
Simula Research Laboratory, Technical Report 2016-07 May, 2016

1

Conceptually Understanding Uncertainty in Self-Healing
Cyber-Physical Systems

Tao Ma
Simula Research Laboratory

Oslo, Norway

+47 482 49 020
taoma@simula.no

Shaukat Ali
Simula Research Laboratory

Oslo, Norway

+47 474 66 831
shaukat@simula.no

Tao Yue
Simula Research Laboratory and

University of Oslo
Oslo, Norway

 +47 404 33 125
tao@simula.no

ABSTRACT
Smart Cyber-Physical Systems (CPSs) are autonomic systems
capable of making decisions at runtime by themselves. These
systems are complex in nature and typically operate in highly
unpredictable and uncertain environments. One key autonomic
capability of such systems is to recover from failures in an
autonomic manner, referred to as self-healing. Due to the wide
range of applications of smart CPSs in our daily life, self-healing
behaviors of smart CPSs must be reliable even under uncertainty.
Uncertainty and Self-Healing in CPS, in general, are understudied
areas of research and thus as a first step towards understanding
self-healing and uncertainty, we propose a conceptual model to
understand key concepts including self-healing behaviors,
uncertainties and their relationships. Our ultimate objective is to
provide a unified understanding of these concepts, which forms a
foundation for additional analyses in the future such as testing.
We validated the conceptual model with six case studies having
self-healing behaviors from the literature and industry.

CCS Concepts
• Software and its engineering � Software creation and
management • Software development techniques � Error
handling and recovery.

Keywords
Smart Cyber-Physical Systems; Self-healing; Uncertainty.

1. INTRODUCTION
Smart Cyber-Physical Systems (CPSs) are becoming prevalent in
our daily life and their dependability is thus of utmost importance
[2]. Such systems are very complex in nature and impose novel
challenges for their design, development and testing as compared
to traditional embedded systems. First, smart CPSs are autonomic,
i.e., capable of making their own decisions during their real
operation that are difficult to predict at the design time. Second,
smart CPSs typically operate in highly unpredictable
environments. Third, uncertainty is inevitable during the operation
of smart CPSs due to new types of interactions among control,
communication, and computational components.

In this paper, we focus on one autonomic behavior of smart CPS,
that is commonly referred to as self-healing, i.e., autonomously
recovering from failures. Since both testing self-healing behaviors
and uncertainty in smart CPSs are relatively understudied areas [6,
7], this paper aims to provide a conceptual model to establish a
common understanding of the areas and their relationships. Our
ultimate goal is to use this conceptual model as a starting point to
develop novel analyses techniques for the design, development,
and testing of self-healing behaviors of smart CPSs in the future.

The conceptual model was developed in the following three
stages. In the first stage, the conceptual model for self-healing
CPSs was developed, based on the literature on CPSs and self-
healing systems. Second, we defined an uncertainty taxonomy for
self-healing behaviors by extending an existing uncertainty
conceptual model of CPSs called U-Model reported in [10, 11],
existing uncertainty taxonomies from literature, and the self-
healing conceptual model developed in the first stage. In the third
stage, the conceptual model was validated with six case studies
from the literature and industry, in terms of completeness,
correctness and redundancy.

The rest of the paper is organized as below. Section 2 gives a
running example, Section 1 shows the conceptual model and
Section 4 presents the evaluation, followed by the related work
(Section 5) and conclusion (Section 6).

2. RUNNING EXAMPLE
An Automatic Power Restoration System (APRS) [13] is the
running example that we will use throughout the paper to explain
the conceptual model. The key self-healing functionality of APRS
is to timely detect electricity failures and restore power supply to
affected normal segments without electricity overloading. As
shown in Figure 1, in APRS, the power distribution grid is divided
into different “teams” bounded by the IntelliDevices. Every
IntelliDevice is a compound electricity device, which is controlled
by an embedded controller. Via wireless network, the controller
periodically reports current, voltage and phasor angle

Figure 1. Running Example - Automatic Power Restoration

System (APRS)

Simula Research Laboratory, Technical Report 2016-07 May, 2016

2

measurements to the team’s “coach”, which is a regional
controller in the APRS. Based on the collected data, the coach
captures the state of power distribution within the team and shares
it with other coaches through public or dedicated networks. By
this approach, every coach can calculate the topology of the grid
and infer the excess power capacity of its neighbor team. This
information forms the foundation for power restoration. Whenever
a coach detects a line outage, it utilizes the real-time data to locate
the fault. Then it calculates which IntelliDevices should interrupt
to isolate the fault and sends instructions to them. After fault
isolation, several not faulted teams may suffer power loss due to
the interruptions. For each of them, its coach will search for an
alternative power source that has sufficient excess power
capability to compensate its team’s power loss and transfer the
power load to the first found one.

During this process, some more sophisticated model-based [15]
and process history based methods [16] can be used by coaches to
detect faults earlier to prevent catastrophic failures. For example,
once a loss of power distribution synchronization is detected
based on phasor angle measurement, instead of waiting for a
blackout, coaches can cooperate to rebalance the power and
eliminate the causes of desynchronization.

3. THE CONCEPTUAL MODEL
In this section, we present the conceptual model in three parts: the
CPS conceptual model, the self-healing conceptual model and the
uncertainty conceptual model, which are discussed in separate
subsections.

3.1 The CPS Conceptual Model
A conceptual model of CPSs is shown in Figure 2 as a class
diagram, whereas details of each concept are presented in Table 1.
A Self-HealingCPS can be seen as a collection of heterogeneous,
distributed and networked PhysicalUnits put together to control or
monitor PhysicalProcesses, e.g., power distribution process in the
APRS running example (Figure 1). Such a CPS often has its
architecture being centralized, decentralized or hybrid.
Controllers are the core elements of a PhysicalUnit, providing the
control logic and computation capabilities to the PhysicalUnit and
communicate with other Controllers owned by other
PhysicalUnits via the Network. Meanwhile, a Controller monitors
and controls the PhysicalProcesses optionally via Sensors and
Actuators in the same PhysicalUnit or through that of other
PhysicalUnits. Due to the stochastic nature of the Environment,
random events may occur and affect the PhysicalProcesses. For
example, in the APRS, both power generation and consumption
are changing, which affects the power distribution
process. Changes in the power generation and
consumption are abstracted as Situations in the
conceptual model.

3.2 The Self-Healing Conceptual
Model
The conceptual model is presented in Figure 3 as a
class diagram, whereas details of each concept are
presented in Table 2 for reference.

In a CPS, both hardware and software may have
fault tolerant capabilities. For hardware, fault
tolerance is typically achieved via introducing
redundant hardware that has limited adaptive
capabilities at the runtime. In contrast, software

can be reconfigured and modified, thus in the context of Self-
Healing CPSs, Controllers provide such self-healing capabilities,
as shown in Figure 3.
Self-healing systems are defined by Debanjan Ghosh in [17] as “a
self-healing system should recover from the abnormal (or
“ unhealthy”) state and return to the normative (“ healthy”)
state, and function as it was prior to disruption”. This requires a
Controller to detect the occurrence of Errors in a timely fashion
(via Self-Detection capabilities of its HealingBehaviors), and react
to the Errors to possibly restore its normal operation. Hence, a
Controller is equipped with Probes and Effectors to make itself
self-aware and adaptable. Probe and Effector are two types of
interfaces that are used to inquire Controller’s States and adjust
Controller’s Behaviors, respectively.
As shown in Figure 3, a Controller has two types of Behaviors: 1)
FunctionalBehaviors implementing business requirements of the
Controller; 2) HealingBehaviors that use Probes and Effectors to
monitor and maintain the correctness of FunctionalBehaviors or
HealingBehaviors. HealingBehaviors are classified as static if
they are fixed and defined at the design time, else they are
classified as dynamic. Besides, HealingBehaviors are
implemented at different hierarchical levels, e.g., healing only one
function of the Controller, (ControllerLevel), several functions of
a PhysicalUnit (PhysicalUnitLevel), or the whole Self-healingCPS
(SystemLevel).
One prerequisite of realizing HealingBehaviors is the accurate
specification of each component’s Goals in terms of its
performance and/or functional requirements. Moreover, Goals at
the system level can be decomposed into several sub-goals at the
PhysicalUnitLevel and further at the ControllerLevel. Eliciting
and specifying goals, which have been broadly studied in
requirements engineering community, are however out of the
scope of this paper.

Figure 2. Self-Healing CPS

Figure 3. Self-Healing Conceptual Model (Overview)

Simula Research Laboratory, Technical Report 2016-07 May, 2016

3

HealingBehaviors have three capabilities: Self-Detection, Self-
Diagnosis and Self-Recovery. First, a Self-Detection behavior
evaluates the state of a Controller according to Measurements
collected via Probes. If an Error is detected, it means that the
state of the Controller has deviated from its correct state.
Afterwards, a Self-Diagnosis behavior is alerted to isolate the
cause of the Error followed by calculating a RecoveryPlan at one
time for recovery. Finally, a Self-Recovery behavior executes the
RecoveryPlan via Effectors at a given point of time.
The following sections explain the Self-Detection, Self-Diagnosis
and Self-Recovery capabilities in details.

3.2.1 The Self-Detection Conceptual Model
Figure 4 presents the Self-Detection model, whereas Table 3
provides details of each concept. If Self-Detection cannot detect
Errors in a timely manner, it would be too late to respond to the
Errors and therefore will fail to recover back to the normal state.
The timely detection of Errors is even more critical due to the
hybrid nature of CPSs. A PhysicalProcess is continuous; whereas
the computation performed by a Controller is discrete. A
controller must discretize the continuous process in appropriate
intervals to avoid missing the detection of Errors. If the interval is
too long, the detection of an Error may be missed; otherwise if
the interval is too small, the senor may not
be able to obtain Measurements and will
miss the Error.

Probes can be classified into
PerformanceProbes, EventProbes and
PhysicalProcessProbes. PerformanceProbes
are responsible for monitoring system’s
performance, such as response time,
throughput and availability. These

performance metrics are used to verify system’s performance
requirements. While, an EventProbe is in charge of monitoring a
Controller’s behavior described as a trace of events such as
function calls and exceptions. This trace can be checked against
system’s properties, which are usually in two forms: 1) constraints
based on formalisms such as temporal logic [18], state machine
[19]. 2) rule based specification using Domain Specific Language
(DSL) [20]. In contrast, a PhysicalProcessProbe directly uses
sensor data to monitor the PhysicalProcesses such as the Self-
Detection behavior can decide if the PhysicalProcess is
proceeding as expected.

A detection process starts with Probes, which collect their
corresponding Measurements periodically or triggered by events.
The Measurements include performance metrics, event occurrence
(e.g., function calls, exceptions) and physical quantities values of
PhysicalProcesses, which reflect the Controller’s state from the

performance, functional and external aspects. Self-Detection then
checks the Measurements against the ErrorCriteria, which is
typically in the form of constraints or threshold values. In the field
of online monitoring, constraints specifying system’s properties
(e.g., invariants and behavior’s pre/post-conditions) have been
broadly used to detect inconsistent behaviors [18]. For example,

Figure 4. Self-Detection Conceptual Model

Table 1. Concepts about CPS

Concept Definition Example
C1. Self-

HealingCPS
A CPS, which can autonomously detect,
diagnose and recover from Errors (C18)

APRS is a Self-HealingCPS, since it is a distributed control system and it
can detect, diagnose, recover or partially repair electricity failures.

C2. PhysicalProcess A sequence of chemical, physical, or
biological activities for the conversion,
transport, or storage of material or
energy

In the context of APRS, the PhysicalProcess it needs to monitor and
control is power distribution.

C3. PhysicalUnit

A physical device that can communicate
with the others, optionally having the
computation and control capabilities

“Coach” and IntelliDevice are the two major kinds of PhysicalUnit in
APRS. IntelliDevices have sensing and actuation capabilities, but they
only have limited computation ability and only have local observations.
Whereas, coaches have more powerful computation ability. They collect
data from IntelliDevices and share this data with each other to build a
global view of power distribution. Based on this, coaches direct each
IntelliDevice’s actuation behavior to achieve an optimal power
distribution.

C4. Network The medium used as the communication
channel among PhysicalUnits (C3)

Usually the PhysicalUnits in APRS use wireless network to communicate
with others.

C5. Sensor A device that measures the physical
variables of a PhysicalProcess (C2)

Typically IntelliDevices are instrumented with current, voltage and
phasor angle sensors to monitor the power distribution states.

C6. Actuator A device able to change physical
quantities of a PhysicalProcess (C2)

The Actuators used by IntelliDevices are different kinds of switch, which
can change the topology of power grid.

C7. Controller A software deployed on the PhysicalUnit
(C3), controlling Sensors (C5) and
Effectors (C23) either directly or
indirectly, communicating with other
Controllers and providing computational
capability

Both coach and IntelliDevice have Controllers, which are in charge of
task execution and communication. To differentiate PhysicalUnits and its
Controllers, the controllers of coach and IntelliDevice are called coach
controller and IntelliDevice controller respectively.

Simula Research Laboratory, Technical Report 2016-07 May, 2016

4

in the APRS, a line flow invariant is that none of the transition
lines in the distribution network are overloaded. When a line
outrage happens, the power load on the other lines will increase to

compensate it and may exceed their transfer capabilities. In this
case, the invariant is violated, which means an Error has occurred.

Table 2. Concepts about Self-Healing

Concept Definition Example
C8. Behavior Describing a sequence of actions executed by a

Controller (C7)
The IntelliDevice controller’s Behaviors are reading current,
voltage and phasor angle measurements and invoking switch
operation.

C9. FunctionalBehavior The business logic of a Controller (C7) [1] The FunctionalBehavior of coach controllers are scheduled
power grid manipulation, which is defined manually for
normal distribution conditions.

C10. HealingBehavior A sequence of Self-Detection (C17), Self-Diagnosis
(C20) and Self-Recovery (C22) actions aiming at the
recovery of a Controller (C7), a PhysicalUnit (C3) or
the whole Self-HealingCPS (C1) from Errors (C18)

The HealingBehavior of coach controllers are started from
electricity failure detection to fault isolation and ended with
completion of recovery executions.

C11. HierarchicalLevel The subordination level within the structure of the
Self-HealingCPS (C1) [3]

The HierarchicalLevel of coach controllers’ self-healing
behaviors is system level, which aims at enhance power
supply reliability of the whole distribution network.

C12. ApproachType Indicating if a HealingBehavior (C10) is static or
dynamic.

Since coach controllers detect, isolate and recover electricity
distribution errors based on real time data instead of execute
predefined process, the ApproachType of coach controller is
dynamic.

C13. Goal “… a non-operational objective to be achieved by the
composite system” [4]

The Goal of APRS is to enhance power distribution
reliability, which can be decomposed into two sub-goals:
reducing blackout time and power restoration delay.

C14. State A particular combination of the attribute values of a
Controller (C7) [8]

The states of a coach controller are defined by the tasks they
are currently executing and phases of tasks they are staying.

C15. Probe A system measurement mechanism, which observes
and measures the States (C14) of a Controller (C7)
[9].

Coach controllers use physical process probes to directly
monitor the state of power distribution, by which to evaluate
the correctness of their instructions to IntelliDevices.

C16. Measurement A value of a State variable, such as performance
metrics

Three types of Sensor correspond to three Measurements:
current, voltage and phasor angle.

C17. Self-Detection The action that detects Errors (C18) from monitored
Measurements (C16) and reports the Errors (C18) to
Self-Diagnosis [12]

A coach controller’s Self-Detection action is that it utilizes
model based or process history based fault detection
algorithms to analyze real time power distribution data.

C18. Error Difference between monitored Measurements (C16)
and specified ones [3]

For power distribution network, one of the most common
Errors is line outage.

C19. Fault The cause of an Error (C18) [14] The Faults lead to line outage may be power imbalance,
short circuit or overloading, etc.

C20. Self-Diagnosis The action that locates Faults (C19), which lead to
detected Errors (C18), and calculates an appropriate
RecoveryPlan (C21) together with RecoveryPolicy
(C39) [12]

The Self-Diagnosis of a coach controller is achieved by
using model based reasoning or data driven learning
algorithms based on historic and real time Measurements.

C21. RecoveryPlan A sequence of AdaptationActions (C33), aiming to
recover the CPS from Errors (C18)

For a coach controller, a RecoveryPlan can be a set of
IntelliDevice instructions for power rebalance or a sequence
of actions for power restoration.

C22. Self-Recovery The action that applies a RecoveryPlan (C21) on the
CPS [12]

The Self-Recovery of a coach controller is to instruct
IntelliDevices to execute the actions according to the
RecoveryPlan.

C23. Effector A mechanism carrying out AdaptationActions (C33)
[9]

The Effectors used by coach controllers are control effectors,
which can trigger coach controller to generate a new
topology for the power distribution network in order to
repair the detected Errors.

C24. Self-Learning A mechanism that can recognize system behavior
Patterns (C25) and/or infer RecoveryPlans (C21)
from historic ExecutionResults (C43)

A coach controller’s Self-Learning is the data driven
learning algorithm, which help coach controller abstract key
features of the physical process and use them to detect and
diagnose faults.

Simula Research Laboratory, Technical Report 2016-07 May, 2016

5

Residual thresholds and performance metric
thresholds are another kind of criteria.
Comparing a threshold with an actual
performance or a residual between an actual
output and the expected can directly detect
undesired behaviors. However, for some
dynamic systems including Self-healingCPSs,
the variation of metrics is very large due to
severe environment changes. Therefore, it is
difficult to set thresholds at the design time.
Whereas, a Self-Learning mechanism can
alleviate this problem, under the assumption
that normal behaviors appear much more
frequently than abnormal ones. A self-
learning mechanism can cluster monitored Measurements within
the most recent period to infer normal behavior Patterns under the
current Situation [21].

3.2.2 The Self-Diagnosis Conceptual Model
Figure 5 shows the Self-Diagnosis conceptual model, whereas
Table 3 provides details of each concept. Self-Diagnosis locates
Faults leading to detected Errors, determines types and locations
of the Faults, and decides which AdaptationActions to take as the
RecoveryPlan to handle the Faults, directed by RecoveryPolicy.

Each AdaptationAction, provided by Effectors, can be considered
as a variable point of the system, which enables reconfiguration
and adaptation at runtime. Different AdaptationActions have
different Effects on the CPS, and may have different Overheads
and Delays. The Self-Diagnosis behavior has to trade off between
adaptation benefits and cost in terms of time and/or resource
consumption (i.e., TimeOverhead and ResourceOverhead). Which
AdaptationActions to take at runtime is determined by recovery
policies.
In the literature, there are three well-known policies [5]:
ActionPolicy, GoalPolicy and UtilityFunctionPolicy. ActionPolicy
can be seen as a pair in the form of <condition, action>. If the
condition is satisfied, then a corresponding action is executed [22].
GoalPolicy specifies a set of desired states, which requires that a
sequence of AdaptationActions in a RecoveryPlan should be taken
to make the system from the current faulty state to a desired state
[23]. UtilityFunctionPolicy defines an objective function
containing multiple objectives of the system to guide the system
to move towards a desired state in terms of utility values [24].
Because of the tight integration of a CPS with its environment,
and its stochastic nature, developing a complete recovery strategy
at the design time is non-trivial if not impossible. Similarly, as for
detection, Self-Diagnosis can benefit from Self-Learning. By
analyzing every ExecutionResult of a RecoveryPlan, Self-
Learning mechanism can infer which combination of
AdaptationActions is more effective to repair a kind of Faults,
which can be directly used as the RecoveryPolicy by the Self-
Diagnosis actions [25].

3.2.3 The Self-Recovery Conceptual Model.
Figure 6 shows the conceptual model of Self-Recovery. Self-
Recovery executes RecoveryPlans via Effectors. Since Effectors
adapt system’s behaviors at runtime, Self-Recovery behaviors
need to assure that runtime adaptations do not conflict with
neither FunctionalBehaviors of a Controller nor other adaptations.
One way to avoid such conflicts is to explicitly design and
implement preadaptation and post-adaptation steps in the recovery
process. In the preadaptation step, all functional components
affected by the adaptations need to be hanged up and blocked

from the others. After the completion of applying a RecoveryPlan,
these components are set back to normal.
Effectors used by Self-Recovery can be classified into three types.
One is ParameterEffector that can adjust system components’
parameters [26]. The second type is ArchitectureEffector, which
adds, removes or replaces system components [27]. The last type
is ControlEffector, which is in charge of changing
FunctionalBehavior of a Controller in response to error
conditions. These three types of Effectors can be achieved through
aspect-oriented programming, reflection or component based
design [1].

3.3 The Uncertainty Conceptual Model
Uncertainty is intrinsic in the Self-HealingCPS due to its tight
integration with PhysicalProcesses and runtime HealingBehaviors.
Hence, various types of potential uncertainties should be studied
and analyzed in order to establish the confidence that the self-
healing CPSs can eventually be able to deal with such
uncertainties in a graceful manner during their operation. In this
section, we provide a taxonomy of uncertainties specifically for
self-healing based on the uncertainty conceptual model for CPS
(U-Model) defined in [10, 11].

Figure 7 presents the taxonomy of self-healing related
uncertainties along with its association with the Uncertainty
concept from the U-Model [10, 11]. The U-Model defines
uncertainty (lack of confidence) in a subjective way, i.e.,
“uncertainty is modeled as a state (i.e., worldview) of some agent
or agency – henceforth referred to as a BeliefAgent – that, for
whatever reason, is incapable of possessing complete and fully
accurate knowledge about some subject of interest. Since it lacks
perfect knowledge, a BeliefAgent possesses a set of subjective
Beliefs about the subject.” [10, 11]. As shown in Figure 7, an
uncertainty may have an associated Pattern, Locality, Effect,
Measurement, Risk, and Lifetime as described in [10] that are once
again applicable to specialized classes of uncertainties defined for
Self-HealingCPSs. Generally, uncertainty is classified into five
classes: Occurrence, Content, Time, GeographicalLocation and
Environment [10, 11]. Notice that because of the association
between Self-HealingCPSUncertainty and Uncertainty, each
category of self-healing uncertainty can be linked to one or more
types of these uncertainties. Below, we provide the taxonomy of
uncertainties related to self-healing.

Figure 6. Self-Recovery Conceptual Model

Figure 5. Self-Diagnosis Conceptual Model

Simula Research Laboratory, Technical Report 2016-07 May, 2016

6

 Based on the various constituting components of Self-
HealingCPS, i.e., Sensors, Controllers, Actuators, Probes,
Effectors and Networks, which, at the same time, are influenced

by three components: PhysicalProcesses, Knowledge, Situations,
we derived nine types of uncertainties, each of which corresponds
to one component as shown in Figure 7. Table 4 gives the
relations between Self-HealingCPSUncertainty and the

Table 3. Concepts about Healing Behavior

Concept Definition Example
C25. Pattern The mode/style of a system behavior characterized

by a combination of Measurements (C16)
In the context of APRS, a Pattern can be a trend of
phasor angle or voltage change under a specific kind of
condition.

C26. ErrorCriterion The standard, rule, or test, on which a judgment of
an Error (C18) can be based

For an IntelliDevice, its ErrorCriteria are predefined
valid current, voltage scopes.

C27. Rule A pair of a set of preconditions and a set of actions.
If all preconditions are satisfied, then the actions
are executed

A supervised learning algorithm, e.g., support vector
machine (SVM), can use history process data to
associate attributes with different types of faults, in the
form of rule such as “x1 > a && x2 < b implies A fault”

C28. Threshold A limit or boundary of Measurements (C16) used
to distinguish normal and abnormal values

A predefined minimum and maximum value for current.

C29. Constraint A specification of system properties that the
system must hold during its execution.

A Constraint can be a linear temporal logic expression,
“no P before Q”, where P and Q are both events.

C30. PerformanceProbe A Probe (C15) for monitoring system’s
performance.

Timely repairing a fault or power restoration is essential
for APRS, hence timer is used as a PerformanceProbe to
evaluate the coach controller’s response time.

C31. EventProbe A Probe (C15) for monitoring events occurred in
Self-HealingCPS (C1)

A fault interruption event publisher is used as a
EventProbe by IntelliDevices to inform coach controllers
that a fault has occurred.

C32. PhysicalProcessProbe A Probe (C15) for monitoring the state of a
PhysicalProcess (C2)

For coach controllers, PhysicalProcessProbes are the
interfaces that enable them get access to IntelliDevices’
sensor data.

C33. AdaptationAction The runtime modification of control data,
controlling or affecting a Controller (C7)

AdaptationActions that can be used by coach controllers
to handle power distribution faults are the switch open
and close instructions to the IntelliDevices.

C34. Delay The time interval between the initiation and
completion of an AdaptationAction (C33)

The Delay of a switch open instruction is the amount of
time from emitting it by a coach controller until the
completion of the instruction.

C35. Effect The change of one or more Behaviors (C8) caused
by an AdaptationAction (C33)

The Effect of a switch open operation is the current,
voltage and phsor angle differences between before and
after the operation.

C36. Overhead Extra resources and/or time used to execute
AdaptationActions (C33), in addition to planned
resources and/or time at the design time

The Overheads of a switch open operation are the
prerequisite operations or post operations of this action,
e.g., after the switch is opened, some other switches may
need to be closed to restore the power supply.

C37. ResourceOverhead Extra resources for executing AdaptationActions
(C33), as compared to regular CPS resource
consumption without adaptation

One of the ResourceOverheads of a switch open
operation is the extra power capability used to restore the
power.

C38. TimeOverhead Extra time for executing AdaptationActions (C33),
as compared to regular CPS response time without
adaptation

The TimeOverhead of a switch open operation is the
time that is spent by these post operations.

C39. RecoveryPolicy A type of formal behavioral guide for
HealingBehavior (C10) [5]

See below.

C40. ActionPolicy Specifying which AdaptationAction(s) (C33)
should be taken for a Fault (C19) [5]

For each types of repairable fault, coach controller has a
corresponding repair plan.

C41. GoalPolicy Specifying a set of desirable States (C14) of Self-
HealingCPS (C1), providing the target states for
HealingBehaviors (C10) [5]

Operator defines a stable condition for the power
distribution process. As soon as a coach controller
detects the dissatisfactory of that condition, it should
take actions to bring the process back.

C42. UtilityFunctionPolicy Assigning each State (C14) of Self-HealingCPS
(C1) a utility value directing the system moving
towards states with a higher utility value [5]

Electricity from different power source has different
cost. The cost can serves as the UtilityFunctionPolicy
and directs coaches to construct a most cost-efficient
power distribution network.

C43. ExecutionResult The consequence and the effect of a RecoveryPlan
(C21)

The resulting current, voltage and phasor angle values
after the recovery plan has been exected.

Simula Research Laboratory, Technical Report 2016-07 May, 2016

7

uncertainty taxonomy (U-Model). The
first column lists the self-healing related
uncertainties, and the second to the fifth
columns show the generic types of
uncertainties from the U-Model, whereas
the last column shows a few examples of
the effects of the uncertainties. Notice
that the list of effects is by no means
complete and just provides examples for
each type. In addition, due to space
limitation, mapping to the other
attributes of uncertainties such as Pattern
and Locality from the U-Model is also
omitted. It is worth mentioning that we
present an initial high level classification
of uncertainties in self-healing CPSs that
we plan to further extend in the future at
more fine-grained level.

The first type is SituationUncertainty
arising from the environment of a Self-
HealingCPS. A SituationUncertainty is
the uncertainty of a belief about whether,
when, where, and in which context a
Situation will happen and which
Situation, corresponding to Occurrence,
Time, GeographicalLocation, Environment and Content
Uncertainty respectively. Two effects may be caused by a
SituationUncertainty. One is uncertain physical environment
condition change (e.g., weather, temperature). The other one is
unpredictable interactions with other agents or systems (e.g.,
power plant and power consumers in APRS).

The second type is PhysicalProcessUncertainty, which represents
the Uncertainty about the characteristics of PhysicalProcesses.
For example, in the APRS, Uncertainty exists in the mathematical
functions of current and voltage, owing to the unknown resistance
of the electricity cable. Due to the dynamic nature of

PhysicalProcesses, their characteristics are constantly changing.
Hence, the occurrence and time of the changes are not relevant.
Instead, the content of the changes (ContentUncertainty) is more
important to be captured by Self-HealingCPS to timely adapt its
behaviors.

The third one is SensorUncertainty, which reflects the uncertain
attributes of a sensor, including accuracy (Content), lifetime
(Time), malfunction (Occurrence), deployed location and
environment (GeographicalLocation and Environment). A few
possible effects of these include measurement errors and sensor

failures as shown in Table 4.
The fourth type is
ActuatorUncertainty. Similar with
Sensor, the Content (accuracy),
Occurrence (malfunction), Time
(execution time of an actuation),
GeographicalLocation (instructed
position) and Environment
(operation context) uncertainties are
also applicable to Actuators and
they may cause the Actuations
executed by Actuators to deviate
from a standard one or lead to an
actuator failure.

The fifth and sixth are Probe and
Effector uncertainties, which are
similar with Sensor and Actuator
uncertainties from the control
perspective. However, Probes and
Effectors are software instead of
hardware and thus do not have
direct relationship with
GeographicalLocationUncertainty.

Probe or Effector failures are
examples of the effects of the probe
and effector related uncertainties.

The seventh type is

Table 4. Mappings to the U-Model concepts

Uncertainty
Classes

U-Model Concepts

Occurrence Content Time Geographical
Location Environment Effect

Situation
Uncertainty √ √ √ √ √ Environment change

External interaction
PhysicalProcess
Uncertainty × √ × × × Characteristics of physical process

change

Sensor
Uncertainty √ √ √ √ √

Measurement uncertainty
Measurement error
Sensor failure

Actuator
Uncertainty √ √ √ √ √ Actuation deviation

Actuator failure

Probe
Uncertainty √ √ √ × √

Measurement uncertainty
Measurement error
Probe failure

Effector
Uncertainty √ √ √ × √ Effectuation failure

Controller
Uncertainty √ √ √ × √

Undefined behavior
Unexpected behavior
Indeterminate behaviors
Elusive execution time
and resource consumption

Knowledge
Uncertainty √ √ √ × × Incorrect awareness

Incorrect assumption
Network
Uncertainty √ √ √ × √ Compromised QoS

 √ is type of × is not type of

Figure 7. Uncertainty Conceptual Model

Simula Research Laboratory, Technical Report 2016-07 May, 2016

8

ControllerUncertainty, which represents uncertain
Behaviors of a controller. Due to the missing
knowledge about a Controller’s requirements, design,
implementation, underlying platform and
interconnection with other Controllers, the actual
behavior of a Controller (Content, Occurrence),
execution time (Time) and context (Environment) of
that Behavior are uncertain. This leads to undefined,
unexpected, and indeterminate behaviors in addition
to unpredictable execution time and resource
consumption. Undefined behaviors are the ones that
are not specified in requirements, unexpected
behaviors are the results of incorrect design or
implementation, i.e., the actual behaviors do not
satisfy controllers’ requirements, whereas
indeterminate behaviors are the ones that intentionally
use some sort of randomized algorithms to make
choices such as Genetic algorithms. Time and
resource are key factors in CPS, as many control
actions have time requirements and resources are
limited.

The eighth is KnowledgeUncertainty, including
uncertain system and context knowledge, such as
States and Patterns. As self-awareness and context-
awareness are the prerequisites of self-healing,
gaining the knowledge is essential, but also
challenging for Self-HealingCPS. Because of the
changing nature of CPS and environment, the knowledge is also
evolving, which further increases the uncertainty. The uncertain
knowledge may directly lead to wrong assumptions and incorrect
awareness about the system or its environment, due to the wrong
decisions based on the uncertain knowledge.

The last one is NetworkUncertainty. Suffered from dynamic
traffic load (Environment), the networks’ performance, including
network latency, jitter and packet loss rate (Occurrence, Time and
Content), keeps on changing, which may dramatically impact the
quality of service of a system.

4. EVALUATION
Section 4.1 illustrates the development and validation process of
the conceptual model, followed by the evaluation results (Section
4.2).

4.1 Development and Validation Process
Figure 8 shows the development and validation process of the
conceptual model, which has four stages. The first stage is the
development of the Self-Healing CPS conceptual model, based on
the literature of self-healing and CPSs (I1, I2), most of which will
be explained in Section 5. The key output is the initial version of
the conceptual model (O1). Then, based on the existing
uncertainty literature in [10, 11, 28, 29] (I3), and an existing
uncertainty conceptual model for CPS, i.e., U-Model [10, 11], the
second stage extends the initial conceptual model with uncertainty
concepts and constructs the complete self-healing CPS model with
uncertainties (O2). After that, several CPS and self-healing system
architectures or frameworks [9, 30-37] (I4) are utilized by the
third stage to refine the derived conceptual model and construct
the conceptual model v2.0 (O3). The last step evaluates the
conceptual model v2.0 with the six case studies from the industry
and literature (I5).

The six systems are Videoconferencing System (VCS) developed
by Cisco, Norway and used in our previous research [38], Traffic
Monitoring System (TMS) [39], Radio-frequency identification

(RFID) supply chain (RFID-SC) [40], Distributed Systems
Research Lab (DSRL) [41] Intelligent Service Robot (ISR) [42]
and APRS (also used as running example in this paper). We
evaluated the conceptual model in terms of its completeness,
correctness and redundancy.

First, to check the model’s completeness, all constituted elements
of the six systems were abstracted from their specifications,
followed by mapping them to the concepts of our conceptual
model. If there was one element that couldn’t be mapped to any
concept, it means the model is incomplete. Taking VCS as an
example, VCS consists of several videoconferencing terminals
(PhysicalUnit) and conference conductors (PhysicalUnit) and its
goal is to enable high quality videoconferencing
(PhysicalProcess) among multiple participants. A conference
manager uses a voice sensor (Sensor) to decide if a speaker’s
voice needs to be amplified using a voice amplifier (Actuator).
Each videoconferencing terminal of VCS is equipped with a Real-
time Transport Control Protocol (RTCP) reporter (Probe), which
periodically reports the receiver’s packet loss rate (Measurement)
to the other terminals. If the receiver’s packet loss rate is above a
threshold (ErrorCriterion), the sender will detect that the packet
loss rate is abnormal (Error) and assume that it is caused by the
network capacity overload (Fault). According to the terminal’s
type, network bandwidth and variation of the packet loss rate, the
codec uses a set of static rules (RecoveryPolicy) to find out a
RecoveryPlan corresponding to current State. Codec configurator
(Effector) provides several AdaptationActions that can be used in
the RecoveryPlan, including repair P-frames, decoder
concealment and down speeding. During the whole process, the
occurrence of the packet loss (NetworkUncertainty) is the main
concern of developing and testing the VCS (TestItem).

Second, the correctness and redundancy of the conceptual model
are assessed by investigating if a concept appears in these case
studies. If one concept does not appear in any case study or two
concepts are mapped to the same element of the case study, then
this gave a hint that the concepts may be redundant (Redundancy).

Figure 8. Development and Validation Process

Simula Research Laboratory, Technical Report 2016-07 May, 2016

9

In addition, the concepts’ associations in the model are
validated against that of actual system elements
(Correctness). For example, Figure 2 shows that each
PhysicalUnit at least contains one Controller. If a
PhysicalUnit does not contains any Controller, or a
Controller is not contained by a PhysicalUnit in a case
study, this means the multiplicity is wrong.

4.2 Evaluation Results
System elements (e.g., software and hardware components,
policies, constraints) were abstracted from specifications
that do not contain concrete numbers for each element
deployed in the system. We therefore only collected element
types and for each type of elements it can have numerous
instances. Table 5 reports the number of each concept,
contained in the two versions of conceptual models, that is
mapped to these element types.

It can be seen from the table that every system comprises of
one or more types of PhysicalUnit, containing several types
of Sensors, Actuators and Controllers. TMS and RFID-SC
are the simplest of the six systems, since they respectively
use cameras (Sensors) to monitor traffic [39] and RFID scanners
(Sensors) to monitor supply chains [40]. Besides, all the six
systems were designed for monitoring or controlling only one
kind of PhysicalProcesses, such as videoconferencing for VCS
and traffic for TMS.

Regarding self-healing, the six systems present great divergence.
VCS and RFID-SC rely on PerformanceProbes to monitor
performance metrics and use Thresholds to detect performance
problems [38, 39]. EventProbe is used by TMS, RFID-SC and
DSRL to detect Constraint violations of system behaviors. APRS,
DSRL and ISR directly use PhysicalProcessProbes to monitor
differences between actual variable values and its expected values
computed from empirical reference models.
 If Errors are detected, most of these systems employ
ActionPolicy, i.e., finding out AdaptationActions to be executed
for the current Situation from a set of rules. While, GoalPolicy
and UtilityFunctionPolicy are only applied by APRS and DSRL,
respectively. In addition, most systems change their behaviors
(ControlEffector) to cope with
Faults. For example, if a power
outage is detected, SM changes
the power delivery route to isolate
the Fault and restore power. In
contrast, TMS and RFID-SC
dynamically remove or replace a
fault component
(ArchitectureEffector) to eliminate
the effect of faults. VCS adjusts
the compression ratio and buffer
length (ParameterEffector) at
runtime to repair a performance
issue.
One can see from Table 5 that
three out of six systems (VCS,
APRS and DSLR) have self-
learning mechanisms employed in
Self-detection or Self-diagnosis
behaviors. VCS and APRS apply
a statistical analysis to learn
distributions (Patterns) of end-to-
end delay, power transfer load and

normal phase angle difference. These distributions can be
considered as the criteria to detect errors. DSRL uses reinforce
learning to learn each AdaptationAction’s effectiveness and cost,
which is defined in a reward function [25], based on which an
optimal sequence of actions can be selected at runtime to handle
faults.

Moreover, Table 6 shows the frequency of occurrence of each
kind of Probe, RecoveryPolicy, Effector and Uncertainty. As
shown in Table 6, PhysicalProcessProbe and ControlEffector are
the most common Probe and Effector used by these self-healing
CPSs. This is reasonable since their ultimate goal is to make the
physical processes proceed consistently with what users require,
Self-HealingCPS should assure that the PhysicalProcess behave
in a valid scope. Thus, monitoring the state of PhysicalProcesses
is more straightforward than capturing the state of Controllers.
Besides, due to wear and tear and interaction with hazardous
physical environment, hardware is more vulnerable than software.
Hence, hardware failure is more common. When it happens,
Controllers can either replace the faulted component with a

Table 5. Evaluation Results

Concept
VCS TMS APRS RFID-SC DSRL ISR Total

V1
Total

V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2 V1 V2
PhysicalUnit 5 5 1 1 4 4 4 4 3 3 1 1 18 18
Sensor 2 2 1 1 3 3 1 1 5 5 4 4 16 16
Controller 5 5 1 1 4 4 4 4 3 3 1 1 18 18
Actuator 2 2 1 1 3 3 0 0 2 2 1 1 9 9
PhysicalProcess 1 1 1 1 1 1 1 1 1 1 1 1 6 6
Probe 2 2 1 1 0 3 5 5 2 5 0 4 10 20
Fault 2 2 3 3 3 3 4 4 3 3 3 3 16 16
ErrorCriterion 2 2 1 1 4 5 3 3 5 6 4 4 19 21
Self-Learning 1 1 0 0 3 3 0 0 1 1 0 0 5 5
RecoveryPolicy 1 1 1 1 1 2 1 1 1 1 1 1 7 7
Effector 2 2 2 2 0 3 2 3 0 4 0 3 6 17
Uncertainty 1 3 2 2 3 5 5 5 2 4 2 2 15 21
Total /
Case Study

26 28 15 15 29 38 30 30 28 37 18 25 145 174

Table 6. Frequency of the Occurrence of Concepts

Concept VCS TMS APRS RFID-SC DSRL ISR Total Percentage
Probe PerformanceProbe 2 0 0 3 0 0 5 25%

EventProbe 0 1 0 2 2 0 5 25%
PhysicalProcessProbe 0 0 3 0 3 4 10 50%

RecoveryPolicy ActionPolicy 1 1 1 1 0 1 5 71%
GoalPolicy 0 0 1 0 0 0 1 14%
UtilityFunctionPolicy 0 0 0 0 1 0 1 14%

Effector ParameterEffector 2 0 0 0 0 0 2 12%
ArchitectureEffector 0 1 0 2 0 0 3 18%
ControlEffector 0 1 3 1 4 3 12 71%

Uncertainty SituationUncertainty 0 0 2 1 1 0 4 19%
PhysicalProcessUncertainty 0 1 1 0 0 0 2 10%
SensorUncertainty 0 0 1 0 0 1 2 10%
ActuatorUncertainty 0 0 0 0 0 1 1 5%
ProbeUncertainty 1 0 0 0 0 0 1 5%
EffectorUncertainty 0 0 0 0 1 0 1 5%
ControllerUncertainty 0 0 0 4 1 0 5 24%
KnowledgeUncertainty 1 0 1 0 1 0 3 14%
NetworkUncertainty 1 1 0 0 0 0 2 10%

Percentage = n / N n is subclass’ appearance num N is class’ appearance num

Simula Research Laboratory, Technical Report 2016-07 May, 2016

10

redundant one or change its control logic for manipulation of
PhysicalProcesses. As redundancy will increase both cost and
physical size and it may only be used for key component, the
adaptive control is becoming popular [43]. With the respect of
RecoveryPolicy, ActionPolicy is dominating. This is probably due
to the simplicity of the case studies. As it can be seen in Table 5,
most of them only handle two or three kinds of faults. Although,
ActionPolicy is easy to implement, it is a static policy and can
only work in known situations, which may significantly restrict
system’s self-healing capability when the operating environment
is unknown.

Unsurprisingly, just a few types of uncertainty are explicitly
handled in the six case studies. Among them,
SituationUncertainty and KnowledgeUncertainty attract more
attention. This may not be typical for all self-healing CPSs, as
different systems focus on different aspects. For example, for
VCS, the NetworkUncertainty has significant impact on the
videoconferencing’s quality, so VCS applies several healing
behaviors to handle it. For APRS, unstable production of green
power (SituationUncertainty), dynamic demand
(SituationUncertainty) and occurrence of power outage
(PhysicalProcessUncertainty) are the main uncertainty concerns.

5. RELATED WORK
After a decade’s effort, several key elements of CPSs and self-
healing system have been identified by academic and industrial
communities and are adopted in our conceptual model. In [6], a
CPS was defined as a set of heterogeneous physical units
communicating via heterogeneous networks. In this definition,
physical units are recognized as the first class objects of CPSs.
Besides, the network is also important, as it provides the
communication mechanism among the physical units. This
definition is consistent with other definitions of CPSs:
“engineered systems that are built from, and depend upon, the
seamless integration of computational and physical components”
[44] and “a set of physical systems controlled in a principled
manner via engineering technologies” [45].

Sensors and actuator are captured as interfaces between
computational and physical components in [46]. CPSs are
characterized by integrating computation and physical processes
[47] and the primary goal of a CPS is to efficiently control
physical processes [48]. The authors of [12] identified detection,
diagnosis and recovery as the three main steps of self-healing. In
addition, three types of recovery policies were explained and
evaluated in [5, 49].

To further understand self-healing CPSs, we generalized and
abstracted concepts from the literature of CPSs and self-healing
systems. First, Situation is identified as an important concept of
self-healing CPSs, representing represents inherent uncertain
events happened in the operational environment of a CPS, which
is targeted by several approaches [50, 51]. Second, error criteria,
adaptation actions, the classification of probes and effector were
elicited from error detection [52] and recovery processes [12].
Third, according to the self-learning mechanisms used by self-
detection and self-diagnosis [53], inputs (measurement, execution
results) and outputs (pattern, recovery policy) of self-learning
mechanisms were defined. Fourth, inspired by goal oriented self-
healing approaches [54], goals of self-healing behaviors is
captured in the conceptual model.

How to cope with uncertainty is a grand challenge and a definition
and taxonomy of uncertainty in the context of CPSs is difficult to
find [55]. In the past, effort was mostly spent on identifying

uncertainty sources in self-healing CPSs. The authors of [28]
proposed a taxonomy of uncertainty sources in dynamically
adaptive systems at the requirement, design and execution phases
along with existing mitigation techniques for each type of
uncertainties. Though the taxonomy is extensive and generic, it is
not designed for a specific usage and needs to be specialized for
specific applications. In [29], the authors gave another nine
uncertainty sources in self-adaptive systems, which needs to be
considered during design. As the types of uncertainties were
extracted in an ad hoc manner, the types are not orthogonal and
are not well structured. Whereas, we applied a component centric
approach to build the uncertainty model. Particularly, we adopt
the an uncertainty taxonomy (U-Model) from [10, 11]. As U-
Model gives a set of concepts related with uncertainty in CPS, it
helped us to systematically analyze the potential uncertainties for
self-healing CPS. For each new defined uncertainty type, it is
mapped to the U-Model concepts, which also instantiates the U-
Model in the context of self-healing CPS.

In summary, to fulfill their dependability requirements, CPSs are
expected to be more autonomic, e.g., in terms of having built-in
self-healing capabilities. However, self-healing CPSs are an
emerging field and uncertainty in CPSs is a relevantly under-
studied subject in software engineering. Despite numerous
approaches proposed [12, 17, 56], a conceptual model of CPSs
and their self-healing behaviors together with uncertainty is still
missing. We, in the paper, took the initiative and constructed such
a conceptual model, aiming at providing a common ground for
understanding self-healing CPSs under uncertainty and facilitating
analyses in the future. However, we believe that this conceptual
model is an initial attempt and must be specialized such as for
other types of autonomic behaviors, e.g., self-configuring and
different types of analyses such as model-based testing.

6. CONCLUSION
Smart Cyber-Physical Systems (CPSs) are becoming increasingly
autonomic and thus must be able to cope with diverse
uncertainties originating from both environment and their internal
components. In addition, autonomic behaviors themselves induce
uncertainties in the system and thus CPSs must have self-healing
capabilities to deal with errors introduced by these uncertainties.
As a first step towards understanding self-healing (one type of
autonomic behaviors) and uncertainty in CPSs, we proposed a
unified conceptual model comprising of the following three
conceptual models: CPS, Self-Healing, and Uncertainty. The
conceptual model is developed to provide a unified and
comprehensive understanding of self-healing CPS and
uncertainty. Based on this conceptual model, a MBT approach
will be proposed to discover more flaws in self-healing CPS in the
presence of uncertainty in our future work. The conceptual model
was evaluated with six case studies from the literature and
industry.

7. Acknowledgements
This research was supported by RCN funded MBT4CPS
project. Tao Yue and Shaukat Ali are also funded by the
EU Horizon 2020 funded project U-Test (Testing Cyber-
Physical Systems under Uncertainty), RCN funded Zen-
Configurator project, RFF Hovedstaden funded MBE-CR
project, and RCN funded Certus SFI.

Simula Research Laboratory, Technical Report 2016-07 May, 2016

11

8. REFERENCES
[1] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H.

Cheng, 2004, “Composing adaptive software,” Computer,
no. 7, pp. 56-64.

[2] A. W. Colombo, S. Karnouskos, and T. Bangemann, 2014,
"Towards the Next Generation of Industrial Cyber-Physical
Systems," Industrial cloud-based cyber-physical systems,
pp. 1-22: Springer.

[3] ISO/IEC/IEEE, 2010, “24765:2010 Systems and software
engineering,”
http://www.iso.org/iso/catalogue_detail.htm?csnumber=505
18.

[4] A. Dardenne, A. Van Lamsweerde, and S. Fickas, 1993,
“Goal-directed requirements acquisition,” Science of
computer programming, vol. 20, no. 1, pp. 3-50.

[5] J. O. Kephart, and W. E. Walsh, Year, "An artificial
intelligence perspective on autonomic computing policies."
pp. 3-12, Published.

[6] S. Ali, and T. Yue, Year, "U-Test: Evolving, Modelling and
Testing Realistic Uncertain Behaviours of Cyber-Physical
Systems." pp. 1-2, Published.

[7] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J.
Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M.
Villegas, and T. Vogel, 2013, "Software engineering for
self-adaptive systems: A second research roadmap,"
Software Engineering for Self-Adaptive Systems II, pp. 1-32:
Springer.

[8] K. Koskimies, and E. Mäkinen, 1994, “Automatic synthesis
of state machines from trace diagrams,” Software: Practice
and Experience, vol. 24, no. 7, pp. 643-658.

[9] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P.
Steenkiste, 2004, “Rainbow: Architecture-based self-
adaptation with reusable infrastructure,” Computer, vol. 37,
no. 10, pp. 46-54.

[10] M. Zhang, S. Ali, and T. Yue, 2016, “An Uncertainty
Taxonomy for Cyber-Physical Systems,” Modelling
Foundations and Applications: 12th European Conference,
ECMFA 2016.

[11] Z. Man, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren,
2015, “Understanding Uncertainty in Cyber-Physical
Systems: A Conceptual Model,” Modelling Foundations
and Applications: 12th European Conference, ECMFA 2016
Available in https://http://www.simula.no/file/u-
modeltrfinalpdf/download.

[12] H. Psaier, and S. Dustdar, 2011, “A survey on self-healing
systems: approaches and systems,” Computing, vol. 91, no.
1, pp. 43-73.

[13] D. Macleman, W. Bik, and A. Jones, Year, "Evaluation of a
self healing distribution automation scheme on the Isle of
Wight." pp. 1-4, Published.

[14] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr,
2004, “Basic concepts and taxonomy of dependable and
secure computing,” Dependable and Secure Computing,
IEEE Transactions on, vol. 1, no. 1, pp. 11-33.

[15] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N.
Kavuri, 2003, “A review of process fault detection and
diagnosis: Part I: Quantitative model-based methods,”
Computers & chemical engineering, vol. 27, no. 3, pp. 293-
311.

[16] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and
K. Yin, 2003, “A review of process fault detection and
diagnosis: Part III: Process history based methods,”
Computers & chemical engineering, vol. 27, no. 3, pp. 327-
346.

[17] D. Ghosh, R. Sharman, H. R. Rao, and S. Upadhyaya, 2007,
“Self-healing systems—survey and synthesis,” Decision
Support Systems, vol. 42, no. 4, pp. 2164-2185.

[18] M. Leucker, and C. Schallhart, 2009, “A brief account of
runtime verification,” The Journal of Logic and Algebraic
Programming, vol. 78, no. 5, pp. 293-303.

[19] F. Chen, and G. Roşu, 2009, "Parametric trace slicing and
monitoring," Tools and Algorithms for the Construction and
Analysis of Systems, pp. 246-261: Springer.

[20] K. Havelund, 2015, “Rule-based runtime verification
revisited,” International Journal on Software Tools for
Technology Transfer, vol. 17, no. 2, pp. 143-170.

[21] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J.
Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S.
Sidiroglou, and G. Sullivan, Year, "Automatically patching
errors in deployed software." pp. 87-102, Published.

[22] V. Koutsoumpas, Year, "A model-based approach for the
specification of a virtual power plant operating in open
context." pp. 26-32, Published.

[23] J. Simmonds, S. Ben-David, and M. Chechik, 2010,
"Monitoring and recovery of web service applications," The
smart internet, pp. 250-288: Springer.

[24] S.-W. Cheng, D. Garlan, and B. Schmerl, Year,
"Architecture-based self-adaptation in the presence of
multiple objectives." pp. 2-8, Published.

[25] M. Amoui, M. Salehie, S. Mirarab, and L. Tahvildari, Year,
"Adaptive action selection in autonomic software using
reinforcement learning." pp. 175-181, Published.

[26] P. Siripongwutikorn, S. Banerjee, and D. Tipper, 2003, “A
survey of adaptive bandwidth control algorithms,”
Communications Surveys & Tutorials, IEEE, vol. 5, no. 1,
pp. 14-26.

[27] D. Garlan, and B. Schmerl, Year, "Model-based adaptation
for self-healing systems." pp. 27-32, Published.

[28] A. J. Ramirez, A. C. Jensen, and B. H. Cheng, Year, "A
taxonomy of uncertainty for dynamically adaptive systems."
pp. 99-108, Published.

[29] N. Esfahani, and S. Malek, 2013, "Uncertainty in self-
adaptive software systems," Software Engineering for Self-
Adaptive Systems II, pp. 214-238: Springer.

[30] A. Elkhodary, N. Esfahani, and S. Malek, Year, "FUSION:
a framework for engineering self-tuning self-adaptive
software systems." pp. 7-16, Published.

[31] M. Elhadi, and A. Abdullah, Year, "Layered biologically
inspired self-healing software system architecture." pp. 1-9,
Published.

[32] R. Pegoraro, M. A. R. Sacoman, and J. M. Rosário, Year,
"A Self-Healing Architecture for Web Service-Based
Applications." pp. 221-226, Published.

[33] S. Neti, and H. A. Muller, Year, "Quality criteria and an
analysis framework for self-healing systems." pp. 6-6,
Published.

[34] J. P. Magalhaes, and L. Moura Silva, Year, "A Framework
for Self-healing and Self-adaptation of Cloud-hosted Web-
based Applications." pp. 555-564, Published.

[35] T. A. Nguyen, M. Aiello, T. Yonezawa, and K. Tei, Year,
"A Self-healing Framework for Online Sensor Data." pp.
295-300, Published.

[36] J. Y. Lee, D. W. Cheun, and S. D. Kim, Year, "A
comprehensive framework for mobile cyber-physical
applications." pp. 1-6, Published.

[37] L. Hu, N. Xie, Z. Kuang, and K. Zhao, Year, "Review of
cyber-physical system architecture." pp. 25-30, Published.

Simula Research Laboratory, Technical Report 2016-07 May, 2016

12

[38] S. Ali, L. C. Briand, and H. Hemmati, 2012, “Modeling
robustness behavior using aspect-oriented modeling to
support robustness testing of industrial systems,” Software
& Systems Modeling, vol. 11, no. 4, pp. 633-670.

[39] P. Vromant, D. Weyns, S. Malek, and J. Andersson, Year,
"On interacting control loops in self-adaptive systems." pp.
202-207, Published.

[40] K. Gama, and D. Donsez, 2014, “Deployment and activation
of faulty components at runtime for testing self-recovery
mechanisms,” ACM SIGAPP Applied Computing Review,
vol. 14, no. 3, pp. 44-54.

[41] T. Cioara, I. Anghel, I. Salomie, M. Dinsoreanu, G. Copil,
and D. Moldovan, Year, "A reinforcement learning based
self-healing algorithm for managing context adaptation." pp.
859-862, Published.

[42] J. Park, S. Lee, T. Yoon, and J. M. Kim, 2015, “An
autonomic control system for high-reliable CPS,” Cluster
Computing, vol. 18, no. 2, pp. 587-598.

[43] R. De Lemos, H. Giese, H. Müller, M. Shaw, J. Andersson,
L. Baresi, B. Becker, N. Bencomo, Y. Brun, and B. Cikic,
Year, "Software engineering for self-adaptive systems: a
second research roadmap," Published.

[44] N. S. Foundation, “Cyber Physical Systems,”
http://www.nsf.gov/pubs/2014/nsf14542/nsf14542.htm.

[45] K.-D. Kim, and P. R. Kumar, 2012, “Cyber–physical
systems: A perspective at the centennial,” Proceedings of
the IEEE, vol. 100, no. Special Centennial Issue, pp. 1287-
1308.

[46] E. A. Lee, and S. A. Seshia, 2011, Introduction to embedded
systems: A cyber-physical systems approach: Lee & Seshia.

[47] J. Shi, J. Wan, H. Yan, and H. Suo, Year, "A survey of
cyber-physical systems." pp. 1-6, Published.

[48] S. Sridhar, A. Hahn, and M. Govindarasu, 2012, “Cyber–
physical system security for the electric power grid,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 210-224.

[49] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J.
O. Kephart, Year, "An architectural approach to autonomic
computing." pp. 2-9, Published.

[50] M. C. Bujorianu, M. L. Bujorianu, and H. Barringer, Year,
"A unifying specification logic for cyber-physical systems."
pp. 1166-1171, Published.

[51] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl, 2015,
“Proactive Self-Adaptation under Uncertainty: a
Probabilistic Model Checking Approach}.”

[52] A. E. Goodloe, and L. Pike, 2010, “Monitoring distributed
real-time systems: A survey and future directions.”

[53] C. Schneider, A. Barker, and S. Dobson, 2014, “A survey
of self‐healing systems frameworks,” Software: Practice
and Experience.

[54] M. Morandini, L. Penserini, and A. Perini, Year,
"Automated mapping from goal models to self-adaptive
systems." pp. 485-486, Published.

[55] T. Bures, D. Weyns, C. Berger, S. Biffl, M. Daun, T. Gabor,
D. Garlan, I. Gerostathopoulos, C. Julien, and F. Krikava,
2015, “Software Engineering for Smart Cyber-Physical
Systems--Towards a Research Agenda: Report on the First
International Workshop on Software Engineering for Smart
CPS,” ACM SIGSOFT Software Engineering Notes, vol. 40,
no. 6, pp. 28-32.

[56] S. K. Khaitan, and J. D. McCalley, 2014, “Design
techniques and applications of cyberphysical systems: a
survey.”

[57] M. Utting, and B. Legeard, 2010, Practical model-based
testing: a tools approach: Morgan Kaufmann.

[58] ISO/IEC, 2013, “ISO/IEC29119 The International Software
Testing Standard,” http://www.softwaretestingstandard.org/.

Simula Research Laboratory, Technical Report 2016-07 May, 2016

13

9. Appendix

9.1 Conceptual Model of Testing
Considering the complexity and uncertainty of Self-HealingCPS, designing and deploying systematic verification and validation methods
for Self-HealingCPS is a big challenge. One promising way to address this challenge is to apply MBT , which provides a systematic way to
automatically derive test cases from models. However, traditional MBT methods are typically used for testing at the design time and must
be extended to support testing Self-HealingCPS’s FunctionalBehaviors, tightly integrated with PhysicalProcesses and runtime
HealingBehaviors. To facilitate MBT for Self-HealingCPS, this section relates testing concepts (abstracted from the ISO/IEC 29119
Software Testing Standard) with the concepts from the Self-HealingCPS conceptual model. The ultimate goal is to define MBT techniques
for testing self-healing behaviors of CPSs in the future work.

Figure 9 presents the Testing conceptual model, whereas the details of each concept are provided in Table 4 of Appendix. A Self-
HealingCPS is the TestItem, which is tested by a set of TestCases. Each TestCase specifies the Preconditions of its execution, inputs and
ExceptedResults. TestCases are executed in a TestEnvironment that simulates the actual operational Environment of the Self-HealingCPS.
Such a TestEnvironment should include all facilities, hardware and software required to perform the testing of the Self-HealingCPS. In
addition, numerous TestSituations are created by simulators, mocks or actual systems to imitate various Situations in the Self-
HealingCPS’s real operational Environment. Hence, as part of the TestEnvironment, the TestSituations are used to put the
TestEnvironment in suitable states such that the TestCases can be executed.

Figure 9. Testing Conceptual Model

Simula Research Laboratory, Technical Report 2016-07 May, 2016

14

9.2 Concept Definition
Complete Concept Definition for CPS

Concept Definition Attributes
C1. Self-HealingCPS A CPS, which can autonomously detect, diagnose

and recover from Errors (C18)
-type [1]: The ArchitectureType of the CPS
-environment [1]: The Environment in which the CPS
operates

-physicalUnit [2..*]: Two or more PhysicalUnits (C3)
constituting the CPS

-network [1]: The Network (C4) via which all PhysicalUnits
(C3) communicate with each other

C2. PhysicalProcess A sequence of chemical, physical, or biological
activities for the conversion, transport, or storage
of material or energy

-interrelatedProcess [*]: A set of physical processes affected
by this physical process.

C3. PhysicalUnit

A physical device that can communicate with the
others, optionally having the computation and
control capabilities

-sensor [*]: A Sensor (C5) monitors the variables of the
PhysicalProcess (C2).

-actuator [*]: An Acutator (C6) controls the
PhysicalProcess.

-controller [1..*]: Controller (C7) is responsible for
monitoring and controlling the PhysicalUnit.

-network [1]: Network (C4) that is used for communication
with other PhysicalUnits.

C4. Network The medium used as the communication channel
among PhysicalUnits (C3)

-sender [1..*]: A set of physical units that send data via the
Network (C4).

-receiver [1..*]: A set of physical units that receive data
from the Network.

C5. Sensor A device that measures the physical variables of a
PhysicalProcess (C2)

-physicalProcess [1..*]: The PhysicalProcesses (C2) that the
Sensor is supposed to monitor.

C6. Actuator A device able to change physical quantities of a
PhysicalProcess (C2)

-physicalProcess [1..*]: PhysicalProcesses (C2) that the
Actuator is supposed to control.

C7. Controller A software deployed on the PhysicalUnit (C3),
controlling Sensors (C5) and Effectors (C23)
either directly or indirectly, communicating with
other Controllers and providing computational
capability

-sensor [*]: A set of sensors controlled by the Controller to
monitor the PhysicalProcess (C2) .

-actuator [*]: A set of actuators controlled by the Controller
to control the PhysicalProcess (C2) .

Simula Research Laboratory, Technical Report 2016-07 May, 2016

15

Complete Concept Definition for Self-Healing CPS

Concept Definition Attributes Constraints
C8. Behavior Describing a sequence of

actions executed by a Controller
(C7)

-fault [*]: A set of Faults (C19) in the behavior. If
encountered, may cause one or more Errors (C18)
[3].

None

C9. FunctionalBehavior The business logic of a
Controller (C7) [1]

None None

C10. HealingBehavior A sequence of Self-Detection
(C17), Self-Diagnosis (C20) and
Self-Recovery (C22) actions
aiming at the recovery of a
Controller (C7), a PhysicalUnit
(C3) or the whole Self-
HealingCPS (C1) from Errors
(C18)

-level [1]: The HierarchicalLevel (C11) specifies
the target of HealingBehavior.

-type [1]: The ApproachType (C12) of the
HealingBehavior.

-goal [1..*]: A set of Goals (C13) that the
Controller should satisfy during its execution.

-self-Detection [1..*]: A set of Self-Detection
(C17) actions used to detect Errors (C18).

-self-Diagnosis [1..*]: A set of Self-Diagnosis
(C20) actions used to locate Fault (C19) and
generate RecoveryPlan (C21).

-self-Recovery [1..*]: A set of Self-Recovery
actions used to apply the RecoveryPlan (C21).

- If the Self-
Detection (C17) or
Self-Diagnosis
(C20) has Self-
Learning (C24)
mechanisms, the
ApproachType
(C12) of the healing
behavior should be
Dynamic

C11. HierarchicalLevel The subordination level within
the structure of the Self-
HealingCPS (C1) [3]

-SystemLevel: The highest level covering the
whole Self-HealingCPS (C1)

-PhysicalUnitLevel: The medium level with the
scope of one PhysicalUnit (C3).

-ControllerLevel: The lowest level with the scope
of one Controller (C7).

None

C12. ApproachType Indicating if a HealingBehavior
(C10) is static or dynamic.

-Static: The kind of Behavior (C8) that is known at
the design time and remains fixed.

-Dynamic: The kind of Behavior (C8) that can be
changed at the runtime.

None

C13. Goal “… a non-operational objective
to be achieved by the composite
system” [4]

None -Goals of Controller
(C7) (or
PhysicalUnit) (C3)
should conform to
PhysicalUnit’s (C3)
goal (or Self-
HealingCPS’s (C1)
goal).

C14. State A particular combination of the
attribute values of a Controller
(C7) [8]

None None

C15. Probe A system measurement
mechanism, which observes and
measures the States (C14) of a
Controller (C7) [9].

-state [1..*]: A set of Controller’s (C7) States
(C14) that this probe is supposed to monitor

-measurement [1..*]: A set of Measurements (C16)
collected by the probe.

None

C16. Measurement A value of a State variable, such
as performance metrics

None None

C17. Self-Detection The action that detects Errors
(C18) from monitored
Measurements (C16) and
reports the Errors (C18) to Self-
Diagnosis [12]

-measurement [1..*]: A set of Measurements (C16)
monitored by the Self-Detection action.

-error [1..*]: A set of Errors (C18) detected or
predicted by the Self-Detection action.

-self-Learning [*]: The Self-Learning (C24)
mechanism used by the Self-Detection to recognize
system behavior Patterns (C25).

None

Simula Research Laboratory, Technical Report 2016-07 May, 2016

16

Concept Definition Attributes Constraints

C18. Error Difference between monitored
Measurements (C16) and
specified ones [3]

None None

C19. Fault The cause of an Error (C18)
[14]

-error [*]: A set of Errors (C18) that the Fault
may lead to.

None

C20. Self-Diagnosis The action that locates Faults
(C19), which lead to detected
Errors (C18), and calculates an
appropriate RecoveryPlan (C21)
together with RecoveryPolicy
(C39) [12]

-error [1..*]: The detected Errors (C18) reported
from Self-Detection (C17).

-fault [1..*]: A set of Faults (C19) that may lead to
Errors.

-recoveryPlan [1..*]: A set of RecoveryPlans (C22)
generated by Self-Diagnosis to repair the Fault.

-self-Learning [*]: The Self-Learning (C24)
mechanism used by the Self-Diagnosis to infer
RecoveryPlan (C21).

C21. RecoveryPlan A sequence of
AdaptationActions (C33),
aiming to recover the CPS from
Errors (C18)

 None None

C22. Self-Recovery The action that applies a
RecoveryPlan (C21) on the CPS
[12]

-effector [1..*]: A set of Effectors (C23) used to
execute the RecoveryPlan.

-recoveryPlan [1..*]: A set of RecoveryPlans (C21)
to be executed.

None

C23. Effector A mechanism carrying out
AdaptationActions (C33) [9]

-behavior [1..*]: A set of Behaviors (C8) that can
be adapted by the Effector.

None

C24. Self-Learning A mechanism that can recognize
system behavior Patterns (C25)
and/or infer RecoveryPlans
(C21) from historic
ExecutionResults (C43)

-measurement [1..*]: A set of Measurements (C16)
used to analyze system’s Behaviors (C8).

-pattern [1..*]: A set of system behavior Patterns
(C25) recognized from the Measurements (C16).

-executionResult [1..*]: A set of ExecutionResults
(C43) used to analyze the effect of
RecoveryActions (C33).

-recoveryStrategy [1..*]: A set of recovery
strategies inferred from ExecutionResults (C43).

None

Simula Research Laboratory, Technical Report 2016-07 May, 2016

17

Complete Concept Definition for Self-Healing Behavior

Concept Definition Attributes
C25. Pattern The mode/style of a system behavior characterized

by a combination of Measurements (C16)
None

C26. ErrorCriterion The standard, rule, or test, on which a judgment of
an Error (C18) can be based

-goal [*]: A set of Goals (C13) used to detect Errors
(C18).

-pattern [*]: The captured Patterns (C25) used to detect
Errors (C18).

C27. Rule A pair of a set of preconditions and a set of actions.

If all preconditions are satisfied, then the actions
are executed

Inherited from ErrorCriterion (C26)

C28. Threshold A limit or boundary of Measurements (C16) used
to distinguish normal and abnormal values

Inherited from ErrorCriterion (C26)

C29. Constraint A specification of system properties that the
system must hold during its execution.

Inherited from ErrorCriterion (C26)

C30. PerformanceProbe A Probe (C15) for monitoring system’s
performance.

Inherited from Probe (C15)

C31. EventProbe A Probe (C15) for monitoring events occurred in
Self-HealingCPS (C1)

Inherited from Probe (C15)

C32. PhysicalProcessProbe A Probe (C15) for monitoring the state of a
PhysicalProcess (C2)

Inherited from Probe (C15)

C33. AdaptationAction The runtime modification of control data,
controlling or affecting a Controller (C7)

-delay [1..*]: A set of possible Delay (C34) for this
AdaptationAction to take effect

-effect [1..*]: A set of Effects (C35) as the consequence
of the action.

-overhead [1..*]: A set of possible Overhead (C36)
caused by the action.

C34. Delay The time interval between the initiation and
completion of an AdaptationAction (C33)

None

C35. Effect The change of one or more Behaviors (C8) caused
by an AdaptationAction (C33)

None

C36. Overhead Extra resources and/or time used to execute
AdaptationActions (C33), in addition to planned
resources and/or time at the design time

None

C37. ResourceOverhead Extra resources for executing AdaptationActions
(C33), as compared to regular CPS resource
consumption without adaptation

None

C38. TimeOverhead Extra time for executing AdaptationActions (C33),
as compared to regular CPS response time without
adaptation

None

C39. RecoveryPolicy A type of formal behavioral guide for
HealingBehavior (C10) [5]

-adaptationAction [1..*]: A set of AdaptationActions
(C33) referred in the RecoveryPolicy.

C40. ActionPolicy Specifying which AdaptationAction(s) (C33)
should be taken for a Fault (C19) [5]

Inherited from RecoveryPolicy (C39)

C41. GoalPolicy Specifying a set of desirable States (C14) of Self-
HealingCPS (C1), providing the target states for
HealingBehaviors (C10) [5]

Inherited from RecoveryPolicy (6)

C42. UtilityFunctionPolicy Assigning each State (C14) of Self-HealingCPS
(C1) a utility value directing the system moving
towards states with a higher utility value [5]

Inherited from RecoveryPolicy (6)

C43. ExecutionResult The consequence and the effect of a RecoveryPlan
(C21)

None

Simula Research Laboratory, Technical Report 2016-07 May, 2016

18

 Complete Concept Definition for Testing
Concept Definition

C44. TestItem Self-HealingCPS (C1) that is an object of testing [6]

C45. TestCase A set of Preconditions (C46), invoked Behaviors (C8), and ExpectedResults (C47), developed to drive
the execution of a test item to meet test objectives [6]

C46. Precondition The prerequisites to execute a TestCase

C47. ExpectedResult The expected consequence of invoked Behaviors (C8)

C48. TestEnvironment “Facilities, hardware, software, firmware, procedures, and documentation intended for or used to
perform testing of software.” [6]

C49. TestSituation A course of events used to simulate an actual Situation and stimulate the TestItem (C44)

C50. TestEnvironmentSet-
upProcess

A sequence of TestSituations (C49) for establishing and maintaining the TestEnvironment (C48) to
execute TestCases (C45) [6]

