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Abstract As an essential feature of smart Cyber-Physical Systems (CPSs), self-healing behaviors play a 
major role in maintaining the normality of CPSs in the presence of faults and uncertainties. It is important 
to test whether self-healing behaviors can correctly heal faults under uncertainties to ensure their 
reliability. However, the autonomy of self-healing behaviors and impact of uncertainties make it 
challenging to conduct such testing. To this end, we devise a fragility-oriented testing approach, which is 
comprised of two novel algorithms: Fragility-Oriented Testing (FOT) and Uncertainty Policy 
Optimization (UPO). The two algorithms utilize the fragility, obtained from test executions, to learn the 
optimal policies for invoking operations and introducing uncertainties respectively, to effectively detect 
faults. We evaluated their performance by comparing them against a Coverage-Oriented Testing (COT) 
algorithm and a random uncertainty generation method (R). The evaluation results showed that the fault 
detection ability of FOT+UPO was significantly higher than the ones of FOT+R, COT+UPO, and 
COT+R, in 73 out of 81 cases. In the 73 cases, FOT+UPO detected more than 70% of faults, while the 
others detected 17% of faults, at the most. 
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1. Introduction 

The integration of computation, communication, and control awards Cyber-Physical Systems (CPSs) with 
a higher level of intelligence, which enables them to autonomously adapt and optimize their behavior at 
runtime (Bures et al. 2015). One of such autonomous characteristics is self-healing, which endows CPSs 
with the ability to detect fault occurrences, diagnose causes and recover. We refer to this kind of CPSs as 
Self-Healing CPSs (SH-CPSs). 

Besides recuperation, the self-healing behaviors of SH-CPSs have to deal with uncertainty gracefully. 
Due to intimate coupling between the cyber and physical components, SH-CPSs are usually affected by 
various uncertainties. By uncertainty, we mean “the lack of knowledge of which value an uncertain factor 
will take at a given point in time during execution” (Ma et al. 2016). In this paper, we limit our scope to 
environmental uncertainty, namely measurement uncertainties from sensors and actuation deviations 
from actuators.  

Since self-healing behaviors play a key role in securing CPSs’ normal functionality, it is important to 
check the correctness of self-healing behaviors in the presence of uncertainty. However, achieving this 
task is non-trivial. Although formal verification can rigorously prove the correctness, these technologies 
are still not applicable to large-scale applications, due to high computational complexity particularly 
when many uncertainties need to be considered (Schupp et al. 2015). Testing is another option. However, 
at the current stage, the state of practice of testing CPSs is an ad hoc, trial and error testing approach, 
which cannot provide sufficient rigor in fault detection (Zheng and Julien 2015). For the state of art of 
testing CPSs, coverage-oriented structural testing is dominating (Asadollah et al. 2015). However, the 
high dimension of CPSs’ behaviors, the tight integration of cyber and physical components, and the 
unpredictable operational environment make the space of CPSs’ behaviors extremely large. It is difficult 
to find faults in such huge space by just randomly searching or trying out each possibility. Note that there 
are two kinds of faults: flaws in the SH-CPS under test (SUT) and faults targeted by self-healing 
behaviors. Except particular explanation, a fault in the following paragraphs refers to a flaw instead of a 
fault injected for testing self-healing behaviors.  

To overcome the limitations of existing methods, we propose a fragility-oriented approach. In this 
approach, we try to identify how likely the SUT is going to fail in a given state, i.e., the fragility of the 
SUT. The fragility is used as a heuristic to guide the testing process to spend more testing effort on the 
fragile states so that faults can be more effectively detected.  

To detect faults in the SUT under uncertainty, we have to apply fragility to select two kinds of inputs. 
The first is operation invocation, which controls the behavior performed by the SUT. Invoking different 
operations or calling the same set of operations with different orders may both lead to distinct system 
states. The second is uncertainty values. They define the uncertainty-introduced environment, where the 
SUT is executed. Both operation invocations and uncertainty values need to be cautiously selected to find 
the most fragile state, and detect faults.   

For operation invocation, we have devised a Fragility-Oriented Testing (FOT) algorithm. It employs a 
reinforcement learning approach to find the optimal sequence of operation invocations concerning fault 
revelation. Regarding the generation of uncertainty values, we proposed a distribution based generation 
method in our previous work (Ma et al. 2017). In this method, the variation of each uncertainty is 
expressed as a probability or possibility distribution. Based on the distribution, uncertainty values are 
generated. Since this method merely derives uncertainty values from fixed distributions, without utilizing 
any heuristic, it is suboptimal regarding the effectiveness of generating uncertainties for fault revelation.  

To overcome this weakness, we present an Uncertainty Policy Optimization (UPO) algorithm in this 
paper. The algorithm uses a parameterized policy to address the uncertainty generation problem. The 
policy takes state variable values of the SUT as input. Based on the values, the policy decides the 
uncertainty values that should be introduced for the current state to increase the fragility of the SUT. 
Directed by the fragility obtained from executions, the UPO algorithm gradually optimizes the policy in 
terms of the fragility of the SUT that can be achieved by following the policy. In such way, the UPO 
algorithm manages to effectively find a sequence of uncertainty values that can work together with a 
sequence of operation invocations to reveal a fault.  

We compared the performance of UPO and FOT against Coverage-Oriented Testing (COT) (Veanes et 
al. 2006) and the random uncertainty generation method (R) by applying them to test nine self-healing 
behaviors of three real-world case studies. Each self-healing behavior was tested under eight 
uncertainties, with three settings of time budgets and three ranges of uncertainty variation. In total, 81 
testing jobs (nine self-healing behaviors × three testing times × three uncertainty scales) were 
accomplished by each testing approach. The experiment results showed that the fault detection ability of 
FOT+UPO is significantly higher than the ones of FOT+R, COT+UPO, and COT+R, in 73 out of 81 
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cases. In the 73 cases, FOT+UPO detected more than 70% of faults, while merely less than 17% of faults 
were detected by the other three approaches.  

This paper is an extension of our previous conference paper (Ma et al. 2017). The new contributions of 
this paper are: 1) The Fragility Oriented Testing (FOT) algorithm has been improved with the ability to 
detect multiple faults. 2) A new fragility-oriented algorithm — Uncertainty Policy Optimization (UPO) 
has been devised for uncertainty generation. 3) The performances of the two algorithms have been 
evaluated by comparing the numbers and percentages of detected faults of four testing approaches, using 
nine self-healing behaviors from three case studies.  

We organize the paper as follows. Section 2 presents the background, followed by a running example 
given in Section 3. Section 4 presents an overview of the fragility-oriented testing approach. Section 5 
and Section 6 present the FOT and UPO algorithms respectively. Section 7 illustrates the implementation. 
Section 8 presents the evaluation, Section 9 summarizes related work, and Section 10 concludes the 
paper. 

2. Background 

The proposed fragility-oriented testing approach is devised based on two fundamental techniques. One is 
model execution and the other is reinforcement learning. This section introduces two kinds of models 
used in the approach —Executable Test Model (ETM) and Dynamic Flat State Machine (DFSM) in 
Section 2.1 and Section 2.2, respectively. Section 2.3 summarizes a test model execution framework – 
TM-Executor. Section 2.4 describes the general idea of reinforcement learning and Section 2.5 explains 
how to use an Artificial Neural Network (ANN) to facilitate reinforcement learning.    

2.1 Executable Test Model (ETM) 

A CPS can be seen as a set of networked physical units, working together to monitor and control physical 
processes. A physical unit can be further decomposed into sensors, actuators, and controllers. A controller 
monitors and controls physical processes via sensors and actuators, which are functional behaviors. As a 
specific type of CPSs, SH-CPSs can monitor fault occurrences and adapt its behavior to self-healing 
behaviors when a fault occurs. As the objective of a self-healing behavior is to restore functional 
behaviors, both expected functional, and self-healing behaviors need to be captured for testing. 
Previously, we proposed a UML-based modeling framework, called MoSH (Ma et al. 2016), which 
allows creating an ETM for the SH-CPS Under Test (SUT). The ETM consists of a set of UML state 
machines annotated with dedicated stereotypes from the MoSH profiles.  

The set of state machines captures expected functional and self-healing behaviors of the SUT: 
𝑆𝑀 =  {𝑠𝑚!,… , 𝑠𝑚! ,… , 𝑠𝑚!}, where MoSH stereotypes are applied to annotate the states in state 
machines. A 𝑠𝑚!  has a set of states 𝑆!"!  = {𝑠!"!!,… , 𝑠!"!! ,… , 𝑠!"!!} and transitions 
𝑇!"! =  {𝑡!"!!,… , 𝑡!"!! ,… , 𝑡!"!!}. A state 𝑠!"!!  (𝑠!"!! ∈ 𝑆!"!) is defined by a state invariant 𝑂!"!! , 
which is specified as an OCL1 constraint, constraining one or more state variables. When 𝑠!"!! is active, 
its corresponding state invariant has to be satisfied. A transition 𝑡!"!! (𝑡!"!! ∈ 𝑇!"!) is defined as a tuple 
𝑡 ≔  (𝑠!"# , 𝑠!"# , 𝑜𝑝,𝑔), where 𝑠!"# and 𝑠!"# are the source and target states of 𝑡, 𝑜𝑝 denotes an operation 
call event that can trigger the transition2 and the operation represents a testing interface used to control 
the SUT. 𝑔 signifies the transition’s guard, an OCL constraint. It restricts input parameter values that can 
be used to invoke the operation for firing the transition. By conforming to the fUML3 and Precise 
Semantics Of UML State Machines (PSSM)4 standards, the specified state machines are executable. 
Thus, the test model is called an ETM.  

2.2 Dynamic Flat State Machine (DFSM) 

Test execution with concurrent and hierarchical state machines is computationally expensive and 
complex. Since statically flattening state machines may lead to state explosion, we implemented an 
algorithm to dynamically and incrementally flatten UML state machines into a Dynamic Flat State 
Machine (DFSM) during test execution. A DFSM has a set of states 𝕊 =  {𝕤!, 𝕤!,… , 𝕤! … , 𝕤!} and a set 
of transitions 𝕋 = {𝕥!, 𝕥!,… , 𝕥!  … 𝕥!}. Each state 𝕤!in 𝕊 is constituted by states from each 𝑠𝑚!, denoted 

                                                             
1 http://www.omg.org/spec/OCL/2.4 
2 Though call, change and signal event occurrences can all be triggers to model expected behaviors, only transitions having call 
event occurrences as triggers can be activated from the outside. A change event or a signal event is only for the SUT’s internal 
behaviors, which cannot be controlled for testing.  
3 http://www.omg.org/spec/FUML/1.2.1 
4 http://www.omg.org/spec/PSSM/1.0/Beta1 
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as 𝕤! = 𝑠!"!!⋀𝑠!"!!⋀  …⋀𝑠!"!! . Accordingly, the conjunction of all constituents’ state invariants 
[𝑜!"!!!  ⋀ 𝑜!"!!!  ⋀…⋀ 𝑜!"!!!] forms the state invariant of 𝕤!, denoted as 𝕠!!. Meanwhile, the set of 
transitions connecting the DFSM states is captured by 𝕋. In the test model, the interactions among 
different state machines are modeled by transitions with effects of sending signals (Ma et al. 2016). When 
such a transition is triggered, it sends signals that activate the transitions in other state machines. The set 
of activated transitions are represented by the initially triggered transition in the flattened state machine. 
Consequently, each transition 𝕥!  belonging to 𝕋 is uniquely mapped to a transition 𝑡!"!!  in a state 
machine 𝑠𝑚!, expressed as 𝕥! = 𝑡!"!!. While the Executable Test Model (ETM) is being executed, the 
DFSM is dynamically constructed. The Fragility Oriented Testing (FOT) algorithm uses the DFSM to 
learn the value of firing each transition and find the optimal transition selection policy to effectively find 
faults. Thus, we mainly use DFSM in the following paragraphs.  

2.3 Test Model Execution Framework 

We developed a testing framework called TM-Executor in our previous work (Ma et al. 2016). By 
executing the test model and the SUT at the same time, the framework can dynamically test the SUT 
against the model. Fig. 1 presents the execution process. According to the execution semantics of UML 
state machines, TM-Executor executes the test model, i.e., a set of UML state machines (S1).  During the 
execution, TM-Executor dynamically and incrementally derives a DFSM from the set of state machines 
(S2). The DFSM points out the candidate transitions that can be triggered to drive the execution of the 
model. Directed by an operation invocation policy, TM-Executor selects a transition and generates an 
operation invocation to trigger the transition (S3 ~ S7). As aforementioned, a transition’s trigger 𝑜𝑝 and 
guard 𝑔 specify the operation and the parameter values to be used to trigger the transition. While an 
operation is invoked, an operation call event is generated, which drives the execution of the test model. 
Meanwhile, the operation is executed to call a corresponding testing interface, which makes the SUT 
enter the next state. 

Two kinds of testing interfaces can be specified as a transition’s trigger 𝑜𝑝. One is functional control 
operation, which instructs the SUT to execute a nominal functional operation. Another is fault injection 
operation, which introduces a fault in the SUT, based on which, TM-Executor controls when and which 
faults to be injected to the SUT to trigger its self-healing behaviors.  

On the other hand, TM-Executor uses an uncertainty generation policy to generate the uncertainty 
values and introduces the uncertainty values into the SUT to test the system under uncertainty (S8 ~ S10). 
Via testing interfaces, state variable values are queried from the SUT and used by TM-Executor to 
evaluate state invariants of the active state (S11). If an invariant is evaluated false, it means that the SUT 
fails to behave consistently with the ETM and a fault is detected.  

                                  
Fig. 1 Test Execution Process 

2.4 Reinforcement Learning 

To effectively detect faults in SH-CPSs under uncertainty, we aim to find the optimal policy for invoking 
operations and introducing uncertainties. The policy helps us find the sequence of operation invocations 
together with the sequence of uncertainty values that can reveal faults. Finding such optimal policies is 
exactly the goal of reinforcement learning, an automatic approach to learning the optimal policy from 
interactions (Sutton and Barto 1998). Consequently, we devise two reinforcement learning based 
algorithms to facilitate testing SH-CPSs under uncertainty.  

Fig. 2 presents the general idea of reinforcement learning in the context of testing. The reinforcement-
learning algorithm directs a testing agent to take testing actions on the SUT, with the aim of maximizing 
the possibility for the SUT to fail, i.e., maximizing the likelihood to detect faults. The agent tests the SUT 
in discrete time steps. At each time step t, the agent uses testing interfaces to obtain the state of the SUT 
St, represented as a collection of state variables. After that, it selects a testing action At from the set of 
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available actions in state St. Caused by the action, the state of the SUT changes from St to St+1. The agent 
evaluates Ft+1 — the likelihood that the SUT is to fail in St+1, which is defined as fragility in this paper. 
Taking the fragility as a heuristic, the reinforcement algorithm continuously adjusts the agent’s action 
selection policy to achieve the highest fragility and effectively detect faults. 

 
Fig. 2 Testing with Reinforcement Learning (Sutton and Barto 1998) 

2.5 Artificial Neural Network 

The policy used in the reinforcement learning can be saved in two ways. One is tabular form, which 
explicitly specifies the probability to take action in a given state. However, when the number of potential 
states or the number of valid actions becomes huge, it is intractable to store the probability for each pair 
of state and action. In this case, the policy has to be stored in an approximate form. One well-known form 
is Artificial Neural Network (ANN) (Yegnanarayana 2009), which has been successfully applied together 
with reinforcement learning in many algorithms (Arulkumaran et al. 2017; Li 2017).  

An ANN consists of layers of interconnected neurons, as shown in Fig. 3. The first layer is an input 
layer. Each neuron in the input layer represents one dimension of the input space, and the activity of these 
neurons is just outputting the value of the corresponding dimension. Via weighted connections, the value 
is scaled by the weights of connections and transited to the neurons in the next layer, which is called the 
hidden layer. The neurons in the hidden layer called hidden neurons, add a bias to the sum of received 
values. After that, they input the result to an activation function and send the output of this function to all 
their successors. The values pass through the network in this way until reaching the last layer, the output 
layer. The neurons in the output layer are called output neurons. The activity of output neurons is the 
same with hidden neurons, except that the output neurons use an output function instead of the activation 
function to calculate the final outputs.  

Via the network structure, the ANN can compactly save the mapping relations between inputs and 
outputs. In the context of reinforcement learning-based testing, the input is the state of the SUT, and the 
output is the testing action to be performed in that state. However, this benefit of applying ANN is at the 
cost of lower accuracy. Since it is almost infeasible to train an ANN with 100% accuracy (Yegnanarayana 
2009), an estimation error will be introduced when the ANN instead of a tabular form is used to estimate 
the output for a given input. Also, training an ANN is computationally expensive. Compared with tabular 
form, applying ANN to save the policy for reinforcement learning requires more computational resources, 
and it takes an extra amount of time to train the ANN (Sutton and Barto 1998).  

In this paper, we divide the testing task into two sub-tasks. One is responsible for selecting operation 
invocations, and the other takes charge of introducing uncertainties. For the first sub-task, the test model 
specifies the valid operation invocations for each state. When introducing uncertainties, each uncertainty 
can arbitrarily take any value within its variation range. Therefore, the search space of the second sub-
task is significantly larger than the one of the first sub-task. Due to this reason, we devise a tabular form 
based algorithm for the first sub-task and apply ANN to address the second sub-task.  

 
Fig. 3 Example of Artificial Neural Network 
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3. Running Example  

We use an Unmanned Aerial Vehicle control system (i.e., ArduCopter5) as a running example to illustrate 
the problem of testing SH-CPS under uncertainty. Fig. 4 presents a UML class diagram, which captures a 
simplified architecture of the system. In the diagram, each class represents a sensor, actuator, controller or 
physical unit, accessible state variables are specified as class attributes, and the operations capture 
available testing interfaces.  

As shown in Fig. 4, ArduCopter has two physical units, i.e., Copter and Ground Control Station 
(GCS). With the GCS, users remotely control the Copter using some flight modes. During the flight, the 
Copter is constantly affected by environmental uncertainties such as measurements bias from the GPS. 
The uncertainties are specified via the «Uncertainty» stereotype, provided in MoSH profile (Ma et al. 
2016). An example is shown in the upper right corner of Fig. 4. The stereotype attribute universe 
specifies the variation range of the uncertainty, and measure defines the uncertainty’s probability 
distribution. For the uncertainty posBias, i.e., the measurement bias of position, its variation range is 
between -2.5 and 2.5, and the value of the uncertainty follows a normal distribution with mean 0 and 
variance 0.9. These are specified based on the product specification of the GPS.  

 
Fig. 4 Simplified Architecture of ArduCopter 

Based on the class diagram, the expected behaviors of the classes are specified as an ETM (shown in 
Fig. 11 in Appendix). The ETM captures both functional and self-healing behaviors. The functional 
behaviors such as FlightControlBehavior and ADSBBehavior, specify how the system should behave 
when an operation is invoked, and the self-healing behaviors specify how a fault is to be healed.  

CollisionAvoidance is one of the self-healing behaviors. Due to improper flight control (operational 
fault), the copter may approach another aircraft. In such case, the copter automatically adapts the velocity 
and orientation (i.e., the angles of rotations in roll, pitch, and yaw) of the flight to avoid a collision. 

Fig. 5 presents a partial simplified DFSM corresponding to the ETM for ArduCopter. We take one 
path (bold transitions in Fig. 4: 𝕥1à 𝕥2à 𝕥3à 𝕥4à 𝕥11à 𝕥12à 𝕥19à 𝕥21) to explain test execution. 

Starting from the Initial state, the DFSM directly enters Stopped, as no trigger is required to enter the 
first state. From Stopped, TM-Executor fires 𝕥2 by calling the functional control operation arm to launch 

                                                             
5 http://ardupilot.org/copter/ 
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the Copter. As a result, Started becomes active. To make the system enter state Lift, TM-Executor 
invokes operation throttle with a valid value of input parameter t obtained by solving guard constraint [t 
> 1500 and t < 2000] via constraint solver EsOCL (Ali et al. 2013). Then, the Copter takes off and 
reaches the Lift state. In the Lift state, TM-Executor invokes throttle with t = 1500. This invocation 
triggers the Copter to hover above the ground. In the Hovering state, TM-Executor either changes the 
Copter’s movement (i.e., firing 𝕥5, 𝕥7, or 𝕥19) or invokes the fault injection operation setThreat, which 
simulates that an aircraft is approaching from the left behind of the Copter to trigger the collision 
avoidance behavior. Assume the second option is adopted. Triggered by this, the collision avoidance 
behavior controls the Copter to fly away from the approaching aircraft. When the distance between them 
(threatDis) is over 1000 meters (not shown in Fig. 5), the collision threat is avoided and the Copter’s 
flight mode changes back to the previous one. Hence, 𝕥12 is traversed6. Then TM-Executor chooses to 
trigger 𝕥19, followed by firing 𝕥21, to stimulate the copter to pass through the Landing state and reaches 
the final state. 
 

 
Fig. 5 Simplified Partial DFSM for ArduCopter 

In addition to operation invocations, a sequence of uncertainty values is required to execute 
ArduCopter under uncertainty. Since the control loop frequency of the copter is 400 Hz, the copter’s 
controller reads sensor data and outputs actuation commands every 2.5 milliseconds. Each reading and 
controlling is potentially affected by uncertainties like measurement noise from the GPS and actuation 
deviation from the motor. Therefore, every 2.5 milliseconds, the value of each uncertainty has to be 
generated and be used to impact the copter’s sensing or actuating to simulate the effect of uncertainties.  

In parallel to the execution, TM-Executor periodically obtains the values of the SUT’s state variables 
through testing interfaces and repeatedly uses these values to evaluate the active state’s invariant, using 
the constraint evaluator DresdenOCL (Demuth and Wilke 2009). If an invariant is evaluated to be false, 
then a fault is detected.  

The decisions of which operation to invoke and which uncertainty values to use determine whether a 
fault can be found in an execution. From specifications, we know that there is a fault in the collision 
avoidance behavior when an aircraft is approaching from -45° and the copter is flying to the forward left, 
the collision avoidance behavior has to reverse the copter’s orientation to make the two aerial vehicles fly 
away. Since reversing the orientation takes more time than other orientation adjustments, the copter, in 
this case, flies closer to the approaching aircraft. Due to noisy sensor data and inaccurate actuations, a 
collision does have a chance to occur in this condition.  

To detect the fault leading to the collision, the fault injection operation setThreat needs to be invoked 
in state ForwardLeft, i.e., 𝕥17 must be activated. However, activating 𝕥17 once may not be sufficient to 
find the fault. On the one hand, a large number of input parameter values could be used to invoke an 
operation for firing a transition, e.g., 𝕥3 (Fig. 5). Each input leads to a distinct flight orientation and only 
in a few specific orientations, the collision is likely to happen. On the other hand, the copter’s orientation 
is also affected by measurement uncertainties from sensors and actuation inaccuracy from actuators. 
Therefore, it requires a specific sequence of operation invocations and a specific sequence of uncertainty 
values to make the collision happen.  

From numerous candidates, it is challenging to find the “right” operation invocations and sequence of 
uncertainty values to reveal a fault. Motivated by this, we present a fragility-oriented approach to find 
such cases to detect faults effectively.  
                                                             
6 When a collision is avoided, the copter is back to the flight mode. Hence, no testing interface needs to be invoked to trigger 𝕥12. 
When the flight mode is changed back, a corresponding change event is generated by TM-Executor to activate the transition. As 
this event is from inside, we do not capture it in DFSM.  
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4. Fragility-Oriented Testing under Uncertainty 

Invoking operations and introducing uncertainty are the two tasks that have to be fulfilled to detect 
faults in SH-CPS under uncertainty.  

The task of operation invocation decides which operation to be invoked and which input parameter 
values to be used to drive the execution of the SUT. A sequence of operation invocations determines the 
path in the Dynamic Flat State Machine (DFSM) that the SUT will follow in executions. Besides, the 
model regulates the operations that can be invoked under each state.  

The task of introducing uncertainty defines a concrete uncertainty-introduced environment, in which 
the SUT is tested. Whenever the SUT interacts with its environment via sensors or actuators, the 
environmental uncertainty may take effect, and thus uncertainty values have to be generated and 
introduced into the SUT.  For each uncertainty, its value can vary within a valid range. The combination 
of multiple uncertainties at different interaction points forms a great number of possible sequences of 
uncertainty values. A specific sequence of operation invocations has to work together with a specific 
sequence of uncertainty values to reveal a fault. To reduce the complexity of finding the two kinds of 
input, we adopt a two-step approach, as presented in Fig. 6.  

 
Fig. 6 Overview of Fragility-Oriented Testing under Uncertainty 

The first step concentrates on finding a sequence of operation invocations that can make the SUT reach 
the most fragile state. During the first step, uncertainty values are only randomly generated. When an 
optimal sequence of invocations is found, it is used in the second step to drive the execution of SUT and 
test model, during which a sequence of uncertainty values will be found for fault revelation.  

For the first step, we devise the Fragility-oriented Testing algorithm. By exploring various transitions 
in the test model and evaluating its consequent fragilities with multiple iterations, the algorithm identifies 
the most fragile state and learns the shortest path to reach it. Accordingly, the sequence of operation 
invocations used to trigger the transitions in this path is selected as the optimal one and used in the next 
step. 

In the second step, the sequence of invocations is fixed, and the Uncertainty Policy Optimization 
algorithm gradually optimizes a parameterized uncertainty generation policy to find a corresponding 
sequence of uncertainty values that can reveal a fault. If a fault is detected, the transitions directly 
connected with the current active state are marked “faulty,” and it returns to the first step to find another 
invocation sequence without considering the “faulty” transitions. Otherwise, if no faults are detected in a 
certain number of executions, the fragilities corresponding to the states in the selected path are discounted 
by a discount factor. Based on the updated fragility, the Fragility-oriented Testing algorithm will 
recalculate the optimal sequence of invocations. Accordingly, the Uncertainty Policy Optimization 
algorithm will try to find a corresponding sequence of uncertainty values again to detect faults.  

The algorithms used in the two steps are presented in Section 5 and Section 6 respectively.  

5. Fragility-Oriented Operation Invocation  

Definition 1. The fragility of the SUT in a given state 𝕤 is a real value between 0 and 1, denoted as 𝐹 𝕤 . 
It describes how close (distance wise) the state invariant of 𝕤 is to be false, where 1 means that the state 
invariant is false and 0 means that it is far from being violated. We therefore define 𝐹(𝕤) as follows:  

𝐹 𝕤 =   1 − 𝑑𝑖𝑠(¬𝕠)  (1) 

where ¬𝕠 is the negation of state 𝕤’s invariant 𝕠 and 𝑑𝑖𝑠(¬𝕠)  is a distance function (adopted from (Ali 
et al. 2013)) that returns a value between 0 and 1 indicating how close the constraint ¬𝕠 is to be true. For 
instance, in the running example, if the SUT is currently in state Avoiding2 and the value of state variable 
threatDis is 15, then the distance of invariant “threatDis > 10” to be false can be calculated as 
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𝑑𝑖𝑠 ¬ 𝑡ℎ𝑟𝑒𝑎𝑡𝐷𝑖𝑠 >  10 = !"!!" !!
!"!!" !!!!

= 0.86, according to the distance function7 defined in (Ali et 
al. 2013). The closer the distance is to zero, the higher the possibility the invariant is to be violated, i.e., 
the SUT failing in the state. Hence, 1 − 𝑑𝑖𝑠(¬𝕠) is used to define the fragility of the SUT in state 𝕤. 

Definition 2. The T-value of a transition expressed as 𝑇 𝕥 , is a real value between 0 and 1. It states the 
possibility that a fault can be revealed after firing the transition 𝕥. With an assumption that the more 
fragile the SUT is, the higher the chance a fault can be revealed, we define the T-value of a transition as 
the discounted highest fragility of the SUT after firing the transition: 

𝑇 𝕥 = max
𝕤∈𝕊!"#$

{𝛾! ∙ 𝐹 𝕤 } (2) 

where 𝛾 (0 ≤ 𝛾 < 1) is a discount rate; 𝕊!"#$ is a set of states that can be reached from 𝕥’s target state via 
a path in the DFSM, and 𝑛 is the number of transitions between 𝕤 and 𝕥’s target state. As for testing, 
revealing faults via a short path is preferable, we penalize the fragility of a state by multiplying 𝛾!, if 
traversing at least n transitions is required to reach the state from 𝕥’s target state. For example, in Fig. 5, 
to obtain the T-value of 𝕥4, we calculate the discounted fragility of the SUT in each state in 𝕊!"#$. For the 
fragility corresponding to Avoiding1, it needs to be discounted by 𝛾!, since two transitions 𝕥5 and 𝕥9 have 
to be traversed to reach Avoiding1 from 𝕥4’s target state Forward. Clearly, the value of 𝛾 determines the 
importance of the state to be reached in the future.  

5.1 Overview 

The objective of the Fragility Oriented Testing (FOT) algorithm is to find the optimal operation 
invocation policy to find faults effectively. To achieve this objective, FOT tries to learn transitions’ T-
values during the execution of the SUT. Each transition’s T-value indicates the possibility that a fault will 
be revealed after firing the transition. When transitions’ T-values are learned, by simply firing the 
transition with the highest T-value, FOT can manage to find faults effectively. The pseudocode of FOT is 
presented below in Algorithm 1 (L1-L16).  

In the beginning, all transitions’ actual T-values are unknown. As every transition has a possibility to 
reveal a fault, the estimated T-value of each transition is initialized with the highest one (L1, L2). This 
encourages the algorithm to extensively explore uncovered transitions (Sutton and Barto 1998). After 
that, iterations of test execution and the learning process begin. At each iteration, the execution of the test 
model as well as the SUT starts from the initial state (L4) and terminates at a final state (L5). During the 
execution, a DFSM is dynamically constructed (L6) to enable the learning of T-values. Whenever, the 
SUT enters a state 𝕤, FOT selects one of the outgoing transitions of 𝕤 according to their estimated T-
values (L7, L8) and makes TM-Executor trigger the selected transition (L9). As the transition is fired, the 
system moves from 𝕤 to 𝕤′. If the state invariant of 𝕤′ is not satisfied, then a fault is detected (L11 - 
L14). In this case, the current active state of the DFSM will be marked “faulty”. Any transition connected 
with the faulty state will not participate in the transition selection and T-value learning in the future.   
Algorithm 1 FOT(TMExecutor executor, ETM etm, int maxIteration): 

Input executor is TM-Executor, the testing framework  
 etm is the Executable Test Model 

 maxIteration is the maximum iteration number  
Begin  

1 for each transition in etm 
2     transition.Tvalue ← 1              // initialize T-values of transitions 
3 for i=1 to maxIteration 
4     etm.Start( ) 
5     while etm.ReachFinalState( ) is false 
6        dfsm ← EnrichDFSM(etm)                   // dynamically construct the DFSM 
7        reachedTransitions ← dfsm.activeState.outgoingTransitions 
8        selectedTransition ← SoftmaxSelect(reachedTransitions) //select transition 
9        executor.Trigger(selectedTransition) 

10        stateInvariant ← selectedTransition.target.invariant 
11        if executor.Evaluate(stateInvariant) is false 
12            LogFaultDetected(selectedTransition) 
13            dfsm.MarkFaultDetected(dfsm.activeState) 
14            break 
15        fragility ← 1- executor.DistanceToViolation(stateInvariant) 
16        executor.UpdateTvalue(selectedTransition, fragility) // revise the T-value of selectedTransition 

End  
                                                             
7 The distance function of greater operator is: 𝑑𝑖𝑠 𝑥 > 𝑦 = (𝑦 − 𝑥 + 𝑘) (𝑦 − 𝑥 + 𝑘 + 1) ,𝑤ℎ𝑒𝑛 𝑥 ≤ 𝑦, where k is an arbitrary 
positive value. Here we set k=1. More details are in (Ali et al. 2013).  
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If no invariant violation happens, the algorithm will evaluate the fragility of the SUT in 𝕤′ (L15), i.e., 
𝔽(𝕤′), and use 𝔽(𝕤′) to update estimated T-values. Since it is possible to reach 𝕤′ via numerous 
transitions, finding all these transitions and updating their T-values are computationally impractical for a 
test model with hundreds of transitions. Thus FOT only updates the estimated T-value of the last 
triggered transition (L16). For instance, in the running example, when 𝕥11 is invoked and the state of the 
SUT changes to Avoiding2, FOT evaluates the value of 𝔽(𝐴𝑣𝑜𝑖𝑑𝑖𝑛𝑔2) and uses the value to update the 
T-value of 𝕥11, i.e., 𝑇 𝕥11 . Since 𝔽(𝕤′) is not a constant value, the upper bound of 𝔽(𝕤′) is used to 
update the T-value. As the iteration of the execution proceeds, the estimated T-values are continuously 
updated and getting close to their actual values. In this way, the T-values are learned from the execution 
and the learned T-values direct FOT to effectively find faults. Note that testing budget determines the 
maximum number of iterations. If it is too small, FOT may not be able to find faults. The details of T-
value learning and transition selection policy are explained in the next two subsections respectively. 

5.2 T-value Learning 

Before executing the SUT and the Executable Test Model (ETM), the T-value 𝑇 𝕥  of every transition is 
unknown. We adopt a reinforcement learning approach to learn 𝑇 𝕥  from execution. A fundamental 
property of 𝑇 𝕥  is that it satisfies a recursive relation, which is called the Bellman Equation (Sutton and 
Barto 1998), as shown in the formula below:  

𝑇 𝕥 = max {𝐹 𝕤!"# , 𝛾 ∙ max
𝕥!"#∈𝕋!"#

𝑇 𝕥!"# } (3) 

where 𝕤!"# is the target state of transition 𝕥; 𝕋!"# represents a set of direct successive transitions whose 
source state is 𝕤!"#. This equation reveals the relation between the T-values of a transition and its direct 
successive transitions. It states that the T-value of 𝕥 must be equal to the greater of two values: the 
fragility of 𝕥’s target state (𝐹 𝕤!"# ) and the maximum discounted T-value of 𝕥’s direct successive 
transitions (𝛾 ∙max

𝕥′∈𝕋!"#
𝑇(𝕥′)). Given a DFSM, 𝑇 𝕥  is the unique solution to satisfy Equation (3). 

So, we try to update the estimate of each T-value to make it get increasingly closer to satisfy Equation 
(3). When Equation (3) is satisfied by the estimated T-values for all transitions, it implies that the true 
𝑇 𝕥  is learned. 

Inspired by Q-learning (Sutton and Barto 1998), a reinforcement learning method, FOT uses the 
estimated T-value 𝐸𝑇 𝕥  to approximate 𝑇 𝕥 , i.e., the true T-value. 𝐸𝑇 𝕥  is updated in the following 
way to make it approach 𝑇 𝕥 . 

𝐸𝑇 𝕥 ′ = 𝑚𝑎𝑥{𝐹(𝕤!"#) , 𝛾 ∙ max
𝕥!"#∈𝕋!"#

𝐸𝑇 𝕥!"# } (4) 

where 𝐸𝑇 𝕥 ′ denotes the updated estimate of 𝕥’s T-value and 𝐸𝑇 𝕥!"#  represents the current estimated 
T-value of a successive transition.  

Equation (4) enables FOT to iteratively update 𝐸𝑇 𝕥 . Once a transition 𝕥 is triggered, the fragility of 
the SUT in 𝕥’s target state 𝐹(𝕤!"#) can be evaluated using Equation (1). Using Equation (4), 𝐸𝑇 𝕥  can be 
updated whenever a fragility value is obtained. As proved in (Sutton and Barto 1998), as long as the 
estimated T-values are continuously updated, 𝐸𝑇 𝕥  will converge to the true T-value: 𝑇 𝕥 . 

However, the fragility of the SUT in a state dynamically changes, due to the variation of test inputs 
and environmental uncertainty. To deal with this, we use the bootstrapping technique (Mooney et al. 
1993) to predict the distribution of the fragility and select the upper bound of its 95% interval as the value 
for 𝐹(𝕤!"#), to update the estimated T-value. Thus 𝐸𝑇 𝕥  is iteratively updated by the following equation: 

𝐸𝑇 𝕥 ′ = 𝑚𝑎𝑥{𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤!"#)] , 𝛾 ∙ max
𝕥!"#∈𝕋!"#

𝐸𝑇 𝕥!"# } (5) 

where 𝑈𝑝𝑝𝑒𝑟[𝐹(𝕤!"#)] is the upper bound of 𝐹(𝕤!"#)’s 95% confidence interval.  

5.3 Softmax Transition Selection 

To effectively find faults, FOT should extensively explore different paths in a DFSM. Meanwhile, the 
covered high T-value transitions should be exploited (triggered) more frequently to find faults, as a high 
T-value implies a high possibility to reveal faults. Hence, in FOT, we use a softmax transition selection 
policy to address the dilemma of exploration and exploitation (Kaelbling et al. 1996) by assigning a 
selection probability to a transition proportional to the transition’s T-value. The selection probability is 
given below (from (Sutton and Barto 1998)): 

𝑃𝑟𝑜𝑏 𝕥𝑜𝑢𝑡′ =  𝑒!"(𝕥𝑜𝑢𝑡′ ) !  𝑒!"(𝕥!"#)/!
𝕥!"#∈𝕋!"#

   (6) 

where 𝑃𝑟𝑜𝑏(𝕥!"#
′ )  denotes the selection probability of an outgoing transition 𝕥𝑜𝑢𝑡

′ ; 𝐸𝑇(𝕥!"#
′ )  is the 
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estimated T-value; 𝕋!"# represents the set of all outgoing transitions under the current DFSM state, and 𝜏 
is a parameter, called temperature (Anzai 2012). 𝜏 is a positive real value from 0 to infinity. A large 𝜏 
causes transitions to be equally selected, whereas, a small 𝜏 causes high T-value transitions to be selected 
much more frequently than transitions with lower T-values.  

In the beginning, all transitions’ estimated T-values (𝐸𝑇 𝕥 ) are initialized to 1, thus initially 
transitions have equal probability to be selected. As testing proceeds, 𝐸𝑇 𝕥  is continuously updated 
using Equation (5). Directed by 𝐸𝑇 𝕥 , the softmax policy assigns a high selection probability to 
transitions that lead to states with high fragilities. As a result, more fragile states will be exercised more 
frequently. Note that this doesn’t preclude covering the less fragile states. In addition, loops in the test 
model are also covered depending on fragilities of states involved in a loop.  

6. Uncertainty Policy Optimization  

When a sequence of operation invocations is selected, the sequence determines the path in the DFSM that 
the SUT will follow in test executions. Besides the operation invocations, a sequence of uncertainty 
values is required to execute the SUT under uncertainty. Due to the effect of uncertainty and the 
execution of the SUT, the state variables of the SUT constantly vary within a range in each state. 
Consequently, every state 𝕤!  in the execution path corresponds to a number of state instances 
{𝓈!!, 𝓈!!,… , 𝓈!"}. 

Definition 3. A state instance, 𝓈!", is an instance of an abstract state, 𝕤!, in a DFSM. The state instance 
reflects the SUT’s actual state at a specific time point and the state instance is represented by the values 
of the SUT’s all state variables, i.e., 𝓈!" = {𝑣!, 𝑣!,… , 𝑣!"#}. Based on the definition of fragility, we define 
the fragility of the SUT in a given state instance as follows: 

𝐹 𝓈𝑖𝑗 = 𝐹 𝕤𝑖 = 1 − 𝑑𝑖𝑠(¬𝕠!)   (7) 

Note that although the state invariant 𝕠! of a state 𝕤! constrains only a few state variables, the other state 
variables may have impacts on the constrained variables. Therefore, all state variables may have direct 
or indirect effects on the fragility. Due to this reason, we employ the values of all state variables to 
represent the state instance 𝓈!".  

Fig. 7 illustrates the relationship between state and state instance. The number of state instances 
corresponding to a state depends on the number of environmental interactions that the SUT performs in 
the state. For instance, after the operation arm is invoked, ArduCopter takes one second to enter the next 
state Started. Within one second, the Copter reads sensor and controls actuators 400 times. Consequently, 
the state Stopped corresponds to 400 state instances.  

As the behavior of the SUT has been determined by the selected operation invocations, the uncertainty 
values 𝑢!" decide the next state instance, 𝓈!"!!, the SUT will switch to from the previous instance, 𝓈!". To 
effectively detect faults, the optimal uncertainty values should be used to maximize the fragility of the 
SUT. To effectively find the optimal uncertainty values, this section presents the UPO algorithm. 

Fig. 7 Relations Between States and State Instances 

6.1 Uncertainty Generation Policy 

To effectively explore various uncertainty values, we propose to use a parameterized policy 𝜋!(𝑢!"|𝓈!") 
to decide the uncertainty values. The policy 𝜋!(𝑢!"|𝓈!") determines the probability distribution of 𝑢!" 
given the condition that 𝓈!! is the current state instance. The conditional probability distribution can be 
changed, by adjusting policy parameters θ.  

As Artificial Neural Network (ANN) has been demonstrated to be an effective decision-making 
mechanism (Aronson et al. 2005), we adopt ANN as the parameterized policy for uncertainty generation.  

An ANN, used for uncertainty generation, takes a state instance as input. Each neuron in the input 
layer represents a state variable of the SUT. The input neurons make the values of state variables traverse 
the ANN. Based on the received values, the output neurons calculate the final output. Each output 
determines the probability distribution of one uncertainty, under the condition that the current state 
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instance is the one fed to the input layer. Inspired by an existing algorithm (Schulman et al. 2015), we use 
a truncated normal distribution as the conditional probability distribution. The mean value of the 
distribution is the output value, and the value of its variance is a constant positive value ε. By sampling 
from the distribution, we can decide the uncertainty values to be used for each state instance. Fig. 8 
presents an example of the ANN used for the running example. The ANN receives the values of all state 
variables. The values are processed by the interconnected neurons and are mapped to a truncated normal 
distribution for each uncertainty.  

To effectively find faults, we need to optimize the parameterized policy so that the uncertainty values 
generated from the policy can increase the fragility of the SUT and make the system likely to fail. The 
parameters of the policy include the weights of connections and bias values of neurons. Except them, the 
numbers of layers and the neurons in hidden layers, the activation function, and the output function are all 
predefined. Once being set up, they are fixed. The next section explains an iterative approach to optimize 
the policy concerning these parameters.  

 
Fig. 8 Example of Uncertainty Generation Policy 

6.2 Policy Optimization 

The goal of policy optimization is to tune the parameters of the uncertainty generation policy, to 
maximize the fragility of the SUT. The policy 𝜋!(𝑢!"|𝓈!") determines the uncertainty values to be 
introduced in each state instance.  When the state instance 𝓈!" and uncertainty values 𝑢!" are given, the 
next state instance 𝓈!"!! is determined, as shown in Fig. 7. Since the execution of the SUT always starts 
from the same initial state instance, when the sequence of operation invocations is fixed, the uncertainty 
generation policy 𝜋!(𝑢!"|𝓈!") also determines the probability distribution of the state instance. It means 
the policy decides the probability that a state instance 𝓈!" can be reached by the SUT in an execution. 
Based on this, we formally express the goal function as follow (Schulman et al. 2015): 

𝜂 𝜋! = 𝔼𝓈!"~!!,!!"~!! 𝑇!(𝓈!" , 𝑢!")  (8) 

where 𝔼 denotes the expectation of the highest discounted fragility, 𝑇!(𝓈!" , 𝑢!"), that can be obtained by 
following a given policy 𝜋! . 𝜌!  denotes the probability distribution of the state instance, which is 
controlled by the parameters of the policy.  𝑇!(𝓈!" , 𝑢!") denotes the highest discounted fragility that can 
be reached after introducing uncertainty values 𝑢!" in a state instance 𝓈!": 

𝑇! 𝓈!" , 𝑢!" = max
!∈ !,!!

𝛾! ∙ 𝐹 𝓈!"!!  (9) 

Since the value of 𝑇!(𝓈!" , 𝑢!") depends on the state instances that are to be covered after 𝓈!" and the 
policy determines the following states, the value of 𝑇! 𝓈!" , 𝑢!"  also relies on the policy. As a result, both 
𝜌! and 𝑇! 𝓈!" , 𝑢!"  depend on the parameters of the policy.  

Suppose we have two policies: 𝜋! and 𝜋!!. To compare them, we have to apply both policies to 
execute the SUT a number of times, and derive the distributions of state instance and the values of highest 
discounted fragility from the execution. Since the cost to execute the SUT is relatively high, it is difficult 
to find the direction for improvement directly based on Equation (8). 

To simplify the optimization problem, we choose to optimize an approximation of the goal function 
(Kakade and Langford 2002): 

𝜂 𝜋! ≈ 𝐿 𝜋! = 𝔼𝓈!"~!!! ,!!"~!! 𝑇!!𝓈!" , 𝑢!")  (10) 

Note that 𝜌! is changed to 𝜌!! and 𝑇!(𝓈!" , 𝑢!") is changed to 𝑇!!(𝓈!" , 𝑢!"). This allows us to directly find 
the optimal improvement direction based on the 𝜌!! and 𝑇!!(𝓈!" , 𝑢!") obtained from an existing policy 
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𝜋!!, without extra executions. The general idea is that the value of 𝑇!!(𝓈!" , 𝑢!") points out the expected 
reward of introducing uncertainty values 𝑢!" in a given state 𝓈!". To increase the total expectation, we just 
need to adjust the parameters of the policy to increase the probability to generate 𝑢!"  in 𝓈!" , if 
𝑇!!(𝓈!" , 𝑢!") is high. As proven in (Schulman et al. 2015), as long as the Kullback–Leibler divergence, a 
distance measure, between the two policy 𝜋! and 𝜋!! is bounded by a constant step size, the true reward 
function 𝜂 𝜋!  is guaranteed to be improved.  

To further simplify the calculation of Equation (10), we replace the expectation over the uncertainty 
values following 𝜋!  by the expectation over the uncertainty values following 𝜋!! , according to 
importance sampling (Glynn and Iglehart 1989): 

𝐿 𝜋! = 𝔼𝓈!"~!!! ,!!"~!!!  
𝜋! 𝑢!" 𝓈!"
𝜋!! 𝑢!" 𝓈!"

 ∙ 𝑇!!(𝓈!" , 𝑢!")  (11) 

Based on this, we propose the following policy optimization algorithm, as given in Algorithm 2. The 
general idea is that whenever we find a sequence of uncertainty values u11, u12, … , unm that leads to a 
high fragility, i.e., their 𝑇!(𝓈!" , 𝑢!") is high, we adjust 𝜃! to 𝜃  to increase the probability to generate the 
uncertainty sequence.  

Initially, an ANN, used as the uncertainty generation policy, is constructed (L1). After initializing the 
vectors used for saving samples of states, uncertainty values, and discounted fragilities, the iteration of 
execution begins (L7). During execution, uncertainty values are generated by the policy (L10) and are 
introduced to the SUT (L11) to run it under uncertainty. Affected by the uncertainty values, the state of 
the SUT switches to another one. The fragility of the SUT in the new state is evaluated and discounted by 
a discount factor (L13). If the discounted fragility exceeds the highest one that has been found so far, it 
means that a better sequence of uncertainty values is found to make the SUT more fragile (L17). In this 
case, we apply the conjugate gradient algorithm (Hestenes and Stiefel 1952) to adjust the parameter 
values of the policy to maximize the generation probability of the sequence of uncertainty values  (L20). 
After that, the updated policy is used in the following execution to find an even better sequence of 
uncertainty values. 

Algorithm 2 UPO(TMExecutor executor, UnGenerator generator, int numStateVar, int 
numUncer, int maxIter): 

Input executor is TM-Executor, the testing framework 
 generator is the uncertainty generator 
 numStateVar is the number of state variables 
 numUncer is the number of uncertainties 

 maxIteration is the maximum iteration number  
Begin  

1 policy.Init(numStateVar, numUncer) 
2 highestDisFragility = 0 
3 for i=1 to maxIteration 
4     states ← [] 
5     uncertainties ← [] 
6     discountedFragilities ← [] 
7     executor.StartExecution() 
8     while not executor.Finish() 
9        s ← executor.CurrentSUTState() 

10        u ← policy.Sample(s) 
11        generator.IntroduceUncertainties(u) 
12        s’ ← executor.CurrentSUTState() 
13        f ← executor.ComputeDiscountedFragility(s’) 
14        states.Append(s) 
15        uncertainties.Append(u) 
16        discountedFragilities.Append(f) 
17        if f > highestDisFragility 
18           highestDisFragility = f 
19     if highestDisFragility is changed 
20        policy.Update(states, uncertainties, discountedFragilities) 

End  

7. Implementation  

We implemented the fragility oriented testing approach in TM-Executor. Fig. 9 presents its three 
packages: software in the loop testing (light gray), uncertainty generation (dark gray), and FOT (white).  

TM-Executor tests the software of the SUT in a simulated environment. During testing, sensor data is 
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computed by simulation models in simulators. Based on the simulated data, the software generates 
actuation instructions to control the system. Uncertainties are added to simulators’ input and output to 
simulate the effects of uncertainties. Based on the valid range of each uncertainty, the UPO algorithm 
generates uncertainty values whenever sensor data or actuation instructions are transferred between the 
software and simulators. By using the values to modify simulators’ inputs and outputs, the uncertainties 
are introduced into the testing environment.  

The SUT and its Executable Test Model (ETM) are executed together by an execution engine, which is 
deployed in Moka (Tatibouet 2016), a UML model execution platform. During the execution, the engine 
dynamically derives a DFSM from the test model and uses it to guide the execution. Meanwhile, the 
active state’s state invariant is checked by a test inspector (using DresdenOCL (Demuth and Wilke 
2009)). The inspector evaluates the invariant with the actual values of the state variables, which are 
updated by the execution engine via testing interfaces (Section 2.3). If the invariant is evaluated to be 
false, a fault is detected. Otherwise, the inspector calculates the fragility of the SUT in the current state, 
using Equation (1). Taking fragility as input, the FOT algorithm updates its estimate of T-value (Equation 
(5)) and uses the softmax policy to select the next transition. Next, the test driver generates a valid test 
input with EsOCL (Ali et al. 2013), a search-based test data generator, for firing the selected transition. 
The execution engine takes this input to invoke the corresponding operation, causing the ETM and the 
SUT to enter the next state. In this way, T-values are learned from iterations of execution and the learned 
T-values direct FOT to effectively find faults.  

 
Fig. 9 SH-CPS Testing Framework (Ma et al. 2016) 

8. Evaluation  
This section presents the performance evaluation of FOT and UPO, including experiment design in 
Section 8.1, experiment execution in Section 8.2, experiment results in Section 8.3, the discussion in 
Section 8.4, and threats to validity in Section 8.5.  

8.1 Experiment Design 

This section presents the design of the experiment, by following three carefully defined research 
questions.  

8.1.1 Research Questions. 

RQ1: Does FOT+UPO have the highest fault detection ability for testing SH-CPSs under uncertainty? 
Since testing SH-CPSs under uncertainties comprises two tasks, i.e., invoking operations and 

introducing uncertainties, we devise FOT and UPO to address them respectively. To assess their 
performance, we select a baseline algorithm for each of them.  For FOT, we choose a Coverage-Oriented 
Testing (COT) algorithm as the baseline since it is a prevalent approach applied in the testing of CPSs 
(Asadollah et al. 2015). This algorithm selects operation invocations based on the coverage frequencies of 
transitions, and its aim is to evenly traverse each transition. With respect to uncertainty generation, UPO 
is compared with a random approach. In this approach, uncertainty values are just generated from 
probability or possibility distributions. As a result, we have two algorithms, FOT and COT, for selecting 
operation invocations, and two algorithms, UPO and Random (R), for generating uncertainty values. In 
total, we obtain four approaches: FOT+UPO, FOT+R, COT+UPO, COT+R. We apply them to test three 
SH-CPSs to check which approach can detect more faults in SH-CPSs under uncertainties.  
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RQ2: To what extent the fault detection ability can be enhanced by FOT and UPO, compared with the 
others? 

With this research question, we aim to investigate the effectiveness of FOT+UPO, i.e., assess the 
percentage of improvement regarding fault detection ability achieved by FOT and UPO compared with 
the other three approaches.  

RQ3: Concerning the optimal testing approach, what are the correlations between fault detection ability, 
testing time, and the scale of uncertainty variation? 

The number of detected faults not only depends on the fault detection ability of a testing approach but 
also relies on the variation range of each uncertainty and the amount of time that can be used by the 
testing approach. This research question helps us reveal whether more faults can be detected as the testing 
time and the scale of uncertainty variation increase.  

8.1.2 Case Studies. 
We used three open source SH-CPSs for evaluation: 1) ArduCopter is a fully featured copter control 
system supporting 18 flight modes to control a copter. It has five self-healing behaviors to avoid crash 
and collision; 2) ArduRover8 is an autopilot system for ground vehicles having two self-healing behaviors 
to avoid an obstacle and handle the disruption of control link; 3) ArduPlane9 is an autonomous plane 
control system having two self-healing behaviors to avoid collision and address network disruption. Test 
execution was performed with software in the loop simulators, including GPS, barometer, accelerometer, 
gyroscope, and motor simulators. Nine fault injection operations were implemented in the simulators to 
trigger the nine self-healing behaviors to test them in the presence of uncertainty.  

The three SH-CPSs are affected by eight uncertainties related to the sensors and actuators. Based on 
the product specifications of the sensors and actuators, we specified their variation range, as presented in 
Table 1.  

Table 1 Identified Uncertainties from the Three Case Studies 
Hardware Uncertainty Range Hardware Uncertainty Range 

Accelerometer 
Noise (-9mg, +9mg) 

GPS 

Position 
accuracy (-2.5m, +2.5m) 

Nonlinearity (-0.5%, +0.5%) Velocity 
accuracy (-0.05m/s, +0.05m/s) 

Motor 
Rotation Noise (-0.3°, +0.3°) Gyroscope Noise (-0.3°/s, +0.3°/s) 
Acceleration 

Noise (-0.02m/s2, +0.02m/s2) Barometer Accuracy (-150 Pa, +150 Pa) 

Before testing, we built the Executable Test Model (ETM) for each self-healing behavior of the three 
case studies. Table 2 shows the statistics of the ETMs. Moreover, we examined the average amount of 
time that the testing framework takes to execute the ETM and the SUT from their initial state to a final 
state, as presented in the last row of Table 2. Note that the average execution times are determined by the 
implementation of the SUTs, and they are not affected by different testing approaches.  

Table 2 Descriptive Statistics of ETMs 
 ArduCopter ArduRover ArduPlane 
 ETM1 ETM2 ETM3 ETM4 ETM5 ETM6 ETM7 ETM8 ETM9 

#States 64 60 70 64 36 58 54 79 40 
#Transitions 440 268 286 440 106 306 303 347 104 

Avg. Exe. Time (min.) 8 9 7 8 8 10 11 6 6 

8.1.3 Experiment Tasks 
Three tasks have to be performed to address the three research questions. Table 3 gives an overview of 
the three tasks.  

For RQ1, T1 is performed to investigate which testing approach can detect more faults in the nine self-
healing behaviors under the eight uncertainties. To reduce the impact of testing time and the scale of 
uncertainty variation, we choose three settings for each of them. The three testing times are 72, 144, and 
216 hours. This allows each testing approach to execute the ETM and the SUT approximately 500, 1000, 
and 1500 times to find faults. Meanwhile, we choose three scales of uncertainty variation: 80%, 100%, 
and 120%. 100% represents the standard variation ranges shown in Table 1. 80% (120%) means reducing 
(increasing) the ranges by 20 percent. For instance, the 80%, 100%, and 120% variation ranges of the 
uncertainty Noise from the accelerometer are (-7.2mg, +7.2mg), (-9mg, +9mg), and (-10.8mg, +10.8mg) 
respectively. The ranges are only modified by 20% to avoid making the uncertainty variation ranges 
deviate too far from the reality,. The differences in uncertainty scale help us reveal the fault detection 
ability of a testing approach under different uncertainty scales.  
                                                             
8 http://ardupilot.org/rover/ 
9 http://ardupilot.org/plane/ 
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Table 3 Overview of Experiment Design 

RQ Task Metric Statistical 
Test 

Testing 
Approach 

Testing 
Time 

(hour) 

Scale of 
Uncertainty 

Variation  

Case Studies 
 

1 T1: Compare the fault detection ability of 
the selected testing approaches NDF 

Mann-Whitney 
U test 

Vargha and 
Delaney’s 𝐴!" 

1: FOT+UPO 
2: FOT+R 
3: COT+UPO 
4: COT+R 

1: 72 
2: 144 
3: 216 

1: 80% 
2: 100% 
3: 120% 

1: ArduCopter 
(five SH 
Behaviors) 
2: ArduPlane 
(two SH 
Behaviors) 
3: ArduRover 
(two SH 
Behaviors) 
 
 

2 
T2: Calculate the improvement with 
respect to the percentage of faults 
detected by the optimal approach PDF 

 

N/A 

3 
T3: Analyze the correlations between the 
fault detection ability, testing time, and 
uncertainty scale 

N/A The optimal 
one 

As a result, the nine self-healing behaviors are tested with the four approaches in nine different test 
settings. In total, 81 testing jobs are to be conducted for each of the four approaches. Moreover, each 
testing job is performed 10 times to reduce the impact of randomness.  

Regarding RQ2, T2 is performed to calculate the percentage of improvement in terms of fault detection 
when the optimal testing approach is applied.  

For RQ3, we conduct T3 to analyze the correlations among fault detection ability, testing time, and the 
scale of uncertainty variation.  

8.1.4 Evaluation Metrics and Statistics Tests 

RQ1: We define the Number of Detected Faults (NDF) to quantify the fault detection ability of each 
testing approach. NDF is the number of faults that are detected by an approach in a self-healing behavior 
within limited testing time. As the first step of analyzing the results, we applied Shapiro-Wilk test with a 
significance level of 0.05 to check the normality of NDF values. Results show that the distribution of the 
NDF values departs from normality. Therefore, we use non-parametric Mann-Whitney U test with the 
significant level of 0.05 to determine the significance of differences between two testing approaches. 
That is, a comparison result is statistically significant if the p-value is less than 0.05. Furthermore, 
following the guideline in (Arcuri and Briand 2011), we apply Vargha and Delaney’s 𝐴!" statistics to 
measure the effect size, i.e., measure the probability that a testing approach A can detect more faults 
than another approach B. If A and B are equivalent, 𝐴!" equals 0.5. If 𝐴!" is greater than 0.5, then A has 
higher chance to detect more faults than B.   

RQ2: To calculate to what extent the fault detection ability can be enhanced by the optimal testing 
approach, compared with the others, we define another metric: the Percentage of Detected Faults (PDF), 
that is, the percentage of faults in one self-healing behavior that can be detected by a testing approach. It 
is calculated as follows: 

𝑃𝐷𝐹! =
𝑁𝐷𝐹!
𝑇𝑜𝑡𝑎𝑙!

  

where 𝑁𝐷𝐹!is the number of faults detected in one testing job for the ith self-healing behavior, and 
𝑇𝑜𝑡𝑎𝑙! is the total number of faults detected in the behavior. Because the number of actual faults cannot 
be determined, the total number of detected faults is used instead. This metric normalizes the number of 
detected faults, which enables us to compare the performance of each approach across different self-
healing behaviors.  

RQ3: We also use PDF as a measure of fault detection ability to analyze its relations with testing time 
and the scale of uncertainty variation. Here, we are interested in assessing the monotonic relations 
among them, i.e., whether more faults can be detected, as the testing time and the scale of uncertainty 
increase. Consequently, we apply box plot to present the distribution of PDF under each testing time 
and uncertainty scales, based on five numbers: minimum, first quartile, median, third quartile, and 
maximum. In the plot, a rectangle spans the first quartile to the third quartile. A mark inside the 
rectangle indicates the median, and the lines above and below the rectangle denote the maximum and 
minimum.  

8.2 Experiment Execution 

We implemented the proposed algorithms in the TM-Executor (Ma et al. 2016). As explained in Section 
4, each testing approach consists of two steps: selecting a sequence of operation invocations and finding a 
sequence of uncertainty values. The number of iterations for the first step is 200, and the maximum 
iteration number for the second step is 500. For FOT, we set discount rate 𝛾 to 0.99 and temperature 𝜏 to 
0.2. For UPO, the ANN used as uncertainty generation policy contains three layers: an input layer, an 
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output layer, and a hidden layer. The number of input neurons is equal to the number of state variables of 
each SUT, and the number of hidden neurons is two times the number of input neurons. The number of 
output neurons is equal to the number of uncertainties.  The variance ε used by the stochastic policy is 
0.4. These are commonly used settings in reinforcement learning (Duan et al. 2016).  

The experiment is executed on Abel, a computer cluster at the University of Oslo10. Each testing job is 
run with eight cores and 32 GB RAM.  

8.3 Experiment Results 

RQ1: Table 4 presents the average number of faults detected by each testing approach (Task T1). From 
the table, we can observe that FOT+UPO detected more faults than the other three approaches for all the 
case studies and test settings. We further conducted a statistical test to determine whether such results are 
statistically significant.  

Table 4 Average Number of Faults Detected by Each Approach 

Setting Approach 
ArduCopter ArduPlane ArduRover 

Avg. 
SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2 

S1 

FOT+UPO 0.3 0.4 0.3 0.3 0.2 0.7 0.4 0.3 0.2 0.3 
FOT+R 0 0 0 0 0 0 0 0 0 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S2 

FOT+UPO 1.3 1.8 1.5 1.7 1.8 1.9 1 1 1 1.4 
FOT+R 0.1 0 0 0 0 0 0 0.1 0.2 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S3 

FOT+UPO 2.1 2.4 2 2.2 2.1 1.9 1 1 1 1.7 
FOT+R 0.1 0 0 0 0 0.1 0.1 0.2 0.4 0.1 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S4 

FOT+UPO 0.5 0.6 0.4 0.5 0.5 1.1 0.8 0.9 0.9 0.7 
FOT+R 0 0 0 0 0 0 0 0 0 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S5 

FOT+UPO 1.2 1.9 1.9 2.1 2 2 1 1 1 1.6 
FOT+R 0.1 0 0 0.1 0 0.2 0.1 0.1 0.3 0.1 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S6 

FOT+UPO 2.3 2.6 2.5 2.3 2.4 2 1 1 1 1.9 
FOT+R 0.3 0 0.1 0.1 0 0.3 0.1 0.3 0.5 0.2 

COT+UPO 0 0 0 0 0 0 0 0.1 0.1 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S7 

FOT+UPO 0.9 0.6 0.5 0.5 0.6 1.3 0.9 1 1 0.8 
FOT+R 0 0 0 0 0 0 0 0 0 0 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S8 

FOT+UPO 2 2.5 2.3 2.5 2.7 2 1 1 1 1.9 
FOT+R 0.1 0 0.1 0 0.1 0.3 0.1 0.2 0.3 0.1 

COT+UPO 0 0 0 0 0 0 0 0 0 0 
COT+R 0 0 0 0 0 0 0 0 0 0 

S9 

FOT+UPO 2.8 2.9 3.1 2.8 3 2 1 1 1 2.1 
FOT+R 0.3 0.1 0.2 0 0.1 0.4 0.2 0.4 0.5 0.2 

COT+UPO 0 0.1 0 0 0 0.1 0 0.1 0.1 0 
COT+R 0 0 0 0 0 0 0 0.1 0 0 

*S1: Test 72 hours with 80% uncertainty range, S2: Test 144 hours with 80% uncertainty range, S3: Test 216 hours with 80% 
uncertainty range, S4: Test 72 hours with 100% uncertainty range, S5: Test 144 hours with 100% uncertainty range, S6: Test 216 
hours with 100% uncertainty range, S7: Test 72 hours with 120% uncertainty range, S8: Test 144 hours with 120% uncertainty 
range, S9: Test 216 hours with 120% uncertainty range 
 

Table 5 summarizes the results of comparing the NDF achieved by FOT+UPO against those achieved 
by FOT+R, COT+UPO, and COT+R. FOT+UPO significantly outperformed the other approaches in 73 
out of 81 testing jobs, as the values of 𝐴!" are greater than 0.5 and 73 p-values are less than 0.05. For the 
other eight cases, since the scale of uncertainty is low, the four testing approaches only detected few 
faults within 72 hours. Thus, there is no significant difference among the four approaches.  

                                                             
10 http://www.uio.no/english/services/it/research/hpc/abel/ 
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Therefore, the answer to RQ1 is that among the four testing approaches, FOT+UPO has the highest 
fault detection ability for testing SH-CPSs under uncertainties. Compared with the others, FOT+UPO 
detected significantly more faults in 73 out of 81 testing jobs. 

Table 5 Results of Comparing the Approaches for Testing each Self-Healing Behavior 

Setting Compared 
with 

ArduCopter ArduPlane ArduRover 
SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2 

𝐴!" p 𝐴!" p 𝐴!" p 𝐴!" p 𝐴!" p 𝐴!" p 𝐴!" p 𝐴!" p 𝐴!" p 

S1 
FOT+R 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35 

COT+UPO 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35 
COT+R 0.6 0.37 0.7 0.07 0.65 0.15 0.65 0.15 0.6 0.35 0.85 0.01 0.7 0.07 0.65 0.15 0.6 0.35 

S2 
FOT+R 0.97 0.006 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 0.95 0.003 0.9 0.006 

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 1 0.002 1 0.002 
COT+R 1 0.004 1 0.005 1 0.005 1 0.004 1 0.004 1 0.003 1 0.002 1 0.002 1 0.002 

S3 
FOT+R 0.99 0.005 1 0.004 1 0.004 1 0.003 1 0.003 0.99 0.004 0.95 0.003 0.9 0.006 0.8 0.019 

COT+UPO 1 0.004 1 0.004 1 0.004 1 0.003 1 0.003 1 0.003 1 0.002 1 0.002 1 0.002 
COT+R 1 0.004 1 0.004 1 0.004 1 0.003 1 0.003 1 0.003 1 0.002 1 0.002 1 0.002 

S4 
FOT+R 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003 

COT+UPO 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003 
COT+R 0.75 0.037 0.8 0.019 0.7 0.072 0.75 0.037 0.75 0.037 1 0.003 0.9 0.006 0.95 0.003 0.95 0.003 

S5 
FOT+R 0.96 0.006 1 0.005 1 0.004 0.99 0.004 1 0.004 1 0.004 0.95 0.003 0.95 0.003 0.85 0.011 

COT+UPO 1 0.004 1 0.005 1 0.004 1 0.004 1 0.004 1 0.002 1 0.002 1 0.002 1 0.002 
COT+R 1 0.004 1 0.005 1 0.004 1 0.004 1 0.004 1 0.002 1 0.002 1 0.002 1 0.002 

S6 
FOT+R 1 0.005 1 0.005 1 0.005 1 0.004 1 0.005 1 0.004 0.95 0.003 0.85 0.011 0.75 0.037 

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.004 1 0.005 1 0.002 1 0.002 0.95 0.003 0.95 0.003 
COT+R 1 0.004 1 0.005 1 0.005 1 0.004 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002 

 
S7 

FOT+R 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002 
COT+UPO 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002 

COT+R 0.95 0.003 0.8 0.019 0.75 0.037 0.75 0.037 0.8 0.019 0.95 0.007 0.95 0.003 1 0.002 1 0.002 

S8 
FOT+R 0.99 0.008 1 0.005 0.99 0.004 1 0.005 1 0.005 1 0.004 0.95 0.003 0.9 0.006 0.85 0.011 

COT+UPO 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002 
COT+R 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 1 0.002 1 0.002 

S9 
FOT+R 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 1 0.005 0.9 0.006 0.8 0.019 0.75 0.037 

COT+UPO 1 0.004 1 0.005 1 0.005 1 0.005 1 0.005 1 0.003 1 0.002 0.95 0.003 0.95 0.003 
COT+R 1 0.004 1 0.005 1 0.005 1 0.005 1 0.005 1 0.002 1 0.002 0.95 0.003 1 0.002 

RQ2: To compare the fault detection ability of each testing approach across the nine self-healing 
behaviors, we calculated the PDF by dividing the NDF by the total number of faults detected in the 
experiment (Task T2). Table 6 presents the results. In most cases, FOT+UPO detected more than 70% of 
faults, while FOT+R and COT+UPO merely detected less than 17% of faults. For COT+R, it only 
detected one fault once in a self-healing behavior of ArduRover.  

Therefore, we answer RQ2 as compared with COT and random uncertainty generation, FOT and UPO 
together can enhance the fault detection ability of a testing approach by at least 50%. FOT+UPO detected 
over 70% faults in most cases. Whereas, FOT+R, COT+UPO, and COT+R at most detected 17%, 3%, 
and 1% faults on average respectively. 

RQ3: Using box plot, we investigated the correlations among the fault detection ability (PDF) of 
FOT+UPO, testing time (TT), and the scale of uncertainty variation (SU). As shown in Fig. 10, when SU 
is 0.8 or 1.0, PDF tends to increase as TT grows from 72 hours to 216 hours. The tendency becomes less 
significant when SU is increased to 1.2. This indicates that when SU is relatively low, the testing 
approach needs to take 216 hours to detect all the faults. Whereas, when SU is high, 144 hours are 
sufficient for the testing approach to find most faults.  

 Regarding the correlation between PDF and SU, it exposes similar phenomena. When TT is 72 hours, 
the median of PDF increases from 0 to 0.2, as SU grows from 0.8 to 1.2. When TT is extended to 144 
hours, their positive relation becomes less significant. As the testing approach has sufficient time to detect 
most faults, there is no significant difference in PDF for different SUs.    

Therefore, we answer RQ3 as: PDF is positively correlated with both TT and SU. As TT or SU 
increases, PDF tends to increase as well. However, when SU is high, or TT is long, the positive 
correlations become less significant. Since PDF reaches a relatively high value earlier, it cannot be 
further significantly promoted. 
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Fig. 10 Box Plots of PDF under Each Testing Time and Uncertainty Scale  

Table 6 Percentage of Faults Detected by Each Testing Approach 

Setting Approach 
ArduCopter ArduPlane ArduRover 

Avg. SH1 SH2 SH3 SH4 SH5 SH1 SH2 SH1 SH2 

S1 

FOT+UPO 10% 10% 10% 8% 7% 35% 40% 30% 20% 19% 
FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S2 

FOT+UPO 43% 45% 50% 43% 60% 95% 100% 100% 100% 71% 
FOT+R 3% 0% 0% 0% 0% 0% 0% 10% 20% 4% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S3 

FOT+UPO 70% 60% 67% 55% 70% 95% 100% 100% 100% 80% 
FOT+R 3% 0% 0% 0% 0% 5% 10% 20% 40% 9% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S4 

FOT+UPO 17% 15% 10% 17% 17% 55% 80% 90% 90% 43% 
FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S5 

FOT+UPO 40% 48% 48% 70% 67% 100% 100% 100% 100% 75% 
FOT+R 3% 0% 0% 3% 0% 10% 10% 10% 30% 7% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S6 

FOT+UPO 77% 65% 63% 77% 80% 100% 100% 100% 100% 85% 
FOT+R 10% 0% 3% 3% 0% 15% 10% 30% 50% 13% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 10% 10% 2% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S7 

FOT+UPO 30% 15% 13% 13% 15% 65% 90% 100% 100% 49% 
FOT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S8 

FOT+UPO 67% 63% 58% 63% 68% 100% 100% 100% 100% 80% 
FOT+R 3% 0% 3% 0% 3% 15% 10% 20% 30% 9% 

COT+UPO 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
COT+R 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

S9 

FOT+UPO 93% 73% 78% 70% 75% 100% 100% 100% 100% 88% 
FOT+R 10% 3% 5% 0% 3% 20% 20% 40% 50% 17% 

COT+UPO 0% 3% 0% 0% 0% 5% 0% 10% 10% 3% 
COT+R 0% 0% 0% 0% 0% 0% 0% 10% 0% 1% 
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8.4 Discussion 

Based on the results of the experiment, we have three key observations. First, due to the effect of 
uncertainties, self-healing behaviors might fail to timely detect faults or improperly adapt system 
behaviors. For instance, because of sensors’ measurement uncertainties, the copter could not accurately 
capture its location, orientation, and velocity. When the copter was about to collide with another vehicle, 
inaccurate measurements sometimes caused the copter to incorrectly adjust its orientation, leading to a 
collision. Therefore, it is necessary to test self-healing behaviors in the presence of environmental 
uncertainties. To build such a testing environment, we adapt the software in the loop approach. In this 
approach, uncertainties are explicitly introduced via sensor data and actuation instructions. Second, it 
requires a specific sequence of operation invocations and a specific sequence of uncertainty values to 
reveal a fault caused by the effect of uncertainties. Invoking different operations or invoking the same 
operation with different inputs can both lead to distinct system states. Moreover, the impacts of 
uncertainties cause the states to diverge further.  Since a fault may only be activated in a few special 
states, specific operation invocations and uncertainty values need to be found to reveal the fault. In this 
context, coverage-oriented testing, which aims to evenly explore each system state, is ineffective to find 
faults. To address this issue, we present a fragility-oriented approach in this paper. By focusing on the 
fragile states of the SUT, it managed to find faults more effectively. Third, FOT and UPO have to 
cooperate to effectively detect faults under uncertainties. Directed by the fragility obtained from 
execution, FOT and UPO can gradually learn the optimal policy to select operation invocations and the 
optimal uncertainty generation policy respectively. The experiment results demonstrated that compared 
with the other approaches, FOT+UPO could enhance the fault detection ability by at least 50%.  

8.5 Threats to Validity 

Conclusion validity is concerned with factors that affect the conclusion drawn from the outcome of 
experiments (Wohlin et al. 2012). Because of random transition selection and random uncertainty 
generation used by the four testing approaches, randomness in the results is the most probable conclusion 
validity threat. To reduce this threat, all the testing jobs were repeated 10 times. We applied Mann-
Whitney U test and Vargha and Delaney’s 𝐴!" to evaluate the statistical difference and magnitude of 
improvement.  

Internal validity threat refers to the influence that affects the causal relationship between the 
treatment and outcome (Wohlin et al. 2012), i.e., the testing approach and its fault detection ability. Since 
testing time and scale of uncertainty have impacts on the performance of a testing approach, they could 
be the threat to internal validity. To reduce such threat, we compared the performance of the four selected 
testing approaches under three testing times and three uncertainty scales. 

External validity threats concern the generalization of the experiment results (Wohlin et al. 2012). 
We employed nine self-healing behaviors from three real case studies to compare the performance of four 
testing approaches. However, additional case studies are needed to generalize the results further.  

Construct validity is concerned with how well the metrics used in the experiment reflect the construct 
(Wohlin et al. 2012) — fault detection ability of a testing approach. Because the number of actual faults 
is unknown, we used the number of detected faults and the percentage of detected a fault as the evaluation 
metrics, which are comparable across the four testing approaches.  

9. Related Work 

This section presents the related work from three aspects: model-based testing in Section 9.1, testing 
with reinforcement learning in Section 9.2, and uncertainty-wise testing in Section 9.3.  

9.1 Model-Based Testing 

Model-Based Testing (MBT) has shown good results of producing effective test suites to reveal faults 
(Enoiu et al. 2016). For a typical MBT approach, abstract test cases are generated from models first, e.g., 
using structural coverage criteria (e.g., all state coverage) (Utting et al. 2012; Grieskamp et al. 2011). 
Generated abstract test cases are then transformed into executable ones, which are executed on the SUT. 
To reduce the overhead caused by test cases generation, researchers proposed to combine test generation, 
selection, and execution into one process (de Vries and Tretmans 2000; Larsen et al. 2004). De Vries et 
al. (de Vries and Tretmans 2000) created a testing framework, with which the SUT is modeled as a 
labeled transition system. By parsing this model, test inputs are generated on the fly to perform 
conformance testing. This approach aims to test all paths belonging to this model. However, if loops exist 
or the specified model is large, additional mechanisms are required to reduce the state space. Larsen et al. 
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(Larsen et al. 2004) proposed a similar testing tool for embedded real-time systems. It uses the timed I/O 
transition system as the test model, and test inputs are randomly generated from the model on the fly for 
testing.  

Different from the existing works, the proposed fragility-oriented testing approach relies on the 
execution of ETMs to facilitate the testing of SH-CPSs under uncertainty. During the execution, FOT and 
UPO apply reinforcement learning techniques to learn the optimal policy of invoking operations and best 
policy of generating uncertainties respectively. In addition, our work focuses on testing self-healing 
behaviors in the presence of environmental uncertainty, which is not covered by existing works.  

9.2 Testing with Reinforcement Learning  

The first reinforcement learning based testing algorithm was proposed in (Veanes et al. 2006). It uses 
frequencies of transitions’ coverage as the heuristics of reinforcement learning. Directed by the 
frequencies, the algorithm tries to explore all transitions equally. However, a long-term reward is not 
realized in this approach. Groce et al. (Groce et al. 2012) created a framework to simplify the application 
of reinforcement learning for testing, which uses coverage as the heuristic and relies on SARSA(λ) 
(Sutton and Barto 1998) for calculating long-term rewards. Similarly, Araiza-Illan et al (Araiza-Illan et al. 
2016) used coverage as the reward function to test human-robot interactions with reinforcement learning. 
Due to uncertainty, achieving the full transition coverage is insufficient to find faults in self-healing 
behaviors. Thus, we propose to use fragility instead of coverage as the heuristic. Moreover, we devised 
two novel algorithms, FOT and UPO, for operation invocation and uncertainty generation respectively.  

9.3 Uncertainty-wise Testing 

Regarding uncertainty-wise testing, some taxonomies of uncertainty for self-adaptive systems have been 
proposed in (Ramirez et al. 2012; Esfahani and Malek 2013), and a conceptual model of uncertainty for 
CPSs has been built in (Zhang et al. 2015).  To test systems in the presence of the uncertainty, Fredericks 
et al. (Fredericks et al. 2014) developed a run-time testing framework. It dynamically adapts a set of 
predefined test cases to test whether the SUT behaves correctly when adaptation is required to handle 
changes in environmental conditions. However, the paper does not mention how to obtain the initial test 
cases and how to construct an uncertainty-introduced testing environment. Yang et al. (Yang et al. 2014) 
devised a formal approach to verify the correctness of self-adaptive applications under uncertainty. 
While, the formal verification approach is computationally expensive, and it requires extra effort to prove 
the SUT is consistent with the verified model. Zhang et al. (Zhang et al. 2017) proposed a multi-objective 
search-based approach for test case generation and minimization, with the aim of discovering unknown 
uncertainties.  

Different from the existing works, we aim to test whether the SUT can behave properly in the presence 
of uncertainty. To effectively detect faults, we devise the UPO algorithm. By utilizing the fragility to 
optimize the uncertainty generation policy (an ANN), it manages to effectively find a sequence of 
uncertainty values that can cooperate with a sequence of operation invocations to reveal faults. 

10. Conclusion 

This paper presents a fragility-oriented approach for testing Self-Healing Cyber-Physical Systems (SH-
CPSs) under uncertainty. The testing approach consists of two steps. One is to select a sequence of 
operation invocations, which determines the behavior of the SH-CPS Under Testing (SUT) in test 
execution. The other is to generate a sequence of uncertainty values to make the SUT behave under 
uncertainty. For the two steps, we devise two algorithms: Fragility-Oriented Testing (FOT) and 
Uncertainty Policy Optimization (UPO). Both of them employ the fragility to learn the optimal policies 
for operation invocations and uncertainty generation respectively. To evaluate their performance, we 
compared them against three testing approaches: FOT+R, COT+UPO, and COT+R, where COT 
represents a coverage-oriented algorithm for operation invocations and R represents a random mechanism 
for uncertainty generation. The four testing approaches were applied to test nine self-healing behaviors 
from three real-world case studies. The testing results showed that FOT+UPO significantly detected more 
faults than the other three approaches, in 73 out of 81 testing jobs. In the 73 jobs, FOT+UPO detected 
more than 70% of faults, while the others detected 17% of faults, at the most.  
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Appendix 

Fig. 11 presents a simplified ETM for ArduCopter. According to the ETM, a DFSM can be constructed, 
and part of the DFSM is shown in Fig. 5.  

 
Fig. 11 Simplified ETM for ArduCopter 

 


