
Simula Research Laboratory, Technical Report 2016-08 June, 2016

1

Modeling Healing Behaviors of Cyber-Physical
Systems with Uncertainty to Support Automated

Testing
Tao Ma1, Shaukat Ali1, Tao Yue1, 2

1 Simula Research Laboratory, 2 University of Oslo
Oslo, Norway

{taoma, shaukat, tao}@simula.no

Abstract

Self-Healing Cyber-Physical Systems (ShCPSs) are capable of detecting and recovering from

faults themselves during their operations, which are commonly referred to as self-healing

behaviors. Testing such behaviors is challenging due to their self-adaptive nature and being

often exposed to environment uncertainty. As a first step towards automated testing of ShCPSs

in the presence of uncertainty, we propose a modeling framework called Modeling Self-

Healing Behavior with Uncertainty (MoSH), which supports creating executable test ready

models (ETRMs) of a ShCPS together with uncertainty in its environment. MoSH consists of

four UML profiles, derived based on a conceptual model for ShCPSs (which is named as

Conceptual Model for ShCPSs and Uncertainty (CMSU)), and a modeling methodology of

applying these profiles to create ETRMs. In addition, we developed a test model execution

framework called TM-Executor to support the execution of ETRMs to eventually enable

testing of a ShCPS in the presence of various types of environment uncertainties. TM-Executor

extends Moka—a standard-based UML model executor with new execution semantics

specifically designed for test execution. In addition, TM-Executor integrates several tools

including EsOCL for test data generation, DresdenOCL for test oracle checking, and the

Functional Mockup Interface module for integrating simulators/emulators in order to introduce

uncertainties in the environment of a ShCPS.

We assess MoSH and TM-Executor from three perspectives. First, we validated the

completeness and correctness of CMSU with nine ShCPS case studies. Evaluation results show

that CMSU is complete and correct. Second, we validated MoSH with three ShCPS case

studies and results show that we were successful in creating ETRMs for the three case studies

at the expense of additional 16% of modeling effort. Third, we evaluated the feasibility of TM-

Executor with a random testing strategy implemented by testing a real-world case study as a

proof of concept. We assessed its performance in terms of performing various testing activities

(e.g., test data generation) and observed that time required to perform such activities was very

small, i.e., in the order of milliseconds. Furthermore, we found one fault in a self-healing

behavior of the real-world case study during the testing, which was only revealed in the

presence of environment uncertainties.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

2

Keywords: Cyber-Physical Systems, Self-healing, Uncertainty, Model Execution, Model-

Based Testing

1. Introduction

Cyber-Physical Systems (CPSs) are increasingly becoming autonomous to deal with dynamic

environment situations [1]. One type of autonomous behaviors of CPSs is Self-Healing

Behaviors, i.e., the ability of a CPS to detect and recover from a fault during its operation by

itself [2]. Given the fact that CPSs, in general, face uncertainty in their behaviors due to the

unpredictable environment conditions [3], self-healing behaviors are also prone to such

uncertainty. Thus, ensuring the correctness of self-healing behaviors in the presence of

environment uncertainty is important for their reliable operation and stresses the development

of efficient testing approaches. In the rest of the paper, we refer to CPSs with self-healing

behaviors as Self-Healing Cyber-Physical Systems (ShCPSs).

1.1 Overall Objective and Challenges

Our overall objective is to develop systematic and automated testing techniques to test ShCPSs

in the face of environment uncertainty. However, testing such behaviors in the face of

environment uncertainty is challenging due to several reasons: 1) Self-healing behaviors being

autonomous are naturally difficult to predict at the design time, and 2) Unpredictable

environment makes the self-healing behaviors behave in an even more unexpected manner.

Based on these two general challenges, to address our overall objective, we raise the following

three testing challenges: 1) T1: How to capture expected self-healing behaviors together with

environment uncertainties? 2) T2: How to generate the best set of test data and simulate

uncertainties in the best manner, based on captured expected behaviors and uncertainties? 3)

T3: How to exercise expected self-healing behaviors with captured uncertainties to find faults

cost-effectively?

1.2 Overall Approach

An overview of our approach is presented on the right side of Figure 1 and the left side of the

figure presents a typical architecture of Model-Based Testing (MBT) approaches. In this

section, we aim to differentiate our approach with the typical MBT approach for the purpose of

clearly defining the scope and highlighting key contributions (Section 1.3). Note that both of

the two architectures presented in Figure 1 aim for achieving the same objective and

addressing the same challenges presented in Section 1.1.

As a type of model-based approaches, MBT approaches rely on models for handling

complexity via abstraction [4]. The expected behavior of a ShCPS under Test (SUT) together

with environment uncertainties are modeled as a Test Ready Model (TRM). A Test Case

Generator then uses a Test Strategy to generate test cases, which are executed on the SUT by a

Simula Research Laboratory, Technical Report 2016-08 June, 2016

3

Test Case Executor with the aim of detecting faults that can only be found in the presence of

uncertainties.

An alternative approach, which we opt for, is coined as Executable Model-Based Testing

(EMBT) and is shown on the right side of Figure 1. The process of creation of TRMs is similar

to MBT except that TRMs in EMBT are enriched with code execution semantics such that

these models are executable and thus are called as Executable Test Ready Models (ETRMs).

As opposed to MBT, which typically applies a static Test Strategy to generate test cases using

a Test Case Generator, EMBT uses a Dynamic & Adaptive Test Strategy to guide a Test Model

Executor to execute an ETRM. The execution of the ETRM in turns drives the execution of

SUT. Based on the SUT’s actual state, reflected by the ETRM, the Test Model Executor uses

the test strategy to dynamically select optimal stimulus (in terms of finding a fault) to be sent

to the ETRM. Given that environment uncertainties lead to uncertain behaviors (including self-

healing behaviors) of SUT, to effectively find faults, it is necessary to dynamically adapt the

execution of the ETRM based on the feedback received from SUT during test execution. Since

a ShCPS interacts with its physical environment using sensors and actuators, for the purpose of

testing, we simulate environment uncertainties by introducing uncertainties at interfaces of

sensors and actuators using dedicated emulators/simulators. Doing so is required for both

MBT and EMBT.

Figure 1 EMBT Comparing with MBT

1.3 Scope and Contributions

In Table 1, the 1st column presents the three testing challenges (Section 1.1); the 2nd column

shows the mapping of the testing challenges with the key components of our EMBT solution,

and the 3rd column shows the contributions of the paper and refers to the corresponding

sections where details are discussed. One key summary is that the key contributions of this

paper are the design, development and evaluation of MoSH and TM-Executor, for addressing

T1 and T3.

Notably, in the literature, there exist works for defining self-healing concepts [2, 5], based

on an extensive study of which we derived CMSU. However, CMSU focuses on supporting

Simula Research Laboratory, Technical Report 2016-08 June, 2016

4

EMBT. Researchers have also spent effort on defining uncertainty concepts in the context of

self-adaptive systems [6], CPSs [3], and a general context [7]. However, none of these works

provide an end-to-end modeling solution to support testing of self-healing behaviors of CPSs

in the presence of environment uncertainties, which is targeted in this paper.

Table 1 Testing Challenges, our EMBT Solution, and Corresponding Sections

Testing Challenges Our EMBT
Solution

Contributions and Corresponding Sections

T1: How to capture
expected self-healing
behaviors together with
uncertainties in the
environment?

ETRM
Modeling
Framework

Modeling Self-Healing Behavior with Uncertainty (MoSH)
Framework—an ETRM modeling framework including 1)
Conceptual Model for ShCPSs and Uncertainty (CMSU)
(Section 3), 2) MoSH Profiles: the implementation of
CMSU and 3) MoSH Modeling Methodology to develop
ETRMs capturing expected behaviors of SUT and
environment uncertainties (Section 4)

T2: How to generate the
best set of test data and
simulate uncertainties in
the best manner, based
on a the captured
expected behaviors and
uncertainties?

Test
Strategies,
Uncertainty
Generation

This is not in the scope of this paper. However, as a proof of
concept, we implemented a random strategy to select paths
in an ETRM to execute, applied EsOCL [8]—a search-
based test data generator to generate test data, and simulated
uncertainties based on their universes, notions, and
measures.

T3: How to exercise the
expected self-healing
behavior with captured
uncertainty with the aim
of finding faults cost-
effectively?

Test Model
Execution
Framework

TM-Executor—a test model executor framework built on
the model execution platform Moka [9], which implements
the fUML standard [10]. TM-Executor provides a facility to
perform adaptive testing and generate uncertainties for the
testing of self-healing behaviors under uncertainties. TM-
Executor integrates EsOCL [8] for test data generation,
DresdenOCL [12] for test oracle (OCL constraints)
checking, and a Functional Mockup Interface (FMI) [11]
module for incorporating simulators/emulators in order to
introduce uncertainties in the SUT’s test environment.
Details are presented in Section 5.

1.4 Evaluation

As discussed in Section 1.3 and summarized in Table 1, the contributions of this paper are

MoSH and TM-Executor. Therefore, we focus on the evaluation of these two components. For

MoSH, first, we evaluated CMSU (the conceptual model from which MoSH was derived) in

terms of its completeness and correctness with nine case studies. Results show that CMSU is

complete and correct. Second, we assessed the applicability of MoSH (the proposed UML

profiles and modeling methodology) in terms of creating ETRMs for three case studies. We

found that MoSH provides sufficient modeling constructs for modeling expected self-healing

behaviors and environment uncertainties. However, applying MoSH needs 16% additional

modeling effort on average.

As a proof of concept, we assessed the implementation of TM-Executor by testing a real-

world case study with a random test strategy. We assessed the performance of TM-Executor in

terms of time required to perform various testing steps such as generating test data and

validating state invariants (test oracles). Results show that time taken by TM-Executor is very

small, i.e., in the order of milliseconds. In addition, while testing the system with the random

Simula Research Laboratory, Technical Report 2016-08 June, 2016

5

test strategy, we managed to find one fault in its self-healing behavior in the presence of

uncertainties. Note that such a fault can only be found in the presence of uncertainties.

1.5 Structure of the Paper

The rest of this paper is organized as follows: Section 2 presents a running example. Section 3

presents the conceptual model, i.e., CMSU, whereas MoSH profiles and its associated

modeling methodology are explained in Section 4. Section 5 describes TM-Executor, followed

by the evaluation in Section 6. Related work is discussed in Section 7 and we conclude the

paper in Section 8.

2. Running Example

In this section, we introduce a running example, which is an unmanned aerial vehicle control

system—Remotely operated Aerial Model Autopilot (RAMA) from [13]. It consists of two

subsystems (Figure 2): Ground Control Station (GCS) and Drone (quadcopter). A human pilot

uses GCS to send movement instructions to the drone via the Micro Air Vehicle

Communication Protocol (MAV Link). Based on the received movement instructions from the

MAV link, estimated position from Position Location Unit (PLU), and terrain data from the

Terrain Database, Navigation Unit (NU) calculates target pitch, yaw, roll and throttle

instructions, and sends them to the four servos to make the drone perform expected

movements.

Figure 2 Key components and their Connections of RAMA

A key objective of the RAMA is to prevent the drone from crashing even if one or more

components fail to work. To achieve this objective, the RAMA realizes a set of self-healing

behaviors to handle faults during flight. For instance, if the MAV link between the drone and

the GCS disconnects, the NU detects this error and the corresponding fault via the absence of

heartbeats and automatically directs the drone to fly back to the launch location. Another

example is the self-healing behavior for servo faults, that is, when one of the four servos stops

Simula Research Laboratory, Technical Report 2016-08 June, 2016

6

working, the fault is identified by comparing expected and actual attitudes of the drone and the

NU can then choose to only control three dimensions (pitch, roll, and throttle), with the fourth

dimension (yaw) uncontrolled, to maintain the flight.

Besides system component failures, environment uncertainties are another factor that has

impacts on the operation of the RAMA. Such uncertainties include the accuracy of

measurements and actuation, bandwidth and latency of the MAV link, and wind speed. To

keep the flight stable, an adaptive control strategy has been implemented in the NU, which

constantly adjusts control signals for the servos based on the drone’s current attitude estimated

by the PLU.

3. Conceptual Model for ShCPS and Uncertainty (CMSU)

To support EMBT of ShCPSs in the presence of uncertainties, we aim to provide a modeling

framework (i.e., MoSH) including a set of UML profiles that allows creating ETRMs. The

creation of UML profiles can be performed in two different ways as discussed in [14]: 1)

directly creating a UML profile without developing a conceptual model first as how the UML

profile for software architecture descriptions (ADL) was developed [15], and 2) creating a

conceptual model and then defining a UML profile based on the conceptual model, which is

more systematic and rigorous as recommended by Bran Selic in [14]. The second approach has

been applied to develop the UML Profile for Modeling of Real-Time and Embedded Systems

(MARTE) [16]. We opted for the second way; we first created the Conceptual Model for

ShCPS and Uncertainty (CMSU), followed by creating corresponding UML profiles (Section

4).

In the rest of the section, we present CMSU in three parts: the self-healing CPS conceptual

model (Section 3.1), the self-healing behavior conceptual model (Section 3.2), and the

uncertainty conceptual model (Section 3.3).

3.1 The Self-Healing CPS Conceptual Model

The Self-HealingCPS conceptual model is presented in Figure 3 as a class diagram, whereas

the concepts in the conceptual model are defined in Table 2. A Self-HealingCPS can be seen as

a collection of heterogeneous, distributed and networked PhysicalUnits working together to

control or monitor PhysicalProcesses, e.g., GCS and drone cooperating to control the flight

process in the RAMA. Such a system can have its architecture being centralized, decentralized

or hybrid. Controllers are the core elements of a PhysicalUnit, such as the control units in the

running example. They provide the control logic and computation capabilities to the

PhysicalUnit and communicate with other Controllers owned by other PhysicalUnits via

Networks. A Controller monitors and controls PhysicalProcesses via Sensors and Actuators.

Due to the stochastic nature of the Environment, events may occur in an uncertain manner,

Simula Research Laboratory, Technical Report 2016-08 June, 2016

7

which affects PhysicalProcesses. For example, in the RAMA, the wind direction and speed

change constantly, which affects the flight process. Such changes are conceptualized as

Situations in the conceptual model.

Figure 3 Self-Healing CPS Conceptual Model

Table 2 Concept Definitions of the Self-Healing CPS Conceptual Model

Concept Definition
C1. Self-HealingCPS A CPS, which can autonomously detect, diagnose and recover from Faults (C18)
C2. Environment A physical world, where ShCPSs are situated.
C3. Situation A set of Environment (C2) attributes and/or actions that affect PhysicalProcesses

(C4) [17]
C4. PhysicalProcess A sequence of chemical, physical, or biological activities for transport, storage of

material, energy and etc. [18]
C5. PhysicalUnit

A physical device that can communicate with others, optionally having
computation and control capabilities

C6. Network The medium used as the communication channel among PhysicalUnits (C5)
C7. Sensor A device that measures physical variables of a PhysicalProcess (C4)
C8. Actuator A device that changes physical quantities of a PhysicalProcess (C4)
C9. Controller A software deployed on a PhysicalUnit (C5), interacting with Sensors (C7) and

Actuators (C8) either directly or indirectly, communicating with other
Controllers and providing computational capability

3.2 The Self-Healing Behavior Conceptual Model

The Self-HealingBehavior conceptual model is presented in Figure 4 as a class diagram, and

the concepts in the conceptual model are defined in Table 3. In a Self-HealingCPS, both

hardware and software may have fault tolerance capabilities. For hardware, fault tolerance is

typically achieved via introducing redundant hardware, which has limited adaptive capabilities

at the runtime. In contrast, software can be reconfigured and modified, thus in the context of

Self-HealingCPS, Controllers provide such self-healing capabilities, as shown in Figure 4.

Self-healing systems are defined by Debanjan Ghosh in [2] as “a self-healing system should

recover from the abnormal (“unhealthy”) state and return to the normative (“healthy”) state,

and function as it was prior to disruption”. This requires a Controller to detect Errors in a

timely fashion (via the Self-Diagnosis capabilities of its Self-HealingBehaviors) and react to

the Errors to possibly restore its normal operation.

We used the standard definitions as defined by Avizienis et al. [19], “Fault is the cause of

an Error”. Meanwhile, “Error is a deviation of an external State from the correct one”. Due to

Simula Research Laboratory, Technical Report 2016-08 June, 2016

8

Faults, the system may fail to deliver correct service to its users. To avoid such situation, some

Controllers with Self-Diagnosis capabilities are supposed to determine Faults. Based on

detected Faults, recovery actions are executed to recover the system from the faults.

A Controller is equipped with Probes and Effectors to make itself self-aware and adaptable.

Probe and Effector are two types of interfaces that are used to inquire Controller’s States and

adjust Controller’s Behaviors respectively. In the RAMA, Probes are monitoring interfaces

that are used by the NU to constantly check variations of velocity and attitude. Effectors are

the interfaces used to switch the control mode.

Figure 4 Self-Healing Behavior Conceptual Model (Overview)

Table 3 Concept Definitions of Self-Healing Behavior Conceptual Model

Concept Definition
C10. Behavior Describing a sequence of actions executed by a Controller (C9)
C11. FunctionalBehavior The business logic of a Controller (C9) [20]
C12. Self-

HealingBehavior
A sequence of Self-Diagnosis (C19) and Self-Recovery (C21) actions
aiming at the recovery of a Controller (C9), a PhysicalUnit (C5) or the
whole Self-HealingCPS (C1) from Faults (C18)

C13. Goal “A non-operational objective to be achieved by the composite system” [21]
C14. State A particular combination of the attribute values of a Controller (C9) [22]
C15. Probe A system measurement mechanism, which observes and measures the States

(C14) of a Controller (C9) [23]
C16. Measurement A value of a State variable
C17. Error “A deviation of an external State (C14) from the correct State (C14)”[24]
C18. Fault “The cause of an Error” (C17) [19]
C19. Self-Diagnosis The action that detects Errors (C17) and detects, isolates or identifies Faults

(C18), based on Measurements (C16)
C20. RecoveryPolicy A type of formal behavioral guide for Self-Recovery (C21) [25]
C21. Self-Recovery The action that adapts the system for handling identified Faults (C18) via

Effectors (C22)
C22. Effector A mechanism carrying out AdaptationActions (C23) [23]
C23. AdaptationAction A change in the system to accommodate Faults (C18) [26]

As shown in Figure 4, a Controller has two types of Behaviors: 1) FunctionalBehaviors

implementing business requirements of the system; 2) Self-HealingBehaviors that use Probes

and Effectors to monitor and maintain the correctness of FunctionalBehaviors. Self-

HealingBehaviors are classified as static if they are fixed and pre-defined at the design time,

Simula Research Laboratory, Technical Report 2016-08 June, 2016

9

otherwise dynamic. Moreover, Self-HealingBehaviors are implemented at different

hierarchical levels, e.g., healing only one function of the Controller (ControllerLevel), several

functions of a PhysicalUnit (PhysicalUnitLevel), or the whole Self-HealingCPS (SystemLevel).

For the RAMA case study, switching to the predefined control mode, in the case of hardware

faults, is defined at the design time and thus the Self-HealingBehavior of the RAMA is static

and implemented at SystemLevel.

One prerequisite of realizing Self-HealingBehaviors is the accurate specification of each

component’s Goals in terms of its functional and/or extra-functional requirements. Moreover,

Goals at the system level can be decomposed into several sub-goals at the PhysicalUnitLevel

and further at the ControllerLevel. Eliciting and specifying goals, which have been broadly

studied in the requirements engineering community, are however out of the scope of this paper.

For the RAMA, its essential goal is to guarantee the safe flight of the vehicle. Even if the core

control unit is crashed, the RAMA should still keep the vehicle under control or at least safely

land it.

A Self-HealingBehavior is composed of two functionalities: Self-Diagnosis in charge of

detection, isolation, or identification of faults, and Self-Recovery responsible for recovering the

system from faults. First, a Self-Diagnosis behavior evaluates states of Controllers according

to Measurements collected via Probes. If the Measurements deviate from expected values,

violate constraints, or match a pattern of a fault, it means that the states of the Controllers have

deviated from the correct ones. In this way, a Self-Diagnosis behavior can detect the

occurrence of faults, or isolate the location of the faults, or even identify the magnitude of the

faults. Afterward, a Self-Recovery behavior is alerted to react to the detected faults. Directed

by RecoveryPolicies, the Self-Recovery behavior determines how to adapt the system to the

faulty condition via Effectors. The following subsections further explain Self-Diagnosis and

Self-Recovery.

3.2.1 The Self-Diagnosis Conceptual Model

Figure 5 presents the Self-Diagnosis conceptual model, and the concepts in the conceptual

model are defined in Table 4. The Self-Diagnosis behavior, the fundamental part of a Self-

HealingBehavior, constantly detects Faults from a set of Measurements. The detectability of a

diagnosis behavior can be classified into three levels: FaultDetection, FaultIsolation, and

FaultIdentification [27]. The diagnosis at the FaultDetection level can only detect the

occurrence of faults; the FaultIsolation level diagnosis can determine which kind of faults has

happened, and the diagnosis at the FaultIdentification level can deduce the magnitude of a

fault. In the RAMA, the diagnosis behavior, determining if the MAV link between the drone

and the GCS is disconnected, belongs to the FaultDetection level. The diagnosis of the servo

Simula Research Laboratory, Technical Report 2016-08 June, 2016

10

fault can identify the extent of the lift loss from a servo, thus belonging to the

FaultIdentification level.

Figure 5 Self-Diagnosis Conceptual Model

A Self-Diagnosis behavior can be realized by three types of approaches. Two of them are

achieved based on prior domain knowledge: QuantitativeModelBasedDiagnosis and

QualitativeModelBasedDiagnosis; the other is derived from historic operational data of the

system: ClassifierBasedDiagnosis.

For QuantitativeModelBasedDiagnosis, knowledge is expressed in a quantitative model,

specifying mathematical relations between inputs and outputs of the system [28]. Fault

occurrences are determined by checking inconsistencies (residues) between actual outputs of

the system and expected outputs calculated from the model, via ResidualGenerator and

ResidualEvaluator. In contrast, QualitativeModelBasedDiagnosis expresses domain

knowledge in a QualitativeModel, i.e., qualitative relations between different system elements

[28], such as cause-effect relations and fault trees. With this kind of approach, the actual

execution of the system is checked against the QualitativeModel, directed by SearchStrategies,

to realize fault diagnosis. The third type of diagnosis—ClassifierBasedDiagnosis, utilizes

historical execution data (Measurements) to abstract quantitative and qualitative Features and

construct FaultClassifiers, which are for classifying system states based on Measurements.

Probes supply various Measurements to Self-Diagnosis, which are classified into

PerformanceProbes, EventProbes, and PhysicalProcessProbes, based on types of

Measurements they provide. PerformanceProbes are responsible for monitoring system’s

performance such as response time, throughput and availability. EventProbe monitors a

Controller’s behavior described as a trace of events such as function calls and exceptions. The

state of PhysicalProcesses can be accessed through PhysicalProcessProbes such that a Self-

Diagnosis behavior can decide if a PhysicalProcess is proceeding as expected. For the RAMA

case study, all the three kinds of Probes are used to detect faults, including monitoring the

interface of the state update time (PerformanceProbe) for detecting the disconnected radio

Simula Research Laboratory, Technical Report 2016-08 June, 2016

11

control channel, interfaces for discovering unhealthy sensors (EventProbe), and interfaces for

obtaining actual locations of the vehicle (PhysicalProcessProbe) for catching abnormal

navigation behaviors.

Table 4 Concept Definitions of Self-Diagnosis Conceptual Model

Concept Definition
C24. QuantitativeModelBas

edDiagnosis
A Self-Diagnosis (C19) method based on mathematical models of the
system [28]

C25. ResidualGenerator A module for calculating inconsistencies between Measurements (C16) and
expected values computed from mathematical models of the system

C26. ResidualEvaluator A module for determining the normal range of the residual
C27. QualitativeModelBase

dDiagnosis
A Self-Diagnosis (C19) method based on qualitative causal models or
abstraction hierarchies of the system [28]

C28. QualitativeModel Qualitative causal models or abstraction hierarchies of the system,
representing qualitative relations among different elements in the system

C29. SearchStrategy A search method for defining how to locate a Fault (C18) in a system
C30. ClassifierBasedDiagno

sis
A Self-Diagnosis (C19) method based on fault classifiers trained from
historical data of the system [28]

C31. Feature The attribute of a system behavior characterized by a combination of
Measurements (C16)

C32. FaultClassifier A classifier for fault classification, which is built from historical data
C33. PerformanceProbe A Probe (C15) for monitoring system’s performance
C34. EventProbe A Probe (C15) for monitoring events occurred in Self-HealingCPS (C1)
C35. PhysicalProcessProbe A Probe (C15) for monitoring the state of a PhysicalProcess (C4)
3.2.2 The Self-Recovery Conceptual Model
Figure 6 presents the conceptual model of Self-Recovery, and the concepts in the conceptual

model are defined in Table 5. After a fault has been detected by a Self-Diagnosis behavior, a

Self-Recovery behavior decides which AdaptationAction(s) to take to handle the fault, directed

by RecoveryPolicies. Effectors provide Self-Recovery behaviors the basis to modify and heal

the system in case of faults. According to types of modified elements, Effectors can be

classified into three types: ParameterEffectors for adjusting system components’ parameters

[29], ArchitectureEffectors for adding, removing, or replacing system components [30], and

ControlEffectors for changing FunctionalBehavior(s) of a Controller in response to faulty

conditions.

Figure 6 Self-Recovery Conceptual Model

Each AdaptationAction of Effectors can be considered as a variation point of the system,

which enables reconfiguration and adaptation at runtime. Different AdaptationActions have

different Effects on the system and may have different Overheads and Delays. A Self-

Diagnosis behavior has a trade-off between adaptation benefits and costs in terms of time

and/or resource consumption (i.e., TimeOverhead and ResourceOverhead).

Simula Research Laboratory, Technical Report 2016-08 June, 2016

12

In the literature, there are three types of RecoveryPolicy [25]: ActionPolicy, GoalPolicy, and

UtilityFunctionPolicy. ActionPolicy can be seen as a pair in the form of <condition, action>. If

the condition is satisfied, then a corresponding action is executed [31], which is applied in the

RAMA case study. GoalPolicy specifies desired states, which requires a sequence of

AdaptationActions to be taken to make the system transit from a faulty state to the desired one

[32]. UtilityFunctionPolicy defines an objective function containing multiple objectives of the

system to guide the system to move towards the desired state in terms of utility values [33].

Table 5 Concept Definitions of Self-Recovery Conceptual Model

Concept Definition
C36. Delay Time interval between the initiation and completion of an AdaptationAction

(C23)
C37. Effect Change of one or more Behaviors (C10) caused by an AdaptationAction

(C23)
C38. Overhead Overhead for executing AdaptationActions (C23)
C39. ResourceOverhead Resources required for executing AdaptationActions (C23)
C40. TimeOverhead Time required for executing AdaptationActions (C23)
C41. ActionPolicy Specifying which AdaptationAction(s) (C23) should be taken for handling a

Fault (C18) [25]
C42. GoalPolicy Specifying desirable States (C14) of the system and target states of Self-

HealingBehaviors (C12) [25]
C43. UtilityFunctionPolicy Assigning each State (C14) of the system a utility value, which directs the

system moving towards a state with a higher utility value [25]
C44. ParameterEffector An Effector (C22) for changing parameter values
C45. ArchitectureEffector An Effector (C22) for updating system architecture
C46. ControlEffector An Effector (C22) for modifying the control mode of a Controller (C9)

3.3 The Uncertainty Conceptual Model

Uncertainty is intrinsic in Self-HealingCPS due to the tight integration of PhysicalProcesses,

FunctionalBehaviors, and Self-HealingBehaviors. Therefore, Uncertainties should be studied

and analyzed in order to establish confidence that a Self-HealingCPS can eventually deal with

Uncertainties in a graceful manner during its operation. In this section, we provide a general

conceptual model to understand, classify, and characterize Uncertainties for the purpose of

testing Self-HealingCPSs in the presence of Uncertainties. The Uncertainty conceptual model

is presented in Figure 7 and the concepts in the conceptual model are defined in Table 6. In

Table 7, we present a simple example to illustrate the conceptual model.

Our definition of Uncertainty conforms to the definition provided by Walker et al. [7]:

“limited knowledge about future, past, or current events”. We adapt this definition to the

context of testing as the lack of knowledge about the value of an UncertainFeature (C47) at a

given point of time during a testing process. For instance, for the RAMA, the actual value of

the packet loss rate (UncertainFeature) constantly varies from 0% to 100% during testing.

Thus at a given point of time, the value of packet loss rate is uncertain. Here the given point of

time during testing is conceptualized as a TimeInstance (Figure 7).

Simula Research Laboratory, Technical Report 2016-08 June, 2016

13

 Figure 7 Uncertainty Conceptual Model

Table 6 Concept Definitions of Uncertainty Conceptual Model

Concept Definition
C47. UncertainFeature A feature whose value is uncertain due to lack of knowledge
C48. Uncertainty Lack of knowledge about the value of an UncertainFeature (C47) at a

given TimeInstance (C49)
C49. TimeInstance A point of time during a testing process
C50. Universe The set of all potential values of an UncertainFeature (C47)
C51. Notion A qualitative description of an UncertainFeature (C47)
C52. Datum One possible value of an UncertainFeature (C47)
C53. MembershipFunction A function defining the degree of belonging to a Notion (C51)
C54. IndicatorFunction A binary belonging function with 1 for elements belonging to the Notion

(C51), 0 for other elements
C55. Measure Measuring the likelihood of a Datum (C52) or Notion (C51), related to an

Uncertainty (C48)
C56. ProbabilityMeasure A Measure (C55) of uncertainty using Probability (C57) to characterize

the likelihood
C57. Probability Quantifying the chance that an event will occur [34]
C58. PossibilityMeasure A Measure (C55) of uncertainty using Possibility (C59) and Necessity

(C60).
C59. Possibility Describing the plausibility that an event will occur [35]
C60. Necessity Describing the credibility that an event will occur [35]

Universe describes a set that contains all values that an UncertainFeature may take.

Typically, an UncertainFeature should have one Universe; however, in certain cases, it is

possible that we do not have sufficient knowledge about the Universe and cannot specify it. A

value of the UncertainFeature is defined as a Datum (C52). Taking the packet loss rate for

example, the Universe of the UncertainFeature is an interval from 0% to 100%, and every

value within this interval is a Datum.

In certain cases, values of an UncertainFeature can only be described in a qualitative

manner. As presented in Table 7, the packet loss rate of the MAV link is described as low,

medium and high, which are represented as Notions (C51) in the conceptual model. A Notion

has one MembershipFunction (C53), which determines the extent to which a Datum belongs to

the Notion. More specifically, a MembershipFunction of a Notion takes one Datum as input

and outputs a real value between 0 and 1, representing the membership degree of the Datum to

the Notion. This means a Datum could partially belong to multiple Notions, and in this case,

Simula Research Laboratory, Technical Report 2016-08 June, 2016

14

each Notion is a fuzzy set1. IndicatorFunction (C54) is a specialized MembershipFunction,

which only outputs 0 or 1, meaning that a Datum either belongs or does not belong to the

Notion associated with the IndicatorFunction. In this case, the corresponding Notion is a crisp

set2. Table 7 shows an example for both of the cases. When using the IndicatorFunction, the

boundaries of the three Notions (i.e., Low, Medium and High) are crisp, i.e., a packet loss rate

only belongs to one of the three Notions. In contrast, the boundaries defined by the

MembershipFunction are fuzzy. In this case, a packet loss rate of 0.02 belongs to Low with 50%

membership degree, to Medium with 45% membership degree, and to High with 5%

membership degree.

Table 7 An Example of Uncertainty

Concepts Example
UncertainFeature Packet loss rate of the MAV link
Uncertainty Actual value of the packet loss rate at a given time instance
Universe The interval from 0% to 100%
Datum ∀𝑥, 𝑥 ∈ [0%, 100%]
Notion 𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ
MembershipFunction 𝑀!"# 𝑥 = 1 (1 + 𝑒!""(!!!.!"))

𝑀!"#$%& 𝑥 = 1 1 + 𝑒!"" !!!.!" − 1 1 + 𝑒!"" !!!.!"
𝑀!"#! 𝑥 = 1 (1 + 𝑒!""(!.!"!!))

IndicatorFunction 𝑀!"# 𝑥 = 1, 𝑥 ∈ 0, 0.02
0, 𝑥 ∉ [0, 0.02)

𝑀!"#$%&(𝑥) = 1, 𝑥 ∈ 0.02, 0.05
0, 𝑥 ∉ [0.02, 0.05)

𝑀!"#! 𝑥 = 1, 𝑥 ∈ 0.05, 1
0, 𝑥 ∉ [0.05, 1]

An Uncertainty may be measured with different Measures (C55). From complete certainty

to total ignorance, there exist five intermediate levels as defined in [7]. Table 8 shows these

five levels along with their relations to Measure, Datum, and Notion.

For Level 1 Uncertainty, at a given TimeInstance, the value of an UncertainFeature is one

value with a margin of error. In other words, one is absolutely certain that the value falls

within this margin. For this reason, no qualitative specification (Notion) is required for this

level. In the running example, a servo’s maximum thrust could be determined according to its

product specification. However, this value is not accurate, and a tolerance interval is given to

specify the range of the value. Therefore, the maximum thrust belongs to Level 1 Uncertainty,

i.e., an absolute value with a margin of error.

Level 2 Uncertainty stands for the situation that an UncertainFeature has alternate values

with Probabilities (C57). Thus, ProbabilityMeasure (C56) is used at this level to map every

Datum or Notion to a Probability. For instance, the measurement error of a GPS in the RAMA

1 “The fuzzy set is defined mathematically by assigning a degree of membership to each possible value
in the universe of discourse.” [35]
2 “The crisp set is defined as a set that dichotomize the individuals in a universe of discourse into two
groups: members and nonmembers.” [35]

Simula Research Laboratory, Technical Report 2016-08 June, 2016

15

is an Uncertainty conforming to a normal distribution. Through statistical analyses, the normal

distribution can be determined, and thus it is a Level 2 Uncertainty.

Similarly, for Level 3 Uncertainty, the Probability of each possible value is unknown, but

each possible value is bound with a ranked likelihood, which can be specified via Possibility

(C59) or Necessity (C60) of the PossibilityMeasure (C58). Following the running example,

due to the limited knowledge, probability distributions of wind speed and direction cannot be

determined, and we can only compare the likelihoods of different potential values.

Consequently, PossibilityMeasures are used to specify the Measure of Level 3 Uncertainty.

For instance, the likelihoods of low, medium, and high wind speed are little, large, and little

respectively. Accordingly, their possibilities can be specified as 0.2, 0.7, and 0.2 to reflect their

ranked likelihood.

A Level 4 Uncertainty is the case when one is able to enumerate multiple alternative values

of an UncertainFeature but cannot rank their likelihoods, due to for example a lack of

knowledge, or disagreements among modelers [7]. At last, Level 5 Uncertainty represents

situations that what is known is only that we do not know (i.e., known unknowns). In other

words, the ignorance (the “unknowns” part of known unknowns) is recognized (the “known”

part of known unknowns). More specially, neither Universe nor Measure of an Uncertainty of

an UncertainFeature at this level is known. The only thing known is the existence of the

UncertainFeature. For Level 4 and Level 5 Uncertainties, knowledge about them is too little

to explicitly model them to be useful for enabling EMBT, and they are excluded from our

modeling methodology.

Table 8 Uncertainty Levels

Level Datum Measure Notion
Complete Certainty A datum N/A N/A
Level 1 A determined datum with a margin of

error
N/A N/A

Level 2 A set of data Probability Measure Related
Level 3 A set of data Possibility Measure Related
Level 4 A set of data N/A Related
Level 5 Known Unknowns N/A N/A
Total Ignorance Unknown Unknowns N/A N/A

4. The MoSH Modeling Notations and Methodology
Based on CMSU presented in Section 3, we develop MoSH, which comprises of four UML

profiles and a modeling methodology, for enabling the development of ETRMs to facilitate

EMBT of ShCPSs. An overview of the MoSH modeling framework is presented in Figure 8,

where it shows that the MoSH modeling notations consist of four UML profiles: ShCPS

Component Profile, ShCPS Behavior Profile, ShCPS Uncertainty Profile, and ShCPS Testing

Profile.

In addition, the MoSH methodology (an overview of which is presented in Figure 9)

provides a step-wise procedure for creating ETRMs. Each of the four high-level steps

Simula Research Laboratory, Technical Report 2016-08 June, 2016

16

corresponds to the application of each MoSH profile and these steps are introduced together

with the profiles in the following subsections.

Figure 8 Overview of the MoSH Modeling Framework

Figure 9 Overview of the MoSH Modeling Methodology

4.1 Model System Structure with ShCPS Component Profile

4.1.1 ShCPS Component Profile

The ShCPS Component profile captures key components of a ShCPS (C1). A ShCPS is

comprised of a set of physical units (C5) cooperating together via heterogeneous networks

(C6). Sensors (C7), actuators (C8) and controllers (C9) constitute the major components of

each physical unit. Accordingly, six stereotypes are defined for these concepts, shown in Table

9. All the six stereotypes extend UML metaclass BehavioredClassifier as they all realize

intended behaviors.

«Network» represents communication channels among physical units. The “uncertainty”

attribute of «Network» captures indeterminate feature of a network such as bandwidth, latency,

and packet loss rate. These features can be modeled as attributes stereotyped with

«Uncertainty» to specify the state of knowledge of an uncertain feature (Section 4.3.2).

Depending on the visibility of interfaces, a physical unit can be seen as a black box, if only

external interfaces are accessible, or a white box, if the implementation of its control software

Simula Research Laboratory, Technical Report 2016-08 June, 2016

17

is accessible. For the first case, a physical unit can be modeled as a BehavioredClassifier

stereotyped with «PhysicalUnit». Besides the “uncertainty” representing uncertain features of

a physical unit, a «PhysicalUnit» has zero to many goals, which are specified as constraints

that should be obeyed by the classifier. For the second case, a physical unit can be decomposed

into sensor, actuator, and controller classifiers, stereotyped with «Sensor», «Actuator», and

«Controller» respectively. The “uncertainty” attribute of «Sensor» and «Actuator» captures

uncertain features related to the accuracy of a measurement or an actuation, including the

additive error (bias), multiplicative error (scale), stochastic error (noise), and temporal error

(latency).

«PhysicalProcess» (C4) is an abstract concept and its “uncertainty” attribute specifies

uncertainties arising from mathematical equations of physical variables in the physical process,

and uncertain parameter values in the equations.

Table 9 Stereotypes in ShCPS Component Profile

Stereotype Metaclass Attribute
«SelfHealingCPS» Package type: ArchitectureType
«Network» BehavioredClassifier uncertainty: Uncertainty [*]
«PhysicalUnit» BehavioredClassifier goal : Constraint [*]

uncertainty: Uncertainty [*]
«Sensor» BehavioredClassifier uncertainty: Uncertainty [*]
«Actuator» BehavioredClassifier uncertainty: Uncertainty [*]
«Controller» BehavioredClassifier goal : Constraint [*]

uncertainty: Uncertainty [*]
«PhysicalProcess» BehavioredClassifier uncertainty: Uncertainty [*]

4.1.2 Model System Structure (A1)

The first step of building an ETRM is to capture the structure of the ShCPS under test (SUT)

using ShCPS Component Profile. The modeling process is summarized in Figure 10. First, the

physical processes, physical units, and networks, which constitute the SUT, are captured as

separate classes, stereotyped with «PhysicalProcess», «PhysicalUnit», and «Network»

respectively. Physical units can be further decomposed into sensors, actuators, and controllers,

each of which is specified as a class stereotyped with «Sensor», «Actuator», or «Controller».

Figure 11 shows a partial structural model of the RAMA, which consists of two physical units

(GroundControlStation, Drone) connected through a network (MAVLink). Since the

GroundControlStation is mainly used for user’s input/output and is not the focus of testing, its

internal components are not captured in this model. On the other hand, the Drone is

decomposed into several controllers, sensors, and one actuator to more explicitly specify the

expected behaviors of the Drone.

All accessible state variables that can be queried by testing interfaces are specified as class

attributes, such as mode of NavigationUnit and throttle of Motor, as shown in Figure 11.

Operations and signal receptions denote testing interfaces provided by corresponding

components, including output operations for querying state variables, input operations for

Simula Research Laboratory, Technical Report 2016-08 June, 2016

18

manipulation, and fault injections for introducing faults to trigger self-healing behaviors,

which are stereotyped with «OutputOperation», «InputOperation», and «FaultInjection»

(defined in ShCPS Testing profile, Section 4.4.1). As presented in Figure 11, every class has

one or more operations for monitoring or controlling the corresponding component. Two fault

injection operations (disconnect() of MAVLink and disableGPS() of GPS) are also

implemented to simulate two faults: disconnection from the GroundControlStation and loss of

GPS signals respectively.

Figure 10 Model System Structure

Figure 11 Structural Model of RAMA (Partial)

By assigning the value of each stereotype attribute, testers can systematically specify goals

of these components. Goals of physical units and controllers, defined as OCL (Object

Simula Research Laboratory, Technical Report 2016-08 June, 2016

19

Constraint Language) constraints, represent functional and/or extra-functional requirements

that should always be satisfied by the physical units and controllers. All the constraints are

defined on class attributes such that they can be validated based on attributes’ values obtained

via testing interfaces. One goal of NavigationUnit is shown in Figure 11, which is about

avoiding a crash on the ground, i.e., when Drone lands on the ground (self.currPosition.alt =

0), its vertical velocity should be below 2 meters per second (self.ekf.zVelocity < 2).

4.2 Model Behaviors with ShCPS Behavior Profile

4.2.1 ShCPS Behavior Profile

ShCPS Behavior Profile is proposed to specify expected self-healing behaviors (C12) of a

ShCPS for the purpose of enabling EMBT. Since the objective of self-healing behaviors is to

recover functional behaviors (C11) from faults (C18), the expected functional behaviors

should also be captured to assess the utilities of self-healing behaviors. This profile has three

packages: Fault, Functional Behavior, and SelfHealing Behavior, as shown in Table 10. The

Functional Behavior and Fault packages provide the capability of modeling functional

behaviors with potential faults whereas the SelfHealing Behavior package is for specifying the

process of fault diagnosis (C19) and recovery (C21).

To capture normal and faulty states of a ShCPS, state machines are chosen to specify

expected functional behaviors stereotyped with «FunctionalBehavior». Potential faults

influencing these behaviors are hardware and software crashes, which are characterized by

abnormal output values or unresponsiveness. «Fault» extending UML metaclass ChangeEvent

is used to represent the occurrence of a potential fault and the change expression of the

ChangeEvent defines the condition, under which the fault is regarded as having occurred. As

shown in Figure 12, an occurrence of the disconnection of MAVLink is a potential fault in the

RAMA, which is specified as a ChangeEvent, whose change expression is “latency > 3”. This

means that a disconnection fault occurs if the delay of MAVLink exceeds 3 seconds, which

requires NavigationUnit to perform self-healing behaviors to keep the flight normal.

The “injectionOperation” attribute of «Fault» specifies a specialized testing interface for

simulating the occurrence of a fault. Consequent states are stereotyped with «Error» (C17) to

be distinguished from normal states. Following the example in Figure 12, disconnect() is a

fault injection interface for simulating disconnection fault, which makes MAVLink enter an

error state Disconnected, stereotyped with «Error».

Due to limited knowledge, a functional behavior may be indeterminate, which should be

captured in a non-determinate state machine. «UncertainState» represents an indeterminate

fragment of a functional behavior, a state with multiple outgoing transitions that have the same

triggers and guards but different target states. Its “uncertainOutgoing” attribute specifies

uncertainties caused by this indeterminism.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

20

Table 10 Stereotypes in ShCPS Behavior Profile

Package Stereotype Metaclass Attribute
Fault «Fault» ChangeEvent name: String

injectionOperation: FaultInjection [*]
«Error» State name: String

Functional
Behavior

«FunctionalBehavior» StateMachine, Region fault: Fault [*]
error: Error [*]

«UncertainState» State uncertainOutgoing: Uncertainty [1..*]
SelfHealing
Behavior

«SelfHealingBehavior» StateMachine, Region type: ApproachType
level: HierarchicalLevel

«Monitoring» State, StateMachine measurement : Property [1..*]
«FaultIdentification» State, StateMachine fault: Fault [1..*]
«Adaptation» State, StateMachine name: String

Figure 12 Examples of Functional Behaviors

Self-healing behaviors are captured in separate state machines stereotyped with

«SelfHealingBehavior» and three stereotypes (i.e., «Monitoring», «FaultIdentification», and

«Adaptation») are defined for annotating states in these behaviors. Figure 13 shows an

example of self-healing behaviors, which specifies how NavigationUnit handles the

disconnection fault.

After passing the initial state, a self-healing behavior enters a «Monitoring» state, where the

system constantly checks various measurements (C16) from performance probes (C33), event

probes (C34), and physical process probes (C35), as illustrated in Section 3.2.1. Monitored

measurements are captured in the “measurement” attribute of «Monitoring». Notice that, there

are two kinds of monitoring in a ShCPS. One is about monitoring environments through

sensors and the other is about detecting errors and faults via probes. Since our focus is on self-

healing behaviors, we only explicitly capture the second kind of monitoring in ETRMs.

Therefore, we included monitoring as part of «SelfHealingBehavior».

Simula Research Laboratory, Technical Report 2016-08 June, 2016

21

Figure 13 An Example of Self-Healing Behavior

Fault diagnosis logics are captured as transitions, originating from a «Monitoring» state and

terminating on a «FaultIdentification» state. Triggers of transitions are specified as

ChangeEvents, whose change expressions define criteria for detecting faults. The self-healing

behavior shown in Figure 13 uses heartbeatInterval to detect the disconnection of MAVLink.

When the interval is over 3 seconds (heartbeatInterval > 3), the self-healing behavior deems

the fault occurred.

«Adaptation» is used for annotating adaptations (C23) that are used by a self-healing

behavior to “heal” faults. A transition from a «FaultIdentification» state to an «Adaptation»

state describe recovery policies (C20) specifying which adaptations are used to handle which

faults. As shown in Figure 13, there are two ways to handle the disconnection fault. When

Drone’s mode is ControlMode::LAND or ControlMode::RTL, no manual control is required to

control the flight. In this case, NavigationUnit makes the Drone keep on its current task (the

“Auto Flying” state). Otherwise, NavigationUnit changes the mode from

ControlMode::GUIDED to ControlMode::RTL (via effect SendRthS of the transition from

GCS Disconnected to Flying Back) under which the Drone flies back to where it takes off.

A transition from an «Adaptation» state to a «Monitoring» state indicates what to be done

after a fault has been “healed”. As shown in Figure 13, when the system is in the “Flying

Back” state, as soon as the connection of MAVLink is rebuilt (i.e., heartbeatInterval < 3),

NavigationUnit changes the mode from ControlMode::RTL back to ControlMode::GUIDED

to resume the original flight via effect SendResumeS.

4.2.2 Model Functional and Self-Healing Behaviors (A2)

The second step of developing an ETRM is to specify expected behavior for each class that has

been identified in the first step (i.e., A1, Section 4.1.2). Figure 14 shows the two parallel

processes of this step: modeling functional behaviors and modeling self-healing behaviors.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

22

Figure 14 Model Functional and Self-Healing Behaviors

The functional behavior of a class is modeled as one or more state machines. Each state in

the state machine should be precisely defined with state invariants, i.e., constraints on class

attributes constructed in A1 (Section 4.1.2). For example, Figure 12 shows the state invariant

of the Landing state, which is defined based on attribute mode of class NavigationUnit (Figure

11). With this invariant, one can test whether NavigationUnit is currently in the Landing state,

according to the current value of mode. Any inconsistency between the actual state and the

active state indicates a fault in the SUT.

In general, a transition between two states models a valid fragment of behavior [36], which

can be triggered by a CallEvent, SignalEvent, or ChangeEvent. CallEvents represent

invocations from external systems or users via operational calls such as the transition between

the Armed and Navigating states in Figure 12. Along with a CallEvent, a Guard (OCL

constraint) can be specified to define the test data for invoking the operation corresponding to

the CallEvent. SignalEvents capture interactions among different state machines. Via sending

signals in effects or state activities, firing a transition in one state machine can lead to

transitions in other state machines being triggered. For example, the transition from the Idle

state to the Connected state in the MAVLinkBehavior state machine will be triggered when the

transition “arm() / Activity: BroadcastStartS” from the Unarmed state to the Armed state in the

NavigationUnitBehavior state machine is activated (Figure 12). ChangeEvents are used to

model variations from internal components such as the transition from the “Flying to Target”

state to the “Pos Hold” state in Figure 12.

A fault occurs in a system component; therefore, it is modeled as a ChangeEvent, a

transition’s trigger, which makes controllers enter an error state. The change expression of the

event is defined based on test requirements. It defines under which condition the fault is

regarded as occurred (Section 4.2.1). An indeterminate behavior can be specified as a special

kind of state machine, where a state can have more than one outgoing transitions with the same

trigger and guard. «UncertainState» is applied to annotate such states and the

“uncertainOutgoing” attribute of the «UncertainState» is used to specify this uncertainty.

A self-healing behavior is also modeled as one or more state machines focusing on fault

diagnosis and recovery. First, the logic of fault identification is specified via the transition

between a «Monitoring» state and a «FaultIdentification» state. The «Monitoring» state

represents the situation that no fault has been identified; while the «FaultIdentification» state

Simula Research Laboratory, Technical Report 2016-08 June, 2016

23

denotes that the self-healing behavior has identified a specific kind of a fault. The change

expression of the ChangeEvent, triggering the transition between these two states, describes

the criteria to detect the fault. As shown in Figure 13, the transition, from “Checking

Connection” state to “GCS Disconnected” state, captures the logic of fault identification for

the disconnection fault. The recovery policy performed by the self-healing behavior is

modeled as the transition from a «FaultIdentification» state to an «Adaptation» state. The

trigger of the transition is specified as a ChangeEvent whose change expression describes the

adaptation condition (Figure 13). The trigger of the transition from an «Adaptation» state to a

«Monitoring» state specifies the behavior after the fault has been successfully healed.

For both functional and self-healing behaviors, transition effects, and state entry, exit and

doActivity behaviors can be used to specify interactions among state machines. According to

the semantics of a Foundational Subset for Executable UML Models (fUML) standard [10],

either an activity diagram or an opaque behavior with its method defined in the Action

Language for fUML (ALF) [37], can be used to define an interaction behavior. For instance,

effect BroadcastStartS of transition “arm() / Activity: BroadcastStartS” is defined as an

activity diagram, as shown in Figure 15. The semantics of ReadSelf (defined in fUML and

implemented in Moka) is to obtain an instance of NavigationUnit owning the

NavigationUnitBehavior state machine. BroadcastStartS is a broadcast signal action, which is

currently not defined in fUML and not implemented in Moka. We defined its execution

semantics as follow: sending a signal to all instances of classes that are associated with the

current class of the instance returned by ReadSelf. In our framework, we implemented the

semantics of this action in Java and integrated it with the Moka framework. With this action,

when the transition “arm() / Activity: BroadcastStartS” in the NavigationUnitBehavior state

machine is fired, its effect broadcasts the StartS signal to MAVLink, Motor, and

NavigationEKF (Figure 11). As a result, the transition StartS in the MAVLinkBehavior state

machine will be fired, triggering MAVLink to enter the Connected state.

Figure 15 An Example of Transition’s Effect Specified as an Activity Diagram

Simula Research Laboratory, Technical Report 2016-08 June, 2016

24

4.3 Specify Uncertainties using ShCPS Uncertainty Profile

4.3.1 ShCPS Uncertainty Profile

From the perspective of testing, an uncertainty (C48) is the lack of knowledge about the value

of an uncertain feature at a given point of time during the testing process. As explained in

Section 3.3, the state of knowledge of an uncertainty is specified by defining the universe

(C50), notions of the uncertain feature (C51), and by stating the measure (C55) of the

uncertainty. Accordingly, «Uncertainty» is defined, along with “universe”, “notion”, and

“measure” attributes, as shown in Figure 16 (a). Each attribute corresponds to a newly defined

datatype, which is introduced below.

The Universe datatype represents a collection of values. According to the type of value in

universes, we derive 7 subtypes of the Universe datatype: U_Boolean, U_Integer, U_Real,

U_UnlimitedNatural, U_Transition, U_String, and U_Equation. In addition, the numerical

data types (U_Integer, U_Real, U_UnlimitedNatural) are further divided into intervals

(U_IntegerInterval, U_RealInterval, U_UnlimitedNaturalInterval) and vectors

(U_IntegerVector, U_RealVetor, U_UnlimitedNaturalVector). In total, 13 types of Universe

are defined (Figure 16 (b)). The universe, specified as an interval, is a range with a minimum

and a maximum bound, and a vector typed universe corresponds to a collection of values that

are listed by its “item” attribute. As shown in Figure 17, attribute altitudeBias of class

Barometer varies within a range and thus its universe is typed with U_RealInterval.

The Notion datatype is defined to specify a qualitative description of an «Uncertainty». As

explained in Section 3.3, elements of a Notion are determined by a MembershipFunction

(C53), which can be either a binary belonging function (IndicatorFunction (C54)) or a graded

belonging function (Gaussian, Sigmoidal, Triangle, Trapezoid, BellCurve, DiscreteFunction).

As shown in Figure 16 (d), typical MembershipFunctions are defined from the MATLAB

fuzzy library [38] with their parameters captured in datatype attributes.

Depending on the state of knowledge of an «Uncertainty», three levels of uncertainty can be

defined to quantify measures (Section 3.3). For Level 1 uncertainty, at a given point of time,

the value of the uncertain feature is determined with a margin of error. The determined value

and margin are captured in «Uncertainty»’s “universe” attribute. As shown in Figure 17 (Level

1), attribute altitudeBias of class Barometer is an uncertain feature, and its value is bounded by

an error margin from -10 to 10.

For the other two levels of uncertainty, a determined value of the uncertain feature is

unknown. Multiple values are possible to be true at a given point of time. If the probability of

each value is known, the uncertainty belongs to the Level 2 uncertainty. The

ProbabilityMeasure datatype is provided to specify the probability (C57) distribution of all

Simula Research Laboratory, Technical Report 2016-08 June, 2016

25

possible values, such as the NormalDistribution specified for the Level 2 uncertainty in Figure

17.

(a) Uncertainty

(b) Universe

(c) Measure

(d) Notion

Figure 16 ShCPS Uncertainty Profile

For Level 3 uncertainty, the probability distribution is unknown. Only a rankable likelihood

of each value is available. In this case, PossibilityMeasure can be used to specify the rankable

likelihood, via possibility (C59) and necessity (C60) distributions, as shown in Figure 17

Simula Research Laboratory, Technical Report 2016-08 June, 2016

26

(Level 3). Based on MARTE [16], 11 types of Distributions are defined in this profile (Figure

16 (c)). They can be used to specify both probability and possibility measures.

Figure 17 Specifications of Uncertainty

4.3.2 Model Uncertainty (A3)

The next step of building the ETRM is to specify uncertainties from sensors and actuators.

Limited by the current state of knowledge, testers may not be able to determine every feature

of each sensor and actuator. However, these features have effects on controllers’ behaviors,

such as packetLossRate of MAVLink and altitudeBias of Barometer. To support testing

ShCPSs under uncertainties, uncertain features are defined as class attributes stereotyped with

«Uncertainty». The uncertainty is quantified, by defining universes and notions of uncertain

features, and by quantifying uncertainties with measures. The modeling process is summarized

in Figure 18.

According to the type of an uncertain feature, one of the 13 types of Universe datatypes

defined in ShCPS Uncertainty Profile (Section 4.3.1), can be chosen as the datatype of the

uncertainty. For a numerical feature, if its value varies within a range, an interval datatype of

universe (U_IntegerInterval, U_RealInterval, U_UnlimitedNaturalInterval) should be assigned

to this uncertainty. Otherwise, a vector can be used to list all possible values. Depending on

the level of uncertainty, the notions and measure are specified in the following way.

For Level 1 uncertainty, at a given point of time, the value of the uncertain feature is

determined with a margin of error. They are specified via “universe” attribute of

«Uncertainty», as shown in Figure 17 (Level 1). For the other two levels of uncertainty, prior

to quantifying the likelihood of each value, the modeler should decide whether their

Simula Research Laboratory, Technical Report 2016-08 June, 2016

27

knowledge about the uncertain feature is qualitative or quantitative. If it is qualitative, a notion

should be defined for each descriptive term, such as the three notions Low, Medium, and High,

defined for uncertain feature windSpeed in Figure 17. Any MembershipFunction defined in the

uncertainty profile (Section 4.3.1) can be used to define the elements of a notion.

Figure 18 Model Uncertainty

After defining notions, modelers specify the measure of each uncertainty. For the Level 2

uncertainty, since the probability of each value is known, a ProbabilityMeasure is used to

describe the likelihood. While PossibilityMeasure is adopted for the Level 3 uncertainty to

state the rankable likelihood of each value. For both Level 2 and Level 3 uncertainties,

appropriate probability, possibility, or necessity distributions can be chosen from the set of

predefined Distributions in the uncertainty profile (Section 4.3.1).

Since measures of Level 4 and Level 5 uncertainties are unknown, these uncertainties

cannot be explicitly specified in the model. However, as testing proceeds, such uncertainties

may transform to lower level uncertainties and be handled accordingly.

4.4 Model Testing Utilities with ShCPS Testing Profile

4.4.1 ShCPS Testing Profile

ShCPS Testing profile defines five stereotypes based on necessary concepts from the standard

of Methods for Testing and Specification of Model-based Testing [39] (shown in Figure 19).

«SystemUnderTest» denotes the testing target, i.e., ShCPS. «InputOperation» and

«OutputOperation» extend BehavioralFeature representing testing interfaces used for

controlling and monitoring the ShCPS. An «InputOperation» testing interface sends

instructions to the «SystemUnderTest», whereas an «OutputOperation» testing interface

queries state variable values. These types of operations facilitate test execution (to be

discussed in Section 5). «FaultInjection» is a specialized «InputOperation» for faults injections

to trigger self-healing behaviors. «TestStub» represents sensors, actuators, networks, and

external systems, which are simulated/emulated by simulators/emulators. As explained in

Section 1, self-healing behaviors are tested in a simulated environment. Hence, simulators or

emulators play an important role in building and maintaining a realistic test execution

Simula Research Laboratory, Technical Report 2016-08 June, 2016

28

environment for ShCPSs. The “parameter” attribute of «TestStub» specifies configuration

parameters required for launching stubs.

Figure 19 ShCPS Testing Profile

4.4.2 Model Test Utilities (A4)

The final step of the modeling is to bind the testing interfaces with the defined operations and

to achieve the final ETRMs. Figure 20 presents the three stages of this step.

Figure 20 Model Test Utilities

First, the main class, which contains the entry point of the testing process, is stereotyped

with «SystemUnderTest» to show the starting point of execution. Second, sensors, actuators,

and physical processes, which are to be simulated or emulated, are annotated with «TestStub».

The “parameter” attribute of «TestStub» captures configuration parameters of simulators or

emulators. Figure 21 presents the parameters of GPS: id and resolution. They are all captured

in the “parameter” attribute. By parsing this value, TM-Executor knows how to start and

initialize a corresponding simulator to build the testing environment.

Third, operations defined in class diagrams can be stereotyped with «InputOperation»,

«OutputOperation» or «FaultInjection» to distinguish them from each other. For

«InputOperation» and «FaultInjection», their input parameters capture input data of the

corresponding testing interface. Such an operation is defined as an opaque behavior, which

states the Uniform Resource Identifier (URI) of the corresponding testing interface, such as the

method of disableGPS() shown in Figure 21. According to this URI, the testing interface

disableGPS() will be invoked by TM-Executor whenever the operation is called.

For «OutputOperation», besides specifying the URI and parameters of the testing interface,

the modeler should also associate each output parameter to a class attribute, so that the

attribute can be updated by system’s current state variable value obtained through the

operation. To do so, the name of the output parameter is the same as the one of the

corresponding attribute. In this way, each output parameter of an output operation is bound to

Simula Research Laboratory, Technical Report 2016-08 June, 2016

29

an attribute contained in the class owning this operation. For example in Figure 21, the output

parameter of getGPSPosition(), is position, the same as attribute position of class GPS (Figure

11). Whenever the operation is invoked, attribute position is updated by the operation.

Figure 21 Test Utilities of GPS

5. The TM-Executor Framework

To enable EMBT for ShCPSs in the presence of environment uncertainties, we created the

MoSH and TM-Executor frameworks. An overview of the frameworks including integrated

tools is presented in Figure 22. The MoSH framework, i.e., UML profiles presented in Section

4, is implemented in Papyrus [40], a UML Modeling Tool. With MoSH, testers can develop

the ETRM, which captures expected behaviors and environment uncertainties of the SUT. To

execute the ETRM and test the SUT under environment uncertainties, we developed the TM-

Executor framework as an extension to Moka [11], which is a Papyrus module for execution of

UML models complying with fUML standard [10]. The key input for the TM-Executor

framework is an ETRM created with MoSH.

Figure 22 TM-Executor Framework

TM-Executor extends Moka in four ways. First, it extends Moka to execute ETRMs

containing stereotypes from the MoSH profiles since Moka doesn’t recognize stereotypes

defined in the MoSH profiles. For example, as shown in Table 11, operations with stereotypes

«InputOperation» and «OutputOperation» applied have specific semantics in our case and thus

Simula Research Laboratory, Technical Report 2016-08 June, 2016

30

we extended the existing semantics of the operations defined in fUML. Second, execution

semantics for certain UML model elements are not yet defined in fUML, for instance, for

BroadcastSignalAction and ChangeEvent. Thus, we defined their execution semantics

ourselves and implemented them as extensions in Moka. Third, there exist defined semantics

in fUML for certain UML metaclasses that do not serve our purpose and thus we extended

them, for instance, for State as shown in Table 11. Appendix B presents the implementation of

these extensions. Fourth, we implement test execution facilities (i.e., Test Driver, Test

Inspector, and Test Logger) since Moka is a generic model execution engine and needed to be

specialized for testing.

Table 11 Extensions to Moka Execution Semantics

Extension UML Metaclass Execution Model
Element Execution Semantic

Extensions for

stereotypes

Operation stereotyped

with «InputOperation»

InputOperation
Execution

Invoke the test interface
corresponding to the URI defined
in the opaque behavior of the
operation, taking input parameter
values as inputs.

Operation stereotyped
with «OutputOperation»

OutputOperation
Execution

Invoke the test interface
corresponding to the URI defined
in the opaque behavior of the
operation. Update attributes values
using the outputs of the test
interface.

Extensions for
additional

metaclasses

BroadcastSignalAction

BroadcastSignal
ActionActivation

Construct a signal using the values
from argument pins and send the
signal to all objects that are
associated with the object from the
source pin.

ChangeEvent ChangeEvent
Occurrence

The change expression of change
event is evaluated, whenever
related attributes’ values are
updated. If the change expression
becomes true, the change event
occurs.

Extension to
existing
semantic

State StateActivation Besides the semantic defined in
fUML, the state can be entered
only if its state invariant is true.

While executing ETRMs, certain test data (i.e., input parameter values) are needed to trigger

transitions with CallEvents. In ETRMs, the valid input parameter values are defined by

transitions’ guard specified as OCL constraints. To avoid a user manually providing valid

values, we use an OCL constraint solver, i.e., EsOCL [8], which takes an OCL constraint as

input and generates a set of values satisfying the constraint. During the execution of ETRMs,

whenever test data is required to continue the execution of ETRMs, ETRM Execution Engine

interacts with Test Driver, which invokes EsOCL with an OCL constraint. EsOCL solves the

constraint and provides required test data to Test Driver, which subsequently supplies the test

data to ETRM Execution Engine to continue the execution of ETRMs. Figure 23 presents an

Simula Research Laboratory, Technical Report 2016-08 June, 2016

31

example of this process. First, to execute ETRM, ETRM Execution Engine notifies Test Driver

to trigger a transition. Second, as directed by a random testing strategy, Test Driver arbitrarily

chooses the transition “takeoff() [alt > 50 and alt < 200]” and invokes EsOCL to generate an

input value satisfying the guard condition “[alt > 50 and alt < 200]”. Third, by solving the

constraint, EsOCL returns a valid value for variable alt, i.e., alt=100, which is eventually used

to invoke takeoff().

Figure 23 Example of Test Data Generation

During the execution of an ETRM, state invariants (OCL constraints) specified in the

ETRM are evaluated to determine whether a fault is found. Test Inspector provides such

functionality. ETRM Execution Engine invokes Test Inspector whenever the ETRM is updated

upon the reception of new state variable values coming from testing interfaces. Test Inspector

uses Dresden OCL [12] to evaluate a state invariant against actual values of the state variables.

If the result of the evaluation is false, it means that there is a fault and the execution

terminates; otherwise, there is no fault and the execution continues. Following the example

shown in Figure 24, Navigating is the active state, and its state invariant is an OCL constraint

defined on attribute mode. Whenever mode is updated by querying its value via a test interface,

the ETRM Execution Engine, first, notifies Test Inspector to check system’s actual state

against the model. Second, Test Inspector invokes Dresden OCL to evaluate the state invariant

based on the updated attribute value. Third, Dresden OCL returns “false”, which means the

system state is inconsistent with the active state in the ETRM. Thus, a fault is revealed, and

Test Inspector terminates the execution.

Figure 24 Example of Constraint Evaluation

Test Logger takes charge of creating test logs. Whenever a state machine in the ETRM

changes its active state or an operation is invoked by Test Driver, Test Logger saves a log to

record the change or stimulus. As a result, the logs keep the history of the execution process,

Simula Research Laboratory, Technical Report 2016-08 June, 2016

32

including the sequence of adaptations adopted for healing. In the case of a fault, i.e., an

invariant violation detected by Test Inspector, the fault is logged as well. The logged fault,

along with the history of execution can help to perform e.g., root cause analyses.

To support interactions among ETRM, SUT and simulators/emulators, we used the FMI

standard [9], which is a tool independent standard to support model exchange and facilitate co-

simulation of dynamic models. With FMI, ETRM Execution Engine executes ETRMs and in

turn interacts with SUT. In addition, ETRM Execution Engine interacts with

simulators/emulators using FMI to introduce uncertainties captured in ETRMs during their

execution. Notice that our focus is only on testing the software of a self-healing CPS in the

presence of environment uncertainties and this is the reason that hardware and its environment

are simulated/emulated. Since the focus of testing is software, we captured its expected

behavior as UML state machines. However, UML state machines cannot capture continuous

behaviors and thus we used existing simulators/emulators. Supported by FMI, the input and

output values of simulators’ or emulators’ interfaces can be modified to introduce

uncertainties. The extent of each modification is determined by the uncertainty’s universe,

notions and measure defined in ETRMs (Section 4.3). Simulators and emulators can be

developed using several modeling languages such as Modelica [41] and Simulink [42], which

is however out of the scope of this paper.

6. Evaluation
This section presents the evaluation of CMSU, MoSH, and TM-Executor. Section 6.1 presents

the experiment design. Experiment results are discussed in Section 6.2. We summrise the

evaluation results in Section 6.3. In Section 6.4, we present threats to validity.

6.1 Experiment Design

As shown in Table 12, the experiment was designed to answer three research questions (RQ1-

RQ3) through three carefully designed tasks (T1-T3). Experiment results were evaluated with a

set of metrics and various numbers of case studies were involved in each task. In the rest of the

section, we discuss the experiment design by following the research questions.

Table 12 Experiment Design

RQ Task Metrics Case Studies
1 T1: Mapping concepts and their

relationships from a case study to
the ones in CMSU

Completeness, Correctness VCS, TMS, RFID-SC,
DSRL, ISR, APR,
RAMA, PeMS, VSS

2 T2: Creating ETRMs with MoSH FunBeh, HealBeh, Diagnosis,
Recovery, Uncertainty,
TotalElem, StereoPer

RAMA, PeMS, VSS

3 T3: Testing a ShCPS with TM-
Executor with a random strategy.

TranTime, SynTime
DataGenTime, EvalTime,
UncIntrTime, DetectedFault

RAMA

Simula Research Laboratory, Technical Report 2016-08 June, 2016

33

Table 13 Metrics and their Definitions

RQ Metric Description
1 Completeness The number of ShCPS elements covered by CMSU (Cov) divided by the total

number of elements in the case study (Total): Cov / Total
Correctness The number of relationships that are consistent with the ones in CMSU

(ConsAssoc) divided by the total number of relationships in the case study
(TotalAssoc): ConsAssoc / TotalAssoc

2 FunBeh The number of functional behaviors in an ETRM
HealBeh The number of self-healing behaviors in an ETRM
Diagnosis The number of self-diagnosis behaviors in an ETRM
Recovery The number of self-recovery behaviors in an ETRM
Uncertainty The number of uncertainties captured in an ETRM
TotalElem The total number of model elements in an ETRM
StereoPer The number of stereotyped model elements in an ETRM (SterElem) divided

by the total number of elements in the ETRM: SterElem / TotalElem
3 TranTime Time for traversing a transition

SynTime Time for synchronizing ETRM, ShCPS, and simulators
DataGenTime Time for generating test data from a guard condition
EvalTime Time for evaluating a state invariant
UncIntrTime Time for introducing an uncertainty
DetectedFault The number of faults found by TM-Executor with the random strategy

RQ1: Is CMSU complete and correct to capture relevant concepts of the selected case studies?

With this research question, we first aimed to assess whether there are any concepts and/or

relationships in the case studies that cannot be mapped to the concepts and/or relationships in

CMSU. Doing so helps to find missing concepts in CMSU and consequently missing elements

in the MoSH. Second, we aimed to know whether there are any relationships in the conceptual

model of a case study that are mapped incorrectly to the relationships between the concepts in

CMSU. Its purpose is to find any incorrect relationships in CMSU. We, therefore, defined the

T1 task (Table 12) to achieve these two objectives. We selected nine available ShCPS case

studies to assess the quality of CMSU: Videoconferencing System (VCS) [43], Traffic

Monitoring System (TMS) [44], Radio-frequency identification (RFID) supply chain (RFID-

SC) [45], Distributed Systems Research Lab (DSRL) [46], Intelligent Service Robot (ISR) [47],

Automatic Power Restoration System (APRS) [48], RAMA [13], freeway Performance

Measurement System (PeMS) [49], and Video Streaming System (VSS) [50]. Experiment

results were evaluated with the metrics of Completeness and Correctness (Table 12), which are

defined in Table 13.

RQ2: Does MoSH provide a cost-effective way of creating ETRMs?

With this research questions, we first want to assess 1) how much additional modeling effort

is required to create ETRMs for the selected case studies as compared to standard UML

notations, and 2) the effectiveness of applying MoSH for modeling all identified self-healing

behaviors and uncertainties of the selected case studies. For this RQ, we defined the T2 task

and defined a set of metrics (Table 12 and Table 13). Regarding case studies, we only used

RAMA [13], PeMS [49], and (VSS) [50], due to the reason that the other six case studies used

Simula Research Laboratory, Technical Report 2016-08 June, 2016

34

to answer RQ1 do not provide detailed specifications of system structures, functional and self-

healing behaviors.

RQ3: How is the performance of TM-Executor in terms of test execution?

TM-Executor performs test execution with model execution to test self-healing behaviors of

ShCPSs in the presence of environment uncertainties. With this evaluation, we are interested

in assessing how much time is required for TM-Executor to execute various test steps such as

generating data from a guard condition and evaluating a state invariant. This gives us an

indication whether TM-Executor is practically applicable in terms of its time performance. For

RQ3, we defined the T3 task, which involves testing a ShCPS in the presence of environment

uncertainties as a proof-of-concept. We implemented a random test strategy, where during

each test execution step, a random transition was selected for execution. During test execution,

test data was generated using EsOCL, and uncertainties were simulated based on their

universes, notions, and measures. Note that we do not aim to assess fault detection ability of

test strategies, rather we aim to demonstrate, as a proof-of-concept, the feasibility of the

complete EMBT solution. In the future, we plan to implement other test strategies. For RQ3,

we chose to test RAMA [13], using the ETRM created to answer RQ2. We couldn’t use PeMS

and VSS for RQ3 as we didn’t have access to the implementation to the ShCPS for testing.

6.2 Experiment Execution, Results, and Analyses

In this section, we provide details on experiment executions, results, and analyses,

corresponding to each research question.

6.2.1 Results for RQ1

Based on the nine ShCPSs (Section 6.1), we evaluated and improved CMSU’s completeness

and correctness, by following the steps summarized in Figure 25. Initially, we derived the

conceptual model (CMSU V.1) from the existing literature on self-healing systems, CPSs, and

uncertainty theories (Activity A1 in Figure 25). To evaluate its quality in terms of

completeness and correctness, we abstracted ShCPS related concepts as well as concept

relationships (Cons. & Rels. from CSs. V.1), from the nine ShCPSs’ specifications (Activity

A2.1 in Figure 25). Cons. & Rels. from CSs. V.1 capture necessary entities required for

defining expected self-healing behaviors and uncertainties of a ShCPS. For each abstracted

concept or relationship, we tried to find a counterpart in CMSU V.1 (Activity A2.2 in Figure

25). If the counterpart is missing, we further investigated whether the abstracted one is

correctly identified. In case that it was correct, CMSU V.1 was revised to cover the missing

concept. In case that we identified a problem in the case studies, the wrong concept or

relationship was corrected. After A2.2, we created a new version of abstracted concepts and

relationships, i.e., Cons. & Rels. from CSs. V.2. At last, the refined conceptual model (CMSU

V.2), generated by A2.2, was further refined by A3 via mapping from Cons. & Rels. from CSs.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

35

V.2 to CMSU V.2. The final obtained CMSU V.3 is presented in Section 3 and was

implemented as UML profiles (presented in Section 4). In addition, Appendix A presents the

statistics of the occurrence of each concept in the nine case studies for reference.

Figure 25 The Process of Developing CMSU

After the two-steps refinement, CMSU succeeded to correctly cover all the abstracted

concepts and relationships and therefore the completeness, and correctness are 100% for all the

nine case studies, which justifies that CMSU is complete and correct at least for the selected

nine case studies.

6.2.2 Results for RQ2

To assess the additional effort required to applying MoSH for developing ETRMs, we report

results for the StereoPer metric in Table 14. We needed to apply stereotypes from MoSH to

15%, 15%, and 19% of model elements for RAMA, PeMS, and VSS. On average, for the three

case studies, we needed to apply stereotypes to 16% of model elements. This number gives us

a rough indication of additional modeling effort required to use MoSH to create ETRMs.

Table 14 MoSH Evaluation Results (RQ2)

Metric RAMA PeMS VSS Avg.
TotalElem 377 144 97 206
FunBeh 10 7 3 7
HealBeh 4 5 2 4
Diagnosis 4 5 2 4
Recovery 9 5 3 6
Uncertainty 10 6 1 6
StereoPer 15% 15% 19% 16%

Regarding evaluating the effectiveness of MoSH, first, we provide statistics for various

model elements in ETRMs for each case study in Table 15. Results in Table 15 give an

indication of the complexity of ETRMs for the three case studies. Among the three case

studies, RAMA is the most complicated one. It contains 10 functional behaviors and four self-

healing behaviors. In total, 377 model elements were used to specify the 14 behaviors. In

Simula Research Laboratory, Technical Report 2016-08 June, 2016

36

contrast, PeMS and VSS are relatively simple, i.e., in total 144 model elements for specifying

12 behaviors of PeMS and 97 model elements for specifying five behaviors of VSS.

Table 15 Descriptive Statistics of the Model Elements (RQ2)

Element RAMA PeMS VSS Avg.

Class 10 7 4 7
Attribute 42 12 11 21
Operation 29 14 11 18
Signal 10 10 4 8
Association 9 7 3 6
State Machine 14 12 5 10
State 97 41 21 53
Transition 166 41 38 81
Total 377 144 97 204

Second, as discussed in Section 6.1, we collected statistics for the five metrics, two of which

capture the number of functional and self-healing behaviors. As shown in Table 14 (the

FunBeh and HealBeh rows) and Table 18 in Appendix A (the Functional Behavior and Self-

Healing Behavior rows), all the identified functional and self-healing behaviors were captured

in ETRMs. Moreover, self-diagnosis and self-recovery, the two key steps of self-healing

behaviors, were also explicitly specified, as shown in the Diagnosis and Recovery rows in

Table 14. They enable TM-Executor to rigorously test self-healing behaviors.

Table 16 Uncertainties in RAMA, PeMS and VSS (RQ2)

Case
Study

Uncertainty Level Universe Measure Notions

RAMA Wind Direction 3 0° ~ 360° Possibility Null
Wind Velocity 3 0 ~ 30 m/s Possibility Low, Medium, High
GPS Bias 2 -50 ~ 50 m Probability Null
Motor Bias 2 -1 ~ 1 m/s2 Probability Null
Barometer Altitude Bias 1 -10 ~ 10 m N/A N/A
Barometer Climb Rate Bias 2 -0.5 ~ 0.5 m/s2 Probability Null
Accelerometer Noise 2 -1 ~ 1 m/s2 Probability Null
Gyro Noise 2 -0.1 ~ 0.1 rad/s Probability Null
MAV Link Latency 2 0 ~ 600 ms Probability Null
MAV Link Packet Loss Rate 2 0% ~ 5% Probability Null

PeMS Vehicle Speed 3 10 ~ 120 km/h Possibility Null
Vehicle Size 3 2000 ~ 5000 L Possibility Mini, Compact,

Mid, Large
Loop Detector Impedance 2 5 ~ 10 Ω Probability Null
Loop Detector Voltage 2 3 ~ 4 V Probability Null
Loop Detector Sensitivity 2 0.1 ~ 1 𝜇H Probability Null
Latency of ATM Link 2 0 ~ 1 s Probability Null

VSS Latency of Channel 2 0 ~ 800 ms Probability Null

We specified 10 uncertainties for RAMA, six uncertainties for PeMS, and one uncertainty

for VSS, as shown in Table 16. These uncertainties come from the environments of the

software being tested and are related to sensors, actuators, and networks. Supported by MoSH,

we could precisely define the universe, notions, and measure for each uncertainty. Based on

Simula Research Laboratory, Technical Report 2016-08 June, 2016

37

the uncertainty specifications, TM-Executor can introduce the uncertainties via simulators or

emulators, which enables the testing of self-healing behaviors under uncertainties.

6.2.3 Results for RQ3

As discussed in Section 6.1, to answer RQ3, we used TM-Executor to test a real ShCPS

(RAMA), based on the ETRM built in T2 (Table 12). We investigated the efficiency of TM-

Executor in terms of time taken for model execution (TranTime and SynTime in Table 13), test

data generation (DataGenTime in Table 13), state invariant evaluation (EvalTime in Table 13),

and uncertainty generation (UncIntrTime Table 13). As discussed in Section 6.1, we only

implemented a random strategy for model execution and assessed if it can find faults

(DetectedFault in Table 13).

We conducted the experiment on a single PC, with a processor Intel Core i7 2.6 GHz and 16

GB of RAM. As presented in Table 14, the ETRM developed for RAMA has 10 classes, four

self-healing behaviors to handle four faults, and 14 state machines. We also have access to

simulators for five sensors and one actuator. Ten uncertainties (Table 16) were introduced

using these six simulators and we tested the four self-healing behaviors in the presence of

these ten uncertainties. To reduce the effect of randomness of the executions, we repeated the

experiment 10 times and report statistical values for each metric.

Table 17 summarizes the results. On average, traversing a transition took 5839 ms (i.e., 5.8

seconds), synchronization time took 1.5 ms, 95 ms for test data generation, and less than one

millisecond for both state invariant evaluation and uncertainty generation. The maximum time

taken for synchronization (34 ms), state invariant evaluation (1 ms), and uncertainty generation

(<1 ms) are quite small. For test data generation, the maximum time was 104ms, where we

used the EsOCL solver. Notice that depending on the complexity of a guard condition, time

taken by test data generation may vary. In our case studies, in total there were 50 guards (OCL

constraints), 27 of which contain six clauses. For the most complex constraint with six clauses,

EsOCL took 104 ms to solve. During test execution, most of the time was spent on executing

the simulators and the software of the ShCPS. The computational complexity of software and

simulators determine the amount of time required to process a test stimulus. As shown in Table

17, after sending a stimulus to the ShCPS, its software maximally took 9421 ms (i.e., 9.4

seconds) to enter the target state. However, this time is not related to TM-Executor. Instead, it

is system and simulator/emulator specific. In conclusion, SynTime, DataGenTime, EvalTime,

and UncIntrTime are related to TM-Executor, which are all very small as shown in Table 17.

In the 10 runs of the experiment, one fault (state invariant violation) was detected by TM-

Executor three times. This fault leads to the collision of the drone. Though a self-healing

behavior helped the drone automatically avoid collisions with other vehicles, the drone failed

to keep a safe distance from an intruding vehicle in the presence of uncertainties.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

38

Table 17 TM-Executor Evaluation Result* (RQ3)

Metric Mean (ms) Min. (ms) Max. (ms)
TranTime 5839 5270 9421
SynTime 1.5 1 34
DataGenTime 95 76 104
EvalTime <1 <1 1
UncIntrTime <1 <1 <1

*Min.: Minimum value, Max.: Maximum value

6.3 Overall Discussion

In this section, we provide an overall discussion based on the results presented in Section 6.2.1

to Section 6.2.3. As discussed in Section 6.2.1, we conclude that our conceptual model

(CMSU) is complete and correct based on the results of evaluating with nine case studies. Such

results give us an early indication on the completeness and correctness of CMSU and

nonetheless more case studies are warranted. This conclusion is important as it forms the

foundation for proposing the MoSH modeling methodology, another key contribution of the

paper.

Based on the results presented in Section 6.2.2, we can conclude that, on average, we

needed additional 16% of modeling effort to create ETRMs, which involved adding

stereotypes to standard UML model elements. We understand that this is the simplest way of

measuring modeling effort and more sophisticated ways to measure the modeling effort are

required, e.g., conducting controlled experiments with human subjects (modelers) and

assessing how much time is actually required by modelers when applying MoSH to develop

ETRMs. In addition, we demonstrated the application of MoSH to create ETRMs for three

diverse case studies of varying complexity. Such exercise gives us the evidence that MoSH is

capable of modeling different ShCPSs to support testing in the presence of environment

uncertainties. For the current evaluation, the first author of the paper created all the ETRMs.

However, we acknowledge that a better evaluation would be to conduct a controlled

experiment with more modelers with a diverse background to assess the applicability of MoSH.

Conducting such controlled experiments (even in an academic setting) requires resources and

opportunities, which are therefore expensive. We are however actively pursuing such

opportunities.

Based on the results presented in Section 6.2.3, we conclude that the time taken by TM-

Executor to perform various testing activities during test model execution was very small, i.e.,

in the order of milliseconds, with the exception of traversing a transition that, on average, took

5.8 seconds. Notice that this was the time taken by an SUT to execute the invoked

operation/signal event on the transition, not by TM-Executor to invoke an event on the

transition. Thus, such time is dependent on the implementation of an SUT and has nothing to

do with the performance of TM-Executor.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

39

6.4 Threats to Validity

Conclusion validity threats are related with factors that can affect conclusions drawn from

experiment results. The random test strategy implemented in TM-Executor leads to different

behaviors of the SUT being exercised. For different behaviors, the amount of time spent by

TM-Executor to generate test data, evaluate constraints, etc., varies as well. Therefore, TM-

Executor’s performance changes for each test execution. To deal with such a threat to

conclusion validity, we repeated the experiment 10 times and applied statistics to analyze TM-

Executor’s performance.

External validity threats concern the generalization of the results. One of the main external

validity threats of the evaluation is that we only applied nine case studies to evaluate CMSU

and applied three of them to evaluate MoSH. However, the nine case studies are from different

domains and, for all the case studies, the evaluation results are consistent. Another external

validity threat is that only one case study was employed to evaluate TM-Executor’s

performance. However, 10 uncertainties and a number of state invariants, guards, operations,

with various complexities, were exploited by TM-Executor to test self-healing behaviors under

uncertainties. Nonetheless, additional case studies are needed to further generalize the results.

Construct validity threats refer to the degree to which the experiment setting (including two

metrics for the CMSU evaluation, seven metrics for MoSH and six metrics for TM-Executor

evaluation) reflects the construct under study (i.e., the quality of CMSU, the cost-effectiveness

of MoSH and the performance of TM-Executor). To reduce the threats, we carefully selected

and defined the metrics focusing on our overall objective of testing self-healing behaviors of

ShCPSs under uncertainties. However, additional metrics and other ways of evaluation are also

possible. For example, for the evaluation of MoSH, an alternate way to evaluate the modeling

effort is to conduct a controlled experiment with real modelers and assess required effort.

Nonetheless, conducting such experiments is very expensive in terms of time and resources

required to execute such experiments. We are however looking for opportunities to conduct

such controlled experiments in the future.

7. Related work

In this section, we discuss existing works related to CMSU in Section 7.1, MoSH in Section

7.2, and testing Self-Healing systems in Section 7.3. In Section 7.4, we summarize how our

work advances the current state of the art.

7.1 Concepts of CPSs, Self-healing, and Uncertainty

After a decade’s effort, key elements of ShCPSs have been identified by academic and

industrial communities, which are adopted in our conceptual model CMSU. In [3], a CPS was

defined as a set of heterogeneous physical units communicating via heterogeneous networks.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

40

In this definition, physical units are recognized as the first-class objects of CPSs. Besides, the

network was also considered important, as it enables communication among physical units.

Our definition of CPSs is consistent with other definitions of CPSs: “engineered systems that

are built from, and depend upon, the seamless integration of computational and physical

components” [51] and “a set of physical systems controlled in a principled manner via

engineering technologies” [52].

Sensors and actuator are captured as interfaces between computational and physical

components in [53]. CPSs are characterized by integrating computation and physical processes

[54] and the primary goal of a CPS is to efficiently control physical processes [55]. The

authors of [5] identified detection, diagnosis, and recovery as the three main steps of self-

healing. In addition, three types of recovery policies were explained and evaluated in [25, 56].

Though CPS and self-healing system have been the focus of research for years, only a few

studies tried to associate them together. CMSU aims to build a common understanding of

ShCPSs by capturing key elements from both CPSs and self-healing communities. Besides the

key elements defined in the literature, we identified a few new concepts. First, we identified

Situation to represent inherent uncertain events in the operational environment of a ShCPS,

which is though studied, e.g., in [57, 58], for other purposes and in different contexts. Second,

we adopted the definitions of fault and error from [19]. Third, adaptation actions, the

classification of probes and effectors were elicited from fault diagnosis and recovery process.

Fourth, inspired by goal oriented self-healing approaches [59], goals of self-healing behaviors

were captured in MoSH as well.

How to cope with uncertainty is a grand challenge and a definition and taxonomy of

uncertainty in the context of CPSs is difficult to find [60]. In the past, the effort was mostly

spent on identifying uncertainty sources in self-healing CPSs. The authors of [6] proposed a

taxonomy of uncertainty sources in dynamically adaptive systems at the requirement, design,

and execution phases along with existing mitigation techniques for each type of uncertainties.

The taxonomy is generic and therefore not designed for a specific usage and needs to be

specialized for specific applications. In [61], the authors gave another nine uncertainty sources

in self-adaptive systems, which need to be considered during design. We, however, build an

uncertainty conceptual model from the perspective of testing. We extend the definition of

uncertainty provided in [7] and define the uncertainty as: “the lack of knowledge about the

value of an uncertain feature at a given point of time during a testing process” (Section 3.3).

The uncertain feature, along with its universe and notions, and the measure of uncertainty are

defined to more rigorously quantify the current state of knowledge.

In summary, despite numerous approaches proposed [2, 5, 62], a conceptual model of CPSs

and their self-healing behaviors together with uncertainty is still missing. We, in the paper,

took the initiative and constructed such a conceptual model, aiming at providing a common

Simula Research Laboratory, Technical Report 2016-08 June, 2016

41

ground for understanding ShCPSs under uncertainty and facilitating analyses in the future.

However, we believe that this conceptual model is an initial attempt and must be specialized

such as for other types of autonomic behaviors, e.g., self-configuring and for different types of

analyses such as model-based testing.

7.2 UML-based CPS and Self-healing related Modeling

To tackle the intrinsic complexity of CPSs, researcher proposed to adopt model-based

engineering [63], which uses models to facilitate system design, development, verification, and

validation. Since a CPS is an integration of computation and physical processes, it is typically

modeled as a hybrid system where physical processes are specified as continuous-time models

and computation parts are defined as discrete models [64]. For physical processes, several

modeling tools are ready to be used to specify continuous-time models, such as Simulink [42],

OpenModelica [41], SystemC [65], and Ptolemy II [66]. Regarding the computational part,

UML is the most broadly used modeling language. With the help of the FMI standard [9],

heterogeneous models can be executed together.

Using UML’s profiling mechanism, several extensions of UML have been developed, e.g.,

Systems Modeling Language (SysML) [67], Modeling and Analysis of Real-time Embedded

Systems (MARTE) [16], Dependability Analysis Modeling (DAM) [68], and UML Profile for

Modeling Quality Of Service And Fault Tolerance Characteristics And Mechanisms (QFTP)

[69]. Though these UML profiles extend UML’s capability to model complex systems, they

are either too general or too limited to be used to build ETRMs for testing self-healing

behaviors of ShCPSs under uncertainty. While SysML and MARTE provide useful modeling

constructs to specify continuous system dynamics and non-functional properties, they do not

provide sufficient modeling elements to precisely capture expected self-healing behaviors and

uncertainties. DAM and QFTP can be used to support the modeling of fault tolerance

mechanisms. Since self-healing behaviors can be realized by runtime adaptation rather than

fault tolerance, they are not adequate for developing ETRMs.

To explicitly capture self-healing behaviors of ShCPSs in the presence of uncertainties, we

propose a modeling framework, MoSH, in this paper. It provides four UML profiles and a

modeling methodology to capture the test configuration of the ShCPS under test (including

system structure, functional behaviors, self-healing behaviors, uncertainties and testing

interfaces). This is not covered by existing works in the literature.

7.3 Testing Self-healing Systems

Fault injection is a straightforward method to test recovery mechanisms of self-healing

systems. By introducing faults, self-healing behaviors can be exercised; Otherwise, they will

rarely be triggered. Normally, it requires a fault model to capture potential faults. In [45], a

fault model is built based on five types of faults (i.e., application hang, component crash, stale

Simula Research Laboratory, Technical Report 2016-08 June, 2016

42

service, denial of service and excessive thread allocation). According to the model, faults are

introduced by deploying and activating faulty Java Beans on a platform, which leads to the

execution of self-healing behaviors. While in [70] the authors propose to use context models to

simulate sensor data under different adverse conditions. Taking simulated data as system input,

self-healing behaviors can be evaluated. Similarly, in [71] a simulated architecture model is

used as input to test the feedback loop of a self-healing system. This enables the self-healing

mechanism to be assessed at the early phase of the system development lifecycle.

The main issue of these testing approaches is that they only concern self-healing behaviors,

with functional behaviors ignored. Thus, the strategy that determines when to introduce faults

is missing. Moreover, uncertainties are not considered either. Alternatively, in MoSH, both

functional and self-healing behaviors are captured, together with system structure,

uncertainties, and testing interfaces. Via change events with «Fault», fault injection points can

be explicitly specified as well.

Besides traditional offline testing methods that generate test cases before test execution,

adaptive testing is identified as a crucial technique to validate runtime adaptations performed

by self-healing systems [1]. An adaptive testing framework, named as Proteus, was proposed

in [72]. Proteus takes a set of test cases as input. Due to runtime adaptations, initial test cases

may become invalid. To keep them valid, Proteus uses an evolutionary algorithm to adapt the

test cases at runtime, based on the heuristics of false positive and false negative. Although this

method enables adaptive testing, the fault detection ability of this method highly depends on

the quality of the initial test cases. Achieving a qualified set of test cases is still a challenge.

The same issue exists for another adaptive testing framework, presented in [73]. Whenever a

runtime adaption happens, the framework determines the affected components by dependency

analysis. Accordingly, a minimal set of test cases is executed to check the correctness of the

adaptation.

Different from the two approaches, we use ETRMs to guide the testing process. Since

ETRMs can be executed together with the system under test, there is no need to generate test

cases. Alternatively, based on the runtime information provided by ETRMs, test data is

dynamically generated to follow a test path, which is also determined at runtime. As a result,

ETRMs enables the adaptive testing of ShCPSs in the presence of uncertainties.

7.4 Summary

In conclusion, our work advances the current state of the art in several ways. First, even

though some existing works define self-healing concepts [2, 5] and uncertainty related

concepts [6, 7], there is no a single work that defines concepts of self-healing and uncertainty

together in the context of CPSs. To this end, CMSU is a comprehensive conceptual model that

builds on the literature [3, 19, 25, 51-56] to conceptualize self-healing behaviors of CPSs and

Simula Research Laboratory, Technical Report 2016-08 June, 2016

43

uncertainty together. Second, even though there exist several modeling notations that can be

used to model self-healing behaviors such as [68, 69]; however, none of them provide a

complete executable test modeling solution to create ETRMs for testing self-healing behaviors

in the presence of environment uncertainties. MoSH provides a complete integrated modeling

solution based on existing standards to provide such support. Note that MoSH was developed

exclusively for test modeling. Such type of modeling is only concerned with modeling test

interfaces (e.g., test APIs to send a stimulus to the SUT and modeling test data specifications),

and expected behaviors of a ShCPS in the presence of uncertainties. Finally, there exist some

adaptive test strategies [72, 73] to test self-healing behaviors; however, there is no evidence

that such strategies can be adopted to perform testing in the presence of environment

uncertainties. Though we didn’t define new test strategies in this work, we implement TM-

Executor to test self-healing behaviors of ShCPSs in the presence of uncertainty. Such a

framework can integrate adaptive test strategies and we plan to devise such test strategies as

part of our future work.

8. Conclusion and Future Work

Self-Healing Cyber-Physical Systems (ShCPSs) have the built-in capability to diagnose faults

and recover from these faults at the runtime by themselves. Such systems operate in a highly

unpredictable environment leading to uncertainty in their behaviors and thus these systems

must deal with such uncertainty even during the process of fault recovering. Towards the

direction of proposing an Executable Model-Based Testing (EMBT) approach to test the self-

healing behaviors of ShCPSs in the presence of environment uncertainties, in the paper, we

proposed an executable test modeling framework (MoSH) and a test model execution

framework (TM-Executor). MoSH and TM-Executor were evaluated with several case studies

and the feasibility of the EMBT solution was demonstrated by applying TM-Executor to test a

real-world case study, with a random test strategy implemented as a proof-of-concept. In the

future, we plan to implement more advanced strategies for test model execution test data

generation, and uncertainty introduction.

9. References

[1]. De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,
Tamura, G., Villegas, N.M., Vogel, T.: Software engineering for self-adaptive systems: A
second research roadmap. Software Engineering for Self-Adaptive Systems II, pp. 1-32.
Springer (2013)

[2]. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems—survey and
synthesis. Decision Support Systems, vol.42, pp.2164-2185 (2007)

[3]. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding
Uncertainty in Cyber-Physical Systems: A Conceptual Model. In: Modelling Foundations
and Applications: 12th European Conference, ECMFA (2015)

[4]. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing. (2006)

Simula Research Laboratory, Technical Report 2016-08 June, 2016

44

[5]. Psaier, H., Dustdar, S.: A survey on self-healing systems: approaches and systems.
Computing, vol.91, pp.43-73 (2011)

[6]. Ramirez, A.J., Jensen, A.C., Cheng, B.H.: A taxonomy of uncertainty for dynamically
adaptive systems. In: Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012 ICSE Workshop on, pp. 99-108 (2012)

[7]. Walker, W.E., Lempert, R.J., Kwakkel, J.H.: Deep uncertainty. Encyclopedia of
operations research and management science, pp. 395-402. Springer (2013)

[8]. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data from OCL constraints
with search techniques. IEEE Transactions on software engineering, vol.39, pp.1376-
1402 (2013)

[9]. Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M.,
Junghanns, A., Mauss, J., Neumerkel, D.: Functional mockup interface 2.0: The standard
for tool independent exchange of simulation models. In: Proceedings of the 9th
International MODELICA Conference, pp. 173-184 (2012)

[10]. OMG: Semantics Of A Foundational Subset For Executable UML Models V1.2.1.
formal/2016-01-05 (2016)

[11]. Tatibouet, J.: Moka – A simulation platform for Papyrus based on OMG specifications
for executable UML. In: EclipseCon, (2016)

[12]. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Proceedings of the Russian-German Workshop Innovation Information Technologies:
Theory and Practice, Ufa, Russia, pp. 687-690 (2009)

[13]. Holub, O., Hanzálek, Z.: Low-cost reconfigurable control system for small UAVs. IEEE
Transactions on Industrial Electronics, vol.58, pp.880-889 (2011)

[14]. Selic, B.: A systematic approach to domain-specific language design using UML. In:
Object and Component-Oriented Real-Time Distributed Computing, 2007. ISORC'07.
10th IEEE International Symposium on, pp. 2-9 (2007)

[15]. Kandé, M.M., Strohmeier, A.: Towards a UML profile for software architecture
descriptions. In: International Conference on the Unified Modeling Language, pp. 513-
527 (2000)

[16]. OMG: Profile for modeling and analysis of real-time and embedded systems (MARTE).
formal/2011-06-02 (2011)

[17]. Yau, S.S., Wang, Y., Huang, D., In, H.P.: Situation-aware contract specification language
for middleware for ubiquitous computing. In: Distributed Computing Systems, 2003.
FTDCS 2003. Proceedings. The Ninth IEEE Workshop on Future Trends of, pp. 93-99
(2003)

[18]. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC), pp. 363-369 (2008)

[19]. Avižienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on, vol.1, pp.11-33 (2004)

[20]. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing adaptive software.
Computer, vol.37, pp.56-64 (2004)

[21]. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Science of Computer Programming, vol.20, pp.3-50 (1993)

[22]. Koskimies, K., Mäkinen, E.: Automatic synthesis of state machines from trace diagrams.
Software: Practice and Experience, vol.24, pp.643-658 (1994)

[23]. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, vol.37, pp.46-
54 (2004)

[24]. Association, I.S.: Systems and software engineering—Vocabulary ISO/IEC/IEEE 24765:
2010. Iso/Iec/Ieee 24765 (2010)

[25]. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic
computing policies. In: Policies for Distributed Systems and Networks, 2004. POLICY
2004. Proceedings. Fifth IEEE International Workshop on, pp. 3-12 (2004)

Simula Research Laboratory, Technical Report 2016-08 June, 2016

45

[26]. Subramanian, N., Chung, L.: Software architecture adaptability: an NFR approach. In:
Proceedings of the 4th International Workshop on Principles of Software Evolution, pp.
52-61 (2001)

[27]. Blanke, M., Schröder, J.: Diagnosis and fault-tolerant control. Springer (2006)
[28]. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process

fault detection and diagnosis: Part I: Quantitative model-based methods. Computers &
chemical engineering, vol.27, pp.293-311 (2003)

[29]. Siripongwutikorn, P., Banerjee, S., Tipper, D.: A survey of adaptive bandwidth control
algorithms. Communications Surveys & Tutorials, IEEE, vol.5, pp.14-26 (2003)

[30]. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In:
Proceedings of the first workshop on Self-healing systems, pp. 27-32 (2002)

[31]. Koutsoumpas, V.: A model-based approach for the specification of a virtual power plant
operating in open context. In: Proceedings of the First International Workshop on
Software Engineering for Smart Cyber-Physical Systems, pp. 26-32 (2015)

[32]. Simmonds, J., Ben-David, S., Chechik, M.: Monitoring and recovery of web service
applications. The smart internet, pp. 250-288. Springer (2010)

[33]. Cheng, S.-W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the presence
of multiple objectives. In: Proceedings of the 2006 international workshop on Self-
adaptation and self-managing systems, pp. 2-8 (2006)

[34]. Kallenberg, O.: Foundations of modern probability. Springer Science & Business Media
(2006)

[35]. Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of
uncertainty. Springer Science & Business Media (2012)

[36]. OMG: Unified Modeling Language V2.5. formal/15-03-01 (2015)
[37]. (OMG), O.M.G.: Concrete Syntax For A UML Action Language: Action Language For

Foundational UML (ALF). (2013)
[38]. Sivanandam, S., Sumathi, S., Deepa, S.: Introduction to fuzzy logic using MATLAB.

Springer (2007)
[39]. ETSI: Methods for Testing and Specification (MTS); Model-Based Testing (MBT);

Requirements for Modelling Notations, V1.1.1. ETSI ES 202 951 (2011)
[40]. Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P.,

Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset for
MDA. In: Proc. of the Fifth European Conference on Model-Driven Architecture
Foundations and Applications (ECMDA-FA 2009), pp. 1-4 (2009)

[41]. Fritzson, P., Aronsson, P., Pop, A., Lundvall, H., Nystrom, K., Saldamli, L., Broman, D.,
Sandholm, A.: OpenModelica-A free open-source environment for system modeling,
simulation, and teaching. In: IEEE International Symposium on Computer-Aided Control
Systems Design, pp. 1588-1595 (2006)

[42]. Dabney, J.B., Harman, T.L.: Mastering simulink. Pearson/Prentice Hall (2004)
[43]. Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior using aspect-oriented

modeling to support robustness testing of industrial systems. Software & Systems
Modeling, vol.11, pp.633-670 (2012)

[44]. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in self-
adaptive systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 202-207 (2011)

[45]. Gama, K., Donsez, D.: Deployment and activation of faulty components at runtime for
testing self-recovery mechanisms. ACM SIGAPP Applied Computing Review, vol.14,
pp.44-54 (2014)

[46]. Cioara, T., Anghel, I., Salomie, I., Dinsoreanu, M., Copil, G., Moldovan, D.: A
reinforcement learning based self-healing algorithm for managing context adaptation. In:
Proceedings of the 12th International Conference on Information Integration and Web-
based Applications & Services, pp. 859-862 (2010)

[47]. Park, J., Lee, S., Yoon, T., Kim, J.M.: An autonomic control system for high-reliable
CPS. Cluster Computing, vol.18, pp.587-598 (2015)

Simula Research Laboratory, Technical Report 2016-08 June, 2016

46

[48]. Staszesky, D., Craig, D., Befus, C.: Advanced feeder automation is here. IEEE Power and
Energy Magazine, vol.3, pp.56-63 (2005)

[49]. Lu, X.-Y., Varaiya, P., Horowitz, R., Palen, J.: Faulty loop data analysis/correction and
loop fault detection. In: 15th World Congress on Intelligent Transport Systems and ITS
America's 2008 Annual Meeting, (2008)

[50]. Ryu, B.-H., Jeon, D., Kim, D.-H.: A Robust Video Streaming Based on Primary-Shadow
Fault-Tolerance Mechanism. In: International Conference on Ubiquitous Computing and
Multimedia Applications, pp. 66-75 (2011)

[51]. NSF: Cyber Physical Systems. NSF 14-542 (2014)
[52]. Kim, K.-D., Kumar, P.R.: Cyber–physical systems: A perspective at the centennial.

Proceedings of the IEEE, vol.100, pp.1287-1308 (2012)
[53]. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical systems

approach. Lee & Seshia (2011)
[54]. Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: Wireless

Communications and Signal Processing (WCSP), 2011 International Conference on, pp.
1-6 (2011)

[55]. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber–physical system security for the electric
power grid. Proceedings of the IEEE, vol.100, pp.210-224 (2012)

[56]. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural
approach to autonomic computing. In: null, pp. 2-9 (2004)

[57]. Bujorianu, M.C., Bujorianu, M.L., Barringer, H.: A unifying specification logic for
cyber-physical systems. In: Control and Automation, 2009. MED'09. 17th Mediterranean
Conference on, pp. 1166-1171 (2009)

[58]. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive Self-Adaptation under
Uncertainty: a Probabilistic Model Checking Approach. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 1-12 (2015)

[59]. Morandini, M., Penserini, L., Perini, A.: Automated mapping from goal models to self-
adaptive systems. In: Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, pp. 485-486 (2008)

[60]. Bures, T., Weyns, D., Berger, C., Biffl, S., Daun, M., Gabor, T., Garlan, D.,
Gerostathopoulos, I., Julien, C., Krikava, F.: Software Engineering for Smart Cyber-
Physical Systems--Towards a Research Agenda: Report on the First International
Workshop on Software Engineering for Smart CPS. ACM SIGSOFT Software
Engineering Notes, vol.40, pp.28-32 (2015)

[61]. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. Software
Engineering for Self-Adaptive Systems II, pp. 214-238. Springer (2013)

[62]. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: a survey. IEEE Systems Journal, vol.9, pp.350-365 (2014)

[63]. Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: An emerging
approach for modern systems. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol.42, pp.101-111 (2012)

[64]. Derler, P., Lee, E., Vincentelli, A.S.: Modeling cyber–physical systems. Proceedings of
the IEEE, vol.100, pp.13-28 (2012)

[65]. Black, D.C., Donovan, J., Bunton, B., Keist, A.: SystemC: From the ground up. Springer
Science & Business Media (2011)

[66]. Ptolemaeus, C.: System design, modeling, and simulation: using Ptolemy II. Ptolemy. org
Berkeley (2014)

[67]. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: the systems
modeling language. Morgan Kaufmann (2014)

[68]. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.
Software & Systems Modeling, vol.10, pp.313-336 (2011)

[69]. OMG: Profile for modeling quality of service and fault tolerance characteristics and
mechanisms. formal/2008-04-05 (2008)

Simula Research Laboratory, Technical Report 2016-08 June, 2016

47

[70]. Huebscher, M.C., McCann, J.A.: Simulation model for self-adaptive applications in
pervasive computing. In: Database and Expert Systems Applications, 2004. Proceedings.
15th International Workshop on, pp. 694-698 (2004)

[71]. Hänsel, J., Vogel, T., Giese, H.: A Testing Scheme for Self-Adaptive Software Systems
with Architectural Runtime Models. In: Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2015 IEEE International Conference on, pp. 134-139 (2015)

[72]. Fredericks, E.M., Cheng, B.H.: Automated generation of adaptive test plans for self-
adaptive systems. In: Appear in Proceedings of 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. SEAMS, pp. 157-168
(2015)

[73]. Lahami, M., Krichen, M., Jmaiel, M.: Safe and efficient runtime testing framework
applied in dynamic and distributed systems. Science of Computer Programming, vol.122,
pp.1-28 (2016)

Simula Research Laboratory, Technical Report 2016-08 June, 2016

48

Appendix A Descriptive Statistics of the Case Studies

We selected nine ShCPS case studies to evaluate the completeness and correctness of CMSU.

Table 18 and Table 19 show statistic of each concept’s occurrence, abstracted from the nine

case studies

Table 18 Descriptive Statistics of the Case Studies

Concept VCS TMS APRS RFID-SC DSRL ISR RAMA PeMS VSS

Self-Healing CPS 1 1 1 1 1 1 1 1 1
PhysicalProcess 2 1 1 1 2 1 1 1 1
Network 1 1 1 1 1 1 1 1 1
PhysicalUnit 7 5 5 4 8 2 2 4 2
Sensor 3 1 3 1 4 5 5 2 1
Controller 7 2 2 4 9 2 3 4 2
Actuator 2 0 5 0 4 1 1 0 0
Functional Behavior 4 1 1 1 4 1 10 7 3
Self-Healing Behavior 2 1 2 4 4 5 4 5 2
Goal 1 1 1 1 1 1 1 1 1
State 21 6 22 11 32 36 97 41 21
Probe 2 1 3 5 4 5 5 2 2
Effector 2 1 5 1 4 2 1 2 1
Measurement 2 1 5 5 7 4 4 5 2
Self-Diagnosis 2 1 5 4 4 5 4 5 2
Self-Recovery 4 3 3 4 4 5 9 5 3
Fault 2 1 3 4 4 5 4 5 2
Error 2 1 5 4 4 5 4 5 2
RecoveryPolicy 4 3 3 4 1 5 9 5 3
AdaptationAction 4 3 10 3 8 4 4 2 2
Uncertainty 3 1 4 4 5 6 10 6 1
Total 78 36 90 67 115 102 180 109 55

Table 19 Descriptive Statistics of Categories of Probe, RecoveryPolicy, Effector, and Uncertainty

Concept VCS TMS APRS RFID-
SC DSRL ISR RAMA PeMS VSS P

Probe
PerformanceProbe 2 0 0 3 0 0 0 2 2 31%
EventProbe 0 1 0 2 0 0 0 0 0 10%
PhysicalProcessProbe 0 0 3 0 4 5 5 0 0 59%

Recovery
Policy

ActionPolicy 4 3 2 4 0 5 9 5 3 94%
GoalPolicy 0 0 1 0 0 0 0 0 0 3%
UtilityFunctionPolicy 0 0 0 0 1 0 0 0 0 3%

Effector
ParameterEffector 2 0 0 0 0 0 0 0 0 11%
ArchitectureEffector 0 1 0 1 0 0 0 0 1 16%
ControlEffector 0 0 5 0 4 2 1 2 0 73%

Uncertainty

Level 1 0 0 0 2 0 0 0 0 0 5%
Level 2 3 1 3 2 5 6 8 6 1 87%
Level 3 0 0 1 0 0 0 2 0 0 8%
Level 4 0 0 0 0 0 0 0 0 0 0%
Level 5 0 0 0 0 0 0 0 0 0 0%

P = n / N, where in the number of occurrences of a subclass (e.g., PerformanceProbe is a subclass of Probe), and N
is the total number of occurrences of all sub-classes, e.g., PerformanceProbe, EventProbe, and
PhysicalProcessProbe are all subclasses of Probe.

Simula Research Laboratory, Technical Report 2016-08 June, 2016

49

Appendix B Exectensions to Moka Execution Semantics

To execute ETRMs, we defined or extended the execution semantics for a few stereotypes

from the MoSH profiles and UML metaclasses. They were implemented in the TM-Executor

framework as extensions to Moka. This appendix gives the implementations of these newly

defined execution semantics.

BroadcastSignalActionActivation
1. // Construct a signal using the values from argument pins.
2. // Send the signal to all objects that are associated with the
3. // object from the source pin.
4. doAction(){
5. BroadcastSignalAction action = (BroadcastSignalAction) (this.node);
6. Signal signal = action.getSignal();
7. // instantiate signal
8. SignalInstance signalInstance = new SignalInstance();
9. signalInstance.type = signal;
10. List<Property> attributes = signal.getOwnedAttributes();
11. List<InputPin> argumentPins = action.getArguments();
12. // set signal attributes
13. for (int i = 0; i < attributes.size(); i++) {
14. Property attribute = attributes.get(i);
15. InputPin argumentPin = argumentPins.get(i);
16. List<Value> values = this.takeTokens(argumentPin);
17. signalInstance.setFeatureValue(attribute, values, 0);
18. }
19. Object_ object = (Object_)this.takeTokens(action.source).getValue(0);
20. // broadcast signal
21. for(FeatureValue featureValue : object.featureValues){
22. Value value = featureValue.values.get(0);
23. if(value instanceof Object_){
24. ((Object_)value).send(signalInstance);
25. }
26. }
27. }

ChangeEventOccurrence
1. // Evaluate registered change events.
2. // If the change expression of a change event becomes true,
3. // put the event in the object’s event pool
4. evaluateChangeEvent(){
5. List<ChangeEvent> notTriggeredEvents = new ArrayList<ChangeEvent>();
6. for(ChangeEvent event : this.registeredChangeEvents){
7. // evaluate change expression of the change event
8. if(event.evaluate()){
9. // change expression becomes true,event occurs
10. this.eventPool.add(event);
11. }
12. else{
13. notTriggeredEvents.add(event);
14. }
15. }
16. this.registeredChangeEvents = notTriggeredEvents;
17. }

InputOperationExecution
1. // Take input parameter values as input.
2. // Invoke the test interface corresponding to the URI defined in the
3. // opaque behavior of the operation.
4. execute(){
5. OpaqueBehavior method = (OpaqueBehavior)this.methods.get(0);

Simula Research Laboratory, Technical Report 2016-08 June, 2016

50

6. String uri = method.getBodies().get(0);
7. InputInvocation invocation = new InputInvocation(uri);
8. List<InputPin> inputPins = opaqueAction.getInputs();
9. // set input
10. for(InputPin inputPin : inputPins){
11. String name = inputPin.getName();
12. List<Value> values = this.takeTokens(inputPin);
13. invocation.addInput(values);
14. }
15. // invoke test interface
16. if(invocation.invoke() != 0){
17. this.terminate();
18. }
19. }

OutputOperationExecution
1. // Invoke the test interface corresponding to the URI defined in the
2. // opaque behavior of the operation.
3. // Update attributes values using the outputs of the test interface.
4. execute(){
5. OpaqueBehavior method = (OpaqueBehavior)this.methods.get(0);
6. String uri = method.getBodies().get(0);
7. OutputInvocation invocation = new OutputInvocation(uri);
8. // invoke test interface
9. List<JSONObject> results = invocation.invoke();
10. if(results == null){
11. terminate();
12. }
13. // update attributes
14. update(((Object_)this.getExecutionContext()).featureValues, results);
15. }

StateActivation
1. // Determine whether a state is enterable,
2. // i.e., whether its state invariant is true.
3. boolean isEnterable(){
4. if(!this.getStateMachineExecution().getConfiguration().isActive()){
5. return false; //the state machine is not active, cannot enter
6. }
7. if(this.stateInvariant == null) {
8. return true;
9. }
10. while(true){
11. if(invariant.evaluate()){
12. break; // state invariant becomes true, can enter now
13. }
14. else{
15. if(timeout()){
16. return false; // timeout, stop waiting
17. }
18. ObjectActivation activation=getExecutionContext().objectActivation;
19. synchronized(activation){
20. try {
21. activation.wait(); // wait the state invariant becomes true
22. } catch (InterruptedException e) {
23. e.printStackTrace();
24. }
25. }
26. }
27. return true;
28. }

	

