
al. [29] proposed a goal-driven self-optimization framework 
to handle three different types of uncertainty in goal models: 
contribution, preference, and effect uncertainty. ReAssuRE 
was proposed by Welsh et al. [6] to attach claims to softgoal 
contribution links of goal models, with the aim to record the 
rationale for selecting a goal realization strategy when the 
optimum choice is uncertain. Later on, Ramirez et al. [30] 
integrated ReAssuRE with RELAX to assess the validity of 
claims at runtime, for dealing with environmental uncertainty 
in dynamic adaptive systems.  

Compared to these goal-based approaches, U-RUCM is 
more generic, as it is not targeting dynamic adaptive systems 
in particular. Second, U-RUCM is built on a use case 
modeling methodology, such that it can naturally facilitate 

the specification of uncertain 
alternative scenarios. Furthermore, 
U-RUCM also enables the 
specification of various types of 
uncertainties (e.g., Time, 
Occurrence), more precise 
characterization of uncertainties 
with information such as Pattern, 
and the ability to quantify 
uncertainties in different ways (e.g., 
Probability, Fuzziness). Currently, 
U-RUCM has a dedicated template 

for specifying uncertainty. In the future, it would be useful to 
investigate using keywords (similar to RELAX) to reduce 
the effort in specifying uncertainties.  

Uncertainty is also considered as an important factor that 
complicates early requirements definition and decision 
making. Salay et al. [7] proposed the MAVO annotations for 
modeling uncertainty in requirements engineering models, 
based on the concept of partial models (with their properties 
checked as True, False or Maybe) [31]. The MAVO partiality 
annotations consist of: May partiality (indicating that an 
element should exist in the model), Abs partiality (indicating 
that an element is a collection of elements), and Var 
partiality (indicating that it is unclear if an element should be 
merged with others). Famelis and Santosa [8] proposed to 
use colored Entity-Relation models for explicitly capturing 
the MAVO partiality, as well as Points of Uncertainty, a 
concept representing a specific decision about which there is 
uncertainty. Compared to these partial-model solutions, U-
RUCM is systematically derived from the U-Model, which 
extends beyond partial models and, therefore, supports a 
richer means for specifying and modeling uncertainty. In 
addition, U-RUCM is integrated with RUCM, which enables 
the specification of uncertain alternative scenarios.  

Uncertainty can hinder organizations in making strategic 
decisions due to, for example, uncertain stakeholders’ goals 
and priorities. In this context, uncertainty is defined as the 
lack of knowledge of the consequences of decision 
alternatives. Letier et al. [32] proposed ways for reasoning 
about uncertainties to support early requirements and 
architecture decision analysis. Uncertainties are represented 
as probability distributions, while Monte-Carlo simulations 
are used for simulating the impact of alternative decisions. 
That paper, however, does not provide a solution for 
uncertainty specification and elicitation. Similarly, Esfahani 
et al. [33] proposed GuideArch, a framework for quantitative 
exploration of the architectural solution space under 
uncertainty, which is based on fuzzy mathematical methods 
for reasoning about uncertainty. Although these works 
support means for reasoning, simulation, and exploration in 
the presence of uncertainty, none of them propose an 
uncertainty specification and modeling solution in the 
context of requirements engineering.  

IV. U-RUCM TEMPLATES AND KEYWORDS 
As noted in Section II.B, the RUCM methodology has two 
key distinguishing features: specifying UCSs with the 
RUCM template, and applying the RUCM restrictions 

 
Figure 1. Specifying an Uncertainty of FailOnEnablingMonitoring step A1 
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(including the keywords) to guide the way in which users use 
natural language to specify the control flows of UCSs. U-
RUCM extends the RUCM template and proposes two U-
RUCM templates and introduces two new keywords.  

One of the U-RUCM templates is for specifying BUCSs 
as shown in TABLE I. The BUCS template inherits the key 
heading fields of the RUCM template, such as Use Case 
Name and Brief Description, which are not shown in the 
table due to space limitation. In addition, U-RUCM 
introduces six new fields to indicate: 1) who specifies the 
BUCS (Belief Agent(s)), 2) when it was specified and the 
length of time during which the belief agent(s) holds the 
belief (Time Point and Duration), 3) the degree to which the 
belief agent(s) believes the specification (Belief Degree), 4) a 
set of indeterminacy sources that resulted in the uncertainties 
of the BUCS (Indeterminacy Source(s)), 5) evidence used to 
support this BUCS and its belief and uncertainty elements 
(Evidence), and 6) the precondition of the UCS on which the 
belief and uncertainties are founded (Belief Precondition). 

As discussed in Section II, each RUCM UCS has one and 
only one basic flow and, optionally, three types of alternative 
flows. U-RUCM extends each type of event flows by 1) 
introducing a belief degree, which measures the degree to 
which the belief agent(s) believe a specific flow, 2) 
introducing a new keyword, URFS (Uncertain Reference 
Flow Step(s)), from which an alternative flow of events 
branches out, 3) providing the capability to annotate 
sentences in steps of flows and postconditions with belief 
and uncertainty information, and 4) introducing the new 
concept of alternative steps to enable the specification of 
uncertainties for alternative steps across flows of events. 
Note that for the case of a global alternative flow, a condition 
for branching from any step in the flow, should be specified 
via the Belief Branching Condition field. In Section V, we 
formally define each of these fields and concepts. 

We have developed an editor for U-RUCM (Section VI). 
The running example shown in Appendix A is specified with 
the editor. The use case has one basic flow (called Normal) 
and several alternative flows (as shown in Appendix A). The 

complete specification is provided in [34] for reference. 
The other U-RUCM template is for specifying 

uncertainty. An example is shown in Figure 1. This template 
has fields for identifying indeterminacy sources and evidence, 
and for specifying uncertainty properties such as Type, 
Pattern, and Measured Value. More details see Section V.   

In addition to the standard RUCM keywords (Section 
II.B), REF is newly introduced for specifying associated 
indeterminacy sources and evidence so that they can be 
referenced in multiple places within a BUCS. For example, 
the field Indeterminacy Source(s) lists all the defined 
indeterminacy sources of the specification, each of which is 
referenced with REF (Appendix A, C1 and C2). Like the 
RUCM RFS keyword, the URFS keyword is used for 
associating an alternative flow with the steps in its reference 
flow. However, RFS is used for branching out from a 
reference flow step under a clear condition. For example, in 
Appendix A the alternative flow DetectIntrusion uses RFS to 
indicate that it branches from step 10 of the basic flow 
(Normal). In contrast, URFS is provided to associate 
uncertainties across flows of events. For example, in the 
running example (Appendix A, E1 and E2), the URFS 
keyword is applied to FailOnEnablingMonitoring to show 
that, in an uncertain unknown condition, it is possible that 
the sequence of alternative sentences A1 and A2 can 
“replace” step 2 of the alternative flow DetectIntrusion.  

V.  U-RUCM FORMALIZATION 
The formalization of U-RUCM is realized via integration of 
an extended version of UCMeta and the U-Model. The full 
formalization is captured in a distinct metamodel (called 
BeliefUCMeta), which is provided in [34] for reference. Due 
to space limitation, in this section we highlight only the key 
elements of the metamodel.  

A. Top-level Belief Element and Classifier 
BUElement, which specializes UseCaseElement of 
UCMeta), is the root of all other elements of BeliefUCMeta 
(Figure 2).  

TABLE I. The U-RUCM Template for Belief Use Case Specifications (BUCSs) 
Belief Agent(s) One or more agents who hold belief about this BUCS. 
Time Point and Duration The time point when the BUCS is specified and the duration in which the belief agent(s)’s belief on the BUCS holds. 
Belief Degree The degree to which the belief agent(s) believe the BUCS. 
Indeterminacy Source(s) The set of indeterminacy sources related to this BUCS. 
Evidence Evidence to support this BUCS, and its contained belief and uncertainty elements. 
Belief Precondition Belief agent(s)’ belief on the precondition, which describes what should be true before the use case is executed. 
Belief Basic Flow  
(Belief degree) 

Specifies the main successful path, also called “happy path”. 
Steps (numbered) A set of ordered belief sentences. 
Belief Postcondition Belief agent(s)’ belief on what should be true after the basic flow executes. 

Belief Specific  
Alternative Flow 
(Belief degree) 

Applies to one specific step of the reference flow. 
URFS The reference flow step where the belief agent(s) believe there are uncertainties. 
Alternative Step An alternative to the reference flow step. 
Steps (numbered) A set of ordered belief sentences. 
Belief Postcondition Belief agent(s)’ belief on what should be true after the specific alternative flow executes. 

Belief Bounded  
Alternative Flow 
(Belief degree) 

Applies to more than one step of the reference flow, but not all of them. 
URFS A list of reference flow steps where the belief agent(s) believe there are uncertainties. 
Alternative Steps A set of alternatives to the reference flow steps. 
Steps (numbered) A set of ordered belief sentences. 
Belief Postcondition Belief agent(s)’ belief on what should be true after the bounded alternative flow executes. 

Belief Global  
Alternative Flow 
(Belief degree) 

Applies to all the steps of the reference flow. 
Belief Branching Condition Belief agent(s)’ belief on the condition, which describes what should be true when 

branching from any of the steps of the reference flow. 
Steps (numbered) The set of ordered belief sentences 
Belief Postcondition Belief agent(s)’ belief on what should be true after the global flow executes. 
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BeliefClassifier 
(Figure 3) is an 
abstract metaclass, 
introduced to support 
classification of a set 
of BUCS elements 
(e.g., BeliefPrecondition, BeliefFlowOfEvents), to which 
belief and uncertainty information can be attached. 
BeliefClassifier has three attributes: isUncertainty : Boolean 
(a derived attribute to indicate if a belief classifier  has an 
associated uncertainty), isComposite : Boolean (indicating if 
a belief classifier can be decomposed into finer belief 
elements), and beliefDegree : Measurement (formalizing the 
degree to which a belief agent believes in a belief classifier). 
More detail on measurements is provided in Section E below. 

B. Belief Use Case Specification 
BeliefUseCaseSpecification specializes BeliefClassifier and 
UseCaseSpecification of UCMeta. In general, 
BeliefUseCaseSpecification is a concrete specification of a 
use case specified by a BeliefAgent. It includes information 
about the agent’s confidence that the use case will execute as 
specified. The BUCS template of U-RUCM (TABLE I) 
corresponds to this metaclass. An instance of 
BeliefUseCaseSpecification is created for each BUCS and 
serves as the container of other belief-related elements (e.g., 
BeliefPrecondition, BeliefFlowOfEvents, BeliefSentence). In 
particular, a BUCS includes specifications of 
IndeterminacySources and Evidence relevant to the use case. 
The attribute nature of IndeterminacySource is typed with 
IndeterminacyNature defined by five enumeration literals 
representing five possible indeterminacy sources. These can 
be referenced (via REF) by other belief elements such as 
Uncertainty. Such references are formalized as instances of 
IndeterminacyKnowledge and EvidenceKnowledge of 
BeliefUCMeta (Figure 3).  

C. Belief Flow Of Events 
BeliefFlowOfEvents extends FlowOfEvents of UCMeta 
(Figure 3). Hence, it inherits the three types of alternative 
flows: Specific, Bounded and Global, which are not shown in 
the figure due to space limitations. Alternative flows can also 
be differentiated based on whether RFS or URFS is used to 
refer to one or more steps of a reference flow. RFS is used 
only when the branching condition and the system behavior 
under this condition are fully clear to the belief agent and 
can, therefore, be specified as a definite alternative flow. For 
example, the 
DetectIntrusion 
flow in Appendix 
A branches out 
from step 10 of 
the basic flow 
under the 
condition that “the 
windows and 
doors are open”. 
In contrast, URFS 
is used when the 

belief agent is not fully confident about a certain piece of 
system behavior or condition (represented by one or more 
steps in a flow). In principle, an URFS alternative flow 
should always be linked to one or more indeterminacy 
sources. If such indeterminacy sources are known, U-RUCM 
provides a way to specify them (see Section B). For 
example, the FailOnEnablingMonitoring flow is defined as 
the belief agent is not fully confident that “the system 
enables the monitoring function” (step 5 of the basic flow, 
Appendix A) will actually occur.  

In summary, U-RUCM provides five different ways of 
specifying alternative flows: Global with RFS, Bounded with 
RFS, Specific with RFS, Bounded with URFS and Specific 
with URFS. Global alternative flows are not recommended 
to be combined with URFS, as it is often impossible to be 
unclear about every single step of a reference flow. For any 
URFS alternative flow, there should be at least one 
alternative sentence specified in the alternative flow, which 
“replaces” the referenced steps of the reference flows of 
events defined in the URFS statement. Any RFS alternative 
flow should not contain any alternative step. Note that 
alternative sentences (which are ordered as sequential steps) 
are defined at the beginning of an URFS alternative flow, 
followed by a sequence of regular belief sentences.  

D. Belief Sentence 
All sentences in a BUCS are belief sentences, which are 
formalized as BeliefSentence elements (specializing the 
Sentence concept of UCMeta). In RUCM and UCMeta, 
sentences are classified into simple, complex and special 
sentences. Consequently, U-RUCM and BeliefUCMeta 
classify belief sentences into BeliefSimpleSentence, 
BeliefComplexSentence and BeliefSpecialSentence (not 
shown in Figure 3 due to space constraints).  

A belief simple sentence is an atomic belief statement, 
which, from the sentence structure perspective, is composed 
of only one subject and one predicate. Belief simple 
sentences can appear in action steps of flows, preconditions, 
postconditions, and other fields of a BUCS. Belief complex 
sentences are sentences with the following RUCM keywords 
applied: IF-THEN-ELSE-ELSEIF-THEN-ENDIF for 
conditions, DO-UNTIL for iterations, MEANWHILE for 
concurrency, and VALIDATE THAT for validation. A 
complex sentence can consist of one or more belief simple 
sentences. Belief special sentences are sentences involving 
keywords RESUME STEP, ABORT, RFS, EXTENDED 
BY, INCLUDE and URFS (newly introduced in U-RUCM). 

 
*UCMeta metaclasses are highlighted in yellow; U-Model elements are presented in grey; Newly introduced BeliefUCMeta metaclasses are in white. 

Figure 3. BeliefUCMeta – the metamodel formalizing U-RUCM 

 
Figure 2. Root Elements of BeliefUCMeta 
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In U-RUCM, we also introduce AlternativeSentence, which 
extends BeliefSentence (Figure 3). Alternative sentences only 
appear in URFS alternative flows as action steps (Section C). 
In the current implementation of the U-RUCM editor 
(Appendix A), alternative sentences (steps) are denoted with 
A1, A2, etc. An alternative sentence can be any type of belief 
sentence: simple, complex or special.  

E. Uncertainty 
In U-RUCM, we classify uncertainties into two basic types: 
NLUncertainty and BranchUncertainty. An instance of 
NLUncertainty refers to a Part of Speech (PoS) (e.g., noun, 
verb) of a belief sentence, about which a belief agent lacks 
confidence. For example, one instance of NLUncertainty in 
alternative sentence A1 of the FailOnEnablingMonitoring 
flow (Appendix A) shows that the belief agent is only 2% 
confident about the occurrence of the event. This is captured 
by “enables”, which is the predicator verb of the sentence. 
For example, the uncertainty is the Occurrence type of 
uncertainties (formalized as one of the literals of 
enumeration UncertaintyKind of BeliefUCMeta) which is 
not shown in Figure 3 due to space limitation). 

A set of branches can be derived from a BUCS, 
systematically by following certain strategies [11]. Each of 
these derived branches represent a straight path from the 
precondition of the specification all the way to a 
postcondition of a flow of events. This can be considered as 
all-possible execution paths of a use case and therefore the 
occurrence of a particular path is an uncertainty. Such an 
uncertainty is an instance of BranchUncertainty with the 
Occurrence::UncertaintyKind kind. Since such branches can 
be automatically generated, measurements of the branch 
uncertainties of the belief specification can be automatically 
calculated when needed, if and only if uncertainties of the 
belief sentences of the specifications are specified.  

F. Measurement 
In U-RUCM, there are two types of metrics: one is for 
measuring the belief degree of a belief classifier and the 
other is about measuring uncertainty. A measurement can 
take different kinds of measures such as Probability, 
Vagueness and Ambiguity, which are formalized as 
enumeration MeasureKind of BeliefUCMeta (not shown in 
Figure 3 due to space limitation). Note that, in U-RUCM, all 
measurements are subjective. This is because, at the 
requirements level, domain experts specify measurements 
based on their experience, knowledge, and even preference, 
as opposed to basing them on available hard data.  

VI. TOOL SUPPORT AND METHODOLOGY 

A. Tool Support 
BUCSs are specified in the U-RUCM editor, which is 
implemented in a modeling framework, called the 
Lightweight Modeling Framework (LMF [35])). This 
framework implements functionality similar to those of the 
Eclipse Modeling Framework (EMF), but with a lightweight 
design with the aim of reducing tight coupling with Eclipse 
(so as to facilitate easier porting to other platforms). LMF 

has two editors: a reflective model editor and a metamodel 
editor. The LMF Reflective Editor is a simple model the 
LMF metamodel reflection mechanism.  

BUCSs specified with the editor can be automatically 
formalized into instances of BeliefUCMeta concepts. In the 
past, we have developed the transformation from RUCM to 
UCMeta, based on natural language processing techniques 
[9]. The transformation from U-RUCM to BeliefUCMeta is 
just an extension of the transformation from RUCM to 
UCMeta. The formalized specifications can be directly used 
for performing different kinds of analyses and generations of 
other artifacts when needed.  

We have made a video to demonstrate the U-RUCM 
editor and the formalization from U-RUCM to 
BeliefUCMeta, along with the metamodel of BeliefUCMeta, 
UCMeta and U-Model in [16] for references. 

B. Methodology 
Although the U-RUCM concepts can be used in many 
different ways, in this section, we recommend one 
methodology based on our own experience. It starts with the 
creation of a use case model, specifying the actors, use cases, 
and relationships among them. The belief agents in this case 
are the requirements engineers who capture the information, 
including indeterminacy sources, evidence, and uncertainty 
degrees from the various stakeholders. Of course, it is always 
possible to revisit the initial specifications subsequently 
should new evidence or indeterminacy sources be uncovered. 

When the overall context of a use case model is 
established, one can start to develop a BUCS for each use 
case. There is actually no particular order for specifying 
primary and secondary actors, belief agents, etc. We 
recommend a sequence for guiding users through the process 
that proceeds from simple tasks to more complicated ones. 
Specifying flows of events is the most challenging task, as it 
requires a lot of careful analysis, discussions, and design. 
The process is always iterative. 

When specifying alternative flows, global alternative 
flows are often used to specify exceptions and behaviors 
crosscutting all the steps of a reference flow. The key task 
here is to identify the proper branching condition. If one 
needs to refer to one or more (but not all) steps of a reference 
flow, specific or bounded alternative flows can be created. 
As discussed in Section V.C, U-RUCM provides five 
different ways of specifying alternative flows and some 
constraints (e.g., alternative sentences only appear in URFS 
alternative flows) should be applied when using U-RUCM in 
this aspect. In our current implementation of the editor, we 
have enforced these constraints so that chances of violating 
them are eliminated. By definition, URFS and RFS are 
different and therefore should be applied in different 
situations, as discussed in Section V.C. We highly 
recommend using URFS to identify uncertain alternative 
flows only after the entire structure of flows of events (using 
RFS) of a BUCS is defined.  

Each flow of events consists of a set of steps, which are 
specified as belief sentences. For each belief sentence, one 
should refer to one or more relevant indeterminacy sources 
and evidence, based on which, one can define the belief 
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degree and associated uncertainties. As discussed in Section 
V, uncertainties can be more precisely characterized with 
pattern and risk information and measured in different ways. 
In practice, it is not always possible to obtain and enter all of 
this information at once. So, a rule of thumb is to first 
identify as many uncertainties as possible and only then 
refine them with more detailed information. 

VII. USER EXPERIENCE -- EVALUATION 

A. Case Studies and Overall Objective of Evaluation 
One of the two industrial case studies involved the 
Automated Warehouse (AW) from ULMA Handling 
Systems. These complex systems serve to monitor, control, 
and manage warehouses for goods of different types, such as 
food and beverages and textiles. Each handling facility (e.g., 
crane, conveyor) forms a physical unit, and together they are 
dedicated to one handling system application (e.g., storage).  

The second industrial case study used the Geo Sports 
(GS) system from Future Position X. This system measures 
the performance of an individual or a team as well as the 
conditions of athletes over a sustained period of time in 
actual game environments (e.g., a soccer field). The 
measurements are made continuously and in real time using 
geo-position sensors during both training and competition. 
Our case study involved bandy, a form of ice hockey played 
predominantly in Northern Europe and Russia. To the best of 
our knowledge, this project was the first to monitor sports on 
ice using sensors.  

Our overall objective of the evaluation was to assess, in 
an industrial setting, whether U-RUCM was effective in 
terms of facilitating the development of use case models with 
the explicit focus on uncertainty. 

B. Context and Execution of Evaluation 
At the start of the project, base RUCM was introduced to 
both industrial partners (i.e., ULMA and FPX) as a means 
for identifying and specifying the initial versions of their 
uncertainty requirements. Subsequently, two onsite 
workshops (one for each partner) were conducted to further 
refine the collected requirements. The resulting RUCM 
models were refined iteratively during the process of 
developing the U-Model [16]. As shown in column RUCM 
Model of TABLE II, a total of 20 use cases for each case 
study were designed, 93 RUCM event flows were produced 
(52 for AW and 41 for GS). These flows of events were later 
refined into belief flows and alternative flows with URFS 
applied. In total, the RUCM model for AW had 229 

sentences, while the GS model had 256. About uncertainties 
specified in the RUCM models, 33 (for AW) and 26 (for GS) 
sets of steps of flows of events describing alternative 
scenarios were considered as involving uncertainties. These 
were later refined into alternative sentences and instances of 
NLUncertainty in the U-RUCM models.  

After that, we conducted a questionnaire-based survey 
(derived from the RUCM models) to collect data to quantify 
the identified uncertainties. During this non-trivial process, 
which involved collecting uncertainty information, deriving 
and verifying the U-Model, and involving multiple 
stakeholders, RUCM was deemed adequate for the purpose 
of providing initial data. It captured uncertainty requirements 
at a relatively coarse-grained level.   

Once the U-Model was finalized, we developed U-
RUCM, which integrates the U-Model and RUCM. U-
RUCM was then used to refine the RUCM models 
developed by the industrial partners. Results of this are 
presented in Section C.  

C. Results 
All the initial RUCM models developed by the industrial 
partners were refined using U-RUCM to capture all the 
identified uncertainties. Descriptive statistics of the resulted 
U-RUCM models are reported in the Result columns of 
TABLE II. The table shows how many elements were added, 
modified, and removed during the process of moving from 
RUCM to U-RUCM for the two case studies.  

Recall that U-RUCM realizes the Uncertainty concept of 
U-Model by four concrete means: 1) NLUncertainty for 
belief sentences, 2) BranchUncertainty for possible 
executions of UCSs from the beginning to end, 3) 
uncertainties in flows of events (captured via URFS and 
alternative flows), and 4) uncertainties in sentences across 
flows of events (captured as alternative sentences). We 
applied these four U-RUCM mechanisms systematically by 
following the guidelines described in Section VI and then 
carefully examined all the specified BUCSs to further refine 
the RUCM models.  

As shown in TABLE II, we refactored the design of the 
RUCM use case model of AW by merging three use cases 
describing similar scenarios into one, which led to the 
deletion of 2 use cases (as shown in the table). We also 
added 2 use cases to the RUCM model of GS as the result of 
the refactoring, as these two use cases can be invoked (via 
the include relationships) by multiple use cases.  

TABLE II also indicates that 3 uncertainties in the AW 

TABLE II. Descriptive Statistics of the RUCM Models, U-RUCM Models and Refinements 
AW 

Key U-RUCM Elements 
GS 

Key RUCM Elements Refinement U-RUCM 
Model 

U-RUCM 
Model 

Refinement Key RUCM 
Elements Added Modified Removed Added Modified Removed 

Use Case 20 0 20 2 18 Use Case 23 3 20 0 20 Use Case 
FlowOfEvents 52 18 23 4 66 (Belief) Flow Of Events 71 31 21 1 41 FlowOfEvents 

Sentence 229 63 56 16 276 (Belief) Sentence 348 97 46 5 256 Sentence 45 0 0 45 Alternative Sentence 76 76 0 0 
Uncertainty 33 32 18 3(1,2)+ 62 (NL)Uncertainty 70 48 15 4 (2,2)+ 26 Uncertainty 

 
72 0 0 72 BranchUncertainty 89 89 0 0 

 43  0 43 URFS 48 48 0 0 
23 0 0 23 Indeterminacy Source 18 18 0 0 

    (n,m)+ -- n is the number of uncertainties removed due to refactoring; m is the number of uncertainties that are changed to indeterminacy source. 
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RUCM model were removed and 4 from the GS model. This 
was because: 1) We optimized the design of the use case 
model by removing duplicated uncertainties (e.g., those 
describing improper wearing of positioning devices, which is 
the same for either indoor or outdoor games), 1 from AW 
and 2 from GS; 2) We identified uncertainties from the 
RUCM models that are actually indeterminacy sources (e.g., 
long distance between a positioning device and the satellites 
is an indeterminacy source, which can lead to the failure of 
locating the satellites with insufficient resolution nature), 2 
for AW and 2 for GS.  

The uncertainty-specific concepts Indeterminacy Source, 
Alternative Sentence, and BranchUncertainty were only 
introduced in U-RUCM. Consequently, there were no 
corresponding elements in the RUCM models. After 
carefully going through details of the RUCM models using 
steps described previously, we derived a total of 23 
indeterminacy sources for AW and 18 for GS, 45 alternative 
sentences for AW and 76 for GS. Furthermore, we 
discovered 32 instances of NLUncertainty for AW and 48 for 
GS. These turned out to be cases of “unknown knowns” for 
our industrial partners, that is, tacit knowledge that was not 
explicit initially. This activity led to the addition of 18 belief 
flows of events for AW and 31 for GS, 72 new branch 
uncertainties for AW and 89 for GS, and 43 additional 
alternative flows with URFS applied for AW and 48 for GS.  

In summary, the total numbers of the instances of 
metaclasses NLUncertainty and BranchUncertainty of U-
Model, populated for each of the industrial case studies are 
62+72=134 for AW and 70+89=159 for GS. When 
comparing this with their corresponding “rough” RUCM 
models, we conclude that, by using U-RUCM, we were able 
to significantly enhance the extent and precision of modeling 
uncertainties in requirements (i.e., (134-33)/33=306% for 
AW and (159-26)/26=512% for GS). This suggests that U-
RUCM is an important improvement in dealing with 
uncertainty in requirements engineering. 

In the U-Test project, we also developed test ready 
models [17, 18] (represented as UML class diagrams and 
state machines) using the UncerTum (see Section II.A). The 
test ready models were used to generate test cases, which 
were then executed successfully in actual systems [19]. 
There are clear correspondences between the scenarios and 
uncertainties defined in the test ready models and the ones 
defined in the U-RUCM models, since the U-RUCM models 
were used as the input (uncertainty requirements) for 
developing the test ready models. This gives us a high degree 
of confidence in the quality of the derived U-RUCM models. 

D. Experience, Lessons Learned and Future Challenges 
Identifying common uncertainties. From the GS case study, 
we noted that human behavior was the key indeterminacy 
source of uncertainties, due to incorrect interactions with the 
system. For the AW case study, on the other hand, 
uncertainties and indeterminacy sources centered mainly on 
the data communications between control units and their 
controlled devices. From these types of observations, we can 
conclude that it is possible in principle to identify common 
sources and types of uncertainties that occur in a given 

domain or even across domains. This knowledge can be then 
used to define reusable uncertainty specifications and their 
corresponding behaviors.  

Learning about uncertainty by applying U-RUCM. In 
the past, we experienced that one can learn how to better 
design use case models by using RUCM. This is why RUCM 
is used as a teaching method for requirements engineering 
and software engineering courses both at the undergraduate 
and graduate levels4. Similarly, based on the results of this 
project, we surmise that it is possible to gain more precise 
and more direct understanding of both uncertainty and 
indeterminacy sources by using U-RUCM.  

Automated, scalable and systematic reasoning. For 
more effective coping with uncertainty, automated/semi-
automated reasoning about uncertainty and indeterminacy 
sources can certainly be helpful. This is because, for any 
non-trivial system, a use case model might be large and may 
contain a large number of potentially inter-related 
uncertainties. From our experience during the initial phases 
of our study when we were not using U-RUCM, we learned 
that unassisted human reasoning tends to be time-consuming 
and unsystematic. This is why we chose a more formal 
approach when developing U-RUCM – via the 
BeliefUCMeta metamodel – which provides a formal 
foundation for future, automated reasoning techniques.  

Specializing U-RUCM. RUCM can be specialized for 
different purposes and for different domains. For example, in 
another research project we are developing a version of 
RUCM specifically for real-time systems. In such cases, the 
standard RUCM template and keywords are extended to 
allow the specification of time constraints. These are also 
subject to uncertainty. Based on that, we anticipate that U-
RUCM will also need to be extended for specific domains. 

Harvesting the benefits of natural language processing 
techniques. During the process of deriving U-RUCM and 
performing the two industrial case studies, we noticed that 
there is an opportunity to further refine NLUncertainty, the 
core concept for representing uncertainties in belief 
sentences (see Section V.E). The general idea here is to rely 
on natural language processing techniques to automatically 
identify grammatical structures (e.g., Subject), PoSs (e.g., 
Verb), sentence structures (e.g., Subject-Verb-Object), 
and/or sentence semantics (e.g., an actor sends a request to 
the system) in belief sentences. Based on this, heuristics can 
be defined to automatically identify potential uncertainties 
and/or verify already specified ones in belief sentences. For 
example, a verb of the predicator of a sentence might have an 
Occurrence uncertainty associated with it. A noun (being the 
direct object of a simple sentence) might be associated with a 
Content uncertainty. 

Reckoning on branch uncertainties. It may be possible 
to automatically derive values of branch uncertainties (A 
branch uncertainty indicates a belief agent’s confidence in 
the possibility that the execution of the use case takes this 
particular branch.) At the very least, branch uncertainties can 
at least help to 1) identify critical paths to reduce 
uncertainties or perform risk analyses (if the postcondition 

                                                             
4 http://www.zen-tools.com/rucm/index.html 
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that a branch leads to is considered as the consequence of the 
branch), 2) verify the overall belief degree that a belief agent 
has in a belief specification, and 3) derive test cases targeting 
particularly branches with high uncertainty. This is a 
possible avenue of further research. 

Systematically discovering unknown known 
indeterminacy sources and uncertainties and transforming 
them into known unknown uncertainties and known 
known indeterminacy sources. As the experiments showed, 
it is possible to systematically identify previously unknown 
known based on already-specified (known) uncertainties and 
indeterminacy sources. A systematic methodology (ideally 
with tool support) can be followed to identify more unknown 
knowns and currently known unknown uncertainties (e.g.,  
by combining already identified uncertainties that are 
associated with the same part of system behavior). 

Transforming U-RUCM models into other downstream 
artifacts. To maximize the benefit of U-RUCM models, one 
possibility is to transform them automatically or semi-
automatically into other artifacts that need to be developed 
during system development. For example, U-RUCM models 
can be transformed into UML state machines via the UUP 
profile (Section II.A), for supporting MBT of CPSs under 
uncertainties. This is feasible as RUCM models can be 
transformed into UML models and test cases (Section II.B). 

VIII. SUMMARY 
The impact of uncertainty, which is increasingly being 
recognized as an inherent and crucial property of non-trivial 
software-intensive systems (e.g., CPSs), needs to be better 
understood and addressed explicitly in all phases of system 
development. In particular, it has to be explored and 
characterized as much as possible during requirements 
engineering (e.g., elicitation, specification, and verification). 
Use case modeling is a well-known and commonly applied 
requirements specification/modeling method in practice. 
Specifying uncertainty as part of use case models is therefore 
particularly useful. In this paper, we described a 
methodology and a corresponding tool (U-RUCM) for 
helping practitioners to specifying uncertainties in 
requirements as part of use case models.  

U-RUCM originated in the context of the U-Test project 
(http://www.u-test.eu/), which involved a consortium of nine 
partners. The initial version of the uncertainty requirements 
was developed by our industrial partners using the basic 
RUCM methodology, on which U-RUCM was founded. 
After refining the RUCM models, by applying the U-RUCM 
methodology, we successfully identified and specified more 
than 300% and 500% (previously unknown) uncertainty 
requirements for the two case studies. The resulting U-
RUCM models was used as a reference to develop test ready 
models for generating executable test cases to test the two 
industrial applications. As users of U-RUCM ourselves 
during these “real-world” experiments, we gained invaluable 
experience about its use and future potential. 
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APPENDIX A 

 

*A2 Belief Agent is 
formalized into elements 
shown in A1; the 
properties of B1(D1) 
IndeterminacySource(Me
asurement) is shown in 
the property window B2 
(D2); C2 is the set of 
knowledge that are 
formalized as elements 
shown in C1; E2 refers to 
a set of sentences 
indicated by E1; the 
alternative sentences 
indicated by F2 are 
formalized into elements 
shown in F1. 

 


