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ABSTRACT 
Smart Cyber-Physical Systems (CPSs) are autonomic systems 
capable of making decisions at runtime by themselves. These 
systems are complex in nature and typically operate in highly 
unpredictable and uncertain environments. One key autonomic 
capability of such systems is to recover from failures in an 
autonomic manner, referred to as self-healing. Due to the wide 
range of applications of smart CPSs in our daily life, self-healing 
behaviors of smart CPSs must be reliable even under uncertainty. 
Uncertainty and Self-Healing in CPS, in general, are understudied 
areas of research and thus as a first step towards understanding 
self-healing and uncertainty, we propose a conceptual model to 
understand key concepts including self-healing behaviors, 
uncertainties and their relationships. Our ultimate objective is to 
provide a unified understanding of these concepts, which forms a 
foundation for additional analyses in the future such as testing. 
We validated the conceptual model with six case studies having 
self-healing behaviors from the literature and industry.  

CCS Concepts 
• Software and its engineering � Software creation and 
management   • Software development techniques � Error 
handling and recovery.  

Keywords 
Smart Cyber-Physical Systems; Self-healing; Uncertainty. 

1. INTRODUCTION 
Smart Cyber-Physical Systems (CPSs) are becoming prevalent in 
our daily life and their dependability is thus of utmost importance 
[2]. Such systems are very complex in nature and impose novel 
challenges for their design, development and testing as compared 
to traditional embedded systems. First, smart CPSs are autonomic, 
i.e., capable of making their own decisions during their real 
operation that are difficult to predict at the design time. Second, 
smart CPSs typically operate in highly unpredictable 
environments. Third, uncertainty is inevitable during the operation 
of smart CPSs due to new types of interactions among control, 
communication, and computational components. 

In this paper, we focus on one autonomic behavior of smart CPS, 
that is commonly referred to as self-healing, i.e., autonomously 
recovering from failures. Since both testing self-healing behaviors 
and uncertainty in smart CPSs are relatively understudied areas [6, 
7], this paper aims to provide a conceptual model to establish a 
common understanding of the areas and their relationships. Our 
ultimate goal is to use this conceptual model as a starting point to 
develop novel analyses techniques for the design, development, 
and testing of self-healing behaviors of smart CPSs in the future. 

The conceptual model was developed in the following three 
stages. In the first stage, the conceptual model for self-healing 
CPSs was developed, based on the literature on CPSs and self-
healing systems. Second, we defined an uncertainty taxonomy for 
self-healing behaviors by extending an existing uncertainty 
conceptual model of CPSs called U-Model reported in [10, 11], 
existing uncertainty taxonomies from literature, and the self-
healing conceptual model developed in the first stage. In the third 
stage, the conceptual model was validated with six case studies 
from the literature and industry, in terms of completeness, 
correctness and redundancy.  

The rest of the paper is organized as below. Section 2 gives a 
running example, Section 1 shows the conceptual model and 
Section 4 presents the evaluation, followed by the related work 
(Section 5) and conclusion (Section 6). 

2. RUNNING EXAMPLE 
An Automatic Power Restoration System (APRS) [13] is the 
running example that we will use throughout the paper to explain 
the conceptual model. The key self-healing functionality of APRS 
is to timely detect electricity failures and restore power supply to 
affected normal segments without electricity overloading. As 
shown in Figure 1, in APRS, the power distribution grid is divided 
into different “teams” bounded by the IntelliDevices. Every 
IntelliDevice is a compound electricity device, which is controlled 
by an embedded controller. Via wireless network, the controller 
periodically reports current, voltage and phasor angle 

 
Figure 1. Running Example - Automatic Power Restoration 

System (APRS) 
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measurements to the team’s “coach”, which is a regional 
controller in the APRS. Based on the collected data, the coach 
captures the state of power distribution within the team and shares 
it with other coaches through public or dedicated networks. By 
this approach, every coach can calculate the topology of the grid 
and infer the excess power capacity of its neighbor team. This 
information forms the foundation for power restoration. Whenever 
a coach detects a line outage, it utilizes the real-time data to locate 
the fault. Then it calculates which IntelliDevices should interrupt 
to isolate the fault and sends instructions to them. After fault 
isolation, several not faulted teams may suffer power loss due to 
the interruptions. For each of them, its coach will search for an 
alternative power source that has sufficient excess power 
capability to compensate its team’s power loss and transfer the 
power load to the first found one.  

During this process, some more sophisticated model-based [15] 
and process history based methods [16] can be used by coaches to 
detect faults earlier to prevent catastrophic failures. For example, 
once a loss of power distribution synchronization is detected 
based on phasor angle measurement, instead of waiting for a 
blackout, coaches can cooperate to rebalance the power and 
eliminate the causes of desynchronization. 

3. THE CONCEPTUAL MODEL 
In this section, we present the conceptual model in three parts: the 
CPS conceptual model, the self-healing conceptual model and the 
uncertainty conceptual model, which are discussed in separate 
subsections. 

3.1 The CPS Conceptual Model 
A conceptual model of CPSs is shown in Figure 2 as a class 
diagram, whereas details of each concept are presented in Table 1. 
A Self-HealingCPS can be seen as a collection of heterogeneous, 
distributed and networked PhysicalUnits put together to control or 
monitor PhysicalProcesses, e.g., power distribution process in the 
APRS running example (Figure 1). Such a CPS often has its 
architecture being centralized, decentralized or hybrid. 
Controllers are the core elements of a PhysicalUnit, providing the 
control logic and computation capabilities to the PhysicalUnit and 
communicate with other Controllers owned by other 
PhysicalUnits via the Network. Meanwhile, a Controller monitors 
and controls the PhysicalProcesses optionally via Sensors and 
Actuators in the same PhysicalUnit or through that of other 
PhysicalUnits. Due to the stochastic nature of the Environment, 
random events may occur and affect the PhysicalProcesses. For 
example, in the APRS, both power generation and consumption 
are changing, which affects the power distribution 
process. Changes in the power generation and 
consumption are abstracted as Situations in the 
conceptual model. 

3.2 The Self-Healing Conceptual 
Model 
The conceptual model is presented in Figure 3 as a 
class diagram, whereas details of each concept are 
presented in Table 2 for reference. 

In a CPS, both hardware and software may have 
fault tolerant capabilities. For hardware, fault 
tolerance is typically achieved via introducing 
redundant hardware that has limited adaptive 
capabilities at the runtime. In contrast, software 

can be reconfigured and modified, thus in the context of Self-
Healing CPSs, Controllers provide such self-healing capabilities, 
as shown in Figure 3. 
Self-healing systems are defined by Debanjan Ghosh in [17] as “a 
self-healing system should recover from the abnormal (or 
“ unhealthy”) state and return to the normative (“ healthy” ) 
state, and function as it was prior to disruption”. This requires a 
Controller to detect the occurrence of Errors in a timely fashion 
(via Self-Detection capabilities of its HealingBehaviors), and react 
to the Errors to possibly restore its normal operation. Hence, a 
Controller is equipped with Probes and Effectors to make itself 
self-aware and adaptable. Probe and Effector are two types of 
interfaces that are used to inquire Controller’s States and adjust 
Controller’s Behaviors, respectively. 
As shown in Figure 3, a Controller has two types of Behaviors: 1) 
FunctionalBehaviors implementing business requirements of the 
Controller; 2) HealingBehaviors that use Probes and Effectors to 
monitor and maintain the correctness of FunctionalBehaviors or 
HealingBehaviors. HealingBehaviors are classified as static if 
they are fixed and defined at the design time, else they are 
classified as dynamic. Besides, HealingBehaviors are 
implemented at different hierarchical levels, e.g., healing only one 
function of the Controller, (ControllerLevel), several functions of 
a PhysicalUnit (PhysicalUnitLevel), or the whole Self-healingCPS 
(SystemLevel).  
One prerequisite of realizing HealingBehaviors is the accurate 
specification of each component’s Goals in terms of its 
performance and/or functional requirements. Moreover, Goals at 
the system level can be decomposed into several sub-goals at the 
PhysicalUnitLevel and further at the ControllerLevel. Eliciting 
and specifying goals, which have been broadly studied in 
requirements engineering community, are however out of the 
scope of this paper.  

 
Figure 2. Self-Healing CPS 

Figure 3. Self-Healing Conceptual Model (Overview)  
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HealingBehaviors have three capabilities: Self-Detection, Self-
Diagnosis and Self-Recovery. First, a Self-Detection behavior 
evaluates the state of a Controller according to Measurements 
collected via Probes. If an Error is detected, it means that the  
state of the Controller has deviated from its correct state. 
Afterwards, a Self-Diagnosis behavior is alerted to isolate the 
cause of the Error followed by calculating a RecoveryPlan at one 
time for recovery. Finally, a Self-Recovery behavior executes the 
RecoveryPlan via Effectors at a given point of time.  
The following sections explain the Self-Detection, Self-Diagnosis 
and Self-Recovery capabilities in details.  

3.2.1 The Self-Detection Conceptual Model 
Figure 4 presents the Self-Detection model, whereas Table 3 
provides details of each concept. If Self-Detection cannot detect 
Errors in a timely manner, it would be too late to respond to the 
Errors and therefore will fail to recover back to the normal state. 
The timely detection of Errors is even more critical due to the 
hybrid nature of CPSs. A PhysicalProcess is continuous; whereas 
the computation performed by a Controller is discrete. A 
controller must discretize the continuous process in appropriate 
intervals to avoid missing the detection of Errors. If the interval is 
too long, the detection of an Error may be missed; otherwise if 
the interval is too small, the senor may not 
be able to obtain Measurements and will 
miss the Error. 

Probes can be classified into 
PerformanceProbes, EventProbes and 
PhysicalProcessProbes. PerformanceProbes 
are responsible for monitoring system’s 
performance, such as response time, 
throughput and availability. These 

performance metrics are used to verify system’s performance 
requirements. While, an EventProbe is in charge of monitoring a 
Controller’s behavior described as a trace of events such as 
function calls and exceptions. This trace can be checked against 
system’s properties, which are usually in two forms: 1) constraints 
based on formalisms such as temporal logic [18], state machine 
[19]. 2) rule based specification using Domain Specific Language 
(DSL) [20]. In contrast, a PhysicalProcessProbe directly uses 
sensor data to monitor the PhysicalProcesses such as the Self-
Detection behavior can decide if the PhysicalProcess is 
proceeding as expected.  

A detection process starts with Probes, which collect their 
corresponding Measurements periodically or triggered by events. 
The Measurements include performance metrics, event occurrence 
(e.g., function calls, exceptions) and physical quantities values of 
PhysicalProcesses, which reflect the Controller’s state from the  

performance, functional and external aspects. Self-Detection then 
checks the Measurements against the ErrorCriteria, which is 
typically in the form of constraints or threshold values. In the field 
of online monitoring, constraints specifying system’s properties 
(e.g., invariants and behavior’s pre/post-conditions) have been 
broadly used to detect inconsistent behaviors [18]. For example, 

 
Figure 4. Self-Detection Conceptual Model 

Table 1. Concepts about CPS 

Concept Definition Example 
C1. Self-

HealingCPS 
A CPS, which can autonomously detect, 
diagnose and recover from Errors (C18) 

APRS is a Self-HealingCPS, since it is a distributed control system and it 
can detect, diagnose, recover or partially repair electricity failures.  

C2. PhysicalProcess A sequence of chemical, physical, or 
biological activities for the conversion, 
transport, or storage of material or 
energy  

In the context of APRS, the PhysicalProcess it needs to monitor and 
control is power distribution.  

C3. PhysicalUnit 
 

A physical device that can communicate 
with the others, optionally having the 
computation and control capabilities 

“Coach” and IntelliDevice are the two major kinds of PhysicalUnit in 
APRS. IntelliDevices have sensing and actuation capabilities, but they 
only have limited computation ability and only have local observations. 
Whereas, coaches have more powerful computation ability. They collect 
data from IntelliDevices and share this data with each other to build a 
global view of power distribution. Based on this, coaches direct each 
IntelliDevice’s actuation behavior to achieve an optimal power 
distribution.  

C4. Network The medium used as the communication 
channel among PhysicalUnits (C3) 

Usually the PhysicalUnits in APRS use wireless network to communicate 
with others.  

C5. Sensor A device that measures the physical 
variables of a PhysicalProcess (C2) 

Typically IntelliDevices are instrumented with current, voltage and 
phasor angle sensors to monitor the power distribution states. 

C6. Actuator A device able to change physical 
quantities of a PhysicalProcess (C2) 

The Actuators used by IntelliDevices are different kinds of switch, which 
can change the topology of power grid.  

C7. Controller A software deployed on the PhysicalUnit 
(C3), controlling Sensors (C5) and 
Effectors (C23) either directly or 
indirectly, communicating with other 
Controllers and providing computational 
capability 

Both coach and IntelliDevice have Controllers, which are in charge of 
task execution and communication. To differentiate PhysicalUnits and its  
Controllers, the controllers of coach and IntelliDevice are called coach 
controller and IntelliDevice controller respectively.  
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in the APRS, a line flow invariant is that none of the transition 
lines in the distribution network are overloaded. When a line 
outrage happens, the power load on the other lines will increase to 

compensate it and may exceed their transfer capabilities. In this 
case, the invariant is violated, which means an Error has occurred.  

Table 2. Concepts about Self-Healing  

Concept Definition Example 
C8. Behavior Describing a sequence of actions executed by a 

Controller (C7) 
The IntelliDevice controller’s Behaviors are reading current, 
voltage and phasor angle measurements and invoking switch 
operation.  

C9. FunctionalBehavior The business logic of a Controller (C7) [1] The FunctionalBehavior of coach controllers are scheduled 
power grid manipulation, which is defined manually for 
normal distribution conditions. 

C10. HealingBehavior A sequence of Self-Detection (C17), Self-Diagnosis 
(C20) and Self-Recovery (C22) actions aiming at the 
recovery of a Controller (C7), a PhysicalUnit (C3) or 
the whole Self-HealingCPS (C1) from Errors (C18) 

The HealingBehavior of coach controllers are started from 
electricity failure detection to fault isolation and ended with 
completion of recovery executions.  

C11. HierarchicalLevel The subordination level within the structure of the 
Self-HealingCPS (C1) [3]  

The HierarchicalLevel of coach controllers’ self-healing 
behaviors is system level, which aims at enhance power 
supply reliability of the whole distribution network.  

C12. ApproachType Indicating if a HealingBehavior (C10) is static or 
dynamic. 

Since coach controllers detect, isolate and recover electricity 
distribution errors based on real time data instead of execute 
predefined process, the ApproachType of coach controller is 
dynamic. 

C13. Goal “… a non-operational objective to be achieved by the 
composite system” [4] 

The Goal of APRS is to enhance power distribution 
reliability, which can be decomposed into two sub-goals: 
reducing blackout time and power restoration delay.  

C14. State A particular combination of the attribute values of a 
Controller (C7) [8] 

The states of a coach controller are defined by the tasks they 
are currently executing and phases of tasks they are staying. 

C15. Probe A system measurement mechanism, which observes 
and measures the States (C14) of a Controller (C7) 
[9]. 

Coach controllers use physical process probes to directly 
monitor the state of power distribution, by which to evaluate 
the correctness of their instructions to IntelliDevices.  

C16. Measurement A value of a State variable, such as performance 
metrics 

Three types of Sensor correspond to three Measurements: 
current, voltage and phasor angle.  

C17. Self-Detection The action that detects Errors (C18) from monitored 
Measurements (C16) and reports the Errors (C18) to 
Self-Diagnosis [12] 

A coach controller’s Self-Detection action is that it utilizes 
model based or process history based fault detection 
algorithms to analyze real time power distribution data. 

C18. Error Difference between monitored Measurements (C16) 
and specified ones [3] 

For power distribution network, one of the most common 
Errors is line outage.   

C19. Fault The cause of an Error (C18) [14] The Faults lead to line outage may be power imbalance, 
short circuit or overloading, etc.  

C20. Self-Diagnosis The action that locates Faults (C19), which lead to 
detected Errors (C18), and calculates an appropriate 
RecoveryPlan (C21) together with RecoveryPolicy 
(C39) [12] 

The Self-Diagnosis of a coach controller is achieved by 
using model based reasoning or data driven learning 
algorithms based on historic and real time Measurements.  

C21. RecoveryPlan A sequence of AdaptationActions (C33), aiming to 
recover the CPS from Errors (C18)  

For a coach controller, a RecoveryPlan can be a set of 
IntelliDevice instructions for power rebalance or a sequence 
of actions for power restoration. 

C22. Self-Recovery The action that applies a RecoveryPlan (C21) on the 
CPS [12] 

The Self-Recovery of a coach controller is to instruct 
IntelliDevices to execute the actions according to the 
RecoveryPlan. 

C23. Effector A mechanism carrying out AdaptationActions (C33) 
[9] 

The Effectors used by coach controllers are control effectors, 
which can trigger coach controller to generate a new 
topology for the power distribution network in order to 
repair the detected Errors.  

C24. Self-Learning A mechanism that can recognize system behavior 
Patterns (C25) and/or infer RecoveryPlans (C21) 
from historic ExecutionResults (C43) 

A coach controller’s Self-Learning is the data driven 
learning algorithm, which help coach controller abstract key 
features of the physical process and use them to detect and 
diagnose faults.  
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Residual thresholds and performance metric 
thresholds are another kind of criteria. 
Comparing a threshold with an actual 
performance or a residual between an actual 
output and the expected can directly detect 
undesired behaviors. However, for some 
dynamic systems including Self-healingCPSs, 
the variation of metrics is very large due to 
severe environment changes. Therefore, it is 
difficult to set thresholds at the design time. 
Whereas, a Self-Learning mechanism can 
alleviate this problem, under the assumption 
that normal behaviors appear much more 
frequently than abnormal ones. A self-
learning mechanism can cluster monitored Measurements within 
the most recent period to infer normal behavior Patterns under the 
current Situation [21]. 

3.2.2 The Self-Diagnosis Conceptual Model 
Figure 5 shows the Self-Diagnosis conceptual model, whereas 
Table 3 provides details of each concept. Self-Diagnosis locates 
Faults leading to detected Errors, determines types and locations 
of the Faults, and decides which AdaptationActions to take as the 
RecoveryPlan to handle the Faults, directed by RecoveryPolicy. 

Each AdaptationAction, provided by Effectors, can be considered 
as a variable point of the system, which enables reconfiguration 
and adaptation at runtime. Different AdaptationActions have 
different Effects on the CPS, and may have different Overheads 
and Delays. The Self-Diagnosis behavior has to trade off between 
adaptation benefits and cost in terms of time and/or resource 
consumption (i.e., TimeOverhead and ResourceOverhead). Which 
AdaptationActions to take at runtime is determined by recovery 
policies. 
In the literature, there are three well-known policies [5]: 
ActionPolicy, GoalPolicy and UtilityFunctionPolicy. ActionPolicy 
can be seen as a pair in the form of <condition, action>. If the 
condition is satisfied, then a corresponding action is executed [22]. 
GoalPolicy specifies a set of desired states, which requires that a 
sequence of AdaptationActions in a RecoveryPlan should be taken 
to make the system from the current faulty state to a desired state 
[23]. UtilityFunctionPolicy defines an objective function 
containing multiple objectives of the system to guide the system 
to move towards a desired state in terms of utility values [24]. 
Because of the tight integration of a CPS with its environment, 
and its stochastic nature, developing a complete recovery strategy 
at the design time is non-trivial if not impossible. Similarly, as for 
detection, Self-Diagnosis can benefit from Self-Learning. By 
analyzing every ExecutionResult of a RecoveryPlan, Self-
Learning mechanism can infer which combination of 
AdaptationActions is more effective to repair a kind of Faults, 
which can be directly used as the RecoveryPolicy by the Self-
Diagnosis actions [25].  

3.2.3 The Self-Recovery Conceptual Model. 
Figure 6 shows the conceptual model of Self-Recovery. Self-
Recovery executes RecoveryPlans via Effectors. Since Effectors 
adapt system’s behaviors at runtime, Self-Recovery behaviors 
need to assure that runtime adaptations do not conflict with 
neither FunctionalBehaviors of a Controller nor other adaptations. 
One way to avoid such conflicts is to explicitly design and 
implement preadaptation and post-adaptation steps in the recovery 
process. In the preadaptation step, all functional components 
affected by the adaptations need to be hanged up and blocked 

from the others. After the completion of applying a RecoveryPlan, 
these components are set back to normal. 
Effectors used by Self-Recovery can be classified into three types. 
One is ParameterEffector that can adjust system components’ 
parameters [26]. The second type is ArchitectureEffector, which 
adds, removes or replaces system components [27]. The last type 
is ControlEffector, which is in charge of changing 
FunctionalBehavior of a Controller in response to error 
conditions. These three types of Effectors can be achieved through 
aspect-oriented programming, reflection or component based 
design [1].

 

3.3 The Uncertainty Conceptual Model 
Uncertainty is intrinsic in the Self-HealingCPS due to its tight 
integration with PhysicalProcesses and runtime HealingBehaviors. 
Hence, various types of potential uncertainties should be studied 
and analyzed in order to establish the confidence that the self-
healing CPSs can eventually be able to deal with such 
uncertainties in a graceful manner during their operation. In this 
section, we provide a taxonomy of uncertainties specifically for 
self-healing based on the uncertainty conceptual model for CPS 
(U-Model) defined in [10, 11]. 

Figure 7 presents the taxonomy of self-healing related 
uncertainties along with its association with the Uncertainty 
concept from the U-Model [10, 11]. The U-Model defines 
uncertainty (lack of confidence) in a subjective way, i.e., 
“uncertainty is modeled as a state (i.e., worldview) of some agent 
or agency – henceforth referred to as a BeliefAgent – that, for 
whatever reason, is incapable of possessing complete and fully 
accurate knowledge about some subject of interest. Since it lacks 
perfect knowledge, a BeliefAgent possesses a set of subjective 
Beliefs about the subject.” [10, 11]. As shown in Figure 7, an 
uncertainty may have an associated Pattern, Locality, Effect, 
Measurement, Risk, and Lifetime as described in [10] that are once 
again applicable to specialized classes of uncertainties defined for 
Self-HealingCPSs. Generally, uncertainty is classified into five 
classes: Occurrence, Content, Time, GeographicalLocation and 
Environment [10, 11]. Notice that because of the association 
between Self-HealingCPSUncertainty and Uncertainty, each 
category of self-healing uncertainty can be linked to one or more 
types of these uncertainties. Below, we provide the taxonomy of 
uncertainties related to self-healing. 

 
Figure 6. Self-Recovery Conceptual Model  

 
Figure 5. Self-Diagnosis Conceptual Model 
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 Based on the various constituting components of Self-
HealingCPS, i.e., Sensors, Controllers, Actuators, Probes, 
Effectors and Networks, which, at the same time, are influenced 

by three components: PhysicalProcesses, Knowledge, Situations, 
we derived nine types of uncertainties, each of which corresponds 
to one component as shown in Figure 7. Table 4 gives the 
relations between Self-HealingCPSUncertainty and the 

Table 3. Concepts about Healing Behavior  

Concept Definition Example 
C25. Pattern The mode/style of a system behavior characterized 

by a combination of Measurements (C16) 
In the context of APRS, a Pattern can be a trend of 
phasor angle or voltage change under a specific kind of 
condition. 

C26. ErrorCriterion The standard, rule, or test, on which a judgment of 
an Error (C18) can be based 

For an IntelliDevice, its ErrorCriteria are predefined 
valid current, voltage scopes. 

C27. Rule A pair of a set of preconditions and a set of actions. 
If all preconditions are satisfied, then the actions 
are executed 

A supervised learning algorithm, e.g., support vector 
machine (SVM), can use history process data to 
associate attributes with different types of faults, in the 
form of rule such as “x1 > a && x2 < b implies A fault” 

C28. Threshold A limit or boundary of Measurements (C16) used 
to distinguish normal and abnormal values 

A predefined minimum and maximum value for current.  

C29. Constraint A specification of system properties that the 
system must hold during its execution. 

A Constraint can be a linear temporal logic expression, 
“no P before Q”, where P and Q are both events. 

C30. PerformanceProbe A Probe (C15) for monitoring system’s 
performance. 

Timely repairing a fault or power restoration is essential 
for APRS, hence timer is used as a PerformanceProbe to 
evaluate the coach controller’s response time.  

C31. EventProbe A Probe (C15) for monitoring events occurred in 
Self-HealingCPS (C1) 

A fault interruption event publisher is used as a 
EventProbe by IntelliDevices to inform coach controllers 
that a fault has occurred. 

C32. PhysicalProcessProbe A Probe (C15) for monitoring the state of a 
PhysicalProcess (C2) 

For coach controllers, PhysicalProcessProbes are the 
interfaces that enable them get access to IntelliDevices’ 
sensor data.  

C33. AdaptationAction The runtime modification of control data, 
controlling or affecting a Controller (C7) 

AdaptationActions that can be used by coach controllers 
to handle power distribution faults are the switch open 
and close instructions to the IntelliDevices. 

C34. Delay The time interval between the initiation and 
completion of an AdaptationAction (C33) 

The Delay of a switch open instruction is the amount of 
time from emitting it by a coach controller until the 
completion of the instruction.  

C35. Effect The change of one or more Behaviors (C8) caused 
by an AdaptationAction (C33)  

The Effect of a switch open operation is the current, 
voltage and phsor angle differences between before and 
after the operation.  

C36. Overhead Extra resources and/or time used to execute 
AdaptationActions (C33), in addition to planned 
resources and/or time at the design time 

The Overheads of a switch open operation are the 
prerequisite operations or post operations of this action, 
e.g., after the switch is opened, some other switches may 
need to be closed to restore the power supply. 

C37. ResourceOverhead Extra resources for executing AdaptationActions 
(C33), as compared to regular CPS resource 
consumption without adaptation 

One of the ResourceOverheads of a switch open 
operation is the extra power capability used to restore the 
power.  

C38. TimeOverhead Extra time for executing AdaptationActions (C33), 
as compared to regular CPS response time without 
adaptation 

The TimeOverhead of a switch open operation is the 
time that is spent by these post operations. 

C39. RecoveryPolicy A type of formal behavioral guide for 
HealingBehavior (C10) [5] 

See below. 

C40. ActionPolicy Specifying which AdaptationAction(s) (C33) 
should be taken for a Fault (C19) [5] 

For each types of repairable fault, coach controller has a 
corresponding repair plan.  

C41. GoalPolicy Specifying a set of desirable States (C14) of Self-
HealingCPS (C1), providing the target states for 
HealingBehaviors (C10) [5] 

Operator defines a stable condition for the power 
distribution process. As soon as a coach controller 
detects the dissatisfactory of that condition, it should 
take actions to bring the process back.  

C42. UtilityFunctionPolicy Assigning each State (C14) of Self-HealingCPS 
(C1) a utility value directing the system moving 
towards states with a higher utility value [5]  

Electricity from different power source has different 
cost. The cost can serves as the UtilityFunctionPolicy 
and directs coaches to construct a most cost-efficient 
power distribution network. 

C43. ExecutionResult The consequence and the effect of a RecoveryPlan 
(C21) 

The resulting current, voltage and phasor angle values 
after the recovery plan has been exected. 
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uncertainty taxonomy (U-Model). The 
first column lists the self-healing related 
uncertainties, and the second to the fifth 
columns show the generic types of 
uncertainties from the U-Model, whereas 
the last column shows a few examples of 
the effects of the uncertainties. Notice 
that the list of effects is by no means 
complete and just provides examples for 
each type. In addition, due to space 
limitation, mapping to the other 
attributes of uncertainties such as Pattern 
and Locality from the U-Model is also 
omitted. It is worth mentioning that we 
present an initial high level classification 
of uncertainties in self-healing CPSs that 
we plan to further extend in the future at 
more fine-grained level. 

The first type is SituationUncertainty 
arising from the environment of a Self-
HealingCPS. A SituationUncertainty is 
the uncertainty of a belief about whether, 
when, where, and in which context a 
Situation will happen and which 
Situation, corresponding to Occurrence, 
Time, GeographicalLocation, Environment and Content 
Uncertainty respectively. Two effects may be caused by a 
SituationUncertainty. One is uncertain physical environment 
condition change (e.g., weather, temperature). The other one is 
unpredictable interactions with other agents or systems (e.g., 
power plant and power consumers in APRS).  

The second type is PhysicalProcessUncertainty, which represents 
the Uncertainty about the characteristics of PhysicalProcesses. 
For example, in the APRS, Uncertainty exists in the mathematical 
functions of current and voltage, owing to the unknown resistance 
of the electricity cable. Due to the dynamic nature of 

PhysicalProcesses, their characteristics are constantly changing. 
Hence, the occurrence and time of the changes are not relevant. 
Instead, the content of the changes (ContentUncertainty) is more 
important to be captured by Self-HealingCPS to timely adapt its 
behaviors.  

The third one is SensorUncertainty, which reflects the uncertain 
attributes of a sensor, including accuracy (Content), lifetime 
(Time), malfunction (Occurrence), deployed location and 
environment (GeographicalLocation and Environment). A few 
possible effects of these include measurement errors and sensor 

failures as shown in Table 4.  
The fourth type is 
ActuatorUncertainty. Similar with 
Sensor, the Content (accuracy), 
Occurrence (malfunction), Time 
(execution time of an actuation), 
GeographicalLocation (instructed 
position) and Environment 
(operation context) uncertainties are 
also applicable to Actuators and 
they may cause the Actuations 
executed by Actuators to deviate 
from a standard one or lead to an 
actuator failure.  

The fifth and sixth are Probe and 
Effector uncertainties, which are 
similar with Sensor and Actuator 
uncertainties from the control 
perspective. However, Probes and 
Effectors are software instead of 
hardware and thus do not have 
direct relationship with 
GeographicalLocationUncertainty. 

Probe or Effector failures are 
examples of the effects of the probe 
and effector related uncertainties.  

The seventh type is 

Table 4. Mappings to the U-Model concepts 

Uncertainty  
Classes 

U-Model Concepts 

Occurrence Content Time Geographical  
Location Environment Effect 

Situation  
Uncertainty √ √ √ √ √ Environment change 

External interaction 
PhysicalProcess  
Uncertainty × √ × × × Characteristics of physical process 

change 

Sensor  
Uncertainty √ √ √ √ √ 

Measurement uncertainty 
Measurement error 
Sensor failure 

Actuator  
Uncertainty √ √ √ √ √ Actuation deviation 

Actuator failure 

Probe  
Uncertainty √ √ √ × √ 

Measurement uncertainty 
Measurement error 
Probe failure 

Effector  
Uncertainty √ √ √ × √ Effectuation failure 

Controller  
Uncertainty √ √ √ × √ 

Undefined behavior 
Unexpected behavior 
Indeterminate behaviors 
Elusive execution time 
and resource consumption 

Knowledge  
Uncertainty √ √ √ × × Incorrect awareness 

Incorrect assumption 
Network  
Uncertainty √ √ √ × √ Compromised QoS 

                                                      √  is type of          ×  is not type of 

 
Figure 7. Uncertainty Conceptual Model 
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ControllerUncertainty, which represents uncertain 
Behaviors of a controller. Due to the missing 
knowledge about a Controller’s requirements, design, 
implementation, underlying platform and 
interconnection with other Controllers, the actual 
behavior of a Controller (Content, Occurrence), 
execution time (Time) and context (Environment) of 
that Behavior are uncertain. This leads to undefined, 
unexpected, and indeterminate behaviors in addition 
to unpredictable execution time and resource 
consumption. Undefined behaviors are the ones that 
are not specified in requirements, unexpected 
behaviors are the results of incorrect design or 
implementation, i.e., the actual behaviors do not 
satisfy controllers’ requirements, whereas 
indeterminate behaviors are the ones that intentionally 
use some sort of randomized algorithms to make 
choices such as Genetic algorithms. Time and 
resource are key factors in CPS, as many control 
actions have time requirements and resources are 
limited.  

The eighth is KnowledgeUncertainty, including 
uncertain system and context knowledge, such as 
States and Patterns. As self-awareness and context-
awareness are the prerequisites of self-healing, 
gaining the knowledge is essential, but also 
challenging for Self-HealingCPS. Because of the 
changing nature of CPS and environment, the knowledge is also 
evolving, which further increases the uncertainty. The uncertain 
knowledge may directly lead to wrong assumptions and incorrect 
awareness about the system or its environment, due to the wrong 
decisions based on the uncertain knowledge.  

The last one is NetworkUncertainty. Suffered from dynamic 
traffic load (Environment), the networks’ performance, including 
network latency, jitter and packet loss rate (Occurrence, Time and 
Content), keeps on changing, which may dramatically impact the 
quality of service of a system.  

4. EVALUATION 
Section 4.1 illustrates the development and validation process of 
the conceptual model, followed by the evaluation results (Section 
4.2). 

4.1 Development and Validation Process 
Figure 8 shows the development and validation process of the 
conceptual model, which has four stages. The first stage is the 
development of the Self-Healing CPS conceptual model, based on 
the literature of self-healing and CPSs (I1, I2), most of which will 
be explained in Section 5. The key output is the initial version of 
the conceptual model (O1). Then, based on the existing 
uncertainty literature in [10, 11, 28, 29] (I3), and an existing 
uncertainty conceptual model for CPS, i.e., U-Model [10, 11], the 
second stage extends the initial conceptual model with uncertainty 
concepts and constructs the complete self-healing CPS model with 
uncertainties (O2). After that, several CPS and self-healing system 
architectures or frameworks [9, 30-37] (I4) are utilized by the 
third stage to refine the derived conceptual model and construct 
the conceptual model v2.0 (O3). The last step evaluates the 
conceptual model v2.0 with the six case studies from the industry 
and literature (I5). 

The six systems are Videoconferencing System (VCS) developed 
by Cisco, Norway and used in our previous research [38], Traffic 
Monitoring System (TMS) [39], Radio-frequency identification 

(RFID) supply chain (RFID-SC) [40], Distributed Systems 
Research Lab (DSRL) [41] Intelligent Service Robot (ISR) [42] 
and APRS (also used as running example in this paper). We 
evaluated the conceptual model in terms of its completeness, 
correctness and redundancy.  

First, to check the model’s completeness, all constituted elements 
of the six systems were abstracted from their specifications, 
followed by mapping them to the concepts of our conceptual 
model. If there was one element that couldn’t be mapped to any 
concept, it means the model is incomplete. Taking VCS as an 
example, VCS consists of several videoconferencing terminals 
(PhysicalUnit) and conference conductors (PhysicalUnit) and its 
goal is to enable high quality videoconferencing 
(PhysicalProcess) among multiple participants. A conference 
manager uses a voice sensor (Sensor) to decide if a speaker’s 
voice needs to be amplified using a voice amplifier (Actuator). 
Each videoconferencing terminal of VCS is equipped with a Real-
time Transport Control Protocol (RTCP) reporter (Probe), which 
periodically reports the receiver’s packet loss rate (Measurement) 
to the other terminals. If the receiver’s packet loss rate is above a 
threshold (ErrorCriterion), the sender will detect that the packet 
loss rate is abnormal (Error) and assume that it is caused by the 
network capacity overload (Fault). According to the terminal’s 
type, network bandwidth and variation of the packet loss rate, the 
codec uses a set of static rules (RecoveryPolicy) to find out a 
RecoveryPlan corresponding to current State. Codec configurator 
(Effector) provides several AdaptationActions that can be used in 
the RecoveryPlan, including repair P-frames, decoder 
concealment and down speeding. During the whole process, the 
occurrence of the packet loss (NetworkUncertainty) is the main 
concern of developing and testing the VCS (TestItem).  

Second, the correctness and redundancy of the conceptual model 
are assessed by investigating if a concept appears in these case 
studies. If one concept does not appear in any case study or two 
concepts are mapped to the same element of the case study, then 
this gave a hint that the concepts may be redundant (Redundancy). 

 
Figure 8. Development and Validation Process 
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In addition, the concepts’ associations in the model are 
validated against that of actual system elements 
(Correctness). For example, Figure 2 shows that each 
PhysicalUnit at least contains one Controller. If a 
PhysicalUnit does not contains any Controller, or a 
Controller is not contained by a PhysicalUnit in a case 
study, this means the multiplicity is wrong. 

4.2 Evaluation Results 
System elements (e.g., software and hardware components, 
policies, constraints) were abstracted from specifications 
that do not contain concrete numbers for each element 
deployed in the system. We therefore only collected element 
types and for each type of elements it can have numerous 
instances. Table 5 reports the number of each concept, 
contained in the two versions of conceptual models, that is 
mapped to these element types. 

It can be seen from the table that every system comprises of 
one or more types of PhysicalUnit, containing several types 
of Sensors, Actuators and Controllers. TMS and RFID-SC 
are the simplest of the six systems, since they respectively 
use cameras (Sensors) to monitor traffic [39] and RFID scanners 
(Sensors) to monitor supply chains [40]. Besides, all the six 
systems were designed for monitoring or controlling only one 
kind of PhysicalProcesses, such as videoconferencing for VCS 
and traffic for TMS. 

Regarding self-healing, the six systems present great divergence. 
VCS and RFID-SC rely on PerformanceProbes to monitor 
performance metrics and use Thresholds to detect performance 
problems [38, 39]. EventProbe is used by TMS, RFID-SC and 
DSRL to detect Constraint violations of system behaviors. APRS, 
DSRL and ISR directly use PhysicalProcessProbes to monitor 
differences between actual variable values and its expected values 
computed from empirical reference models. 
 If Errors are detected, most of these systems employ 
ActionPolicy, i.e., finding out AdaptationActions to be executed 
for the current Situation from a set of rules. While, GoalPolicy 
and UtilityFunctionPolicy are only applied by APRS and DSRL, 
respectively. In addition, most systems change their behaviors 
(ControlEffector) to cope with 
Faults. For example, if a power 
outage is detected, SM changes 
the power delivery route to isolate 
the Fault and restore power. In 
contrast, TMS and RFID-SC 
dynamically remove or replace a 
fault component 
(ArchitectureEffector) to eliminate 
the effect of faults. VCS adjusts 
the compression ratio and buffer 
length (ParameterEffector) at 
runtime to repair a performance 
issue. 
One can see from Table 5 that 
three out of six systems (VCS, 
APRS and DSLR) have self-
learning mechanisms employed in 
Self-detection or Self-diagnosis 
behaviors. VCS and APRS apply 
a statistical analysis to learn 
distributions (Patterns) of end-to-
end delay, power transfer load and 

normal phase angle difference. These distributions can be 
considered as the criteria to detect errors. DSRL uses reinforce 
learning to learn each AdaptationAction’s effectiveness and cost, 
which is defined in a reward function [25], based on which an 
optimal sequence of actions can be selected at runtime to handle 
faults. 

Moreover, Table 6 shows the frequency of occurrence of each 
kind of Probe, RecoveryPolicy, Effector and Uncertainty. As 
shown in Table 6, PhysicalProcessProbe and ControlEffector are 
the most common Probe and Effector used by these self-healing 
CPSs. This is reasonable since their ultimate goal is to make the 
physical processes proceed consistently with what users require, 
Self-HealingCPS should assure that the PhysicalProcess behave 
in a valid scope. Thus, monitoring the state of PhysicalProcesses 
is more straightforward than capturing the state of Controllers. 
Besides, due to wear and tear and interaction with hazardous 
physical environment, hardware is more vulnerable than software. 
Hence, hardware failure is more common. When it happens, 
Controllers can either replace the faulted component with a 

Table 5. Evaluation Results 

Concept 
VCS TMS APRS RFID-SC DSRL ISR Total 

V1 
Total 

V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 
PhysicalUnit 5 5 1 1 4 4 4 4 3 3 1 1 18 18 
Sensor 2 2 1 1 3 3 1 1 5 5 4 4 16 16 
Controller 5 5 1 1 4 4 4 4 3 3 1 1 18 18 
Actuator 2 2 1 1 3 3 0 0 2 2 1 1 9 9 
PhysicalProcess 1 1 1 1 1 1 1 1 1 1 1 1 6 6 
Probe 2 2 1 1 0 3 5 5 2 5 0 4 10 20 
Fault 2 2 3 3 3 3 4 4 3 3 3 3 16 16 
ErrorCriterion 2 2 1 1 4 5 3 3 5 6 4 4 19 21 
Self-Learning 1 1 0 0 3 3 0 0 1 1  0 0 5 5 
RecoveryPolicy 1 1 1 1 1 2 1 1 1 1 1 1 7 7 
Effector 2 2 2 2 0 3 2 3 0 4 0 3 6 17 
Uncertainty 1 3 2 2 3 5 5 5 2 4 2 2 15 21 
Total /  
Case Study 

26 28 15 15 29 38 30 30 28 37 18 25 145 174 

 

Table 6. Frequency of the Occurrence of Concepts 

Concept VCS TMS APRS RFID-SC DSRL ISR Total Percentage 
Probe PerformanceProbe 2 0 0 3 0 0 5 25% 

EventProbe 0 1 0 2 2 0 5 25% 
PhysicalProcessProbe 0 0 3 0 3 4 10 50% 

RecoveryPolicy ActionPolicy 1 1 1 1 0 1 5 71% 
GoalPolicy 0 0 1 0 0 0 1 14% 
UtilityFunctionPolicy 0 0 0 0 1 0 1 14% 

Effector ParameterEffector 2 0 0 0 0 0 2 12% 
ArchitectureEffector 0 1 0 2 0 0 3 18% 
ControlEffector 0 1 3 1 4 3 12 71% 

Uncertainty SituationUncertainty 0 0 2 1 1 0 4 19% 
PhysicalProcessUncertainty 0 1 1 0 0 0 2 10% 
SensorUncertainty 0 0 1 0 0 1 2 10% 
ActuatorUncertainty 0 0 0 0 0 1 1 5% 
ProbeUncertainty 1 0 0 0 0 0 1 5% 
EffectorUncertainty 0 0 0 0 1 0 1 5% 
ControllerUncertainty 0 0 0 4 1 0 5 24% 
KnowledgeUncertainty 1 0 1 0 1 0 3 14% 
NetworkUncertainty 1 1 0 0 0 0 2 10% 

Percentage = n / N    n is subclass’ appearance num       N is class’ appearance num 



Simula Research Laboratory, Technical Report 2016-07                                                                                              May, 2016 

10 

redundant one or change its control logic for manipulation of 
PhysicalProcesses. As redundancy will increase both cost and 
physical size and it may only be used for key component, the 
adaptive control is becoming popular [43]. With the respect of 
RecoveryPolicy, ActionPolicy is dominating. This is probably due 
to the simplicity of the case studies. As it can be seen in Table 5, 
most of them only handle two or three kinds of faults. Although, 
ActionPolicy is easy to implement, it is a static policy and can 
only work in known situations, which may significantly restrict 
system’s self-healing capability when the operating environment 
is unknown.   

Unsurprisingly, just a few types of uncertainty are explicitly 
handled in the six case studies. Among them, 
SituationUncertainty and KnowledgeUncertainty attract more 
attention. This may not be typical for all self-healing CPSs, as 
different systems focus on different aspects. For example, for 
VCS, the NetworkUncertainty has significant impact on the 
videoconferencing’s quality, so VCS applies several healing 
behaviors to handle it. For APRS, unstable production of green 
power (SituationUncertainty), dynamic demand 
(SituationUncertainty) and occurrence of power outage 
(PhysicalProcessUncertainty) are the main uncertainty concerns. 

5. RELATED WORK 
After a decade’s effort, several key elements of CPSs and self-
healing system have been identified by academic and industrial 
communities and are adopted in our conceptual model. In [6], a 
CPS was defined as a set of heterogeneous physical units 
communicating via heterogeneous networks. In this definition, 
physical units are recognized as the first class objects of CPSs. 
Besides, the network is also important, as it provides the 
communication mechanism among the physical units. This 
definition is consistent with other definitions of CPSs: 
“engineered systems that are built from, and depend upon, the 
seamless integration of computational and physical components” 
[44] and “a set of physical systems controlled in a principled 
manner via engineering technologies” [45].  

Sensors and actuator are captured as interfaces between 
computational and physical components in [46]. CPSs are 
characterized by integrating computation and physical processes 
[47] and the primary goal of a CPS is to efficiently control 
physical processes [48]. The authors of [12] identified detection, 
diagnosis and recovery as the three main steps of self-healing. In 
addition, three types of recovery policies were explained and 
evaluated in [5, 49].  

To further understand self-healing CPSs, we generalized and 
abstracted concepts from the literature of CPSs and self-healing 
systems. First, Situation is identified as an important concept of 
self-healing CPSs, representing represents inherent uncertain 
events happened in the operational environment of a CPS, which 
is targeted by several approaches [50, 51]. Second, error criteria, 
adaptation actions, the classification of probes and effector were 
elicited from error detection [52] and recovery processes [12]. 
Third, according to the self-learning mechanisms used by self-
detection and self-diagnosis [53], inputs (measurement, execution 
results) and outputs (pattern, recovery policy) of self-learning 
mechanisms were defined. Fourth, inspired by goal oriented self-
healing approaches [54], goals of self-healing behaviors is 
captured in the conceptual model.  

How to cope with uncertainty is a grand challenge and a definition 
and taxonomy of uncertainty in the context of CPSs is difficult to 
find [55]. In the past, effort was mostly spent on identifying 

uncertainty sources in self-healing CPSs. The authors of [28] 
proposed a taxonomy of uncertainty sources in dynamically 
adaptive systems at the requirement, design and execution phases 
along with existing mitigation techniques for each type of 
uncertainties. Though the taxonomy is extensive and generic, it is 
not designed for a specific usage and needs to be specialized for 
specific applications. In [29], the authors gave another nine 
uncertainty sources in self-adaptive systems, which needs to be 
considered during design. As the types of uncertainties were 
extracted in an ad hoc manner, the types are not orthogonal and 
are not well structured. Whereas, we applied a component centric 
approach to build the uncertainty model. Particularly, we adopt 
the an uncertainty taxonomy (U-Model) from [10, 11]. As U-
Model gives a set of concepts related with uncertainty in CPS, it 
helped us to systematically analyze the potential uncertainties for 
self-healing CPS. For each new defined uncertainty type, it is 
mapped to the U-Model concepts, which also instantiates the U-
Model in the context of self-healing CPS. 

In summary, to fulfill their dependability requirements, CPSs are 
expected to be more autonomic, e.g., in terms of having built-in 
self-healing capabilities. However, self-healing CPSs are an 
emerging field and uncertainty in CPSs is a relevantly under-
studied subject in software engineering. Despite numerous 
approaches proposed [12, 17, 56], a conceptual model of CPSs 
and their self-healing behaviors together with uncertainty is still 
missing. We, in the paper, took the initiative and constructed such 
a conceptual model, aiming at providing a common ground for 
understanding self-healing CPSs under uncertainty and facilitating 
analyses in the future. However, we believe that this conceptual 
model is an initial attempt and must be specialized such as for 
other types of autonomic behaviors, e.g., self-configuring and 
different types of analyses such as model-based testing. 

6. CONCLUSION 
Smart Cyber-Physical Systems (CPSs) are becoming increasingly 
autonomic and thus must be able to cope with diverse 
uncertainties originating from both environment and their internal 
components. In addition, autonomic behaviors themselves induce 
uncertainties in the system and thus CPSs must have self-healing 
capabilities to deal with errors introduced by these uncertainties. 
As a first step towards understanding self-healing (one type of 
autonomic behaviors) and uncertainty in CPSs, we proposed a 
unified conceptual model comprising of the following three 
conceptual models: CPS, Self-Healing, and Uncertainty. The 
conceptual model is developed to provide a unified and 
comprehensive understanding of self-healing CPS and 
uncertainty. Based on this conceptual model, a MBT approach 
will be proposed to discover more flaws in self-healing CPS in the 
presence of uncertainty in our future work. The conceptual model 
was evaluated with six case studies from the literature and 
industry. 
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9. Appendix  

9.1 Conceptual Model of Testing 
Considering the complexity and uncertainty of Self-HealingCPS, designing and deploying systematic verification and validation methods 
for Self-HealingCPS is a big challenge. One promising way to address this challenge is to apply MBT , which provides a systematic way to 
automatically derive test cases from models. However, traditional MBT methods are typically used for testing at the design time and must 
be extended to support testing Self-HealingCPS’s FunctionalBehaviors, tightly integrated with PhysicalProcesses and runtime 
HealingBehaviors. To facilitate MBT for Self-HealingCPS, this section relates testing concepts (abstracted from the ISO/IEC 29119 
Software Testing Standard ) with the concepts from the Self-HealingCPS conceptual model. The ultimate goal is to define MBT techniques 
for testing self-healing behaviors of CPSs in the future work. 

Figure 9 presents the Testing conceptual model, whereas the details of each concept are provided in Table 4 of Appendix. A Self-
HealingCPS is the TestItem, which is tested by a set of TestCases. Each TestCase specifies the Preconditions of its execution, inputs and 
ExceptedResults. TestCases are executed in a TestEnvironment that simulates the actual operational Environment of the Self-HealingCPS. 
Such a TestEnvironment should include all facilities, hardware and software required to perform the testing of the Self-HealingCPS. In 
addition, numerous TestSituations are created by simulators, mocks or actual systems to imitate various Situations in the Self-
HealingCPS’s real operational Environment. Hence, as part of the TestEnvironment, the TestSituations are used to put the 
TestEnvironment in suitable states such that the TestCases can be executed.  

 
 
 
 
 
 
 

  

 
Figure 9. Testing Conceptual Model 
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9.2 Concept Definition 
Complete Concept Definition for CPS 

Concept Definition Attributes 
C1. Self-HealingCPS A CPS, which can autonomously detect, diagnose 

and recover from Errors (C18) 
-type [1]: The ArchitectureType of the CPS 
-environment [1]: The Environment in which the CPS 
operates 

-physicalUnit [2..*]: Two or more PhysicalUnits (C3) 
constituting the CPS 

-network [1]: The Network (C4) via which all  PhysicalUnits 
(C3)  communicate with each other 

C2. PhysicalProcess A sequence of chemical, physical, or biological 
activities for the conversion, transport, or storage 
of material or energy  

-interrelatedProcess [*]: A set of physical processes affected 
by this physical process. 

C3. PhysicalUnit 
 

A physical device that can communicate with the 
others, optionally having the computation and 
control capabilities 

-sensor [*]: A Sensor (C5) monitors the variables of the 
PhysicalProcess (C2). 

-actuator [*]: An Acutator (C6) controls the 
PhysicalProcess. 

-controller [1..*]: Controller (C7) is responsible for 
monitoring and controlling the PhysicalUnit. 

-network [1]: Network (C4) that is used for communication 
with other PhysicalUnits. 

C4. Network The medium used as the communication channel 
among PhysicalUnits (C3) 

-sender [1..*]: A set of physical units that send data via the 
Network (C4). 

-receiver [1..*]: A set of physical units that receive data 
from the Network.  

C5. Sensor A device that measures the physical variables of a 
PhysicalProcess (C2) 

-physicalProcess [1..*]: The PhysicalProcesses (C2) that the 
Sensor is supposed to monitor. 

C6. Actuator A device able to change physical quantities of a 
PhysicalProcess (C2) 

-physicalProcess [1..*]: PhysicalProcesses  (C2) that the 
Actuator is supposed to control.  

C7. Controller A software deployed on the PhysicalUnit (C3), 
controlling Sensors (C5) and Effectors (C23) 
either directly or indirectly, communicating with 
other Controllers and providing computational 
capability 

-sensor [*]: A set of sensors controlled by the Controller to 
monitor the PhysicalProcess (C2) . 

-actuator [*]: A set of actuators controlled by the Controller 
to control the PhysicalProcess (C2) . 
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Complete Concept Definition for Self-Healing CPS 

Concept Definition Attributes Constraints 
C8. Behavior Describing a sequence of 

actions executed by a Controller 
(C7) 

-fault [*]: A set of Faults (C19) in  the behavior. If 
encountered, may cause one or more Errors (C18) 
[3]. 

None 

C9. FunctionalBehavior The business logic of a 
Controller (C7) [1] 

None None 

C10. HealingBehavior A sequence of Self-Detection 
(C17), Self-Diagnosis (C20) and 
Self-Recovery (C22) actions 
aiming at the recovery of a 
Controller (C7), a PhysicalUnit 
(C3) or the whole Self-
HealingCPS (C1) from Errors 
(C18) 

-level [1]: The HierarchicalLevel (C11) specifies 
the target of HealingBehavior. 

-type [1]: The ApproachType (C12) of the 
HealingBehavior. 

-goal [1..*]: A set of Goals (C13) that the 
Controller should satisfy during its execution. 

-self-Detection [1..*]: A set of Self-Detection 
(C17) actions used to detect Errors (C18). 

-self-Diagnosis [1..*]: A set of Self-Diagnosis 
(C20) actions used to locate Fault (C19) and 
generate RecoveryPlan (C21). 

-self-Recovery [1..*]: A set of Self-Recovery 
actions used to apply the RecoveryPlan (C21). 

- If the Self-
Detection (C17) or 
Self-Diagnosis 
(C20) has Self-
Learning (C24) 
mechanisms, the 
ApproachType 
(C12) of the healing 
behavior should be 
Dynamic 

C11. HierarchicalLevel The subordination level within 
the structure of the Self-
HealingCPS (C1) [3]  

-SystemLevel: The highest level covering the 
whole Self-HealingCPS (C1) 

-PhysicalUnitLevel: The medium level with the 
scope of one PhysicalUnit (C3). 

-ControllerLevel: The lowest level with the scope 
of one Controller (C7). 

 

None 

C12. ApproachType Indicating if a HealingBehavior 
(C10) is static or dynamic. 

-Static: The kind of Behavior (C8) that is known at 
the design time and remains fixed. 

-Dynamic: The kind of Behavior (C8) that can be 
changed at the runtime. 

None 

C13. Goal “… a non-operational objective 
to be achieved by the composite 
system” [4] 

None -Goals of Controller 
(C7) (or 
PhysicalUnit) (C3) 
should conform to 
PhysicalUnit’s (C3) 
goal (or Self-
HealingCPS’s (C1) 
goal). 

C14. State A particular combination of the 
attribute values of a Controller 
(C7) [8] 

None None 

C15. Probe A system measurement 
mechanism, which observes and 
measures the States (C14) of a 
Controller (C7) [9]. 

-state [1..*]: A set of Controller’s (C7) States 
(C14) that this probe is supposed to monitor 

-measurement [1..*]: A set of Measurements (C16) 
collected by the probe. 

 

None 

C16. Measurement A value of a State variable, such 
as performance metrics 

None None 

C17. Self-Detection The action that detects Errors 
(C18) from monitored 
Measurements (C16) and 
reports the Errors (C18) to Self-
Diagnosis [12] 

-measurement [1..*]: A set of Measurements (C16) 
monitored by the Self-Detection action. 

-error [1..*]: A set of Errors (C18) detected or 
predicted by the Self-Detection action. 

-self-Learning [*]: The Self-Learning (C24) 
mechanism used by the Self-Detection to recognize 
system behavior Patterns (C25). 

None 
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Concept Definition Attributes Constraints 

C18. Error Difference between monitored 
Measurements (C16) and 
specified ones [3] 

None None 

C19. Fault The cause of an Error (C18) 
[14] 

-error [*]: A set of Errors (C18)  that the Fault 
may lead to.  

None 

C20. Self-Diagnosis The action that locates Faults 
(C19), which lead to detected 
Errors (C18), and calculates an 
appropriate RecoveryPlan (C21) 
together with RecoveryPolicy 
(C39) [12] 

-error [1..*]: The detected Errors (C18)  reported 
from Self-Detection (C17). 

-fault [1..*]: A set of Faults (C19) that may lead to 
Errors. 

-recoveryPlan [1..*]: A set of RecoveryPlans (C22) 
generated by Self-Diagnosis to repair the Fault.  

-self-Learning [*]: The Self-Learning (C24) 
mechanism used by the Self-Diagnosis to infer 
RecoveryPlan (C21). 

 

C21. RecoveryPlan A sequence of 
AdaptationActions (C33), 
aiming to recover the CPS from 
Errors (C18)  

 None None 

C22. Self-Recovery The action that applies a 
RecoveryPlan (C21) on the CPS 
[12] 

-effector [1..*]: A set of Effectors (C23) used to 
execute the RecoveryPlan.  

-recoveryPlan [1..*]: A set of RecoveryPlans (C21) 
to be executed. 

None 

C23. Effector A mechanism carrying out 
AdaptationActions (C33) [9] 

-behavior [1..*]: A set of Behaviors (C8) that can 
be adapted by the Effector. 

None 

C24. Self-Learning A mechanism that can recognize 
system behavior Patterns (C25) 
and/or infer RecoveryPlans 
(C21) from historic 
ExecutionResults (C43) 

-measurement [1..*]: A set of Measurements (C16) 
used to analyze system’s Behaviors (C8). 

-pattern [1..*]: A set of system behavior Patterns 
(C25) recognized from the Measurements (C16).  

-executionResult [1..*]: A set of ExecutionResults 
(C43) used to analyze the effect of 
RecoveryActions (C33). 

-recoveryStrategy [1..*]: A set of recovery 
strategies inferred from ExecutionResults (C43). 

 

None 
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Complete Concept Definition for Self-Healing Behavior 

Concept Definition Attributes 
C25. Pattern The mode/style of a system behavior characterized 

by a combination of Measurements (C16) 
None 

C26. ErrorCriterion The standard, rule, or test, on which a judgment of 
an Error (C18) can be based 

-goal [*]: A set of Goals (C13) used to detect Errors 
(C18). 

-pattern [*]: The captured Patterns (C25) used to detect 
Errors (C18). 

 
C27. Rule A pair of a set of preconditions and a set of actions. 

If all preconditions are satisfied, then the actions 
are executed 

Inherited from ErrorCriterion (C26) 

C28. Threshold A limit or boundary of Measurements (C16) used 
to distinguish normal and abnormal values 

Inherited from ErrorCriterion (C26) 

C29. Constraint A specification of system properties that the 
system must hold during its execution. 

Inherited from ErrorCriterion (C26) 

C30. PerformanceProbe A Probe (C15) for monitoring system’s 
performance. 

Inherited from Probe (C15) 

C31. EventProbe A Probe (C15) for monitoring events occurred in 
Self-HealingCPS (C1) 

Inherited from Probe (C15) 

C32. PhysicalProcessProbe A Probe (C15) for monitoring the state of a 
PhysicalProcess (C2) 

Inherited from Probe (C15) 

C33. AdaptationAction The runtime modification of control data, 
controlling or affecting a Controller (C7) 

-delay [1..*]: A set of possible Delay (C34) for this 
AdaptationAction to take effect 

-effect [1..*]: A set of Effects (C35) as the consequence 
of the action.  

-overhead [1..*]: A set of possible Overhead (C36) 
caused by the action. 

C34. Delay The time interval between the initiation and 
completion of an AdaptationAction (C33) 

None 

C35. Effect The change of one or more Behaviors (C8) caused 
by an AdaptationAction (C33)  

None 

C36. Overhead Extra resources and/or time used to execute 
AdaptationActions (C33), in addition to planned 
resources and/or time at the design time 

None 

 

C37. ResourceOverhead Extra resources for executing AdaptationActions 
(C33), as compared to regular CPS resource 
consumption without adaptation 

None 

 

C38. TimeOverhead Extra time for executing AdaptationActions (C33), 
as compared to regular CPS response time without 
adaptation 

None 

 

C39. RecoveryPolicy A type of formal behavioral guide for 
HealingBehavior (C10) [5] 

-adaptationAction [1..*]: A set of AdaptationActions 
(C33) referred in the RecoveryPolicy.  

C40. ActionPolicy Specifying which AdaptationAction(s) (C33) 
should be taken for a Fault (C19) [5] 

Inherited from RecoveryPolicy (C39) 

C41. GoalPolicy Specifying a set of desirable States (C14) of Self-
HealingCPS (C1), providing the target states for 
HealingBehaviors (C10) [5] 

Inherited from RecoveryPolicy (6) 

C42. UtilityFunctionPolicy Assigning each State (C14) of Self-HealingCPS 
(C1) a utility value directing the system moving 
towards states with a higher utility value [5]  

Inherited from RecoveryPolicy (6) 

C43. ExecutionResult The consequence and the effect of a RecoveryPlan 
(C21) 

None 
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 Complete Concept Definition for Testing 
Concept Definition 

C44. TestItem Self-HealingCPS (C1) that is an object of testing [6] 

C45. TestCase A set of Preconditions (C46), invoked Behaviors (C8), and ExpectedResults (C47), developed to drive 
the execution of a test item to meet test objectives [6] 

C46. Precondition The prerequisites to execute a TestCase  

C47. ExpectedResult The expected consequence of invoked Behaviors (C8) 

C48. TestEnvironment “Facilities, hardware, software, firmware, procedures, and documentation intended for or used to 
perform testing of software.” [6] 

C49. TestSituation A course of events used to simulate an actual Situation and stimulate the TestItem (C44)  

C50. TestEnvironmentSet-
upProcess 

A sequence of TestSituations (C49) for establishing and maintaining the TestEnvironment (C48) to 
execute TestCases (C45) [6] 

 


