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Abstract. We study a new representation of non-linear multivariate
equations for algebraic cryptanalysis. Using a combination of multiple
right hand side equations and binary decision diagrams, our new repre-
sentation allows a very efficient conjunction of a large number of separate
equations. We apply our new technique to the stream cipher Trivium
and variants of Trivium reduced in size. By merging all equations into
one single constraint, manageable in size and processing time, we get a
representation of the Trivium cipher as one single equation.

Keywords: multivariate equation system, BDD, algebraic cryptanaly-
sis, Trivium.

1 Introduction

In this paper we present a new way of representing multivariate equations over
GF (2) and their application in algebraic cryptanalysis of the stream cipher
Trivium.

In algebraic cryptanalysis one creates an equation system of the cipher being
analyzed and tries to solve it. The solution will reveal the key or some other
secret information. Solving the system representing a cipher in time faster than
exhaustive search will be a valid attack on the cipher.

There exist several ways to represent such a system, e.g., ANF, CNF [1] or
MRHS [2]. Along these representations different families of algorithms to solve
equation systems have been proposed, e.g., Gröbner Basis like algorithms [3],
XL [4] SAT-solving [1] and Gluing/Agreeing algorithms [5,2,6].

For the stream cipher Trivium, which has an especially simple structure, one
can easily construct an equation system describing its inner state constraints
using some known keystream bits. Attempts at solving this system have never-
theless been unsuccessful. While reduced versions of Trivium could be broken
[1], there is no attack better than brute-force known for the full version.

Previous methods describe the Trivium-equation system as a set of non-
linear constraints, which have to be true in conjunction. One can simplify those
equation systems by joining several constraints into a single new one. Unfor-
tunately the conjunction operation usually leads to exponentially big objects,
which quickly become too big for today’s computers.
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In this paper we present a new way of representing the constraints given by
a non-linear equation system. This representation allows all equations in the
Trivium-equation system to be merged into one single equation. The process
of merging equations has asymptotically exponential complexity, but using our
new technique we are nevertheless still able to complete it in practice, with an
actual complexity far lower than the O(280)-bound for Trivium.

The paper is organized as follows. In Section 2 we explain the Multiple Right
Hand Side equation representation and Binary Decision Diagrams as well as
some operations on both constructions. The cipher Trivium is also briefly de-
scribed. Section 3 introduces Compressed Right Hand Side equations and shows
how a solution to such equations can be found. In Section 4 we present our
experimental results and explain how to reduce the Trivium equation system
to a single Compressed Right Hand Side equation. Section 5 concludes the pa-
per. The appendix contains examples for several of the used constructions and
algorithms.

2 Preliminaries

2.1 Multiple Right Hand Side Equation Systems

The Multiple Right Hand Side (MRHS) representation [2,5] is an efficient way to
represent equations containing much inherent linearity. Equation systems com-
ing from cryptographic primitives are well suited for MRHS representation, since
cryptographic algorithms are usually built using both linear and non-linear com-
ponents.

A MRHS equation is a linear system with, as the name suggests, multiple
right hand sides. We write one MRHS equation as Ax = B, where A and B
are matrices with the same number of rows, and x is a vector of variables. Any
assignment of x such that Ax equals some column in B satisfies the equation.

We construct a system of MRHS equations from a cryptographic primitive
as follows. First we assign variable names to the bits of cipher states at several
places in the encryption process. The assignment of variables should be done
such that the bits of the input and output of any non-linear component can
be written as linear combinations of variables. Then we construct one MRHS
equation Ax = B for each non-linear component f . The rows of A are the input
and output linear combinations of f . Finally, we list all possible inputs to f ,
with their corresponding outputs. Each input/output pair becomes a column in
B. An example of this can be found in the appendix.

Following this procedure we can construct a system of MRHS equations

A1x = B1, . . . , Amx = Bm

for any cryptographic primitive that uses relatively small non-linear components.
For a given solution to the system, there is exactly one column in each Bi

corresponding to this solution. We say such a column is correct. If the system has
a unique solution, there is only one correct right hand side in each Bi. Solving
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MRHS equation systems means identifying columns in the Bi that cannot be
correct, and delete them.

Several techniques for solving MRHS systems exist. One of them is called
gluing and is used in this paper. Gluing means to merge two equations into one,
making sure that only solutions that satisfy both original equations are carried
over into the new (glued) equation.

Gluing two equations reduces the number of equations by one. The process of
gluing can be repeated, packing all initial equations into one MRHS equation.
The resulting equation is nothing more than a system of linear equations, and
can easily be solved. The solution we find will necessarily satisfy all the original
initial MRHS equations, so this strategy will solve the system in question.

The problem we face when applying the technique of gluing in practice, is that
the number of right hand sides in glued equations tends to increase exponentially.
Only when there are just a few equations remaining, with large A-matrices, will
the restrictions on potential solutions be so limiting that the number of possible
right hand sides rapidly decreases. As we shall see, however, the problem of
exponential growth in the number of right hand sides may be circumvented
using binary decision diagrams.

2.2 Binary Decision Diagrams

In this section we will introduce binary decision diagrams (BDDs). A BDD is
a directed acyclic graph used to represent a set of binary vectors or a Boolean
formula. They are mostly used in design and verification systems and were intro-
duced by S.B. Akers [7]. Later implementations and refinements led to a broad
interest in the computer science community as BDDs allow the manipulation of
large propositional formulae [8,9] in compressed form. Sometimes they are used
as an alternative to guess-and-verify solvers of propositional problems since they
enable one to keep track of all satisfying assignments at once and offer polyno-
mial time algorithms to count the number of solutions of a propositional problem
given in the form of a BDD.

The use of BBDs in cryptanalysis for LFSRs was proposed by Krause [10] and
successfully applied to Grain with NLFSRs by Stegemann [11].

Definition 1 (Binary Decision Diagram). A binary decision diagram is
a pair D = (G,L) where G = (V,E) is a directed acyclic graph, and L =
(l0, l1, . . . , lr−1, ε) is an ordered set of variables.

The vertices of G are V = {v0, v1, . . . , vs−1}∪{�,⊥} where all vi denote inner
vertices and contain exactly one root vertice with no incoming edges. Every inner
vertex v has exactly two outgoing edges, which we call the 1-edge and the 0-edge.
We call � and ⊥ terminal vertices, they have no outgoing edges. Every vertex v
is associated with a variable, denoted L(v), and for all edges (u, v) we have L(u)
appearing before L(v) in L. We always have L(�) = L(⊥) = ε.

We denote with G(v) the subgraph of G rooted at v, i.e., the graph consisting
of vertices and edges along all directed paths originating at v. For any pair of
vertices u,w it holds that if G(u) = G(w) then u = w.
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There exist other definitions of BDDs which do or do not include the order L
or the reducedness property of unequal subgraphs. The definition above is also
known as a reduced ordered BDD and is canonical [9]. We denote the number
of vertices in a binary decision diagram D by B(D) = |G|. The size of a BDD
depends heavily on the order L. Finding the optimal ordering to minimize B(D)
is an NP -hard problem [9].

In Definition 1 L induces a partial order of the vertices. We visualize a BDD
by drawing it from top to bottom, with vertices of the same order on the same
line, and we say that these vertices are at the same level. There is only one root
vertex and it must necessarily associated with the first variable in L. This node
associated with l0 is drawn on top, and the nodes � and ⊥ are drawn on the
bottom. An example of a BDD can be found in the appendix.

Definition 2 (Accepted Inputs of a BDD). In a BDD D every path from
the root vertex to the terminal vertex � is called an accepted input of D.

Since every inner node is associated with a variable, we can regard every edge
as a variable assignment. To find a variable assignment (or vector) which is
accepted by the BDD, we start with an empty vector of length |L|. Following a
path from the root vertex to � we visit at most one node at each level.

Whenever we go from v through a 1-edge, we say that L(v) is assigned to 1,
and L(v) = 0 whenever we go via a 0-edge. A path that ends up in � gives us
one accepted input in terms of variable assignments. Likewise, a path from the
root vertex to ⊥ gives us a rejected input to a specific BDD. By traversing all
paths to � we can build the set of all vectors which are accepted by the BDD.

If a path from the root to � jumps a level, i.e. the assignment to a variable
lk is undefined since the path does not contain a vertex v with L(v) = lk,
both assignments to this variable are accepted and we get two different variable
assignments. If an accepted input jumps r levels in total we get 2r different
satisfying assignments from this path. An example of accepted inputs of a BDD
can be found in the appendix.

AND-Operation on BDDs. As shown above, we can use BDDs to represent the
set of vectors that satisfy a Boolean equation. By the nature of our equation
systems, we need a way to merge solution sets from different equations. Below
is a simple recursive algorithm which does this. A more general version of the
algorithm can be found in [12].

Let D and D′ be two BDDs with v0 as the root of D and u0 the root of D′.
The conjunction of D and D′ into a new BDD E is done as follows.

First we need to define an ordering on the union of variables from D and D′.
Next, we set the root node of E at the top level, and label it (v0u0). Then we
perform Algorithm 1, which will fill in nodes and edges in E , from top to bottom.

The paths in the BDD that results after merging D and D′ using Algorithm 1
will correspond to vectors that satisfy both Boolean equations related to D
and D′. One feature of the conjunction of two BDDs is that all nodes in the new
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Algorithm 1. Merging BDDs D and D′ into E
while ∃ a node (vu) in E without outgoing edges do

Let ve be child of v in D through e-edge
Let ue be child of u in D′ through e-edge
if L(v) = L(u) then � v and u are at the same level

Insert (v0u0) at level min{L(v0), L(u0)} with 0-edge from (vu).
Insert (v1u1) at level min{L(v1), L(u1)} with 1-edge from (vu).

end if
if L(v) < L(u) then � v is higher up than u

Insert (v0u) at level min{L(v0), L(u)} with 0-edge from (vu).
Insert (v1u) at level min{L(v1), L(u)} with 1-edge from (vu).

end if
if L(v) > L(u) then � u is higher up than v

Insert (vu0) at level min{L(v), L(u0)} with 0-edge from (vu).
Insert (vu1) at level min{L(v), L(u1)} with 1-edge from (vu).

end if
end while

BDD can be labelled with (vu) where v and u come from the two orginal BDDs.
It is then not hard to see that the following upper bound holds

B(E) ≤ B(D)B(D′). (1)

We will use this fact later in the paper. For a more detailed description and
analysis of operations on BDDs one might consult [12,9,8]. An example of the
AND-operation on BDDs can be found in the appendix.

2.3 Trivium

Trivium [13] is a synchronous stream cipher and part of the ECRYPT Stream
Cipher Project portfolio for hardware stream ciphers. It consists of three con-
nected non-linear feedback shift registers (NLFSR) of lengths 93, 84 and 111.
These are all clocked once for each key stream bit produced.

Trivium has an inner state of 288 bits, which are initialized with 80 key bits, 80
bits of IV, and 128 constant bits. The cipher is clocked 1152 times before actual
keystream generation starts. The generation of keystream bits and updating the
registers is very simple. The pseudo-code in [13] is a good and compact description
of the whole process of generating keystream as shown in Algorithm 2.

Here zi is the key streambit, and the registers are filled with the bits s1, . . . , s288
before clocking.

For algebraic cryptanalysis purposes one can create four equations for every
clock; three defining the inner state change of the registers and one relating the
inner state to the key stream bit. Solving this equation system in time less than
trying all 280 keys is considered a valid attack on the cipher.

Small Scale Trivium. For our experiments we considered small scale versions of
Trivium. While reduced versions of a cipher sometimes dismiss some structural
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Algorithm 2. Trivium Pseudo-Code

for i = 1 to N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

zi ← t1 + t2 + t3 � Keystream bit

t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s93)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

component of the full scale cipher, e.g. Bivium [1], we try to keep our reduced
versions as close to Trivium as possible.

We scale with respect to the number of bits in the state. When we speak about
Trivium-N , we are speaking about a cipher with N bits of internal state, that
is, scaled down by a factor α = N/288. The lengths of the two first registers will
be 93α and 84α, rounded to the nearest integers. The length of the last register
will be what remains to get N as the total number of state bits (either �111α�
or �111α	).

In the full Trivium, the three top positons in each register are all used as tap
positions. This property is also carried over to all the scaled versions. For the
tap positions appearing elsewhere in the registers, we simply scale their indices
with α. For example, as 66 is used as a tap position in the full Trivium, for
Trivium-N the corresponding tap position will be 66α, rounded to the nearest
integer, with the following exception: Tap positions that are close to each other
in the full Trivium may get the same indices in some Trivium-N if α is small
enough. When this happens, we reduce the tap position of the smaller index by
one, thus ensuring that all tap positions in Trivium-N are distinct. The equation
systems representing Trivium-N and Trivium will then have similar structures.

3 Compressed Right Hand Side Equation Systems

With MRHS equations a clear separation between the linear and the non-linear
part of an equation was introduced. Overall it yielded a much smaller repre-
sentation for equations typical in algebraic cryptanalysis. Nevertheless, solving
MRHS equations has been limited to relatively small-scale examples because of
the problem with a big number of right hand sides.

It was shown in [7] that representing Boolean equations as BDDs is canonical
with respect to the ordering of variables. This way of recording sets of assign-
ments gives us the advantage that we may have a moderate number of nodes in
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a BDD, but very many paths from the root leading to �. Rather than writing
out all satisfying assignments, or a truth table for a Boolean equation, only a
BDD is retained in memory. However, when experimenting with equations from
certain ciphers, BDDs may also become too big to keep in computer memory
[11].

By combining the MRHS and BDD approaches, we get a new way to handle
large equation systems in algebraic cryptanalysis. We call this representation of
equations Compressed Right Hand Sides (CRHS) equations.

Definition 3 (CRHS). A compressed right hand side equation is written as
Ax = D, where A is a k × n-matrix with rows l0, . . . , lk−1 and D is a BDD
with variable ordering (from top to bottom) l0, . . . , lk−1. Any assignment to x
such that Ax is a vector corresponding to an accepted input in D, is a satisfying
assignment.

An easy example of a CRHS equation can be found in the appendix.

CRHS Gluing. If we are given two Boolean equations f1(X1) = 0, f2(X2) = 0
and we want to find vectors in variables X1 ∪X2 which satisfy both equations
simultanously we can do this by investigating their individual satisfying vectors
at common variables. If two vectors have the same values at common variable
indices we have found a vector which satisfies both equations. This operation is
part of the Gluing operation described in Section 2.1.

If we are given two CRHS equations [C1]x = D1, [C2]x = D2 and we want to
compute their common solutions we use a similar technique called CRHS Gluing.
The result of gluing both equations above is

[
C1

C2

]
x = D1 ∧ D2.

Any assignment of x such that

[
C1

C2

]
x is an accepted input in the conjunction

D1∧D2 gives a solution to both initial equations simultanously. Like the Gluing
operation on MRHS equations the right hand side BDD contains all possible
combinations of vectors from the original equations. The difference is that sat-
isfying vectors are no longer explicit in the computer memory, but are recorded
in a compressed format, namely as paths in the BDD.

It is easy to output all possible vectors from the paths in a BDD. There also
exists an easy polynomial-time (in the number of nodes) algorithm to count the
number of accepted inputs to a BDD. An example of CRHS-gluing can be found
in the appendix.

3.1 Dependencies among Linear Combinations

The left hand side in a CRHS equation is equal to the left hand side in a MRHS
equation, namely a set of linear combinations {l0, . . . , lk−1} in the variables of
the system. If we glue several CRHS equations together, it might happen that
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the resulting left hand side matrix in the glued equation does not have full
rank, that is, the set of linear combinations in the left hand side contains linear
dependencies.

The BDD on the right hand side treats the li as variables, and is oblivious
to the constraint that some of them should sum to zero or one. Therefore, an
accepted input in the BDD may or may not satisfy the linear dependencies
known to the left hand side. These paths should be taken out of the BDD in
order to not produce false solutions.

The straight-forward way to remove paths that do not satisfy some linear
dependency is to use the AND-operation. The number of nodes in the BDD
representing a linear equation g(l0, . . . , lk−1) is two times the number terms in
g. It is then easy to construct the BDD for any g, and combine it with the BDD
in the equation using the AND-operation. This will remove all false solutions.

4 Experimental Results

While exploring the possibilities of CRHS equations we used a software library
called Cudd [14]. The Cudd software library implements various types of BDDs
and algorithms/operations which can be performed on BDDs. The code base is
optimized and usable on a personal computer even for very big BDDs.

We used Cudd together with C++ code and developed a program capable of
reading different equation systems representing scaled Triviums and then gluing
the equations together.

It was crucial in the experiments to find out the size of the resulting CRHS
equation when gluing many of them together. This number is important to
determine in order to evaluate the feasability of our method. Theoretically the
size of the final CRHS equation C is upper bounded by

B(C) ≤ B(c0) · B(c1) · . . . · B(cr−1)

when gluing CRHS equations c0, c1, . . . , cr−1 into C. This value is exponential in
the number of nodes and might lead to infeasible sizes of BDDs, even for quite
small versions of Trivium. However, our experiments showed that the size of the
BDD for the glued CRHS equations was far smaller than the upper bound, and
stayed manageable. Thus we are indeed, in contrast to MRHS equation systems,
able to glue all equations in large CRHS equation systems together. For MRHS
equation systems, gluing all equations together will reveal the solutions to the
system. As we explain below, it is more complicated for CRHS equation systems,
due to false solutions in the right hand side BDD.

In the experiments reported below, we created CRHS equation systems rep-
resenting Trivium-N for various values of N . Then we glued all equations into
one single big CRHS equation. We examined different aspects of the equation
systems, which can tell us something about their solvability with our method.
For several small scale versions we measured the following properties:
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Value Description
n # of variables = # of initial CRHS equations
k # of different linear combinations of variables
B # vertices in BDD in final equation
lc # of linear constraints for solution
Sol. # paths in final BDD
Mem. Memory consumption in MB

Table 1. Experimental results

N n k B lc Sol. Mem.

35 85 173 218.86 88 285.67 87
40 94 191 220.57 97 293.77 182
45 106 215 221.68 109 2106.60 358
50 115 233 221.15 118 2115.60 258
55 127 257 221.55 130 2127.60 329
60 138 282 222.34 144 2140.35 560
65 148 299 222.66 151 2148.60 687
70 160 323 222.42 163 2160.49 588
75 171 349 222.78 178 2173.83 742

Initial equations have 4 nodes in the BDD, so we see from Table 1 that the
size of the BDD after gluing all equations together is far from the theoretical
upper bound. However, the growth of B is exponential just with a very small
constant. It is worth to notice that B is not strictly increasing with N . We also
see that the expected number of paths that satisfy all constraints given by lc is
between 2−4 and 2−2.

A point worth mentioning is that the exponential upper bound for gluing
CRHS equations together is tight, in general. There are equations that will
achieve the bound when glued together. Equation systems coming from ciphers
tend to be very sparse, in the sense that each initial equation contain few vari-
ables, and each variable only appears in a few equations. This is also the case for
Trivium. Two equations that do not share any variables have a linear size when
glued together. As shown in (5), the gluing in this case is basically putting one
BDD on top of the other. This may explain why it is particularly easy to glue
together CRHS equations coming from scaled versions of Trivium.

Full Trivium. So what about N = 288? For full Trivium our computer ran out
of memory before finishing gluing all equations together. On the other hand, we
were able to glue 404 of the 666 initial equations together, producing a CRHS
equation C1 of size 222.9. Then we glued the remaining initial equations into C2,
of size 224.8. By using the upper bound (1) for merging two BDDs, we have then
demonstrated that the single CRHS equation representing the full Trivium has a
size smaller than 247.7. The true size of the BDD for the full Trivium is probably
a lot smaller than 247.7, given that the upper bound we use has proved to be
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very loose for the systems we study. In any case, we know that the size of the
CRHS equation representing the full Trivium is quite far from the 280-bound for
a valid attack.

4.1 Solving Attempts

If a single CRHS equation gave a solution as readily as a MRHS equation, we
would be done, and have an algebraic attack on Trivium with complexity much
smaller than the O(280)-bound for exhaustive search. As noted above, we can not
deduce a solution straight from the CRHS equation, since we have eventually to
find a path in the BDD that satisfies a number of linear constraints. For scaled
Triviums, we have of course tried the straight-forward approach mentioned in
Section 3.1. Gluing BDDs representing linear constraints onto the BDD of the
cipher CRHS equation unfortunately makes the size grow too large very rapidly.

Another solving method we have tried works as follows. Let the set of linear
constraints to be satisfied be contained in a matrix LC. We set LC at the (single)
top node in the BDD, and will propagate the matrix through the whole BDD
according to Algorithm 3.

Algorithm 3. Propagating linear constraints through BDD with k levels.

for i = 0 to k do
for every node a at level i do

if a contains matrix then
Build matrix M of linear constraints present in all matrices in a
if li = 0 is consistent with M then

Send M |li=0 through 0-edge
end if
if li = 1 is consistent with M then

Send M |li=1 through 1-edge
end if

end if
end for

end for

What we are bascally doing is to fix the value of li in LC to 0 or 1 when passing
LC through a 0- or 1-edge out of a node at level i. If the linear constraints of
LC would become inconsistent by sending it across an edge, the matrix is not
propagated in that direction. Nodes receiving more than one LC-matrix will
only keep linear constraints present in all matrices.

A node containing a matrix could be interpreted as saying “Any path below
me must satisfy the linear constraints in my matrix.” We hope that the matrix
ending up in the �-node will contain some other linear constraints than the ones
we started with. If this is the case, we can repeat Algorithm 3 with increasingly
large LC.

In small examples (that can be checked by hand) the method of propagating
the linear constraints through the BDD works, but for Trivium-35 it did not,
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as there were no new linear constraints in the matrix arriving at the bottom.
What we did see for Trivium-35 however, was that there is a significant amount
of nodes at levels 113− 138 in the BDD that did not receive any matrices (due
to inconsistencies). At some levels almost half of the nodes were empty. We
learn from this that there is no path satisfying the linear constraints in LC that
can pass through these nodes, and so they can be deleted. Hence we can use
Algorithm 3 to prune the BDD, and reduce its size.

5 Conclusion and Further Work

In this paper we have introduced a new way of representing algebraic equations,
and shown its advantages compared to previously known representations. With
the CRHS representation it is possible to merge many more equations together,
than what is possible by other approaches. Building the CRHS equation system
for Trivium, we have shown that Trivium may be described by a single CRHS
equation with a BDD of size 247.7 nodes, at most.

We have not yet been able to solve big CRHS equation systems, due to the
many false solutions appearing in the right hand side BDD. The problem that
needs to be solved is: How do we efficiently find a path in a BDD that
satisfies a set of linear constraints? The method of matrix propagation helps
in reducing the size of the BDD, and may be an approach worth pursuing. This
is a topic for further research.

Finally, we should keep in mind that the operation of merging equations in
a system is a process with exponential complexity. This is also true for CRHS
equations, but for systems representing versions of Trivium we can do full merg-
ing anyway, because of the structure of the system. Solving non-linear equation
systems is NP-hard in general, so we cannot hope to have a solving algorithm
without any exponential step in it. Gluing all equations together is an exponen-
tial step, and full gluing normally solves the system. We can then speculate that
after gluing all initial equations into one, we have overcome the exponential step
and that the remaining problem for finding a solution can be solved efficiently.
It is not clear that the problem of finding a path in a BDD subject to a set
of linear constraints must have exponential complexity in the number of nodes.
Further investigation into this question is needed.

References

1. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/040 (2007),
http://www.ecrypt.eu.org/stream

2. Raddum, H., Semaev, I.: Solving Multiple Right Hand Sides linear equations. De-
signs, Codes and Cryptography 49(1), 147–160 (2008)

3. Faugère, J.: A new efficient algorithm for computing Gröbner bases (F4). Journal
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Appendix

Example 1 (MRHS). The basic non-linear component in Trivium is the bitwise
multiplication found in the function updating the registers. The new bit (x6)
coming into a register at some point is related to the old ones (x1, . . . , x5) by

x1 · x2 + x3 + x4 + x5 = x6.

The multiplication is the non-linear component, with inputs x1 and x2, and
a single linear combination as output, namely x3 + x4 + x5 + x6. There are
four different inputs to this function, hence there will be four columns in the
B-matrix. The corresponding MRHS equation is

⎡
⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 1

⎤
⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎣0 1 0 1
0 0 1 1
0 0 0 1

⎤
⎦ . (2)

Example 2 (BDD). Figure 1 shows an example BDD. The vertex v0 is the root.
Solid lines indicate 1-edges and dashed lines indicate 0-edges. In this example
the order is (l0, l1, l2) as indicated to the left.

http://vlsi.colorado.edu/~fabio/CUDD/
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v0

v1 v2

v3

⊥ �

l0

l1

l2

Fig. 1. Example BDD

Example 3 (Accepted Inputs). The accepted inputs for the BDD in Figure 1 are
the vectors (l0, l1, l2):

(0, 0, 0)

(0, 0, 1)

(0, 1, 1)

(1, 0, 1) .

One can see that (0, 0, 0) and (0, 0, 1) are on the same path from v0 to �. On
that path no node associated with l2 is visited, so l2 can be assigned both values.

A Boolean equation may be characterized by its set of satisfying assignments.
Building a BDD whose accepted inputs match the set of satisfying assignments,
gives us another representation of the same equation. For example, the Boolean
equation corresponding to the BDD in Figure 1 is l0l1 + l0l2 + l1l2 + l0 + l1 = 0.

Example 4 (AND operation). The top half of Fig. 2 shows the BDDs of two
Boolean functions. The left BDD shows l0+ l1+ l2 = 0, the right BDD represents
l0l1 + l2 = 0. Both BDDs share the same order of variables, and the resulting
BDD of their conjunction after reduction is shown below the two original BDDs.

Example 5 (CRHS). We write equation (2) from Example 1 as a CRHS equation
by converting the right hand side into a BDD.

Instead of writing out the left hand matrix of equation (2), we write down the
corresponding linear combinations, and give them the names l0, l1, l2.

⎡
⎣x1 = l0
x2 = l1
x3 + x4 + x5 + x6 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

v0

v1

v2 v3

(3)
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l0 v0 w0

l1 v1 v2 w1

l2 v3 v4 w2 w3

� ⊥ ⊥ �

v0 ∧ w0l0

l1

l2

v2 ∧ w3

v3 ∧ w3

�⊥

Fig. 2. AND-operation example

The right hand side of the CRHS equation is a compressed version of the right
hand side in a MRHS equation. Every accepted input in the graph of the CRHS
equation stands for one right hand side of the corresponding MRHS equation.
The example above contains the edge (v0, v3). This edge is jumping over a level,
i.e. every path through this edge does not contain any vertex at level l1. That
means that for a path containing the edge (v0, v3), the variable l1 can take
any value. The path 〈v0, v3,�〉 thus contains two vectors for (l0, l1, l2), namely
(0, 0, 0) and (0, 1, 0).

Example 6 (CRHS Gluing). The following two equations are similar to equations
in a Trivium equation system. In fact, the right hand sides of the following are
taken from a full scale Trivium equation system. The left hand matrices have
been shortened.
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⎡
⎣
x1 = l0
x2 = l1
x3 + x4 = l2

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

� ⊥

u0

u1

u2 u3

,

⎡
⎣
x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l3

l4

l5

� ⊥

v0

v1

v2 v3

(4)

The gluing of the equations above is

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 = l0
x2 = l1
x3 + x4 = l2
x4 = l3
x5 = l4
x6 + x7 = l5

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0

l1

l2

l3

l4

l5

�

w0

w1

w2 w3

w4

w5

w6 w7

, (5)

where ⊥-paths in this last graph are omitted for better readability. Note that
omitting these paths does not decrease the overall number of vertices. The re-
sulting equation has 8 nodes where the corredsponding MRHS equation would
have 16 right hand sides.
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