

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

Specifying Uncertainty in Use Case Models in Industrial Settings

Man Zhang1, Tao Yue1,2, Shaukat Ali1, Bran Selic1
1Simula Research Laboratory

2University of Oslo
{man, tao, shaukat, bselic}@simula.no

Oscar Okariz3, Roland Norgren4, Karmele Intxausti5
3ULMA Handling Systems,4Future Position X, 5Ikerlan
ookariz@manutencion.ulma.es, roland.norgren@fpx.se,

KIntxausti@ikerlan.es

Abstract— Latent uncertainty in the context of software-
intensive systems (e.g., Cyber-Physical Systems (CPSs))
demands explicit attention right from the start of development.
Use case modeling—a commonly used method for specifying
requirements in practice, should also be extended for explicitly
specifying uncertainty. To this end, we extend the Restricted
Use Case Modeling (RUCM) methodology and its supporting
tool to specify uncertainty as part of system requirements.
Such uncertainties include those caused by insufficient domain
expertise of stakeholders, disagreements among them, and
known uncertainties pertaining to assumptions about the
environment of the system. The extended RUCM, called U-
RUCM, inherits the features of RUCM, such as automated
analyses and generation of models, to mention but a few.
Consequently, U-RUCM provides all the key benefits offered
by RUCM (i.e., reducing ambiguities in requirements), but in
addition, it allows specification of uncertainties with the
possibilities of reasoning and refining existing ones and even
uncovering unknown ones.

We evaluated U-RUCM in the context of the U-Test project
[1], with two industrial CPS case studies. Evaluation results
showed that, with U-RUCM, we were able to get a significantly
better and more precise characterization of the uncertainties
involved compared to RUCM. This suggests that U-RUCM is
an effective tool for dealing with uncertainty in requirements
engineering. We present our experience, lessons learned, and
future challenges based on the two industrial case studies.

Index Terms—Use Case Modeling, Belief, Uncertainty.

I. INTRODUCTION
The problem of uncertainty in software-intensive systems
such as Cyber-Physical Systems (CPSs)), is familiar to the
requirements engineering community. However, it has not
been adequately addressed and, therefore, it lacks both
methodological and tool support in both the literature and in
practice. In their well-known use case modeling book,
Bittner and Spence [2] pointed out that it is important to take
the time to fill out missing areas and drill down into
uncertainty. Uncertainty can be due to diverse causes, such
as insufficient domain expertise or lack of information.
Given the significant increases in the complexity of modern
CPS and the diversity of the environments in which they are
deployed, it is becoming critical to address uncertainty up
front; that is, right from the start of development. This
includes not only uncertainties about the requirements, but
also uncertainties about its assumed operating environment.

Uncertainty in requirements has been studied in the
context of dynamically adaptive systems in the presence of
environmental uncertainty [3, 4]. Several goal-driven
solutions [5, 6] have been proposed to handle uncertainty in
similar contexts. Partial model-based solutions (e.g., [7, 8])

have been developed to support early requirements and
architecture decision making. However, after conducting a
literature review, we did not find any use case modeling
methodology that explicitly handles uncertainty. Having
such a methodology is important since use case modeling is
a commonly used technique for specifying requirements in
practice [7]. In our view, because uncertainty is a common
phenomenon in requirements engineering, it is best to
address it explicitly by identifying, qualifying, and, where
possible, quantifying uncertainty.

The need for such a methodology arose in the context of
the EU project U-Test, which focused on testing CPSs under
uncertainty. The first key step in this project was to collect
use cases with known uncertainties for two industrial CPSs
and their environments. This was done with three industrial
partners (Future Position X1, ULMA2 and Ikerlan3, which are
among the authors of this paper). The ultimate aim was to
use these use cases as the starting point to create test-ready
models to support automated testing of CPSs under
uncertainty. To this end, we first introduced the RUCM
methodology to our industrial partners and then extended it
to enable specification of uncertainties. This led to the design
of the U-RUCM methodology, which, to the best of our
knowledge is the first use case modeling methodology that
explicitly addresses uncertainty.

As noted, U-RUCM is based on a practical use case
modeling solution, called Restricted Use Case Modeling
(RUCM) [9, 10]. RUCM was initially proposed by Yue et al.,
for reducing inherent ambiguity in textual Use Case
Specifications (UCSs) and to enable automated generation of
UML models [10]. Later on, RUCM was extended to address
various industrial challenges, including requirements-based
testing [11] and use-case based requirements inspection [12].
RUCM and its extensions have been used to address
industrial challenges from various domains (e.g.,
telecommunication [11, 13, 14], automotive [15]).

To structure and specify uncertainties in use case models,
two templates were proposed for specifying Belief Use Case
Specifications (BUCS) and uncertainties. A BUCS annotates
the UCS with uncertainty information, including the source
of uncertainty, the degree (measurement) of uncertainty, the
risk of uncertainty, etc., as perceived by stakeholders and
based on available evidence. Such models can be
automatically generated as instances of a formal U-RUCM
metamodel.

Evaluation of U-RUCM based on the two industrial case
studies revealed that, with U-RUCM, we were able to

1 fpx.se/geo-sports/
2 www.ulmahandling.com/en/
3 www.ikerlan.es/

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

significantly improve on the characterization and
understanding of uncertainties in the requirements (up to 306%
and 512% for the two case studies) compared to base RUCM.
In this paper, we summarize practical lessons learned in the
course of this evaluation and also discuss future challenges.

The rest of the paper is organized as follows: Section II
presents the background, followed by the related work
(Section III). The U-RUCM templates and keywords are
explained in Section IV, followed by its formalization
(Section V). The tool support and recommended
methodology are given in Section VI. Section VII reports
user experience, evaluation, lessons learned and future
challenges. We conclude the paper in Section VIII.

II. BACKGROUND AND RUNNING EXAMPLE

A. U-Model
To help us understand the nature of uncertainty in the general
context of software engineering, in our previous work [16]
we developed a conceptual model called U-Model to define
uncertainty and its associated concepts. The U-Model was
developed based on an extensive review of existing literature
on uncertainty from several disciplines including philosophy,
healthcare and physics, and two industrial case studies from
the two industrial partners of the U-Test project. Some of the
U-Model concepts were further extended for supporting
Model-Based Testing (MBT) of CPSs under uncertainty.
More specifically, we developed the Uncertainty Modeling
Framework [17] for supporting MBT of CPSs, which
contains a UML profile, called the UML Uncertainty Profile
(UUP), for specifying and measuring uncertainties as part of
UML models. UUP was derived based on the U-Model.
UncerTum has been successfully used for discovering
unknown uncertainties [17, 18] and generating test cases
[19].

The U-Model takes a subjective approach to representing
uncertainty. This means that uncertainty is modeled as a state
(i.e., worldview) of some agents (called BeliefAgents), who,
for whatever reason, do not have complete and fully accurate
knowledge about some subjects of interest. In the U-Model,
a Belief is an abstract concept, but it can be expressed in
concrete form via one or more explicit BeliefStatements (a
concrete and explicit specification of some Belief held by a
BeliefAgent about possible phenomena or notions belonging
to a given subject area). Uncertainty (i.e., lack of confidence)
represents a state of affairs whereby a BeliefAgent does not
have full confidence in a belief that it holds. This may be due
to any number of factors: lack of information, inherent
variability in the subject matter, ignorance, or even due
physical phenomena such as the Heisenberg uncertainty
principle. While Uncertainty itself is an abstract concept, it
can be quantified by a corresponding Measurement, which
expresses in some concrete form the subjective degree of
uncertainty that the agent ascribes to a BeliefStatement. As
the latter is a subjective notion, a Measurement should not be
confused with the degree of validity of a BeliefStatement.
Instead, it merely indicates the level of confidence that the
agent has in a statement.

B. Restricted Use Case Modeling (RUCM)

RUCM encompasses a use case template and 26 restriction
rules for specifying textual UCSs [35]. RUCM aims to be
easy to use, to reduce ambiguity and improve understanding,
and to facilitate automated analysis. Results of two
controlled experiments support these expectations [34, 35].
A RUCM UCS has one basic flow and, optionally, one or
more alternative flows. An alternative flow always depends
on a condition occurring in a specific step of another flow
(referred to as the reference flow). We classify alternative
flows into three types: A specific alternative flow refers to a
specific step in the reference flow; a bounded alternative
flow refers to more than one step (consecutive or not) in the
reference flow; a global alternative refers to any step in the
reference flow. For specific and bounded alternative flows, a
RFS (Reference Flow Step) section specifies one or more
(reference flow) step numbers. For example, as shown in
Appendix A, the use case has one basic flow, called Normal.
The specific alternative flow of DetectIntrusion branches out
from step 10 of the basic flow Normal, as indicated by
keyword RFS and plus “Normal 10”. The global alternative
flow CallPolice is triggered whenever the branching
condition “The Alarm has been triggered for more than 5
minutes”. The bounded alternative flow of
FailOnEnablingMonitoring refers to steps 5-7 of the basic
flow Normal, as indicated by “URFS Normal 5-7”. URFS is
a new keyword introduced to U-RUCM and will be
discussed in Section IV.

RUCM defines a set of keywords to specify sentences
that involve conditional logic (IF-THEN-ELSE-ELSEIF-
ENDIF), concurrency (MEANWHILE), condition checking
(VALIDATES THAT), and iteration (DO-UNTIL). UCMeta
is a metamodel that can be used to formalize textual RUCM
to facilitate automated analyses and generation of UML
analysis models [9, 20]. UCMeta is specified using the
OMG’s standard Meta-Object Facility (MOF) [21], while the
formalization of RUCM models to UCMeta instances is done
automatically, as described in [9].

Since RUCM was initially proposed by Yue et al. [22] in
2009, multiple extensions have been proposed. A restricted
test case modeling methodology was presented in [9] to
automatically generate executable test cases. In [23], Wang
et al. also presented another RUCM-based approach to
automatically generate test cases from use case models. Both
of these approaches have been evaluated using real industrial
case studies. Wu et al. [24] extended RUCM for specifying
safety requirements in the domain of safety-critical systems.
The authors of [25] presented an approach for facilitating
feature-oriented requirements validation in the context of
automotive systems, where RUCM was used to specify
system features.

C. Running Example
We illustrate U-RUCM using a modified version of the
SafeHome case study provided in [26]. The SafeHome
system implements various security and safety features in
smart homes, including intrusion detection, fire detection,
and flooding. One of the key functionalities of the system is
that a homeowner activates the monitoring function of the
system, which continuously checks for intrusions until it is

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

explicitly disabled. During monitoring, any occurrence of an
intrusion should be detected, immediately followed by
sending an intrusion notification to the homeowner and the
activation of an alarm. The corresponding use case for this
example, named Monitor Windows and Doors, is shown in
Appendix A.

III. RELATED WORK
Runtime detection, monitoring, reasoning, and managing of
requirements, generally referred to as being requirements-
aware, is necessary in self-adaptive systems [27], due to
inherent changes of operational environments and contextual
uncertainties. For this purpose, RELAX [3, 4] – a
representative requirements specification and reasoning
solution – was proposed to support development of
requirements for dynamically adaptive systems with
environmental uncertainty. RELAX consists of a set of
keywords, which are classified into Modal operators (e.g.,
SHALL), temporal operators (e.g., BEFORE), ordinal
operators (e.g., AS MANY) and uncertainty operators (e.g.,
ENV). Uncertainty factors aim to indicate where a relaxation
of requirements is warranted and, therefore, adaptive
behavior is needed. Based on a structured natural language
based notation, the authors also proposed a methodology for
relaxing SHALL statements with the RELAX keywords. In
addition, RELAX requirements can be formalized using
fuzzy logic and reasoning can be performed, when needed.

RELAX has been also integrated with goal-modeling
notations (i.e., KAOS [28]) to allow for fuzzy goals [3].
Along the same line, Luciano et al. [5] proposed FLAGS for
enabling the specification of adaptive goals, which are of two
types: crisp goals (specified via linear temporal logic) and
fuzzy goals (specified using a fuzzy temporal logic). Chen et
al. [29] proposed a goal-driven self-optimization framework
to handle three different types of uncertainty in goal models:
contribution, preference, and effect uncertainty. ReAssuRE
was proposed by Welsh et al. [6] to attach claims to softgoal
contribution links of goal models, with the aim to record the
rationale for selecting a goal realization strategy when the
optimum choice is uncertain. Later on, Ramirez et al. [30]
integrated ReAssuRE with RELAX to assess the validity of
claims at runtime, for dealing with environmental uncertainty
in dynamic adaptive systems.

Compared to these goal-based approaches, U-RUCM is
more generic, as it is not targeting dynamic adaptive systems
in particular. Second, U-RUCM is built on a use case
modeling methodology, such that it can naturally facilitate

the specification of uncertain
alternative scenarios. Furthermore,
U-RUCM also enables the
specification of various types of
uncertainties (e.g., Time,
Occurrence), more precise
characterization of uncertainties
with information such as Pattern,
and the ability to quantify
uncertainties in different ways (e.g.,
Probability, Fuzziness). Currently,
U-RUCM has a dedicated template

for specifying uncertainty. In the future, it would be useful to
investigate using keywords (similar to RELAX) to reduce
the effort in specifying uncertainties.

Uncertainty is also considered as an important factor that
complicates early requirements definition and decision
making. Salay et al. [7] proposed the MAVO annotations for
modeling uncertainty in requirements engineering models,
based on the concept of partial models (with their properties
checked as True, False or Maybe) [31]. The MAVO partiality
annotations consist of: May partiality (indicating that an
element should exist in the model), Abs partiality (indicating
that an element is a collection of elements), and Var
partiality (indicating that it is unclear if an element should be
merged with others). Famelis and Santosa [8] proposed to
use colored Entity-Relation models for explicitly capturing
the MAVO partiality, as well as Points of Uncertainty, a
concept representing a specific decision about which there is
uncertainty. Compared to these partial-model solutions, U-
RUCM is systematically derived from the U-Model, which
extends beyond partial models and, therefore, supports a
richer means for specifying and modeling uncertainty. In
addition, U-RUCM is integrated with RUCM, which enables
the specification of uncertain alternative scenarios.

Uncertainty can hinder organizations in making strategic
decisions due to, for example, uncertain stakeholders’ goals
and priorities. In this context, uncertainty is defined as the
lack of knowledge of the consequences of decision
alternatives. Letier et al. [32] proposed ways for reasoning
about uncertainties to support early requirements and
architecture decision analysis. Uncertainties are represented
as probability distributions, while Monte-Carlo simulations
are used for simulating the impact of alternative decisions.
That paper, however, does not provide a solution for
uncertainty specification and elicitation. Similarly, Esfahani
et al. [33] proposed GuideArch, a framework for quantitative
exploration of the architectural solution space under
uncertainty, which is based on fuzzy mathematical methods
for reasoning about uncertainty. Although these works
support means for reasoning, simulation, and exploration in
the presence of uncertainty, none of them propose an
uncertainty specification and modeling solution in the
context of requirements engineering.

IV. U-RUCM TEMPLATES AND KEYWORDS
As noted in Section II.B, the RUCM methodology has two
key distinguishing features: specifying UCSs with the
RUCM template, and applying the RUCM restrictions

Figure 1. Specifying an Uncertainty of FailOnEnablingMonitoring step A1

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

(including the keywords) to guide the way in which users use
natural language to specify the control flows of UCSs. U-
RUCM extends the RUCM template and proposes two U-
RUCM templates and introduces two new keywords.

One of the U-RUCM templates is for specifying BUCSs
as shown in TABLE I. The BUCS template inherits the key
heading fields of the RUCM template, such as Use Case
Name and Brief Description, which are not shown in the
table due to space limitation. In addition, U-RUCM
introduces six new fields to indicate: 1) who specifies the
BUCS (Belief Agent(s)), 2) when it was specified and the
length of time during which the belief agent(s) holds the
belief (Time Point and Duration), 3) the degree to which the
belief agent(s) believes the specification (Belief Degree), 4) a
set of indeterminacy sources that resulted in the uncertainties
of the BUCS (Indeterminacy Source(s)), 5) evidence used to
support this BUCS and its belief and uncertainty elements
(Evidence), and 6) the precondition of the UCS on which the
belief and uncertainties are founded (Belief Precondition).

As discussed in Section II, each RUCM UCS has one and
only one basic flow and, optionally, three types of alternative
flows. U-RUCM extends each type of event flows by 1)
introducing a belief degree, which measures the degree to
which the belief agent(s) believe a specific flow, 2)
introducing a new keyword, URFS (Uncertain Reference
Flow Step(s)), from which an alternative flow of events
branches out, 3) providing the capability to annotate
sentences in steps of flows and postconditions with belief
and uncertainty information, and 4) introducing the new
concept of alternative steps to enable the specification of
uncertainties for alternative steps across flows of events.
Note that for the case of a global alternative flow, a condition
for branching from any step in the flow, should be specified
via the Belief Branching Condition field. In Section V, we
formally define each of these fields and concepts.

We have developed an editor for U-RUCM (Section VI).
The running example shown in Appendix A is specified with
the editor. The use case has one basic flow (called Normal)
and several alternative flows (as shown in Appendix A). The

complete specification is provided in [34] for reference.
The other U-RUCM template is for specifying

uncertainty. An example is shown in Figure 1. This template
has fields for identifying indeterminacy sources and evidence,
and for specifying uncertainty properties such as Type,
Pattern, and Measured Value. More details see Section V.

In addition to the standard RUCM keywords (Section
II.B), REF is newly introduced for specifying associated
indeterminacy sources and evidence so that they can be
referenced in multiple places within a BUCS. For example,
the field Indeterminacy Source(s) lists all the defined
indeterminacy sources of the specification, each of which is
referenced with REF (Appendix A, C1 and C2). Like the
RUCM RFS keyword, the URFS keyword is used for
associating an alternative flow with the steps in its reference
flow. However, RFS is used for branching out from a
reference flow step under a clear condition. For example, in
Appendix A the alternative flow DetectIntrusion uses RFS to
indicate that it branches from step 10 of the basic flow
(Normal). In contrast, URFS is provided to associate
uncertainties across flows of events. For example, in the
running example (Appendix A, E1 and E2), the URFS
keyword is applied to FailOnEnablingMonitoring to show
that, in an uncertain unknown condition, it is possible that
the sequence of alternative sentences A1 and A2 can
“replace” step 2 of the alternative flow DetectIntrusion.

V. U-RUCM FORMALIZATION
The formalization of U-RUCM is realized via integration of
an extended version of UCMeta and the U-Model. The full
formalization is captured in a distinct metamodel (called
BeliefUCMeta), which is provided in [34] for reference. Due
to space limitation, in this section we highlight only the key
elements of the metamodel.

A. Top-level Belief Element and Classifier
BUElement, which specializes UseCaseElement of
UCMeta), is the root of all other elements of BeliefUCMeta
(Figure 2).

TABLE I. The U-RUCM Template for Belief Use Case Specifications (BUCSs)
Belief Agent(s) One or more agents who hold belief about this BUCS.
Time Point and Duration The time point when the BUCS is specified and the duration in which the belief agent(s)’s belief on the BUCS holds.
Belief Degree The degree to which the belief agent(s) believe the BUCS.
Indeterminacy Source(s) The set of indeterminacy sources related to this BUCS.
Evidence Evidence to support this BUCS, and its contained belief and uncertainty elements.
Belief Precondition Belief agent(s)’ belief on the precondition, which describes what should be true before the use case is executed.
Belief Basic Flow
(Belief degree)

Specifies the main successful path, also called “happy path”.
Steps (numbered) A set of ordered belief sentences.
Belief Postcondition Belief agent(s)’ belief on what should be true after the basic flow executes.

Belief Specific
Alternative Flow
(Belief degree)

Applies to one specific step of the reference flow.
URFS The reference flow step where the belief agent(s) believe there are uncertainties.
Alternative Step An alternative to the reference flow step.
Steps (numbered) A set of ordered belief sentences.
Belief Postcondition Belief agent(s)’ belief on what should be true after the specific alternative flow executes.

Belief Bounded
Alternative Flow
(Belief degree)

Applies to more than one step of the reference flow, but not all of them.
URFS A list of reference flow steps where the belief agent(s) believe there are uncertainties.
Alternative Steps A set of alternatives to the reference flow steps.
Steps (numbered) A set of ordered belief sentences.
Belief Postcondition Belief agent(s)’ belief on what should be true after the bounded alternative flow executes.

Belief Global
Alternative Flow
(Belief degree)

Applies to all the steps of the reference flow.
Belief Branching Condition Belief agent(s)’ belief on the condition, which describes what should be true when

branching from any of the steps of the reference flow.
Steps (numbered) The set of ordered belief sentences
Belief Postcondition Belief agent(s)’ belief on what should be true after the global flow executes.

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

BeliefClassifier
(Figure 3) is an
abstract metaclass,
introduced to support
classification of a set
of BUCS elements
(e.g., BeliefPrecondition, BeliefFlowOfEvents), to which
belief and uncertainty information can be attached.
BeliefClassifier has three attributes: isUncertainty : Boolean
(a derived attribute to indicate if a belief classifier has an
associated uncertainty), isComposite : Boolean (indicating if
a belief classifier can be decomposed into finer belief
elements), and beliefDegree : Measurement (formalizing the
degree to which a belief agent believes in a belief classifier).
More detail on measurements is provided in Section E below.

B. Belief Use Case Specification
BeliefUseCaseSpecification specializes BeliefClassifier and
UseCaseSpecification of UCMeta. In general,
BeliefUseCaseSpecification is a concrete specification of a
use case specified by a BeliefAgent. It includes information
about the agent’s confidence that the use case will execute as
specified. The BUCS template of U-RUCM (TABLE I)
corresponds to this metaclass. An instance of
BeliefUseCaseSpecification is created for each BUCS and
serves as the container of other belief-related elements (e.g.,
BeliefPrecondition, BeliefFlowOfEvents, BeliefSentence). In
particular, a BUCS includes specifications of
IndeterminacySources and Evidence relevant to the use case.
The attribute nature of IndeterminacySource is typed with
IndeterminacyNature defined by five enumeration literals
representing five possible indeterminacy sources. These can
be referenced (via REF) by other belief elements such as
Uncertainty. Such references are formalized as instances of
IndeterminacyKnowledge and EvidenceKnowledge of
BeliefUCMeta (Figure 3).

C. Belief Flow Of Events
BeliefFlowOfEvents extends FlowOfEvents of UCMeta
(Figure 3). Hence, it inherits the three types of alternative
flows: Specific, Bounded and Global, which are not shown in
the figure due to space limitations. Alternative flows can also
be differentiated based on whether RFS or URFS is used to
refer to one or more steps of a reference flow. RFS is used
only when the branching condition and the system behavior
under this condition are fully clear to the belief agent and
can, therefore, be specified as a definite alternative flow. For
example, the
DetectIntrusion
flow in Appendix
A branches out
from step 10 of
the basic flow
under the
condition that “the
windows and
doors are open”.
In contrast, URFS
is used when the

belief agent is not fully confident about a certain piece of
system behavior or condition (represented by one or more
steps in a flow). In principle, an URFS alternative flow
should always be linked to one or more indeterminacy
sources. If such indeterminacy sources are known, U-RUCM
provides a way to specify them (see Section B). For
example, the FailOnEnablingMonitoring flow is defined as
the belief agent is not fully confident that “the system
enables the monitoring function” (step 5 of the basic flow,
Appendix A) will actually occur.

In summary, U-RUCM provides five different ways of
specifying alternative flows: Global with RFS, Bounded with
RFS, Specific with RFS, Bounded with URFS and Specific
with URFS. Global alternative flows are not recommended
to be combined with URFS, as it is often impossible to be
unclear about every single step of a reference flow. For any
URFS alternative flow, there should be at least one
alternative sentence specified in the alternative flow, which
“replaces” the referenced steps of the reference flows of
events defined in the URFS statement. Any RFS alternative
flow should not contain any alternative step. Note that
alternative sentences (which are ordered as sequential steps)
are defined at the beginning of an URFS alternative flow,
followed by a sequence of regular belief sentences.

D. Belief Sentence
All sentences in a BUCS are belief sentences, which are
formalized as BeliefSentence elements (specializing the
Sentence concept of UCMeta). In RUCM and UCMeta,
sentences are classified into simple, complex and special
sentences. Consequently, U-RUCM and BeliefUCMeta
classify belief sentences into BeliefSimpleSentence,
BeliefComplexSentence and BeliefSpecialSentence (not
shown in Figure 3 due to space constraints).

A belief simple sentence is an atomic belief statement,
which, from the sentence structure perspective, is composed
of only one subject and one predicate. Belief simple
sentences can appear in action steps of flows, preconditions,
postconditions, and other fields of a BUCS. Belief complex
sentences are sentences with the following RUCM keywords
applied: IF-THEN-ELSE-ELSEIF-THEN-ENDIF for
conditions, DO-UNTIL for iterations, MEANWHILE for
concurrency, and VALIDATE THAT for validation. A
complex sentence can consist of one or more belief simple
sentences. Belief special sentences are sentences involving
keywords RESUME STEP, ABORT, RFS, EXTENDED
BY, INCLUDE and URFS (newly introduced in U-RUCM).

*UCMeta metaclasses are highlighted in yellow; U-Model elements are presented in grey; Newly introduced BeliefUCMeta metaclasses are in white.

Figure 3. BeliefUCMeta – the metamodel formalizing U-RUCM

Figure 2. Root Elements of BeliefUCMeta

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

In U-RUCM, we also introduce AlternativeSentence, which
extends BeliefSentence (Figure 3). Alternative sentences only
appear in URFS alternative flows as action steps (Section C).
In the current implementation of the U-RUCM editor
(Appendix A), alternative sentences (steps) are denoted with
A1, A2, etc. An alternative sentence can be any type of belief
sentence: simple, complex or special.

E. Uncertainty
In U-RUCM, we classify uncertainties into two basic types:
NLUncertainty and BranchUncertainty. An instance of
NLUncertainty refers to a Part of Speech (PoS) (e.g., noun,
verb) of a belief sentence, about which a belief agent lacks
confidence. For example, one instance of NLUncertainty in
alternative sentence A1 of the FailOnEnablingMonitoring
flow (Appendix A) shows that the belief agent is only 2%
confident about the occurrence of the event. This is captured
by “enables”, which is the predicator verb of the sentence.
For example, the uncertainty is the Occurrence type of
uncertainties (formalized as one of the literals of
enumeration UncertaintyKind of BeliefUCMeta) which is
not shown in Figure 3 due to space limitation).

A set of branches can be derived from a BUCS,
systematically by following certain strategies [11]. Each of
these derived branches represent a straight path from the
precondition of the specification all the way to a
postcondition of a flow of events. This can be considered as
all-possible execution paths of a use case and therefore the
occurrence of a particular path is an uncertainty. Such an
uncertainty is an instance of BranchUncertainty with the
Occurrence::UncertaintyKind kind. Since such branches can
be automatically generated, measurements of the branch
uncertainties of the belief specification can be automatically
calculated when needed, if and only if uncertainties of the
belief sentences of the specifications are specified.

F. Measurement
In U-RUCM, there are two types of metrics: one is for
measuring the belief degree of a belief classifier and the
other is about measuring uncertainty. A measurement can
take different kinds of measures such as Probability,
Vagueness and Ambiguity, which are formalized as
enumeration MeasureKind of BeliefUCMeta (not shown in
Figure 3 due to space limitation). Note that, in U-RUCM, all
measurements are subjective. This is because, at the
requirements level, domain experts specify measurements
based on their experience, knowledge, and even preference,
as opposed to basing them on available hard data.

VI. TOOL SUPPORT AND METHODOLOGY

A. Tool Support
BUCSs are specified in the U-RUCM editor, which is
implemented in a modeling framework, called the
Lightweight Modeling Framework (LMF [35])). This
framework implements functionality similar to those of the
Eclipse Modeling Framework (EMF), but with a lightweight
design with the aim of reducing tight coupling with Eclipse
(so as to facilitate easier porting to other platforms). LMF

has two editors: a reflective model editor and a metamodel
editor. The LMF Reflective Editor is a simple model the
LMF metamodel reflection mechanism.

BUCSs specified with the editor can be automatically
formalized into instances of BeliefUCMeta concepts. In the
past, we have developed the transformation from RUCM to
UCMeta, based on natural language processing techniques
[9]. The transformation from U-RUCM to BeliefUCMeta is
just an extension of the transformation from RUCM to
UCMeta. The formalized specifications can be directly used
for performing different kinds of analyses and generations of
other artifacts when needed.

We have made a video to demonstrate the U-RUCM
editor and the formalization from U-RUCM to
BeliefUCMeta, along with the metamodel of BeliefUCMeta,
UCMeta and U-Model in [16] for references.

B. Methodology
Although the U-RUCM concepts can be used in many
different ways, in this section, we recommend one
methodology based on our own experience. It starts with the
creation of a use case model, specifying the actors, use cases,
and relationships among them. The belief agents in this case
are the requirements engineers who capture the information,
including indeterminacy sources, evidence, and uncertainty
degrees from the various stakeholders. Of course, it is always
possible to revisit the initial specifications subsequently
should new evidence or indeterminacy sources be uncovered.

When the overall context of a use case model is
established, one can start to develop a BUCS for each use
case. There is actually no particular order for specifying
primary and secondary actors, belief agents, etc. We
recommend a sequence for guiding users through the process
that proceeds from simple tasks to more complicated ones.
Specifying flows of events is the most challenging task, as it
requires a lot of careful analysis, discussions, and design.
The process is always iterative.

When specifying alternative flows, global alternative
flows are often used to specify exceptions and behaviors
crosscutting all the steps of a reference flow. The key task
here is to identify the proper branching condition. If one
needs to refer to one or more (but not all) steps of a reference
flow, specific or bounded alternative flows can be created.
As discussed in Section V.C, U-RUCM provides five
different ways of specifying alternative flows and some
constraints (e.g., alternative sentences only appear in URFS
alternative flows) should be applied when using U-RUCM in
this aspect. In our current implementation of the editor, we
have enforced these constraints so that chances of violating
them are eliminated. By definition, URFS and RFS are
different and therefore should be applied in different
situations, as discussed in Section V.C. We highly
recommend using URFS to identify uncertain alternative
flows only after the entire structure of flows of events (using
RFS) of a BUCS is defined.

Each flow of events consists of a set of steps, which are
specified as belief sentences. For each belief sentence, one
should refer to one or more relevant indeterminacy sources
and evidence, based on which, one can define the belief

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

degree and associated uncertainties. As discussed in Section
V, uncertainties can be more precisely characterized with
pattern and risk information and measured in different ways.
In practice, it is not always possible to obtain and enter all of
this information at once. So, a rule of thumb is to first
identify as many uncertainties as possible and only then
refine them with more detailed information.

VII. USER EXPERIENCE -- EVALUATION

A. Case Studies and Overall Objective of Evaluation
One of the two industrial case studies involved the
Automated Warehouse (AW) from ULMA Handling
Systems. These complex systems serve to monitor, control,
and manage warehouses for goods of different types, such as
food and beverages and textiles. Each handling facility (e.g.,
crane, conveyor) forms a physical unit, and together they are
dedicated to one handling system application (e.g., storage).

The second industrial case study used the Geo Sports
(GS) system from Future Position X. This system measures
the performance of an individual or a team as well as the
conditions of athletes over a sustained period of time in
actual game environments (e.g., a soccer field). The
measurements are made continuously and in real time using
geo-position sensors during both training and competition.
Our case study involved bandy, a form of ice hockey played
predominantly in Northern Europe and Russia. To the best of
our knowledge, this project was the first to monitor sports on
ice using sensors.

Our overall objective of the evaluation was to assess, in
an industrial setting, whether U-RUCM was effective in
terms of facilitating the development of use case models with
the explicit focus on uncertainty.

B. Context and Execution of Evaluation
At the start of the project, base RUCM was introduced to
both industrial partners (i.e., ULMA and FPX) as a means
for identifying and specifying the initial versions of their
uncertainty requirements. Subsequently, two onsite
workshops (one for each partner) were conducted to further
refine the collected requirements. The resulting RUCM
models were refined iteratively during the process of
developing the U-Model [16]. As shown in column RUCM
Model of TABLE II, a total of 20 use cases for each case
study were designed, 93 RUCM event flows were produced
(52 for AW and 41 for GS). These flows of events were later
refined into belief flows and alternative flows with URFS
applied. In total, the RUCM model for AW had 229

sentences, while the GS model had 256. About uncertainties
specified in the RUCM models, 33 (for AW) and 26 (for GS)
sets of steps of flows of events describing alternative
scenarios were considered as involving uncertainties. These
were later refined into alternative sentences and instances of
NLUncertainty in the U-RUCM models.

After that, we conducted a questionnaire-based survey
(derived from the RUCM models) to collect data to quantify
the identified uncertainties. During this non-trivial process,
which involved collecting uncertainty information, deriving
and verifying the U-Model, and involving multiple
stakeholders, RUCM was deemed adequate for the purpose
of providing initial data. It captured uncertainty requirements
at a relatively coarse-grained level.

Once the U-Model was finalized, we developed U-
RUCM, which integrates the U-Model and RUCM. U-
RUCM was then used to refine the RUCM models
developed by the industrial partners. Results of this are
presented in Section C.

C. Results
All the initial RUCM models developed by the industrial
partners were refined using U-RUCM to capture all the
identified uncertainties. Descriptive statistics of the resulted
U-RUCM models are reported in the Result columns of
TABLE II. The table shows how many elements were added,
modified, and removed during the process of moving from
RUCM to U-RUCM for the two case studies.

Recall that U-RUCM realizes the Uncertainty concept of
U-Model by four concrete means: 1) NLUncertainty for
belief sentences, 2) BranchUncertainty for possible
executions of UCSs from the beginning to end, 3)
uncertainties in flows of events (captured via URFS and
alternative flows), and 4) uncertainties in sentences across
flows of events (captured as alternative sentences). We
applied these four U-RUCM mechanisms systematically by
following the guidelines described in Section VI and then
carefully examined all the specified BUCSs to further refine
the RUCM models.

As shown in TABLE II, we refactored the design of the
RUCM use case model of AW by merging three use cases
describing similar scenarios into one, which led to the
deletion of 2 use cases (as shown in the table). We also
added 2 use cases to the RUCM model of GS as the result of
the refactoring, as these two use cases can be invoked (via
the include relationships) by multiple use cases.

TABLE II also indicates that 3 uncertainties in the AW

TABLE II. Descriptive Statistics of the RUCM Models, U-RUCM Models and Refinements
AW

Key U-RUCM Elements
GS

Key RUCM Elements Refinement U-RUCM
Model

U-RUCM
Model

Refinement Key RUCM
Elements Added Modified Removed Added Modified Removed

Use Case 20 0 20 2 18 Use Case 23 3 20 0 20 Use Case
FlowOfEvents 52 18 23 4 66 (Belief) Flow Of Events 71 31 21 1 41 FlowOfEvents

Sentence 229 63 56 16 276 (Belief) Sentence 348 97 46 5 256 Sentence 45 0 0 45 Alternative Sentence 76 76 0 0
Uncertainty 33 32 18 3(1,2)+ 62 (NL)Uncertainty 70 48 15 4 (2,2)+ 26 Uncertainty

72 0 0 72 BranchUncertainty 89 89 0 0

 43 0 43 URFS 48 48 0 0
23 0 0 23 Indeterminacy Source 18 18 0 0

 (n,m)+ -- n is the number of uncertainties removed due to refactoring; m is the number of uncertainties that are changed to indeterminacy source.

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

RUCM model were removed and 4 from the GS model. This
was because: 1) We optimized the design of the use case
model by removing duplicated uncertainties (e.g., those
describing improper wearing of positioning devices, which is
the same for either indoor or outdoor games), 1 from AW
and 2 from GS; 2) We identified uncertainties from the
RUCM models that are actually indeterminacy sources (e.g.,
long distance between a positioning device and the satellites
is an indeterminacy source, which can lead to the failure of
locating the satellites with insufficient resolution nature), 2
for AW and 2 for GS.

The uncertainty-specific concepts Indeterminacy Source,
Alternative Sentence, and BranchUncertainty were only
introduced in U-RUCM. Consequently, there were no
corresponding elements in the RUCM models. After
carefully going through details of the RUCM models using
steps described previously, we derived a total of 23
indeterminacy sources for AW and 18 for GS, 45 alternative
sentences for AW and 76 for GS. Furthermore, we
discovered 32 instances of NLUncertainty for AW and 48 for
GS. These turned out to be cases of “unknown knowns” for
our industrial partners, that is, tacit knowledge that was not
explicit initially. This activity led to the addition of 18 belief
flows of events for AW and 31 for GS, 72 new branch
uncertainties for AW and 89 for GS, and 43 additional
alternative flows with URFS applied for AW and 48 for GS.

In summary, the total numbers of the instances of
metaclasses NLUncertainty and BranchUncertainty of U-
Model, populated for each of the industrial case studies are
62+72=134 for AW and 70+89=159 for GS. When
comparing this with their corresponding “rough” RUCM
models, we conclude that, by using U-RUCM, we were able
to significantly enhance the extent and precision of modeling
uncertainties in requirements (i.e., (134-33)/33=306% for
AW and (159-26)/26=512% for GS). This suggests that U-
RUCM is an important improvement in dealing with
uncertainty in requirements engineering.

In the U-Test project, we also developed test ready
models [17, 18] (represented as UML class diagrams and
state machines) using the UncerTum (see Section II.A). The
test ready models were used to generate test cases, which
were then executed successfully in actual systems [19].
There are clear correspondences between the scenarios and
uncertainties defined in the test ready models and the ones
defined in the U-RUCM models, since the U-RUCM models
were used as the input (uncertainty requirements) for
developing the test ready models. This gives us a high degree
of confidence in the quality of the derived U-RUCM models.

D. Experience, Lessons Learned and Future Challenges
Identifying common uncertainties. From the GS case study,
we noted that human behavior was the key indeterminacy
source of uncertainties, due to incorrect interactions with the
system. For the AW case study, on the other hand,
uncertainties and indeterminacy sources centered mainly on
the data communications between control units and their
controlled devices. From these types of observations, we can
conclude that it is possible in principle to identify common
sources and types of uncertainties that occur in a given

domain or even across domains. This knowledge can be then
used to define reusable uncertainty specifications and their
corresponding behaviors.

Learning about uncertainty by applying U-RUCM. In
the past, we experienced that one can learn how to better
design use case models by using RUCM. This is why RUCM
is used as a teaching method for requirements engineering
and software engineering courses both at the undergraduate
and graduate levels4. Similarly, based on the results of this
project, we surmise that it is possible to gain more precise
and more direct understanding of both uncertainty and
indeterminacy sources by using U-RUCM.

Automated, scalable and systematic reasoning. For
more effective coping with uncertainty, automated/semi-
automated reasoning about uncertainty and indeterminacy
sources can certainly be helpful. This is because, for any
non-trivial system, a use case model might be large and may
contain a large number of potentially inter-related
uncertainties. From our experience during the initial phases
of our study when we were not using U-RUCM, we learned
that unassisted human reasoning tends to be time-consuming
and unsystematic. This is why we chose a more formal
approach when developing U-RUCM – via the
BeliefUCMeta metamodel – which provides a formal
foundation for future, automated reasoning techniques.

Specializing U-RUCM. RUCM can be specialized for
different purposes and for different domains. For example, in
another research project we are developing a version of
RUCM specifically for real-time systems. In such cases, the
standard RUCM template and keywords are extended to
allow the specification of time constraints. These are also
subject to uncertainty. Based on that, we anticipate that U-
RUCM will also need to be extended for specific domains.

Harvesting the benefits of natural language processing
techniques. During the process of deriving U-RUCM and
performing the two industrial case studies, we noticed that
there is an opportunity to further refine NLUncertainty, the
core concept for representing uncertainties in belief
sentences (see Section V.E). The general idea here is to rely
on natural language processing techniques to automatically
identify grammatical structures (e.g., Subject), PoSs (e.g.,
Verb), sentence structures (e.g., Subject-Verb-Object),
and/or sentence semantics (e.g., an actor sends a request to
the system) in belief sentences. Based on this, heuristics can
be defined to automatically identify potential uncertainties
and/or verify already specified ones in belief sentences. For
example, a verb of the predicator of a sentence might have an
Occurrence uncertainty associated with it. A noun (being the
direct object of a simple sentence) might be associated with a
Content uncertainty.

Reckoning on branch uncertainties. It may be possible
to automatically derive values of branch uncertainties (A
branch uncertainty indicates a belief agent’s confidence in
the possibility that the execution of the use case takes this
particular branch.) At the very least, branch uncertainties can
at least help to 1) identify critical paths to reduce
uncertainties or perform risk analyses (if the postcondition

4 http://www.zen-tools.com/rucm/index.html

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

that a branch leads to is considered as the consequence of the
branch), 2) verify the overall belief degree that a belief agent
has in a belief specification, and 3) derive test cases targeting
particularly branches with high uncertainty. This is a
possible avenue of further research.

Systematically discovering unknown known
indeterminacy sources and uncertainties and transforming
them into known unknown uncertainties and known
known indeterminacy sources. As the experiments showed,
it is possible to systematically identify previously unknown
known based on already-specified (known) uncertainties and
indeterminacy sources. A systematic methodology (ideally
with tool support) can be followed to identify more unknown
knowns and currently known unknown uncertainties (e.g.,
by combining already identified uncertainties that are
associated with the same part of system behavior).

Transforming U-RUCM models into other downstream
artifacts. To maximize the benefit of U-RUCM models, one
possibility is to transform them automatically or semi-
automatically into other artifacts that need to be developed
during system development. For example, U-RUCM models
can be transformed into UML state machines via the UUP
profile (Section II.A), for supporting MBT of CPSs under
uncertainties. This is feasible as RUCM models can be
transformed into UML models and test cases (Section II.B).

VIII. SUMMARY
The impact of uncertainty, which is increasingly being
recognized as an inherent and crucial property of non-trivial
software-intensive systems (e.g., CPSs), needs to be better
understood and addressed explicitly in all phases of system
development. In particular, it has to be explored and
characterized as much as possible during requirements
engineering (e.g., elicitation, specification, and verification).
Use case modeling is a well-known and commonly applied
requirements specification/modeling method in practice.
Specifying uncertainty as part of use case models is therefore
particularly useful. In this paper, we described a
methodology and a corresponding tool (U-RUCM) for
helping practitioners to specifying uncertainties in
requirements as part of use case models.

U-RUCM originated in the context of the U-Test project
(http://www.u-test.eu/), which involved a consortium of nine
partners. The initial version of the uncertainty requirements
was developed by our industrial partners using the basic
RUCM methodology, on which U-RUCM was founded.
After refining the RUCM models, by applying the U-RUCM
methodology, we successfully identified and specified more
than 300% and 500% (previously unknown) uncertainty
requirements for the two case studies. The resulting U-
RUCM models was used as a reference to develop test ready
models for generating executable test cases to test the two
industrial applications. As users of U-RUCM ourselves
during these “real-world” experiments, we gained invaluable
experience about its use and future potential.

REFERENCES
[1] S. Ali and T. Yue, "U-Test: Evolving, Modelling and Testing

Realistic Uncertain Behaviours of Cyber-Physical Systems," 2015.

[2] K. Bittner and I. Spence, Use Case Modeling: Addison-Wesley, 2003.
[3] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, "A Goal-

Based Modeling Approach to Develop Requirements of an Adaptive
System with Environmental Uncertainty," in Model Driven
Engineering Languages and Systems, MODELS 2009.

[4] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel,
"RELAX: a language to address uncertainty in self-adaptive systems
requirement," Requirements Engineering, 2010.

[5] L. Baresi, L. Pasquale, and P. Spoletini, "Fuzzy goals for
requirements-driven adaptation," in 2010 18th IEEE International
Requirements Engineering Conference, 2010.

[6] K. Welsh, P. Sawyer, and N. Bencomo, "Towards requirements aware
systems: Run-time resolution of design-time assumptions," in
Automated Software Engineering (ASE), 2011.

[7] R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro, "Managing
requirements uncertainty with partial models," Requirements
Engineering, 2013.

[8] M. Famelis and S. Santosa, "MAV-Vis: a notation for model
uncertainty," in Modeling in Software Engineering (MiSE), 2013 5th
International Workshop on, 2013.

[9] T. Yue, L. Briand, and Y. Labiche, "aToucan: an Automated
Framework to Derive UML Analysis Models From Use Case
Models," ACM Transactions on Software Engineering and
Methodology, 2015.

[10] T. Yue, L. C. Briand, and Y. Labiche, "Facilitating the transition from
use case models to analysis models: Approach and experiments,"
ACM Transactions on Software Engineering and Methodology
(TOSEM), 2013.

[11] T. Yue, S. Ali, and M. Zhang, "Applying A Restricted Natural
Language Based Test Case Generation Approach in An Industrial
Context," in International Symposium on Software Testing and
Analysis (ISSTA), 2015.

[12] H. Zhang, T. Yue, S. Ali, and C. Liu, "Facilitating requirements
inspection with search-based selection of diverse use case scenarios,"
in proceedings of the 9th EAI International Conference on Bio-
inspired Information and Communications Technologies, 2016.

[13] M. Zhang, T. Yue, S. Ali, H. Zhang, and J. Wu, "A Systematic
Approach to Automatically Derive Test Cases From Use Cases
Specified in Restricted Natural Languages," in 8th System Analysis
and Modelling Conference (SAM'14), 2014.

[14] T. Yue and S. Ali, "Bridging the gap between requirements and
aspect state machines to support non-functional testing: industrial
case studies," in European Conference on Modelling Foundations
and Applications, 2012.

[15] G. Wang, V. Pascucci, A. Goknil, L. Braind, and Z. Lqbal,
"Automatic Generation of System Test Cases from Use Case
Specifications," presented at the International Symposium on
Software Testing and Analysis, Baltimore, Maryland, 2015.

[16] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren,
"Understanding Uncertainty in Cyber-Physical Systems: A
Conceptual Model," in ECMFA, 2016.

[17] M. Zhang, S. Ali, T. Yue, and R. Norgren, "An Integrated Modeling
Framework to Facilitate Model-Based Testing of Cyber-Physical
Systems under Uncertainty," 2016.

[18] M. Zhang, S. Ali, T. Yue, and R. Norgren, "Interactively Evolving
Test Ready Models with Uncertainty Developed for Testing Cyber-
Physical Systems," 2016.

[19] M. Zhang, S. Ali, T. Yue, and M. Hedman, "Uncertainty-based Test
Case Generation and Minimization for Cyber-Physical Systems: A
Multi-Objective Search-based Approach," 2016.

[20] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, "A genetic algorithm
for optimized feature selection with resource constraints in software
product lines," Journal of Systems and Software, 2011.

[21] OMG, "Meta Object Facility (MOF) Core Specification", 2014.
[22] T. Yue, L. Briand, and Y. Labiche, "A Use Case Modeling Approach

to Facilitate the Transition Towards Analysis Models: Concepts and
Empirical Evaluation."

[23] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, "Automatic
generation of system test cases from use case specifications,"

	

Simula Research Laboratory, Technical Report 2016-15 Feb. 2017

presented at the Proceedings of the 2015 International Symposium on
Software Testing and Analysis, Baltimore, MD, USA, 2015.

[24] J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu, "Assessing the Quality of
Industrial Avionics Software: An Extensive Empirical Evaluation,"
Empirical Software Engineering, 2016.

[25] T. Yue, H. Zhang, S. Ali, and C. Liu, "A Practical Use Case
Modeling Approach to Specify Crosscutting Concerns: Industrial
Applications," 2015.

[26] R. S. Pressman, Software engineering: a practitioner's approach 7th
edition: Palgrave Macmillan, 2010.

[27] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein,
"Requirements-Aware Systems: A Research Agenda for RE for Self-
adaptive Systems," in 2010 18th IEEE International Requirements
Engineering Conference, 2010.

[28] A. Van Lamsweerde, Requirements engineering: from system goals to
UML models to software specifications: Wiley Publishing, 2009.

[29] B. Chen, X. Peng, Y. Yu, and W. Zhao, "Uncertainty handling in
goal-driven self-optimization–limiting the negative effect on
adaptation," Journal of Systems and Software, 2014.

[30] A. J. Ramirez, B. H. C. Cheng, N. Bencomo, and P. Sawyer,
"Relaxing Claims: Coping with Uncertainty While Evaluating
Assumptions at Run Time," in Model Driven Engineering Languages
and Systems: 15th International Conference, MODELS 2012.

[31] M. Famelis, R. Salay, and M. Chechik, "Partial models: Towards
modeling and reasoning with uncertainty," in Software Engineering
(ICSE), 2012 34th International Conference on, 2012.

[32] E. Letier, D. Stefan, and E. T. Barr, "Uncertainty, risk, and
information value in software requirements and architecture," in
Proceedings of the 36th International Conference on Software
Engineering, 2014.

[33] N. Esfahani, S. Malek, and K. Razavi, "GuideArch: guiding the
exploration of architectural solution space under uncertainty," in 35th
International Conference on Software Engineering (ICSE), 2013.

[34] Simula (2016). U-RUCM: Specifying Uncertainty in Use Case
Models. Available: http://zen-tools.com/rucm/U_RUCM.html

[35] G. Zhang, T. Yue, J. Wu, and S. Ali, "Zen-RUCM: A Tool for
Supporting a Comprehensive and Extensible Use Case Modeling
Framework," in Demos/Posters/StudentResearch@ MoDELS, 2013.

APPENDIX A

*A2 Belief Agent is
formalized into elements
shown in A1; the
properties of B1(D1)
IndeterminacySource(Me
asurement) is shown in
the property window B2
(D2); C2 is the set of
knowledge that are
formalized as elements
shown in C1; E2 refers to
a set of sentences
indicated by E1; the
alternative sentences
indicated by F2 are
formalized into elements
shown in F1.

