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Abstract 

Self-Healing Cyber-Physical Systems (ShCPSs) are capable of detecting and recovering from 

faults themselves during their operations, which are commonly referred to as self-healing 

behaviors. Testing such behaviors is challenging due to their self-adaptive nature and being 

often exposed to environment uncertainty. As a first step towards automated testing of ShCPSs 

in the presence of uncertainty, we propose a modeling framework called Modeling Self-

Healing Behavior with Uncertainty (MoSH), which supports creating executable test ready 

models (ETRMs) of a ShCPS together with uncertainty in its environment. MoSH consists of 

four UML profiles, derived based on a conceptual model for ShCPSs (which is named as 

Conceptual Model for ShCPSs and Uncertainty (CMSU)), and a modeling methodology of 

applying these profiles to create ETRMs. In addition, we developed a test model execution 

framework called TM-Executor to support the execution of ETRMs to eventually enable 

testing of a ShCPS in the presence of various types of environment uncertainties. TM-Executor 

extends Moka—a standard-based UML model executor with new execution semantics 

specifically designed for test execution. In addition, TM-Executor integrates several tools 

including EsOCL for test data generation, DresdenOCL for test oracle checking, and the 

Functional Mockup Interface module for integrating simulators/emulators in order to introduce 

uncertainties in the environment of a ShCPS.  

We assess MoSH and TM-Executor from three perspectives. First, we validated the 

completeness and correctness of CMSU with nine ShCPS case studies. Evaluation results show 

that CMSU is complete and correct. Second, we validated MoSH with three ShCPS case 

studies and results show that we were successful in creating ETRMs for the three case studies 

at the expense of additional 16% of modeling effort. Third, we evaluated the feasibility of TM-

Executor with a random testing strategy implemented by testing a real-world case study as a 

proof of concept. We assessed its performance in terms of performing various testing activities 

(e.g., test data generation) and observed that time required to perform such activities was very 

small, i.e., in the order of milliseconds. Furthermore, we found one fault in a self-healing 

behavior of the real-world case study during the testing, which was only revealed in the 

presence of environment uncertainties.  
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1. Introduction 

Cyber-Physical Systems (CPSs) are increasingly becoming autonomous to deal with dynamic 

environment situations [1]. One type of autonomous behaviors of CPSs is Self-Healing 

Behaviors, i.e., the ability of a CPS to detect and recover from a fault during its operation by 

itself [2]. Given the fact that CPSs, in general, face uncertainty in their behaviors due to the 

unpredictable environment conditions [3], self-healing behaviors are also prone to such 

uncertainty. Thus, ensuring the correctness of self-healing behaviors in the presence of 

environment uncertainty is important for their reliable operation and stresses the development 

of efficient testing approaches. In the rest of the paper, we refer to CPSs with self-healing 

behaviors as Self-Healing Cyber-Physical Systems (ShCPSs).  

1.1 Overall Objective and Challenges  

Our overall objective is to develop systematic and automated testing techniques to test ShCPSs 

in the face of environment uncertainty. However, testing such behaviors in the face of 

environment uncertainty is challenging due to several reasons:  1) Self-healing behaviors being 

autonomous are naturally difficult to predict at the design time, and 2) Unpredictable 

environment makes the self-healing behaviors behave in an even more unexpected manner. 

Based on these two general challenges, to address our overall objective, we raise the following 

three testing challenges: 1) T1: How to capture expected self-healing behaviors together with 

environment uncertainties? 2) T2: How to generate the best set of test data and simulate 

uncertainties in the best manner, based on captured expected behaviors and uncertainties? 3) 

T3: How to exercise expected self-healing behaviors with captured uncertainties to find faults 

cost-effectively? 

1.2 Overall Approach  

An overview of our approach is presented on the right side of Figure 1 and the left side of the 

figure presents a typical architecture of Model-Based Testing (MBT) approaches. In this 

section, we aim to differentiate our approach with the typical MBT approach for the purpose of 

clearly defining the scope and highlighting key contributions (Section 1.3). Note that both of 

the two architectures presented in Figure 1 aim for achieving the same objective and 

addressing the same challenges presented in Section 1.1. 

As a type of model-based approaches, MBT approaches rely on models for handling 

complexity via abstraction [4]. The expected behavior of a ShCPS under Test (SUT) together 

with environment uncertainties are modeled as a Test Ready Model (TRM). A Test Case 

Generator then uses a Test Strategy to generate test cases, which are executed on the SUT by a 
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Test Case Executor with the aim of detecting faults that can only be found in the presence of 

uncertainties. 

An alternative approach, which we opt for, is coined as Executable Model-Based Testing 

(EMBT) and is shown on the right side of Figure 1. The process of creation of TRMs is similar 

to MBT except that TRMs in EMBT are enriched with code execution semantics such that 

these models are executable and thus are called as Executable Test Ready Models (ETRMs). 

As opposed to MBT, which typically applies a static Test Strategy to generate test cases using 

a Test Case Generator, EMBT uses a Dynamic & Adaptive Test Strategy to guide a Test Model 

Executor to execute an ETRM. The execution of the ETRM in turns drives the execution of 

SUT. Based on the SUT’s actual state, reflected by the ETRM, the Test Model Executor uses 

the test strategy to dynamically select optimal stimulus (in terms of finding a fault) to be sent 

to the ETRM. Given that environment uncertainties lead to uncertain behaviors (including self-

healing behaviors) of SUT, to effectively find faults, it is necessary to dynamically adapt the 

execution of the ETRM based on the feedback received from SUT during test execution. Since 

a ShCPS interacts with its physical environment using sensors and actuators, for the purpose of 

testing, we simulate environment uncertainties by introducing uncertainties at interfaces of 

sensors and actuators using dedicated emulators/simulators. Doing so is required for both 

MBT and EMBT. 

 
Figure 1 EMBT Comparing with MBT 

1.3 Scope and Contributions 

In Table 1, the 1st column presents the three testing challenges (Section 1.1); the 2nd column 

shows the mapping of the testing challenges with the key components of our EMBT solution, 

and the 3rd column shows the contributions of the paper and refers to the corresponding 

sections where details are discussed. One key summary is that the key contributions of this 

paper are the design, development and evaluation of MoSH and TM-Executor, for addressing 

T1 and T3.   

Notably, in the literature, there exist works for defining self-healing concepts [2, 5], based 

on an extensive study of which we derived CMSU. However, CMSU focuses on supporting 
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EMBT. Researchers have also spent effort on defining uncertainty concepts in the context of 

self-adaptive systems [6], CPSs [3], and a general context [7]. However, none of these works 

provide an end-to-end modeling solution to support testing of self-healing behaviors of CPSs 

in the presence of environment uncertainties, which is targeted in this paper. 

Table 1 Testing Challenges, our EMBT Solution, and Corresponding Sections 

Testing Challenges Our EMBT 
Solution 

Contributions and Corresponding Sections 

T1: How to capture 
expected self-healing 
behaviors together with 
uncertainties in the 
environment? 

ETRM 
Modeling 
Framework 

Modeling Self-Healing Behavior with Uncertainty (MoSH) 
Framework—an ETRM modeling framework including 1) 
Conceptual Model for ShCPSs and Uncertainty (CMSU) 
(Section 3), 2) MoSH Profiles: the implementation of 
CMSU and 3) MoSH Modeling Methodology to develop 
ETRMs capturing expected behaviors of SUT and 
environment uncertainties (Section 4) 

T2: How to generate the 
best set of test data and 
simulate uncertainties in 
the best manner, based 
on a the captured 
expected behaviors and 
uncertainties? 

Test 
Strategies, 
Uncertainty 
Generation 

This is not in the scope of this paper. However, as a proof of 
concept, we implemented a random strategy to select paths 
in an ETRM to execute, applied EsOCL [8]—a search-
based test data generator to generate test data, and simulated 
uncertainties based on their universes, notions, and 
measures. 

T3: How to exercise the 
expected self-healing 
behavior with captured 
uncertainty with the aim 
of finding faults cost-
effectively? 

Test Model 
Execution 
Framework 

TM-Executor—a test model executor framework built on 
the model execution platform Moka [9], which implements 
the fUML standard [10]. TM-Executor provides a facility to 
perform adaptive testing and generate uncertainties for the 
testing of self-healing behaviors under uncertainties. TM-
Executor integrates EsOCL [8] for test data generation, 
DresdenOCL [12] for test oracle (OCL constraints) 
checking, and a Functional Mockup Interface (FMI) [11] 
module for incorporating simulators/emulators in order to 
introduce uncertainties in the SUT’s test environment. 
Details are presented in Section 5. 

1.4 Evaluation 

As discussed in Section 1.3 and summarized in Table 1, the contributions of this paper are 

MoSH and TM-Executor. Therefore, we focus on the evaluation of these two components. For 

MoSH, first, we evaluated CMSU (the conceptual model from which MoSH was derived) in 

terms of its completeness and correctness with nine case studies. Results show that CMSU is 

complete and correct. Second, we assessed the applicability of MoSH (the proposed UML 

profiles and modeling methodology) in terms of creating ETRMs for three case studies. We 

found that MoSH provides sufficient modeling constructs for modeling expected self-healing 

behaviors and environment uncertainties. However, applying MoSH needs 16% additional 

modeling effort on average.  

As a proof of concept, we assessed the implementation of TM-Executor by testing a real-

world case study with a random test strategy. We assessed the performance of TM-Executor in 

terms of time required to perform various testing steps such as generating test data and 

validating state invariants (test oracles). Results show that time taken by TM-Executor is very 

small, i.e., in the order of milliseconds. In addition, while testing the system with the random 
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test strategy, we managed to find one fault in its self-healing behavior in the presence of 

uncertainties. Note that such a fault can only be found in the presence of uncertainties. 

1.5 Structure of the Paper 

The rest of this paper is organized as follows: Section 2 presents a running example. Section 3 

presents the conceptual model, i.e., CMSU, whereas MoSH profiles and its associated 

modeling methodology are explained in Section 4. Section 5 describes TM-Executor, followed 

by the evaluation in Section 6. Related work is discussed in Section 7 and we conclude the 

paper in Section 8. 

2. Running Example 

In this section, we introduce a running example, which is an unmanned aerial vehicle control 

system—Remotely operated Aerial Model Autopilot (RAMA) from [13]. It consists of two 

subsystems (Figure 2): Ground Control Station (GCS) and Drone (quadcopter). A human pilot 

uses GCS to send movement instructions to the drone via the Micro Air Vehicle 

Communication Protocol (MAV Link). Based on the received movement instructions from the 

MAV link, estimated position from Position Location Unit (PLU), and terrain data from the 

Terrain Database, Navigation Unit (NU) calculates target pitch, yaw, roll and throttle 

instructions, and sends them to the four servos to make the drone perform expected 

movements.  

         
Figure 2 Key components and their Connections of RAMA 

A key objective of the RAMA is to prevent the drone from crashing even if one or more 

components fail to work. To achieve this objective, the RAMA realizes a set of self-healing 

behaviors to handle faults during flight. For instance, if the MAV link between the drone and 

the GCS disconnects, the NU detects this error and the corresponding fault via the absence of 

heartbeats and automatically directs the drone to fly back to the launch location. Another 

example is the self-healing behavior for servo faults, that is, when one of the four servos stops 
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working, the fault is identified by comparing expected and actual attitudes of the drone and the 

NU can then choose to only control three dimensions (pitch, roll, and throttle), with the fourth 

dimension (yaw) uncontrolled, to maintain the flight.  

Besides system component failures, environment uncertainties are another factor that has 

impacts on the operation of the RAMA. Such uncertainties include the accuracy of 

measurements and actuation, bandwidth and latency of the MAV link, and wind speed. To 

keep the flight stable, an adaptive control strategy has been implemented in the NU, which 

constantly adjusts control signals for the servos based on the drone’s current attitude estimated 

by the PLU. 

3. Conceptual Model for ShCPS and Uncertainty (CMSU) 

To support EMBT of ShCPSs in the presence of uncertainties, we aim to provide a modeling 

framework (i.e., MoSH) including a set of UML profiles that allows creating ETRMs. The 

creation of UML profiles can be performed in two different ways as discussed in [14]: 1) 

directly creating a UML profile without developing a conceptual model first as how the UML 

profile for software architecture descriptions (ADL) was developed [15], and 2) creating a 

conceptual model and then defining a UML profile based on the conceptual model, which is 

more systematic and rigorous as recommended by Bran Selic in [14]. The second approach has 

been applied to develop the UML Profile for Modeling of Real-Time and Embedded Systems 

(MARTE) [16]. We opted for the second way; we first created the Conceptual Model for 

ShCPS and Uncertainty (CMSU), followed by creating corresponding UML profiles (Section 

4). 

In the rest of the section, we present CMSU in three parts: the self-healing CPS conceptual 

model (Section 3.1), the self-healing behavior conceptual model (Section 3.2), and the 

uncertainty conceptual model (Section 3.3). 

3.1 The Self-Healing CPS Conceptual Model 

The Self-HealingCPS conceptual model is presented in Figure 3 as a class diagram, whereas 

the concepts in the conceptual model are defined in Table 2. A Self-HealingCPS can be seen as 

a collection of heterogeneous, distributed and networked PhysicalUnits working together to 

control or monitor PhysicalProcesses, e.g., GCS and drone cooperating to control the flight 

process in the RAMA. Such a system can have its architecture being centralized, decentralized 

or hybrid. Controllers are the core elements of a PhysicalUnit, such as the control units in the 

running example. They provide the control logic and computation capabilities to the 

PhysicalUnit and communicate with other Controllers owned by other PhysicalUnits via 

Networks. A Controller monitors and controls PhysicalProcesses via Sensors and Actuators. 

Due to the stochastic nature of the Environment, events may occur in an uncertain manner, 
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which affects PhysicalProcesses. For example, in the RAMA, the wind direction and speed 

change constantly, which affects the flight process. Such changes are conceptualized as 

Situations in the conceptual model. 

 
Figure 3 Self-Healing CPS Conceptual Model 

Table 2 Concept Definitions of the Self-Healing CPS Conceptual Model 

Concept Definition 
C1. Self-HealingCPS A CPS, which can autonomously detect, diagnose and recover from Faults (C18) 
C2. Environment A physical world, where ShCPSs are situated.   
C3. Situation A set of Environment (C2) attributes and/or actions that affect PhysicalProcesses 

(C4) [17] 
C4. PhysicalProcess A sequence of chemical, physical, or biological activities for transport, storage of 

material, energy and etc. [18]  
C5. PhysicalUnit 

 
A physical device that can communicate with others, optionally having 
computation and control capabilities 

C6. Network The medium used as the communication channel among PhysicalUnits (C5) 
C7. Sensor A device that measures physical variables of a PhysicalProcess (C4) 
C8. Actuator A device that changes physical quantities of a PhysicalProcess (C4) 
C9. Controller A software deployed on a PhysicalUnit (C5), interacting with Sensors (C7) and 

Actuators (C8) either directly or indirectly, communicating with other 
Controllers and providing computational capability 

3.2 The Self-Healing Behavior Conceptual Model 

The Self-HealingBehavior conceptual model is presented in Figure 4 as a class diagram, and 

the concepts in the conceptual model are defined in Table 3. In a Self-HealingCPS, both 

hardware and software may have fault tolerance capabilities. For hardware, fault tolerance is 

typically achieved via introducing redundant hardware, which has limited adaptive capabilities 

at the runtime. In contrast, software can be reconfigured and modified, thus in the context of 

Self-HealingCPS, Controllers provide such self-healing capabilities, as shown in Figure 4. 

Self-healing systems are defined by Debanjan Ghosh in [2] as “a self-healing system should 

recover from the abnormal (“unhealthy”) state and return to the normative (“healthy”) state, 

and function as it was prior to disruption”. This requires a Controller to detect Errors in a 

timely fashion (via the Self-Diagnosis capabilities of its Self-HealingBehaviors) and react to 

the Errors to possibly restore its normal operation.  

We used the standard definitions as defined by Avizienis et al. [19], “Fault is the cause of 

an Error”. Meanwhile, “Error is a deviation of an external State from the correct one”. Due to 
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Faults, the system may fail to deliver correct service to its users. To avoid such situation, some 

Controllers with Self-Diagnosis capabilities are supposed to determine Faults. Based on 

detected Faults, recovery actions are executed to recover the system from the faults.  

A Controller is equipped with Probes and Effectors to make itself self-aware and adaptable. 

Probe and Effector are two types of interfaces that are used to inquire Controller’s States and 

adjust Controller’s Behaviors respectively. In the RAMA, Probes are monitoring interfaces 

that are used by the NU to constantly check variations of velocity and attitude. Effectors are 

the interfaces used to switch the control mode. 

 
Figure 4 Self-Healing Behavior Conceptual Model (Overview) 

Table 3 Concept Definitions of Self-Healing Behavior Conceptual Model 

Concept Definition 
C10. Behavior Describing a sequence of actions executed by a Controller (C9) 
C11. FunctionalBehavior The business logic of a Controller (C9) [20] 
C12. Self-

HealingBehavior 
A sequence of Self-Diagnosis (C19) and Self-Recovery (C21) actions 
aiming at the recovery of a Controller (C9), a PhysicalUnit (C5) or the 
whole Self-HealingCPS (C1) from Faults (C18) 

C13. Goal “A non-operational objective to be achieved by the composite system” [21] 
C14. State A particular combination of the attribute values of a Controller (C9) [22] 
C15. Probe A system measurement mechanism, which observes and measures the States 

(C14) of a Controller (C9) [23] 
C16. Measurement A value of a State variable 
C17. Error “A deviation of an external State (C14) from the correct State (C14)”[24] 
C18. Fault “The cause of an Error” (C17) [19] 
C19. Self-Diagnosis The action that detects Errors (C17) and detects, isolates or identifies Faults 

(C18), based on Measurements (C16) 
C20. RecoveryPolicy A type of formal behavioral guide for Self-Recovery (C21) [25] 
C21. Self-Recovery The action that adapts the system for handling identified Faults (C18) via 

Effectors (C22) 
C22. Effector A mechanism carrying out AdaptationActions (C23) [23] 
C23. AdaptationAction A change in the system to accommodate Faults (C18) [26] 

As shown in Figure 4, a Controller has two types of Behaviors: 1) FunctionalBehaviors 

implementing business requirements of the system; 2) Self-HealingBehaviors that use Probes 

and Effectors to monitor and maintain the correctness of FunctionalBehaviors. Self-

HealingBehaviors are classified as static if they are fixed and pre-defined at the design time, 
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otherwise dynamic. Moreover, Self-HealingBehaviors are implemented at different 

hierarchical levels, e.g., healing only one function of the Controller (ControllerLevel), several 

functions of a PhysicalUnit (PhysicalUnitLevel), or the whole Self-HealingCPS (SystemLevel). 

For the RAMA case study, switching to the predefined control mode, in the case of hardware 

faults, is defined at the design time and thus the Self-HealingBehavior of the RAMA is static 

and implemented at SystemLevel. 

One prerequisite of realizing Self-HealingBehaviors is the accurate specification of each 

component’s Goals in terms of its functional and/or extra-functional requirements. Moreover, 

Goals at the system level can be decomposed into several sub-goals at the PhysicalUnitLevel 

and further at the ControllerLevel. Eliciting and specifying goals, which have been broadly 

studied in the requirements engineering community, are however out of the scope of this paper. 

For the RAMA, its essential goal is to guarantee the safe flight of the vehicle. Even if the core 

control unit is crashed, the RAMA should still keep the vehicle under control or at least safely 

land it. 

A Self-HealingBehavior is composed of two functionalities: Self-Diagnosis in charge of 

detection, isolation, or identification of faults, and Self-Recovery responsible for recovering the 

system from faults. First, a Self-Diagnosis behavior evaluates states of Controllers according 

to Measurements collected via Probes. If the Measurements deviate from expected values, 

violate constraints, or match a pattern of a fault, it means that the states of the Controllers have 

deviated from the correct ones. In this way, a Self-Diagnosis behavior can detect the 

occurrence of faults, or isolate the location of the faults, or even identify the magnitude of the 

faults. Afterward, a Self-Recovery behavior is alerted to react to the detected faults. Directed 

by RecoveryPolicies, the Self-Recovery behavior determines how to adapt the system to the 

faulty condition via Effectors. The following subsections further explain Self-Diagnosis and 

Self-Recovery. 

3.2.1 The Self-Diagnosis Conceptual Model 

Figure 5 presents the Self-Diagnosis conceptual model, and the concepts in the conceptual 

model are defined in Table 4. The Self-Diagnosis behavior, the fundamental part of a Self-

HealingBehavior, constantly detects Faults from a set of Measurements. The detectability of a 

diagnosis behavior can be classified into three levels: FaultDetection, FaultIsolation, and 

FaultIdentification [27]. The diagnosis at the FaultDetection level can only detect the 

occurrence of faults; the FaultIsolation level diagnosis can determine which kind of faults has 

happened, and the diagnosis at the FaultIdentification level can deduce the magnitude of a 

fault. In the RAMA, the diagnosis behavior, determining if the MAV link between the drone 

and the GCS is disconnected, belongs to the FaultDetection level. The diagnosis of the servo 
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fault can identify the extent of the lift loss from a servo, thus belonging to the 

FaultIdentification level. 

 
Figure 5 Self-Diagnosis Conceptual Model 

A Self-Diagnosis behavior can be realized by three types of approaches. Two of them are 

achieved based on prior domain knowledge: QuantitativeModelBasedDiagnosis and 

QualitativeModelBasedDiagnosis; the other is derived from historic operational data of the 

system: ClassifierBasedDiagnosis.  

For QuantitativeModelBasedDiagnosis, knowledge is expressed in a quantitative model, 

specifying mathematical relations between inputs and outputs of the system [28]. Fault 

occurrences are determined by checking inconsistencies (residues) between actual outputs of 

the system and expected outputs calculated from the model, via ResidualGenerator and 

ResidualEvaluator. In contrast, QualitativeModelBasedDiagnosis expresses domain 

knowledge in a QualitativeModel, i.e., qualitative relations between different system elements 

[28], such as cause-effect relations and fault trees. With this kind of approach, the actual 

execution of the system is checked against the QualitativeModel, directed by SearchStrategies, 

to realize fault diagnosis. The third type of diagnosis—ClassifierBasedDiagnosis, utilizes 

historical execution data (Measurements) to abstract quantitative and qualitative Features and 

construct FaultClassifiers, which are for classifying system states based on Measurements. 

Probes supply various Measurements to Self-Diagnosis, which are classified into 

PerformanceProbes, EventProbes, and PhysicalProcessProbes, based on types of 

Measurements they provide. PerformanceProbes are responsible for monitoring system’s 

performance such as response time, throughput and availability. EventProbe monitors a 

Controller’s behavior described as a trace of events such as function calls and exceptions. The 

state of PhysicalProcesses can be accessed through PhysicalProcessProbes such that a Self-

Diagnosis behavior can decide if a PhysicalProcess is proceeding as expected. For the RAMA 

case study, all the three kinds of Probes are used to detect faults, including monitoring the 

interface of the state update time (PerformanceProbe) for detecting the disconnected radio 
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control channel, interfaces for discovering unhealthy sensors (EventProbe), and interfaces for 

obtaining actual locations of the vehicle (PhysicalProcessProbe) for catching abnormal 

navigation behaviors. 

Table 4 Concept Definitions of Self-Diagnosis Conceptual Model 

Concept Definition 
C24. QuantitativeModelBas

edDiagnosis 
A Self-Diagnosis (C19) method based on mathematical models of the 
system [28] 

C25. ResidualGenerator A module for calculating inconsistencies between Measurements (C16) and 
expected values computed from mathematical models of the system 

C26. ResidualEvaluator A module for determining the normal range of the residual  
C27. QualitativeModelBase

dDiagnosis 
A Self-Diagnosis (C19) method based on qualitative causal models or 
abstraction hierarchies of the system [28] 

C28. QualitativeModel Qualitative causal models or abstraction hierarchies of the system, 
representing qualitative relations among different elements in the system  

C29. SearchStrategy A search method for defining how to locate a Fault (C18) in a system 
C30. ClassifierBasedDiagno

sis 
A Self-Diagnosis (C19) method based on fault classifiers trained from 
historical data of the system [28] 

C31. Feature The attribute of a system behavior characterized by a combination of 
Measurements (C16) 

C32. FaultClassifier A classifier for fault classification, which is built from historical data 
C33. PerformanceProbe A Probe (C15) for monitoring system’s performance 
C34. EventProbe A Probe (C15) for monitoring events occurred in Self-HealingCPS (C1) 
C35. PhysicalProcessProbe A Probe (C15) for monitoring the state of a PhysicalProcess (C4) 
3.2.2 The Self-Recovery Conceptual Model 
Figure 6 presents the conceptual model of Self-Recovery, and the concepts in the conceptual 

model are defined in Table 5. After a fault has been detected by a Self-Diagnosis behavior, a 

Self-Recovery behavior decides which AdaptationAction(s) to take to handle the fault, directed 

by RecoveryPolicies. Effectors provide Self-Recovery behaviors the basis to modify and heal 

the system in case of faults. According to types of modified elements, Effectors can be 

classified into three types: ParameterEffectors for adjusting system components’ parameters 

[29], ArchitectureEffectors for adding, removing, or replacing system components [30], and 

ControlEffectors for changing FunctionalBehavior(s) of a Controller in response to faulty 

conditions. 

 
Figure 6 Self-Recovery Conceptual Model  

Each AdaptationAction of Effectors can be considered as a variation point of the system, 

which enables reconfiguration and adaptation at runtime. Different AdaptationActions have 

different Effects on the system and may have different Overheads and Delays. A Self-

Diagnosis behavior has a trade-off between adaptation benefits and costs in terms of time 

and/or resource consumption (i.e., TimeOverhead and ResourceOverhead).  
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In the literature, there are three types of RecoveryPolicy [25]: ActionPolicy, GoalPolicy, and 

UtilityFunctionPolicy. ActionPolicy can be seen as a pair in the form of <condition, action>. If 

the condition is satisfied, then a corresponding action is executed [31], which is applied in the 

RAMA case study. GoalPolicy specifies desired states, which requires a sequence of 

AdaptationActions to be taken to make the system transit from a faulty state to the desired one 

[32]. UtilityFunctionPolicy defines an objective function containing multiple objectives of the 

system to guide the system to move towards the desired state in terms of utility values [33]. 

Table 5 Concept Definitions of Self-Recovery Conceptual Model 

Concept Definition 
C36. Delay Time interval between the initiation and completion of an AdaptationAction 

(C23) 
C37. Effect Change of one or more Behaviors (C10) caused by an AdaptationAction 

(C23)  
C38. Overhead Overhead for executing AdaptationActions (C23) 
C39. ResourceOverhead Resources required for executing AdaptationActions (C23) 
C40. TimeOverhead Time required for executing AdaptationActions (C23) 
C41. ActionPolicy Specifying which AdaptationAction(s) (C23) should be taken for handling a 

Fault (C18) [25] 
C42. GoalPolicy Specifying desirable States (C14) of the system and target states of Self-

HealingBehaviors (C12) [25] 
C43. UtilityFunctionPolicy Assigning each State (C14) of the system a utility value, which directs the 

system moving towards a state with a higher utility value [25]  
C44. ParameterEffector An Effector (C22) for changing parameter values 
C45. ArchitectureEffector An Effector (C22) for updating system architecture 
C46. ControlEffector An Effector (C22) for modifying the control mode of a Controller (C9) 

3.3 The Uncertainty Conceptual Model 

Uncertainty is intrinsic in Self-HealingCPS due to the tight integration of PhysicalProcesses, 

FunctionalBehaviors, and Self-HealingBehaviors. Therefore, Uncertainties should be studied 

and analyzed in order to establish confidence that a Self-HealingCPS can eventually deal with 

Uncertainties in a graceful manner during its operation. In this section, we provide a general 

conceptual model to understand, classify, and characterize Uncertainties for the purpose of 

testing Self-HealingCPSs in the presence of Uncertainties. The Uncertainty conceptual model 

is presented in Figure 7 and the concepts in the conceptual model are defined in Table 6. In 

Table 7, we present a simple example to illustrate the conceptual model.  

Our definition of Uncertainty conforms to the definition provided by Walker et al. [7]: 

“limited knowledge about future, past, or current events”. We adapt this definition to the 

context of testing as the lack of knowledge about the value of an UncertainFeature (C47) at a 

given point of time during a testing process. For instance, for the RAMA, the actual value of 

the packet loss rate (UncertainFeature) constantly varies from 0% to 100% during testing. 

Thus at a given point of time, the value of packet loss rate is uncertain. Here the given point of 

time during testing is conceptualized as a TimeInstance (Figure 7).  
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 Figure 7 Uncertainty Conceptual Model 

Table 6 Concept Definitions of Uncertainty Conceptual Model  

Concept Definition 
C47. UncertainFeature A feature whose value is uncertain due to lack of knowledge 
C48. Uncertainty Lack of knowledge about the value of an UncertainFeature (C47) at a 

given TimeInstance (C49) 
C49. TimeInstance A point of time during a testing process 
C50. Universe The set of all potential values of an UncertainFeature (C47) 
C51. Notion A qualitative description of an UncertainFeature (C47) 
C52. Datum One possible value of an UncertainFeature (C47) 
C53. MembershipFunction A function defining the degree of belonging to a Notion (C51) 
C54. IndicatorFunction A binary belonging function with 1 for elements belonging to the Notion 

(C51), 0 for other elements 
C55. Measure Measuring the likelihood of a Datum (C52) or Notion (C51), related to an 

Uncertainty (C48) 
C56. ProbabilityMeasure A Measure (C55) of uncertainty using Probability (C57) to characterize 

the likelihood 
C57. Probability Quantifying the chance that an event will occur [34] 
C58. PossibilityMeasure A Measure (C55) of uncertainty using Possibility (C59) and Necessity 

(C60).  
C59. Possibility Describing the plausibility that an event will occur [35] 
C60. Necessity Describing the credibility that an event will occur [35] 
 

Universe describes a set that contains all values that an UncertainFeature may take. 

Typically, an UncertainFeature should have one Universe; however, in certain cases, it is 

possible that we do not have sufficient knowledge about the Universe and cannot specify it. A 

value of the UncertainFeature is defined as a Datum (C52). Taking the packet loss rate for 

example, the Universe of the UncertainFeature is an interval from 0% to 100%, and every 

value within this interval is a Datum.  

In certain cases, values of an UncertainFeature can only be described in a qualitative 

manner. As presented in Table 7, the packet loss rate of the MAV link is described as low, 

medium and high, which are represented as Notions (C51) in the conceptual model. A Notion 

has one MembershipFunction (C53), which determines the extent to which a Datum belongs to 

the Notion. More specifically, a MembershipFunction of a Notion takes one Datum as input 

and outputs a real value between 0 and 1, representing the membership degree of the Datum to 

the Notion. This means a Datum could partially belong to multiple Notions, and in this case, 
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each Notion is a fuzzy set1. IndicatorFunction (C54) is a specialized MembershipFunction, 

which only outputs 0 or 1, meaning that a Datum either belongs or does not belong to the 

Notion associated with the IndicatorFunction. In this case, the corresponding Notion is a crisp 

set2. Table 7 shows an example for both of the cases. When using the IndicatorFunction, the 

boundaries of the three Notions (i.e., Low, Medium and High) are crisp, i.e., a packet loss rate 

only belongs to one of the three Notions. In contrast, the boundaries defined by the 

MembershipFunction are fuzzy. In this case, a packet loss rate of 0.02 belongs to Low with 50% 

membership degree, to Medium with 45% membership degree, and to High with 5% 

membership degree.  

Table 7 An Example of Uncertainty 

Concepts Example 
UncertainFeature Packet loss rate of the MAV link 
Uncertainty Actual value of the packet loss rate at a given time instance 
Universe The interval from 0% to 100% 
Datum ∀𝑥, 𝑥 ∈ [0%, 100%] 
Notion 𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ 
MembershipFunction 𝑀!"# 𝑥        =  1 (1 +  𝑒!""(!!!.!")) 

𝑀!"#$%& 𝑥 =  1 1 +  𝑒!"" !!!.!" −  1 1 +  𝑒!"" !!!.!"  
𝑀!"#! 𝑥      =  1 (1 +  𝑒!""(!.!"!!)) 

IndicatorFunction 𝑀!"# 𝑥        =  1, 𝑥 ∈ 0, 0.02   
0, 𝑥 ∉ [0, 0.02)   

𝑀!"#$%&(𝑥) =  1, 𝑥 ∈ 0.02, 0.05   
0, 𝑥 ∉ [0.02, 0.05)   

𝑀!"#! 𝑥      =  1, 𝑥 ∈ 0.05, 1   
0, 𝑥 ∉ [0.05, 1]   

 

An Uncertainty may be measured with different Measures (C55). From complete certainty 

to total ignorance, there exist five intermediate levels as defined in [7]. Table 8 shows these 

five levels along with their relations to Measure, Datum, and Notion.  

For Level 1 Uncertainty, at a given TimeInstance, the value of an UncertainFeature is one 

value with a margin of error. In other words, one is absolutely certain that the value falls 

within this margin. For this reason, no qualitative specification (Notion) is required for this 

level. In the running example, a servo’s maximum thrust could be determined according to its 

product specification. However, this value is not accurate, and a tolerance interval is given to 

specify the range of the value. Therefore, the maximum thrust belongs to Level 1 Uncertainty, 

i.e., an absolute value with a margin of error.  

Level 2 Uncertainty stands for the situation that an UncertainFeature has alternate values 

with Probabilities (C57). Thus, ProbabilityMeasure (C56) is used at this level to map every 

Datum or Notion to a Probability. For instance, the measurement error of a GPS in the RAMA 

                                                        
1 “The fuzzy set is defined mathematically by assigning a degree of membership to each possible value 
in the universe of discourse.” [35] 
2 “The crisp set is defined as a set that dichotomize the individuals in a universe of discourse into two 
groups: members and nonmembers.” [35] 
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is an Uncertainty conforming to a normal distribution. Through statistical analyses, the normal 

distribution can be determined, and thus it is a Level 2 Uncertainty. 

Similarly, for Level 3 Uncertainty, the Probability of each possible value is unknown, but 

each possible value is bound with a ranked likelihood, which can be specified via Possibility 

(C59) or Necessity (C60) of the PossibilityMeasure (C58). Following the running example, 

due to the limited knowledge, probability distributions of wind speed and direction cannot be 

determined, and we can only compare the likelihoods of different potential values. 

Consequently, PossibilityMeasures are used to specify the Measure of Level 3 Uncertainty. 

For instance, the likelihoods of low, medium, and high wind speed are little, large, and little 

respectively. Accordingly, their possibilities can be specified as 0.2, 0.7, and 0.2 to reflect their 

ranked likelihood.  

A Level 4 Uncertainty is the case when one is able to enumerate multiple alternative values 

of an UncertainFeature but cannot rank their likelihoods, due to for example a lack of 

knowledge, or disagreements among modelers [7]. At last, Level 5 Uncertainty represents 

situations that what is known is only that we do not know (i.e., known unknowns). In other 

words, the ignorance (the “unknowns” part of known unknowns) is recognized (the “known” 

part of known unknowns). More specially, neither Universe nor Measure of an Uncertainty of 

an UncertainFeature at this level is known. The only thing known is the existence of the 

UncertainFeature. For Level 4 and Level 5 Uncertainties, knowledge about them is too little 

to explicitly model them to be useful for enabling EMBT, and they are excluded from our 

modeling methodology.  

Table 8 Uncertainty Levels 

Level Datum Measure Notion 
Complete Certainty A datum N/A N/A 
Level 1 A determined datum with a margin of 

error 
N/A N/A 

Level 2 A set of data Probability Measure Related 
Level 3 A set of data Possibility Measure Related 
Level 4 A set of data N/A Related 
Level 5 Known Unknowns N/A N/A 
Total Ignorance Unknown Unknowns N/A N/A 

4. The MoSH Modeling Notations and Methodology  
Based on CMSU presented in Section 3, we develop MoSH, which comprises of four UML 

profiles and a modeling methodology, for enabling the development of ETRMs to facilitate 

EMBT of ShCPSs. An overview of the MoSH modeling framework is presented in Figure 8, 

where it shows that the MoSH modeling notations consist of four UML profiles: ShCPS 

Component Profile, ShCPS Behavior Profile, ShCPS Uncertainty Profile, and ShCPS Testing 

Profile. 

In addition, the MoSH methodology (an overview of which is presented in Figure 9) 

provides a step-wise procedure for creating ETRMs. Each of the four high-level steps 
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corresponds to the application of each MoSH profile and these steps are introduced together 

with the profiles in the following subsections. 

 
Figure 8 Overview of the MoSH Modeling Framework 

 
Figure 9 Overview of the MoSH Modeling Methodology 

4.1 Model System Structure with ShCPS Component Profile 

4.1.1 ShCPS Component Profile 

The ShCPS Component profile captures key components of a ShCPS (C1). A ShCPS is 

comprised of a set of physical units (C5) cooperating together via heterogeneous networks 

(C6). Sensors (C7), actuators (C8) and controllers (C9) constitute the major components of 

each physical unit. Accordingly, six stereotypes are defined for these concepts, shown in Table 

9. All the six stereotypes extend UML metaclass BehavioredClassifier as they all realize 

intended behaviors.  

«Network» represents communication channels among physical units. The “uncertainty” 

attribute of «Network» captures indeterminate feature of a network such as bandwidth, latency, 

and packet loss rate. These features can be modeled as attributes stereotyped with 

«Uncertainty» to specify the state of knowledge of an uncertain feature (Section 4.3.2).  

Depending on the visibility of interfaces, a physical unit can be seen as a black box, if only 

external interfaces are accessible, or a white box, if the implementation of its control software 
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is accessible. For the first case, a physical unit can be modeled as a BehavioredClassifier 

stereotyped with «PhysicalUnit». Besides the “uncertainty” representing uncertain features of 

a physical unit, a «PhysicalUnit» has zero to many goals, which are specified as constraints 

that should be obeyed by the classifier. For the second case, a physical unit can be decomposed 

into sensor, actuator, and controller classifiers, stereotyped with «Sensor», «Actuator», and 

«Controller» respectively. The “uncertainty” attribute of «Sensor» and «Actuator» captures 

uncertain features related to the accuracy of a measurement or an actuation, including the 

additive error (bias), multiplicative error (scale), stochastic error (noise), and temporal error 

(latency). 

«PhysicalProcess» (C4) is an abstract concept and its “uncertainty” attribute specifies 

uncertainties arising from mathematical equations of physical variables in the physical process, 

and uncertain parameter values in the equations.  

Table 9 Stereotypes in ShCPS Component Profile 

Stereotype Metaclass Attribute 
«SelfHealingCPS» Package type: ArchitectureType 
«Network» BehavioredClassifier uncertainty: Uncertainty [*] 
«PhysicalUnit» BehavioredClassifier goal : Constraint [*] 

uncertainty: Uncertainty [*] 
«Sensor» BehavioredClassifier uncertainty: Uncertainty [*] 
«Actuator» BehavioredClassifier uncertainty: Uncertainty [*] 
«Controller» BehavioredClassifier goal : Constraint [*] 

uncertainty: Uncertainty [*] 
«PhysicalProcess» BehavioredClassifier uncertainty: Uncertainty [*] 

4.1.2 Model System Structure (A1) 

The first step of building an ETRM is to capture the structure of the ShCPS under test (SUT) 

using ShCPS Component Profile. The modeling process is summarized in Figure 10. First, the 

physical processes, physical units, and networks, which constitute the SUT, are captured as 

separate classes, stereotyped with «PhysicalProcess», «PhysicalUnit», and «Network» 

respectively. Physical units can be further decomposed into sensors, actuators, and controllers, 

each of which is specified as a class stereotyped with «Sensor», «Actuator», or «Controller». 

Figure 11 shows a partial structural model of the RAMA, which consists of two physical units 

(GroundControlStation, Drone) connected through a network (MAVLink). Since the 

GroundControlStation is mainly used for user’s input/output and is not the focus of testing, its 

internal components are not captured in this model. On the other hand, the Drone is 

decomposed into several controllers, sensors, and one actuator to more explicitly specify the 

expected behaviors of the Drone.  

All accessible state variables that can be queried by testing interfaces are specified as class 

attributes, such as mode of NavigationUnit and throttle of Motor, as shown in Figure 11. 

Operations and signal receptions denote testing interfaces provided by corresponding 

components, including output operations for querying state variables, input operations for 
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manipulation, and fault injections for introducing faults to trigger self-healing behaviors, 

which are stereotyped with «OutputOperation», «InputOperation», and «FaultInjection» 

(defined in ShCPS Testing profile, Section 4.4.1). As presented in Figure 11, every class has 

one or more operations for monitoring or controlling the corresponding component. Two fault 

injection operations (disconnect() of MAVLink and disableGPS() of GPS) are also 

implemented to simulate two faults: disconnection from the GroundControlStation and loss of 

GPS signals respectively.  

 
Figure 10 Model System Structure 

 
Figure 11 Structural Model of RAMA (Partial) 

By assigning the value of each stereotype attribute, testers can systematically specify goals 

of these components. Goals of physical units and controllers, defined as OCL (Object 
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Constraint Language) constraints, represent functional and/or extra-functional requirements 

that should always be satisfied by the physical units and controllers. All the constraints are 

defined on class attributes such that they can be validated based on attributes’ values obtained 

via testing interfaces. One goal of NavigationUnit is shown in Figure 11, which is about 

avoiding a crash on the ground, i.e., when Drone lands on the ground (self.currPosition.alt = 

0), its vertical velocity should be below 2 meters per second (self.ekf.zVelocity < 2).  

4.2 Model Behaviors with ShCPS Behavior Profile 

4.2.1 ShCPS Behavior Profile 

ShCPS Behavior Profile is proposed to specify expected self-healing behaviors (C12) of a 

ShCPS for the purpose of enabling EMBT. Since the objective of self-healing behaviors is to 

recover functional behaviors (C11) from faults (C18), the expected functional behaviors 

should also be captured to assess the utilities of self-healing behaviors. This profile has three 

packages: Fault, Functional Behavior, and SelfHealing Behavior, as shown in Table 10. The 

Functional Behavior and Fault packages provide the capability of modeling functional 

behaviors with potential faults whereas the SelfHealing Behavior package is for specifying the 

process of fault diagnosis (C19) and recovery (C21).  

To capture normal and faulty states of a ShCPS, state machines are chosen to specify 

expected functional behaviors stereotyped with «FunctionalBehavior». Potential faults 

influencing these behaviors are hardware and software crashes, which are characterized by 

abnormal output values or unresponsiveness. «Fault» extending UML metaclass ChangeEvent 

is used to represent the occurrence of a potential fault and the change expression of the 

ChangeEvent defines the condition, under which the fault is regarded as having occurred. As 

shown in Figure 12, an occurrence of the disconnection of MAVLink is a potential fault in the 

RAMA, which is specified as a ChangeEvent, whose change expression is “latency > 3”. This 

means that a disconnection fault occurs if the delay of MAVLink exceeds 3 seconds, which 

requires NavigationUnit to perform self-healing behaviors to keep the flight normal. 

The “injectionOperation” attribute of «Fault» specifies a specialized testing interface for 

simulating the occurrence of a fault. Consequent states are stereotyped with «Error» (C17) to 

be distinguished from normal states. Following the example in Figure 12, disconnect() is a 

fault injection interface for simulating disconnection fault, which makes MAVLink enter an 

error state Disconnected, stereotyped with «Error».  

Due to limited knowledge, a functional behavior may be indeterminate, which should be 

captured in a non-determinate state machine. «UncertainState» represents an indeterminate 

fragment of a functional behavior, a state with multiple outgoing transitions that have the same 

triggers and guards but different target states. Its “uncertainOutgoing” attribute specifies 

uncertainties caused by this indeterminism.  
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Table 10 Stereotypes in ShCPS Behavior Profile 

Package Stereotype Metaclass Attribute 
Fault «Fault» ChangeEvent name: String  

injectionOperation: FaultInjection [*] 
«Error» State name: String  

Functional 
Behavior 

«FunctionalBehavior» StateMachine, Region fault: Fault [*] 
error: Error [*] 

«UncertainState» State uncertainOutgoing: Uncertainty [1..*] 
SelfHealing 
Behavior 

«SelfHealingBehavior» StateMachine, Region type: ApproachType 
level: HierarchicalLevel 

«Monitoring» State, StateMachine measurement : Property [1..*] 
«FaultIdentification» State, StateMachine fault: Fault [1..*] 
«Adaptation» State, StateMachine name: String 

 
Figure 12 Examples of Functional Behaviors 

Self-healing behaviors are captured in separate state machines stereotyped with 

«SelfHealingBehavior» and three stereotypes (i.e., «Monitoring», «FaultIdentification», and 

«Adaptation») are defined for annotating states in these behaviors. Figure 13 shows an 

example of self-healing behaviors, which specifies how NavigationUnit handles the 

disconnection fault.  

After passing the initial state, a self-healing behavior enters a «Monitoring» state, where the 

system constantly checks various measurements (C16) from performance probes (C33), event 

probes (C34), and physical process probes (C35), as illustrated in Section 3.2.1. Monitored 

measurements are captured in the “measurement” attribute of «Monitoring». Notice that, there 

are two kinds of monitoring in a ShCPS. One is about monitoring environments through 

sensors and the other is about detecting errors and faults via probes. Since our focus is on self-

healing behaviors, we only explicitly capture the second kind of monitoring in ETRMs. 

Therefore, we included monitoring as part of «SelfHealingBehavior».  
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Figure 13 An Example of Self-Healing Behavior 

Fault diagnosis logics are captured as transitions, originating from a «Monitoring» state and 

terminating on a «FaultIdentification» state. Triggers of transitions are specified as 

ChangeEvents, whose change expressions define criteria for detecting faults. The self-healing 

behavior shown in Figure 13 uses heartbeatInterval to detect the disconnection of MAVLink. 

When the interval is over 3 seconds (heartbeatInterval > 3), the self-healing behavior deems 

the fault occurred.  

«Adaptation» is used for annotating adaptations (C23) that are used by a self-healing 

behavior to “heal” faults. A transition from a «FaultIdentification» state to an «Adaptation» 

state describe recovery policies (C20) specifying which adaptations are used to handle which 

faults. As shown in Figure 13, there are two ways to handle the disconnection fault. When 

Drone’s mode is ControlMode::LAND or ControlMode::RTL, no manual control is required to 

control the flight. In this case, NavigationUnit makes the Drone keep on its current task (the 

“Auto Flying” state). Otherwise, NavigationUnit changes the mode from 

ControlMode::GUIDED to ControlMode::RTL (via effect SendRthS of the transition from 

GCS Disconnected to Flying Back) under which the Drone flies back to where it takes off.  

A transition from an «Adaptation» state to a «Monitoring» state indicates what to be done 

after a fault has been “healed”. As shown in Figure 13, when the system is in the “Flying 

Back” state, as soon as the connection of MAVLink is rebuilt (i.e., heartbeatInterval < 3), 

NavigationUnit changes the mode from ControlMode::RTL back to ControlMode::GUIDED 

to resume the original flight via effect SendResumeS.  

4.2.2 Model Functional and Self-Healing Behaviors (A2) 

The second step of developing an ETRM is to specify expected behavior for each class that has 

been identified in the first step (i.e., A1, Section 4.1.2). Figure 14 shows the two parallel 

processes of this step: modeling functional behaviors and modeling self-healing behaviors.   
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Figure 14 Model Functional and Self-Healing Behaviors 

The functional behavior of a class is modeled as one or more state machines. Each state in 

the state machine should be precisely defined with state invariants, i.e., constraints on class 

attributes constructed in A1 (Section 4.1.2). For example, Figure 12 shows the state invariant 

of the Landing state, which is defined based on attribute mode of class NavigationUnit (Figure 

11). With this invariant, one can test whether NavigationUnit is currently in the Landing state, 

according to the current value of mode. Any inconsistency between the actual state and the 

active state indicates a fault in the SUT.  

In general, a transition between two states models a valid fragment of behavior [36], which 

can be triggered by a CallEvent, SignalEvent, or ChangeEvent. CallEvents represent 

invocations from external systems or users via operational calls such as the transition between 

the Armed and Navigating states in Figure 12. Along with a CallEvent, a Guard (OCL 

constraint) can be specified to define the test data for invoking the operation corresponding to 

the CallEvent. SignalEvents capture interactions among different state machines. Via sending 

signals in effects or state activities, firing a transition in one state machine can lead to 

transitions in other state machines being triggered. For example, the transition from the Idle 

state to the Connected state in the MAVLinkBehavior state machine will be triggered when the 

transition “arm() / Activity: BroadcastStartS” from the Unarmed state to the Armed state in the 

NavigationUnitBehavior state machine is activated (Figure 12). ChangeEvents are used to 

model variations from internal components such as the transition from the “Flying to Target” 

state to the “Pos Hold” state in Figure 12.  

A fault occurs in a system component; therefore, it is modeled as a ChangeEvent, a 

transition’s trigger, which makes controllers enter an error state. The change expression of the 

event is defined based on test requirements. It defines under which condition the fault is 

regarded as occurred (Section 4.2.1). An indeterminate behavior can be specified as a special 

kind of state machine, where a state can have more than one outgoing transitions with the same 

trigger and guard. «UncertainState» is applied to annotate such states and the 

“uncertainOutgoing” attribute of the «UncertainState» is used to specify this uncertainty.  

A self-healing behavior is also modeled as one or more state machines focusing on fault 

diagnosis and recovery. First, the logic of fault identification is specified via the transition 

between a «Monitoring» state and a «FaultIdentification» state. The «Monitoring» state 

represents the situation that no fault has been identified; while the «FaultIdentification» state 
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denotes that the self-healing behavior has identified a specific kind of a fault. The change 

expression of the ChangeEvent, triggering the transition between these two states, describes 

the criteria to detect the fault. As shown in Figure 13, the transition, from “Checking 

Connection” state to “GCS Disconnected” state, captures the logic of fault identification for 

the disconnection fault. The recovery policy performed by the self-healing behavior is 

modeled as the transition from a «FaultIdentification» state to an «Adaptation» state. The 

trigger of the transition is specified as a ChangeEvent whose change expression describes the 

adaptation condition (Figure 13). The trigger of the transition from an «Adaptation» state to a 

«Monitoring» state specifies the behavior after the fault has been successfully healed.   

For both functional and self-healing behaviors, transition effects, and state entry, exit and 

doActivity behaviors can be used to specify interactions among state machines. According to 

the semantics of a Foundational Subset for Executable UML Models (fUML) standard [10], 

either an activity diagram or an opaque behavior with its method defined in the Action 

Language for fUML (ALF) [37], can be used to define an interaction behavior. For instance, 

effect BroadcastStartS of transition “arm() / Activity: BroadcastStartS” is defined as an 

activity diagram, as shown in Figure 15. The semantics of ReadSelf (defined in fUML and 

implemented in Moka) is to obtain an instance of NavigationUnit owning the 

NavigationUnitBehavior state machine. BroadcastStartS is a broadcast signal action, which is 

currently not defined in fUML and not implemented in Moka. We defined its execution 

semantics as follow: sending a signal to all instances of classes that are associated with the 

current class of the instance returned by ReadSelf. In our framework, we implemented the 

semantics of this action in Java and integrated it with the Moka framework. With this action, 

when the transition “arm() / Activity: BroadcastStartS” in the NavigationUnitBehavior state 

machine is fired, its effect broadcasts the StartS signal to MAVLink, Motor, and 

NavigationEKF (Figure 11). As a result, the transition StartS in the MAVLinkBehavior state 

machine will be fired, triggering MAVLink to enter the Connected state.  

 
Figure 15 An Example of Transition’s Effect Specified as an Activity Diagram 
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4.3 Specify Uncertainties using ShCPS Uncertainty Profile 

4.3.1 ShCPS Uncertainty Profile 

From the perspective of testing, an uncertainty (C48) is the lack of knowledge about the value 

of an uncertain feature at a given point of time during the testing process. As explained in 

Section 3.3, the state of knowledge of an uncertainty is specified by defining the universe 

(C50), notions of the uncertain feature (C51), and by stating the measure (C55) of the 

uncertainty. Accordingly, «Uncertainty» is defined, along with “universe”, “notion”, and 

“measure” attributes, as shown in Figure 16 (a). Each attribute corresponds to a newly defined 

datatype, which is introduced below.  

The Universe datatype represents a collection of values. According to the type of value in 

universes, we derive 7 subtypes of the Universe datatype: U_Boolean, U_Integer, U_Real, 

U_UnlimitedNatural, U_Transition, U_String, and U_Equation. In addition, the numerical 

data types (U_Integer, U_Real, U_UnlimitedNatural) are further divided into intervals 

(U_IntegerInterval, U_RealInterval, U_UnlimitedNaturalInterval) and vectors 

(U_IntegerVector, U_RealVetor, U_UnlimitedNaturalVector). In total, 13 types of Universe 

are defined (Figure 16 (b)). The universe, specified as an interval, is a range with a minimum 

and a maximum bound, and a vector typed universe corresponds to a collection of values that 

are listed by its “item” attribute. As shown in Figure 17, attribute altitudeBias of class 

Barometer varies within a range and thus its universe is typed with U_RealInterval.  

The Notion datatype is defined to specify a qualitative description of an «Uncertainty». As 

explained in Section 3.3, elements of a Notion are determined by a MembershipFunction 

(C53), which can be either a binary belonging function (IndicatorFunction (C54)) or a graded 

belonging function (Gaussian, Sigmoidal, Triangle, Trapezoid, BellCurve, DiscreteFunction). 

As shown in Figure 16 (d), typical MembershipFunctions are defined from the MATLAB 

fuzzy library [38] with their parameters captured in datatype attributes.  

Depending on the state of knowledge of an «Uncertainty», three levels of uncertainty can be 

defined to quantify measures (Section 3.3). For Level 1 uncertainty, at a given point of time, 

the value of the uncertain feature is determined with a margin of error. The determined value 

and margin are captured in «Uncertainty»’s “universe” attribute. As shown in Figure 17 (Level 

1), attribute altitudeBias of class Barometer is an uncertain feature, and its value is bounded by 

an error margin from -10 to 10.  

For the other two levels of uncertainty, a determined value of the uncertain feature is 

unknown. Multiple values are possible to be true at a given point of time. If the probability of 

each value is known, the uncertainty belongs to the Level 2 uncertainty. The 

ProbabilityMeasure datatype is provided to specify the probability (C57) distribution of all 
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possible values, such as the NormalDistribution specified for the Level 2 uncertainty in Figure 

17.  

 
(a) Uncertainty  

 
(b) Universe  

 
(c) Measure  

 
(d) Notion  

Figure 16 ShCPS Uncertainty Profile 

For Level 3 uncertainty, the probability distribution is unknown. Only a rankable likelihood 

of each value is available. In this case, PossibilityMeasure can be used to specify the rankable 

likelihood, via possibility (C59) and necessity (C60) distributions, as shown in Figure 17 
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(Level 3). Based on MARTE [16], 11 types of Distributions are defined in this profile (Figure 

16 (c)). They can be used to specify both probability and possibility measures.  

 

 
Figure 17 Specifications of Uncertainty 

4.3.2 Model Uncertainty (A3) 

The next step of building the ETRM is to specify uncertainties from sensors and actuators.  

Limited by the current state of knowledge, testers may not be able to determine every feature 

of each sensor and actuator. However, these features have effects on controllers’ behaviors, 

such as packetLossRate of MAVLink and altitudeBias of Barometer. To support testing 

ShCPSs under uncertainties, uncertain features are defined as class attributes stereotyped with 

«Uncertainty». The uncertainty is quantified, by defining universes and notions of uncertain 

features, and by quantifying uncertainties with measures. The modeling process is summarized 

in Figure 18.  

According to the type of an uncertain feature, one of the 13 types of Universe datatypes 

defined in ShCPS Uncertainty Profile (Section 4.3.1), can be chosen as the datatype of the 

uncertainty. For a numerical feature, if its value varies within a range, an interval datatype of 

universe (U_IntegerInterval, U_RealInterval, U_UnlimitedNaturalInterval) should be assigned 

to this uncertainty. Otherwise, a vector can be used to list all possible values. Depending on 

the level of uncertainty, the notions and measure are specified in the following way.  

For Level 1 uncertainty, at a given point of time, the value of the uncertain feature is 

determined with a margin of error. They are specified via “universe” attribute of 

«Uncertainty», as shown in Figure 17 (Level 1). For the other two levels of uncertainty, prior 

to quantifying the likelihood of each value, the modeler should decide whether their 
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knowledge about the uncertain feature is qualitative or quantitative. If it is qualitative, a notion 

should be defined for each descriptive term, such as the three notions Low, Medium, and High, 

defined for uncertain feature windSpeed in Figure 17. Any MembershipFunction defined in the 

uncertainty profile (Section 4.3.1) can be used to define the elements of a notion.  

 
Figure 18 Model Uncertainty 

After defining notions, modelers specify the measure of each uncertainty. For the Level 2 

uncertainty, since the probability of each value is known, a ProbabilityMeasure is used to 

describe the likelihood. While PossibilityMeasure is adopted for the Level 3 uncertainty to 

state the rankable likelihood of each value. For both Level 2 and Level 3 uncertainties, 

appropriate probability, possibility, or necessity distributions can be chosen from the set of 

predefined Distributions in the uncertainty profile (Section 4.3.1).  

Since measures of Level 4 and Level 5 uncertainties are unknown, these uncertainties 

cannot be explicitly specified in the model. However, as testing proceeds, such uncertainties 

may transform to lower level uncertainties and be handled accordingly.   

4.4 Model Testing Utilities with ShCPS Testing Profile 

4.4.1 ShCPS Testing Profile 

ShCPS Testing profile defines five stereotypes based on necessary concepts from the standard 

of Methods for Testing and Specification of Model-based Testing [39] (shown in Figure 19). 

«SystemUnderTest» denotes the testing target, i.e., ShCPS. «InputOperation» and 

«OutputOperation» extend BehavioralFeature representing testing interfaces used for 

controlling and monitoring the ShCPS. An «InputOperation» testing interface sends 

instructions to the «SystemUnderTest», whereas an «OutputOperation» testing interface 

queries state variable values. These types of operations facilitate test execution (to be 

discussed in Section 5). «FaultInjection» is a specialized «InputOperation» for faults injections 

to trigger self-healing behaviors. «TestStub» represents sensors, actuators, networks, and 

external systems, which are simulated/emulated by simulators/emulators. As explained in 

Section 1, self-healing behaviors are tested in a simulated environment. Hence, simulators or 

emulators play an important role in building and maintaining a realistic test execution 



Simula Research Laboratory, Technical Report 2016-08                                                                             June, 2016 

28 

environment for ShCPSs. The “parameter” attribute of «TestStub» specifies configuration 

parameters required for launching stubs.  

 
Figure 19 ShCPS Testing Profile 

4.4.2 Model Test Utilities (A4) 

The final step of the modeling is to bind the testing interfaces with the defined operations and 

to achieve the final ETRMs. Figure 20 presents the three stages of this step.  

 
Figure 20 Model Test Utilities 

First, the main class, which contains the entry point of the testing process, is stereotyped 

with «SystemUnderTest» to show the starting point of execution. Second, sensors, actuators, 

and physical processes, which are to be simulated or emulated, are annotated with «TestStub». 

The “parameter” attribute of «TestStub» captures configuration parameters of simulators or 

emulators. Figure 21 presents the parameters of GPS: id and resolution. They are all captured 

in the “parameter” attribute. By parsing this value, TM-Executor knows how to start and 

initialize a corresponding simulator to build the testing environment.  

Third, operations defined in class diagrams can be stereotyped with «InputOperation», 

«OutputOperation» or «FaultInjection» to distinguish them from each other. For 

«InputOperation» and «FaultInjection», their input parameters capture input data of the 

corresponding testing interface. Such an operation is defined as an opaque behavior, which 

states the Uniform Resource Identifier (URI) of the corresponding testing interface, such as the 

method of disableGPS() shown in Figure 21. According to this URI, the testing interface 

disableGPS() will be invoked by TM-Executor whenever the operation is called.  

For «OutputOperation», besides specifying the URI and parameters of the testing interface, 

the modeler should also associate each output parameter to a class attribute, so that the 

attribute can be updated by system’s current state variable value obtained through the 

operation. To do so, the name of the output parameter is the same as the one of the 

corresponding attribute. In this way, each output parameter of an output operation is bound to 
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an attribute contained in the class owning this operation. For example in Figure 21, the output 

parameter of getGPSPosition(), is position, the same as attribute position of class GPS (Figure 

11). Whenever the operation is invoked, attribute position is updated by the operation.  

 
Figure 21 Test Utilities of GPS 

5. The TM-Executor Framework  

To enable EMBT for ShCPSs in the presence of environment uncertainties, we created the 

MoSH and TM-Executor frameworks. An overview of the frameworks including integrated 

tools is presented in Figure 22. The MoSH framework, i.e., UML profiles presented in Section 

4, is implemented in Papyrus [40], a UML Modeling Tool. With MoSH, testers can develop 

the ETRM, which captures expected behaviors and environment uncertainties of the SUT. To 

execute the ETRM and test the SUT under environment uncertainties, we developed the TM-

Executor framework as an extension to Moka [11], which is a Papyrus module for execution of 

UML models complying with fUML standard [10]. The key input for the TM-Executor 

framework is an ETRM created with MoSH.  

 
Figure 22 TM-Executor Framework 

TM-Executor extends Moka in four ways. First, it extends Moka to execute ETRMs 

containing stereotypes from the MoSH profiles since Moka doesn’t recognize stereotypes 

defined in the MoSH profiles. For example, as shown in Table 11, operations with stereotypes 

«InputOperation» and «OutputOperation» applied have specific semantics in our case and thus 
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we extended the existing semantics of the operations defined in fUML. Second, execution 

semantics for certain UML model elements are not yet defined in fUML, for instance, for 

BroadcastSignalAction and ChangeEvent. Thus, we defined their execution semantics 

ourselves and implemented them as extensions in Moka. Third, there exist defined semantics 

in fUML for certain UML metaclasses that do not serve our purpose and thus we extended 

them, for instance, for State as shown in Table 11. Appendix B presents the implementation of 

these extensions. Fourth, we implement test execution facilities (i.e., Test Driver, Test 

Inspector, and Test Logger) since Moka is a generic model execution engine and needed to be 

specialized for testing.  

Table 11 Extensions to Moka Execution Semantics 

Extension UML Metaclass Execution Model 
Element Execution Semantic 

Extensions for 

stereotypes 

Operation stereotyped 

with «InputOperation» 

InputOperation 
Execution 

Invoke the test interface 
corresponding to the URI defined 
in the opaque behavior of the 
operation, taking input parameter 
values as inputs. 

Operation stereotyped 
with «OutputOperation» 

OutputOperation 
Execution 

Invoke the test interface 
corresponding to the URI defined 
in the opaque behavior of the 
operation. Update attributes values 
using the outputs of the test 
interface. 

Extensions for 
additional 

metaclasses 

BroadcastSignalAction 
 

BroadcastSignal 
ActionActivation 

Construct a signal using the values 
from argument pins and send the 
signal to all objects that are 
associated with the object from the 
source pin.  

ChangeEvent ChangeEvent 
Occurrence 

The change expression of change 
event is evaluated, whenever 
related attributes’ values are 
updated. If the change expression 
becomes true, the change event 
occurs.  

Extension to 
existing 
semantic 

State StateActivation Besides the semantic defined in 
fUML, the state can be entered 
only if its state invariant is true. 

 

While executing ETRMs, certain test data (i.e., input parameter values) are needed to trigger 

transitions with CallEvents. In ETRMs, the valid input parameter values are defined by 

transitions’ guard specified as OCL constraints. To avoid a user manually providing valid 

values, we use an OCL constraint solver, i.e., EsOCL [8], which takes an OCL constraint as 

input and generates a set of values satisfying the constraint. During the execution of ETRMs, 

whenever test data is required to continue the execution of ETRMs, ETRM Execution Engine 

interacts with Test Driver, which invokes EsOCL with an OCL constraint. EsOCL solves the 

constraint and provides required test data to Test Driver, which subsequently supplies the test 

data to ETRM Execution Engine to continue the execution of ETRMs. Figure 23 presents an 
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example of this process. First, to execute ETRM, ETRM Execution Engine notifies Test Driver 

to trigger a transition. Second, as directed by a random testing strategy, Test Driver arbitrarily 

chooses the transition “takeoff() [alt > 50 and alt < 200]” and invokes EsOCL to generate an 

input value satisfying the guard condition “[alt > 50 and alt < 200]”. Third, by solving the 

constraint, EsOCL returns a valid value for variable alt, i.e., alt=100, which is eventually used 

to invoke takeoff().  

 
Figure 23 Example of Test Data Generation 

During the execution of an ETRM, state invariants (OCL constraints) specified in the 

ETRM are evaluated to determine whether a fault is found. Test Inspector provides such 

functionality. ETRM Execution Engine invokes Test Inspector whenever the ETRM is updated 

upon the reception of new state variable values coming from testing interfaces. Test Inspector 

uses Dresden OCL [12] to evaluate a state invariant against actual values of the state variables. 

If the result of the evaluation is false, it means that there is a fault and the execution 

terminates; otherwise, there is no fault and the execution continues. Following the example 

shown in Figure 24, Navigating is the active state, and its state invariant is an OCL constraint 

defined on attribute mode. Whenever mode is updated by querying its value via a test interface, 

the ETRM Execution Engine, first, notifies Test Inspector to check system’s actual state 

against the model. Second, Test Inspector invokes Dresden OCL to evaluate the state invariant 

based on the updated attribute value. Third, Dresden OCL returns “false”, which means the 

system state is inconsistent with the active state in the ETRM. Thus, a fault is revealed, and 

Test Inspector terminates the execution.  

 
Figure 24 Example of Constraint Evaluation 

Test Logger takes charge of creating test logs. Whenever a state machine in the ETRM 

changes its active state or an operation is invoked by Test Driver, Test Logger saves a log to 

record the change or stimulus. As a result, the logs keep the history of the execution process, 
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including the sequence of adaptations adopted for healing. In the case of a fault, i.e., an 

invariant violation detected by Test Inspector, the fault is logged as well. The logged fault, 

along with the history of execution can help to perform e.g., root cause analyses.  

To support interactions among ETRM, SUT and simulators/emulators, we used the FMI 

standard [9], which is a tool independent standard to support model exchange and facilitate co-

simulation of dynamic models. With FMI, ETRM Execution Engine executes ETRMs and in 

turn interacts with SUT. In addition, ETRM Execution Engine interacts with 

simulators/emulators using FMI to introduce uncertainties captured in ETRMs during their 

execution. Notice that our focus is only on testing the software of a self-healing CPS in the 

presence of environment uncertainties and this is the reason that hardware and its environment 

are simulated/emulated. Since the focus of testing is software, we captured its expected 

behavior as UML state machines. However, UML state machines cannot capture continuous 

behaviors and thus we used existing simulators/emulators. Supported by FMI, the input and 

output values of simulators’ or emulators’ interfaces can be modified to introduce 

uncertainties. The extent of each modification is determined by the uncertainty’s universe, 

notions and measure defined in ETRMs (Section 4.3). Simulators and emulators can be 

developed using several modeling languages such as Modelica [41] and Simulink [42], which 

is however out of the scope of this paper.   

6. Evaluation 
This section presents the evaluation of CMSU, MoSH, and TM-Executor. Section 6.1 presents 

the experiment design. Experiment results are discussed in Section 6.2. We summrise the 

evaluation results in Section 6.3. In Section 6.4, we present threats to validity.  

6.1 Experiment Design  

As shown in Table 12, the experiment was designed to answer three research questions (RQ1-

RQ3) through three carefully designed tasks (T1-T3). Experiment results were evaluated with a 

set of metrics and various numbers of case studies were involved in each task. In the rest of the 

section, we discuss the experiment design by following the research questions. 

Table 12 Experiment Design 

RQ Task Metrics Case Studies 
1 T1: Mapping concepts and their 

relationships from a case study to 
the ones in CMSU  

Completeness, Correctness VCS, TMS, RFID-SC, 
DSRL, ISR, APR, 
RAMA, PeMS, VSS 

2 T2: Creating ETRMs with MoSH FunBeh, HealBeh, Diagnosis, 
Recovery, Uncertainty, 
TotalElem, StereoPer 

RAMA, PeMS, VSS 

3 T3: Testing a ShCPS with TM-
Executor with a random strategy. 

TranTime, SynTime 
DataGenTime, EvalTime, 
UncIntrTime, DetectedFault 

RAMA 
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Table 13 Metrics and their Definitions 

RQ Metric Description 
1 Completeness The number of ShCPS elements covered by CMSU (Cov) divided by the total 

number of elements in the case study (Total): Cov / Total 
Correctness The number of relationships that are consistent with the ones in CMSU 

(ConsAssoc) divided by the total number of relationships in the case study 
(TotalAssoc): ConsAssoc / TotalAssoc 

2 FunBeh The number of functional behaviors in an ETRM 
HealBeh The number of self-healing behaviors in an ETRM 
Diagnosis The number of self-diagnosis behaviors in an ETRM 
Recovery The number of self-recovery behaviors in an ETRM 
Uncertainty The number of uncertainties captured in an ETRM 
TotalElem The total number of model elements in an ETRM 
StereoPer The number of stereotyped model elements in an ETRM (SterElem) divided 

by the total number of elements in the ETRM: SterElem / TotalElem 
3 TranTime Time for traversing a transition 

SynTime Time for synchronizing ETRM, ShCPS, and simulators 
DataGenTime Time for generating test data from a guard condition 
EvalTime Time for evaluating a state invariant 
UncIntrTime Time for introducing an uncertainty 
DetectedFault The number of faults found by TM-Executor with the random strategy 

 

RQ1: Is CMSU complete and correct to capture relevant concepts of the selected case studies? 

With this research question, we first aimed to assess whether there are any concepts and/or 

relationships in the case studies that cannot be mapped to the concepts and/or relationships in 

CMSU. Doing so helps to find missing concepts in CMSU and consequently missing elements 

in the MoSH. Second, we aimed to know whether there are any relationships in the conceptual 

model of a case study that are mapped incorrectly to the relationships between the concepts in 

CMSU. Its purpose is to find any incorrect relationships in CMSU. We, therefore, defined the 

T1 task (Table 12) to achieve these two objectives. We selected nine available ShCPS case 

studies to assess the quality of CMSU: Videoconferencing System (VCS) [43], Traffic 

Monitoring System (TMS) [44], Radio-frequency identification (RFID) supply chain (RFID-

SC) [45], Distributed Systems Research Lab (DSRL) [46], Intelligent Service Robot (ISR) [47], 

Automatic Power Restoration System (APRS) [48], RAMA [13], freeway Performance 

Measurement System (PeMS) [49], and Video Streaming System (VSS) [50]. Experiment 

results were evaluated with the metrics of Completeness and Correctness (Table 12), which are 

defined in Table 13. 

RQ2: Does MoSH provide a cost-effective way of creating ETRMs?  

With this research questions, we first want to assess 1) how much additional modeling effort 

is required to create ETRMs for the selected case studies as compared to standard UML 

notations, and 2) the effectiveness of applying MoSH for modeling all identified self-healing 

behaviors and uncertainties of the selected case studies. For this RQ, we defined the T2 task 

and defined a set of metrics (Table 12 and Table 13). Regarding case studies, we only used 

RAMA [13], PeMS [49], and (VSS) [50],  due to the reason that the other six case studies used 
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to answer RQ1 do not provide detailed specifications of system structures, functional and self-

healing behaviors. 

RQ3: How is the performance of TM-Executor in terms of test execution? 

TM-Executor performs test execution with model execution to test self-healing behaviors of 

ShCPSs in the presence of environment uncertainties. With this evaluation, we are interested 

in assessing how much time is required for TM-Executor to execute various test steps such as 

generating data from a guard condition and evaluating a state invariant. This gives us an 

indication whether TM-Executor is practically applicable in terms of its time performance. For 

RQ3, we defined the T3 task, which involves testing a ShCPS in the presence of environment 

uncertainties as a proof-of-concept. We implemented a random test strategy, where during 

each test execution step, a random transition was selected for execution. During test execution, 

test data was generated using EsOCL, and uncertainties were simulated based on their 

universes, notions, and measures. Note that we do not aim to assess fault detection ability of 

test strategies, rather we aim to demonstrate, as a proof-of-concept, the feasibility of the 

complete EMBT solution. In the future, we plan to implement other test strategies. For RQ3, 

we chose to test RAMA [13], using the ETRM created to answer RQ2. We couldn’t use PeMS 

and VSS for RQ3 as we didn’t have access to the implementation to the ShCPS for testing. 

6.2 Experiment Execution, Results, and Analyses 

In this section, we provide details on experiment executions, results, and analyses, 

corresponding to each research question.  

6.2.1 Results for RQ1 

Based on the nine ShCPSs (Section 6.1), we evaluated and improved CMSU’s completeness 

and correctness, by following the steps summarized in Figure 25. Initially, we derived the 

conceptual model (CMSU V.1) from the existing literature on self-healing systems, CPSs, and 

uncertainty theories (Activity A1 in Figure 25). To evaluate its quality in terms of 

completeness and correctness, we abstracted ShCPS related concepts as well as concept 

relationships (Cons. & Rels. from CSs. V.1), from the nine ShCPSs’ specifications (Activity 

A2.1 in Figure 25). Cons. & Rels. from CSs. V.1 capture necessary entities required for 

defining expected self-healing behaviors and uncertainties of a ShCPS. For each abstracted 

concept or relationship, we tried to find a counterpart in CMSU V.1 (Activity A2.2 in Figure 

25). If the counterpart is missing, we further investigated whether the abstracted one is 

correctly identified. In case that it was correct, CMSU V.1 was revised to cover the missing 

concept. In case that we identified a problem in the case studies, the wrong concept or 

relationship was corrected. After A2.2, we created a new version of abstracted concepts and 

relationships, i.e., Cons. & Rels. from CSs. V.2. At last, the refined conceptual model (CMSU 

V.2), generated by A2.2, was further refined by A3 via mapping from Cons. & Rels. from CSs. 
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V.2 to CMSU V.2. The final obtained CMSU V.3 is presented in Section 3 and was 

implemented as UML profiles (presented in Section 4). In addition, Appendix A presents the 

statistics of the occurrence of each concept in the nine case studies for reference.  

        
Figure 25 The Process of Developing CMSU 

After the two-steps refinement, CMSU succeeded to correctly cover all the abstracted 

concepts and relationships and therefore the completeness, and correctness are 100% for all the 

nine case studies, which justifies that CMSU is complete and correct at least for the selected 

nine case studies. 

6.2.2 Results for RQ2 

To assess the additional effort required to applying MoSH for developing ETRMs, we report 

results for the StereoPer metric in Table 14. We needed to apply stereotypes from MoSH to 

15%, 15%, and 19% of model elements for RAMA, PeMS, and VSS. On average, for the three 

case studies, we needed to apply stereotypes to 16% of model elements. This number gives us 

a rough indication of additional modeling effort required to use MoSH to create ETRMs. 

Table 14 MoSH Evaluation Results (RQ2) 

Metric RAMA PeMS VSS Avg. 
TotalElem 377 144 97 206 
FunBeh 10 7 3 7 
HealBeh 4 5 2 4 
Diagnosis 4 5 2 4 
Recovery 9 5 3 6 
Uncertainty 10 6 1 6 
StereoPer 15% 15% 19% 16% 

 

Regarding evaluating the effectiveness of MoSH, first, we provide statistics for various 

model elements in ETRMs for each case study in Table 15. Results in Table 15 give an 

indication of the complexity of ETRMs for the three case studies. Among the three case 

studies, RAMA is the most complicated one. It contains 10 functional behaviors and four self-

healing behaviors. In total, 377 model elements were used to specify the 14 behaviors. In 
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contrast, PeMS and VSS are relatively simple, i.e., in total 144 model elements for specifying 

12 behaviors of PeMS and 97 model elements for specifying five behaviors of VSS.  

Table 15 Descriptive Statistics of the Model Elements (RQ2) 

Element RAMA PeMS VSS Avg. 

Class 10 7 4 7 
Attribute 42 12 11 21 
Operation 29 14 11 18 
Signal 10 10 4 8 
Association 9 7 3 6 
State Machine 14 12 5 10 
State 97 41 21 53 
Transition 166 41 38 81 
Total 377 144 97 204 

 

Second, as discussed in Section 6.1, we collected statistics for the five metrics, two of which 

capture the number of functional and self-healing behaviors. As shown in Table 14 (the 

FunBeh and HealBeh rows) and Table 18 in Appendix A (the Functional Behavior and Self-

Healing Behavior rows), all the identified functional and self-healing behaviors were captured 

in ETRMs. Moreover, self-diagnosis and self-recovery, the two key steps of self-healing 

behaviors, were also explicitly specified, as shown in the Diagnosis and Recovery rows in 

Table 14. They enable TM-Executor to rigorously test self-healing behaviors.  

Table 16 Uncertainties in RAMA, PeMS and VSS (RQ2) 

Case 
Study 

Uncertainty Level Universe Measure Notions 

RAMA Wind Direction 3 0° ~ 360° Possibility Null 
Wind Velocity 3 0 ~ 30 m/s Possibility Low, Medium, High 
GPS Bias 2 -50 ~ 50 m Probability Null 
Motor Bias 2 -1 ~ 1 m/s2 Probability Null 
Barometer Altitude Bias 1 -10 ~ 10 m N/A N/A 
Barometer Climb Rate Bias 2 -0.5 ~ 0.5 m/s2 Probability Null 
Accelerometer Noise  2 -1 ~ 1 m/s2 Probability Null 
Gyro Noise 2 -0.1 ~ 0.1 rad/s Probability Null 
MAV Link Latency 2 0 ~ 600 ms Probability Null 
MAV Link Packet Loss Rate 2 0% ~ 5% Probability Null 

PeMS Vehicle Speed 3 10 ~ 120 km/h Possibility Null 
Vehicle Size 3 2000 ~ 5000 L Possibility Mini, Compact,  

Mid, Large 
Loop Detector Impedance 2 5 ~ 10 Ω Probability Null 
Loop Detector Voltage  2 3 ~ 4 V Probability Null 
Loop Detector Sensitivity 2 0.1 ~ 1 𝜇H Probability Null 
Latency of ATM Link 2 0 ~ 1 s Probability Null 

VSS Latency of Channel 2 0 ~ 800 ms Probability Null 
 

We specified 10 uncertainties for RAMA, six uncertainties for PeMS, and one uncertainty 

for VSS, as shown in Table 16. These uncertainties come from the environments of the 

software being tested and are related to sensors, actuators, and networks. Supported by MoSH, 

we could precisely define the universe, notions, and measure for each uncertainty. Based on 
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the uncertainty specifications, TM-Executor can introduce the uncertainties via simulators or 

emulators, which enables the testing of self-healing behaviors under uncertainties. 

6.2.3 Results for RQ3 

As discussed in Section 6.1, to answer RQ3, we used TM-Executor to test a real ShCPS 

(RAMA), based on the ETRM built in T2 (Table 12). We investigated the efficiency of TM-

Executor in terms of time taken for model execution (TranTime and SynTime in Table 13), test 

data generation (DataGenTime in Table 13), state invariant evaluation (EvalTime in Table 13), 

and uncertainty generation (UncIntrTime Table 13). As discussed in Section 6.1, we only 

implemented a random strategy for model execution and assessed if it can find faults 

(DetectedFault in Table 13).  

We conducted the experiment on a single PC, with a processor Intel Core i7 2.6 GHz and 16 

GB of RAM. As presented in Table 14, the ETRM developed for RAMA has 10 classes, four 

self-healing behaviors to handle four faults, and 14 state machines. We also have access to 

simulators for five sensors and one actuator. Ten uncertainties (Table 16) were introduced 

using these six simulators and we tested the four self-healing behaviors in the presence of 

these ten uncertainties. To reduce the effect of randomness of the executions, we repeated the 

experiment 10 times and report statistical values for each metric. 

Table 17 summarizes the results. On average, traversing a transition took 5839 ms (i.e., 5.8 

seconds), synchronization time took 1.5 ms, 95 ms for test data generation, and less than one 

millisecond for both state invariant evaluation and uncertainty generation. The maximum time 

taken for synchronization (34 ms), state invariant evaluation (1 ms), and uncertainty generation 

(<1 ms) are quite small. For test data generation, the maximum time was 104ms, where we 

used the EsOCL solver. Notice that depending on the complexity of a guard condition, time 

taken by test data generation may vary. In our case studies, in total there were 50 guards (OCL 

constraints), 27 of which contain six clauses. For the most complex constraint with six clauses, 

EsOCL took 104 ms to solve. During test execution, most of the time was spent on executing 

the simulators and the software of the ShCPS. The computational complexity of software and 

simulators determine the amount of time required to process a test stimulus. As shown in Table 

17, after sending a stimulus to the ShCPS, its software maximally took 9421 ms (i.e., 9.4 

seconds) to enter the target state. However, this time is not related to TM-Executor. Instead, it 

is system and simulator/emulator specific. In conclusion, SynTime, DataGenTime, EvalTime, 

and UncIntrTime are related to TM-Executor, which are all very small as shown in Table 17.  

In the 10 runs of the experiment, one fault (state invariant violation) was detected by TM-

Executor three times. This fault leads to the collision of the drone. Though a self-healing 

behavior helped the drone automatically avoid collisions with other vehicles, the drone failed 

to keep a safe distance from an intruding vehicle in the presence of uncertainties.  
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Table 17 TM-Executor Evaluation Result* (RQ3) 

Metric Mean (ms) Min. (ms) Max. (ms) 
TranTime  5839 5270 9421 
SynTime 1.5 1 34 
DataGenTime 95 76 104 
EvalTime <1 <1 1 
UncIntrTime <1 <1 <1 

*Min.: Minimum value, Max.: Maximum value 

6.3 Overall Discussion 

In this section, we provide an overall discussion based on the results presented in Section 6.2.1 

to Section 6.2.3. As discussed in Section 6.2.1, we conclude that our conceptual model 

(CMSU) is complete and correct based on the results of evaluating with nine case studies. Such 

results give us an early indication on the completeness and correctness of CMSU and 

nonetheless more case studies are warranted. This conclusion is important as it forms the 

foundation for proposing the MoSH modeling methodology, another key contribution of the 

paper. 

Based on the results presented in Section 6.2.2, we can conclude that, on average, we 

needed additional 16% of modeling effort to create ETRMs, which involved adding 

stereotypes to standard UML model elements. We understand that this is the simplest way of 

measuring modeling effort and more sophisticated ways to measure the modeling effort are 

required, e.g., conducting controlled experiments with human subjects (modelers) and 

assessing how much time is actually required by modelers when applying MoSH to develop 

ETRMs. In addition, we demonstrated the application of MoSH to create ETRMs for three 

diverse case studies of varying complexity. Such exercise gives us the evidence that MoSH is 

capable of modeling different ShCPSs to support testing in the presence of environment 

uncertainties. For the current evaluation, the first author of the paper created all the ETRMs. 

However, we acknowledge that a better evaluation would be to conduct a controlled 

experiment with more modelers with a diverse background to assess the applicability of MoSH. 

Conducting such controlled experiments (even in an academic setting) requires resources and 

opportunities, which are therefore expensive. We are however actively pursuing such 

opportunities. 

Based on the results presented in Section 6.2.3, we conclude that the time taken by TM-

Executor to perform various testing activities during test model execution was very small, i.e., 

in the order of milliseconds, with the exception of traversing a transition that, on average, took 

5.8 seconds. Notice that this was the time taken by an SUT to execute the invoked 

operation/signal event on the transition, not by TM-Executor to invoke an event on the 

transition. Thus, such time is dependent on the implementation of an SUT and has nothing to 

do with the performance of TM-Executor.   
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6.4 Threats to Validity 

Conclusion validity threats are related with factors that can affect conclusions drawn from 

experiment results. The random test strategy implemented in TM-Executor leads to different 

behaviors of the SUT being exercised. For different behaviors, the amount of time spent by 

TM-Executor to generate test data, evaluate constraints, etc., varies as well. Therefore, TM-

Executor’s performance changes for each test execution. To deal with such a threat to 

conclusion validity, we repeated the experiment 10 times and applied statistics to analyze TM-

Executor’s performance.  

External validity threats concern the generalization of the results. One of the main external 

validity threats of the evaluation is that we only applied nine case studies to evaluate CMSU 

and applied three of them to evaluate MoSH. However, the nine case studies are from different 

domains and, for all the case studies, the evaluation results are consistent. Another external 

validity threat is that only one case study was employed to evaluate TM-Executor’s 

performance. However, 10 uncertainties and a number of state invariants, guards, operations, 

with various complexities, were exploited by TM-Executor to test self-healing behaviors under 

uncertainties. Nonetheless, additional case studies are needed to further generalize the results.  

Construct validity threats refer to the degree to which the experiment setting (including two 

metrics for the CMSU evaluation, seven metrics for MoSH and six metrics for TM-Executor 

evaluation) reflects the construct under study (i.e., the quality of CMSU, the cost-effectiveness 

of MoSH and the performance of TM-Executor). To reduce the threats, we carefully selected 

and defined the metrics focusing on our overall objective of testing self-healing behaviors of 

ShCPSs under uncertainties. However, additional metrics and other ways of evaluation are also 

possible. For example, for the evaluation of MoSH, an alternate way to evaluate the modeling 

effort is to conduct a controlled experiment with real modelers and assess required effort. 

Nonetheless, conducting such experiments is very expensive in terms of time and resources 

required to execute such experiments. We are however looking for opportunities to conduct 

such controlled experiments in the future. 

7. Related work 

In this section, we discuss existing works related to CMSU in Section 7.1, MoSH in Section 

7.2, and testing Self-Healing systems in Section 7.3.  In Section 7.4, we summarize how our 

work advances the current state of the art. 

7.1 Concepts of CPSs, Self-healing, and Uncertainty 

After a decade’s effort, key elements of ShCPSs have been identified by academic and 

industrial communities, which are adopted in our conceptual model CMSU. In [3], a CPS was 

defined as a set of heterogeneous physical units communicating via heterogeneous networks. 
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In this definition, physical units are recognized as the first-class objects of CPSs. Besides, the 

network was also considered important, as it enables communication among physical units. 

Our definition of CPSs is consistent with other definitions of CPSs: “engineered systems that 

are built from, and depend upon, the seamless integration of computational and physical 

components” [51] and “a set of physical systems controlled in a principled manner via 

engineering technologies” [52].  

Sensors and actuator are captured as interfaces between computational and physical 

components in [53]. CPSs are characterized by integrating computation and physical processes 

[54] and the primary goal of a CPS is to efficiently control physical processes [55]. The 

authors of [5] identified detection, diagnosis, and recovery as the three main steps of self-

healing. In addition, three types of recovery policies were explained and evaluated in [25, 56].  

Though CPS and self-healing system have been the focus of research for years, only a few 

studies tried to associate them together. CMSU aims to build a common understanding of 

ShCPSs by capturing key elements from both CPSs and self-healing communities. Besides the 

key elements defined in the literature, we identified a few new concepts. First, we identified 

Situation to represent inherent uncertain events in the operational environment of a ShCPS, 

which is though studied, e.g., in [57, 58], for other purposes and in different contexts. Second, 

we adopted the definitions of fault and error from [19]. Third, adaptation actions, the 

classification of probes and effectors were elicited from fault diagnosis and recovery process. 

Fourth, inspired by goal oriented self-healing approaches [59], goals of self-healing behaviors 

were captured in MoSH as well. 

How to cope with uncertainty is a grand challenge and a definition and taxonomy of 

uncertainty in the context of CPSs is difficult to find [60]. In the past, the effort was mostly 

spent on identifying uncertainty sources in self-healing CPSs. The authors of [6] proposed a 

taxonomy of uncertainty sources in dynamically adaptive systems at the requirement, design, 

and execution phases along with existing mitigation techniques for each type of uncertainties. 

The taxonomy is generic and therefore not designed for a specific usage and needs to be 

specialized for specific applications. In [61], the authors gave another nine uncertainty sources 

in self-adaptive systems, which need to be considered during design. We, however, build an 

uncertainty conceptual model from the perspective of testing. We extend the definition of 

uncertainty provided in [7] and define the uncertainty as: “the lack of knowledge about the 

value of an uncertain feature at a given point of time during a testing process” (Section 3.3). 

The uncertain feature, along with its universe and notions, and the measure of uncertainty are 

defined to more rigorously quantify the current state of knowledge.  

In summary, despite numerous approaches proposed [2, 5, 62], a conceptual model of CPSs 

and their self-healing behaviors together with uncertainty is still missing. We, in the paper, 

took the initiative and constructed such a conceptual model, aiming at providing a common 
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ground for understanding ShCPSs under uncertainty and facilitating analyses in the future. 

However, we believe that this conceptual model is an initial attempt and must be specialized 

such as for other types of autonomic behaviors, e.g., self-configuring and for different types of 

analyses such as model-based testing. 

7.2 UML-based CPS and Self-healing related Modeling 

To tackle the intrinsic complexity of CPSs, researcher proposed to adopt model-based 

engineering [63], which uses models to facilitate system design, development, verification, and 

validation. Since a CPS is an integration of computation and physical processes, it is typically 

modeled as a hybrid system where physical processes are specified as continuous-time models 

and computation parts are defined as discrete models [64]. For physical processes, several 

modeling tools are ready to be used to specify continuous-time models, such as Simulink [42], 

OpenModelica [41], SystemC [65], and Ptolemy II [66]. Regarding the computational part, 

UML is the most broadly used modeling language. With the help of the FMI standard [9], 

heterogeneous models can be executed together.  

Using UML’s profiling mechanism, several extensions of UML have been developed, e.g., 

Systems Modeling Language (SysML) [67], Modeling and Analysis of Real-time Embedded 

Systems (MARTE) [16], Dependability Analysis Modeling (DAM) [68], and UML Profile for 

Modeling Quality Of Service And Fault Tolerance Characteristics And Mechanisms (QFTP) 

[69]. Though these UML profiles extend UML’s capability to model complex systems, they 

are either too general or too limited to be used to build ETRMs for testing self-healing 

behaviors of ShCPSs under uncertainty. While SysML and MARTE provide useful modeling 

constructs to specify continuous system dynamics and non-functional properties, they do not 

provide sufficient modeling elements to precisely capture expected self-healing behaviors and 

uncertainties. DAM and QFTP can be used to support the modeling of fault tolerance 

mechanisms. Since self-healing behaviors can be realized by runtime adaptation rather than 

fault tolerance, they are not adequate for developing ETRMs.  

To explicitly capture self-healing behaviors of ShCPSs in the presence of uncertainties, we 

propose a modeling framework, MoSH, in this paper. It provides four UML profiles and a 

modeling methodology to capture the test configuration of the ShCPS under test (including 

system structure, functional behaviors, self-healing behaviors, uncertainties and testing 

interfaces). This is not covered by existing works in the literature.  

7.3 Testing Self-healing Systems 

Fault injection is a straightforward method to test recovery mechanisms of self-healing 

systems. By introducing faults, self-healing behaviors can be exercised; Otherwise, they will 

rarely be triggered. Normally, it requires a fault model to capture potential faults. In [45], a 

fault model is built based on five types of faults (i.e., application hang, component crash, stale 
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service, denial of service and excessive thread allocation). According to the model, faults are 

introduced by deploying and activating faulty Java Beans on a platform, which leads to the 

execution of self-healing behaviors. While in [70] the authors propose to use context models to 

simulate sensor data under different adverse conditions. Taking simulated data as system input, 

self-healing behaviors can be evaluated. Similarly, in [71] a simulated architecture model is 

used as input to test the feedback loop of a self-healing system. This enables the self-healing 

mechanism to be assessed at the early phase of the system development lifecycle.  

The main issue of these testing approaches is that they only concern self-healing behaviors, 

with functional behaviors ignored. Thus, the strategy that determines when to introduce faults 

is missing. Moreover, uncertainties are not considered either. Alternatively, in MoSH, both 

functional and self-healing behaviors are captured, together with system structure, 

uncertainties, and testing interfaces. Via change events with «Fault», fault injection points can 

be explicitly specified as well. 

Besides traditional offline testing methods that generate test cases before test execution, 

adaptive testing is identified as a crucial technique to validate runtime adaptations performed 

by self-healing systems [1]. An adaptive testing framework, named as Proteus, was proposed 

in [72]. Proteus takes a set of test cases as input. Due to runtime adaptations, initial test cases 

may become invalid. To keep them valid, Proteus uses an evolutionary algorithm to adapt the 

test cases at runtime, based on the heuristics of false positive and false negative. Although this 

method enables adaptive testing, the fault detection ability of this method highly depends on 

the quality of the initial test cases. Achieving a qualified set of test cases is still a challenge. 

The same issue exists for another adaptive testing framework, presented in [73]. Whenever a 

runtime adaption happens, the framework determines the affected components by dependency 

analysis. Accordingly, a minimal set of test cases is executed to check the correctness of the 

adaptation.  

Different from the two approaches, we use ETRMs to guide the testing process. Since 

ETRMs can be executed together with the system under test, there is no need to generate test 

cases. Alternatively, based on the runtime information provided by ETRMs, test data is 

dynamically generated to follow a test path, which is also determined at runtime. As a result, 

ETRMs enables the adaptive testing of ShCPSs in the presence of uncertainties.  

7.4 Summary 

In conclusion, our work advances the current state of the art in several ways. First, even 

though some existing works define self-healing concepts [2, 5]  and uncertainty related 

concepts  [6, 7], there is no a single work that defines concepts of self-healing and uncertainty 

together in the context of CPSs. To this end, CMSU is a comprehensive conceptual model that 

builds on the literature [3, 19, 25, 51-56] to conceptualize self-healing behaviors of CPSs and 
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uncertainty together. Second, even though there exist several modeling notations that can be 

used to model self-healing behaviors such as [68, 69]; however, none of them provide a 

complete executable test modeling solution to create ETRMs for testing self-healing behaviors 

in the presence of environment uncertainties. MoSH provides a complete integrated modeling 

solution based on existing standards to provide such support. Note that MoSH was developed 

exclusively for test modeling. Such type of modeling is only concerned with modeling test 

interfaces (e.g., test APIs to send a stimulus to the SUT and modeling test data specifications), 

and expected behaviors of a ShCPS in the presence of uncertainties. Finally, there exist some 

adaptive test strategies [72, 73] to test self-healing behaviors; however, there is no evidence 

that such strategies can be adopted to perform testing in the presence of environment 

uncertainties. Though we didn’t define new test strategies in this work, we implement TM-

Executor to test self-healing behaviors of ShCPSs in the presence of uncertainty. Such a 

framework can integrate adaptive test strategies and we plan to devise such test strategies as 

part of our future work.   

8. Conclusion and Future Work 

Self-Healing Cyber-Physical Systems (ShCPSs) have the built-in capability to diagnose faults 

and recover from these faults at the runtime by themselves. Such systems operate in a highly 

unpredictable environment leading to uncertainty in their behaviors and thus these systems 

must deal with such uncertainty even during the process of fault recovering. Towards the 

direction of proposing an Executable Model-Based Testing (EMBT) approach to test the self-

healing behaviors of ShCPSs in the presence of environment uncertainties, in the paper, we 

proposed an executable test modeling framework (MoSH) and a test model execution 

framework (TM-Executor). MoSH and TM-Executor were evaluated with several case studies 

and the feasibility of the EMBT solution was demonstrated by applying TM-Executor to test a 

real-world case study, with a random test strategy implemented as a proof-of-concept. In the 

future, we plan to implement more advanced strategies for test model execution test data 

generation, and uncertainty introduction. 
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Appendix A Descriptive Statistics of the Case Studies 

We selected nine ShCPS case studies to evaluate the completeness and correctness of CMSU. 

Table 18 and Table 19 show statistic of each concept’s occurrence, abstracted from the nine 

case studies 

Table 18 Descriptive Statistics of the Case Studies 

Concept VCS TMS APRS RFID-SC DSRL ISR RAMA PeMS VSS 

Self-Healing CPS  1 1 1 1 1 1 1 1 1 
PhysicalProcess 2 1 1 1 2 1 1 1 1 
Network 1 1 1 1 1 1 1 1 1 
PhysicalUnit 7 5 5 4 8 2 2 4 2 
Sensor 3 1 3 1 4 5 5 2 1 
Controller 7 2 2 4 9 2 3 4 2 
Actuator 2 0 5 0 4 1 1 0 0 
Functional Behavior 4 1 1 1 4 1 10 7 3 
Self-Healing Behavior 2 1 2 4 4 5 4 5 2 
Goal 1 1 1 1 1 1 1 1 1 
State 21 6 22 11 32 36 97 41 21 
Probe 2 1 3 5 4 5 5 2 2 
Effector 2 1 5 1 4 2 1 2 1 
Measurement 2 1 5 5 7 4 4 5 2 
Self-Diagnosis 2 1 5 4 4 5 4 5 2 
Self-Recovery 4 3 3 4 4 5 9 5 3 
Fault 2 1 3 4 4 5 4 5 2 
Error 2 1 5 4 4 5 4 5 2 
RecoveryPolicy 4 3 3 4 1 5 9 5 3 
AdaptationAction 4 3 10 3 8 4 4 2 2 
Uncertainty 3 1 4 4 5 6 10 6 1 
Total 78 36 90 67 115 102 180 109 55 

Table 19 Descriptive Statistics of Categories of Probe, RecoveryPolicy, Effector, and Uncertainty 

Concept VCS TMS APRS RFID- 
SC DSRL ISR RAMA PeMS VSS P 

Probe 
PerformanceProbe 2 0 0 3 0 0 0 2 2 31% 
EventProbe 0 1 0 2 0 0 0 0 0 10% 
PhysicalProcessProbe 0 0 3 0 4 5 5 0 0 59% 

Recovery 
Policy 

ActionPolicy 4 3 2 4 0 5 9 5 3 94% 
GoalPolicy 0 0 1 0 0 0 0 0 0 3% 
UtilityFunctionPolicy 0 0 0 0 1 0 0 0 0 3% 

Effector 
ParameterEffector 2 0 0 0 0 0 0 0 0 11% 
ArchitectureEffector 0 1 0 1 0 0 0 0 1 16% 
ControlEffector 0 0 5 0 4 2 1 2 0 73% 

Uncertainty 

Level 1 0 0 0 2 0 0 0 0 0 5% 
Level 2 3 1 3 2 5 6 8 6 1 87% 
Level 3 0 0 1 0 0 0 2 0 0 8% 
Level 4 0 0 0 0 0 0 0 0 0 0% 
Level 5 0 0 0 0 0 0 0 0 0 0% 

P = n / N, where in the number of occurrences of a subclass (e.g., PerformanceProbe is a subclass of Probe), and N 
is the total number of occurrences of all sub-classes, e.g., PerformanceProbe, EventProbe, and 
PhysicalProcessProbe are all subclasses of Probe. 
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Appendix B Exectensions to Moka Execution Semantics 

To execute ETRMs, we defined or extended the execution semantics for a few stereotypes 

from the MoSH profiles and UML metaclasses. They were implemented in the TM-Executor 

framework as extensions to Moka. This appendix gives the implementations of these newly 

defined execution semantics.  

BroadcastSignalActionActivation 
1. // Construct a signal using the values from argument pins.  
2. // Send the signal to all objects that are associated with the  
3. // object from the source pin. 
4. doAction(){ 
5.   BroadcastSignalAction action = (BroadcastSignalAction) (this.node); 
6.   Signal signal = action.getSignal(); 
7.   // instantiate signal 
8.   SignalInstance signalInstance = new SignalInstance(); 
9.   signalInstance.type = signal; 
10.   List<Property> attributes = signal.getOwnedAttributes(); 
11.   List<InputPin> argumentPins = action.getArguments(); 
12.   // set signal attributes 
13.   for (int i = 0; i < attributes.size(); i++) { 
14.     Property attribute = attributes.get(i); 
15.     InputPin argumentPin = argumentPins.get(i); 
16.     List<Value> values = this.takeTokens(argumentPin); 
17.     signalInstance.setFeatureValue(attribute, values, 0); 
18.   } 
19.   Object_ object = (Object_)this.takeTokens(action.source).getValue(0); 
20.   // broadcast signal 
21.   for(FeatureValue featureValue : object.featureValues){ 
22.     Value value = featureValue.values.get(0); 
23.     if(value instanceof Object_){ 
24.       ((Object_)value).send(signalInstance); 
25.     } 
26.   } 
27. } 

ChangeEventOccurrence 
1. // Evaluate registered change events. 
2. // If the change expression of a change event becomes true, 
3. // put the event in the object’s event pool  
4. evaluateChangeEvent(){ 
5.   List<ChangeEvent> notTriggeredEvents = new ArrayList<ChangeEvent>(); 
6.   for(ChangeEvent event : this.registeredChangeEvents){ 
7.     // evaluate change expression of the change event   
8.     if(event.evaluate()){ 
9.        // change expression becomes true,event occurs  
10.       this.eventPool.add(event); 
11.     } 
12.     else{ 
13.       notTriggeredEvents.add(event); 
14.     } 
15.   } 
16.   this.registeredChangeEvents = notTriggeredEvents; 
17. } 

InputOperationExecution 
1. // Take input parameter values as input. 
2. // Invoke the test interface corresponding to the URI defined in the  
3. // opaque behavior of the operation. 
4. execute(){ 
5.   OpaqueBehavior method = (OpaqueBehavior)this.methods.get(0); 
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6.   String uri = method.getBodies().get(0); 
7.   InputInvocation invocation = new InputInvocation(uri); 
8.   List<InputPin> inputPins = opaqueAction.getInputs(); 
9.   // set input 
10.   for(InputPin inputPin : inputPins){ 
11.     String name = inputPin.getName(); 
12.     List<Value> values = this.takeTokens(inputPin); 
13.     invocation.addInput(values);  
14.   } 
15.   // invoke test interface 
16.   if(invocation.invoke() != 0){ 
17.     this.terminate(); 
18.   } 
19. } 

OutputOperationExecution 
1. // Invoke the test interface corresponding to the URI defined in the  
2. // opaque behavior of the operation.  
3. // Update attributes values using the outputs of the test interface. 
4. execute(){ 
5.   OpaqueBehavior method = (OpaqueBehavior)this.methods.get(0); 
6.   String uri = method.getBodies().get(0); 
7.   OutputInvocation invocation = new OutputInvocation(uri); 
8.   // invoke test interface 
9.   List<JSONObject> results = invocation.invoke(); 
10.   if(results == null){ 
11.     terminate(); 
12.   } 
13.   // update attributes 
14.   update( ((Object_)this.getExecutionContext()).featureValues, results ); 
15. } 

StateActivation 
1. // Determine whether a state is enterable,  
2. // i.e., whether its state invariant is true. 
3. boolean isEnterable(){ 
4.   if(!this.getStateMachineExecution().getConfiguration().isActive()){ 
5.     return false; //the state machine is not active, cannot enter  
6.   } 
7.   if(this.stateInvariant == null) { 
8.     return true; 
9.   } 
10.   while(true){ 
11.     if(invariant.evaluate()){  
12.       break;     // state invariant becomes true, can enter now  
13.     } 
14.     else{ 
15.       if(timeout()){  
16.         return false;     // timeout, stop waiting 
17.       } 
18.       ObjectActivation activation=getExecutionContext().objectActivation; 
19.       synchronized(activation){ 
20.       try { 
21.         activation.wait();       // wait the state invariant becomes true 
22.       } catch (InterruptedException e) { 
23.         e.printStackTrace(); 
24.       } 
25.     } 
26.   } 
27.   return true; 
28. } 
 

	


