
D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 1 of 48

Testing Cyber-Physical Systems under Uncertainty:

Systematic, Extensible, and Configurable Model-

based and Search-based Testing Methodologies

D 3.1 - Report on Uncertainty Testing Framework V.1

Project Acronym U-TEST
Grant Agreement
Number

H2020-ICT-2014-1. 645463

Document Version 1.0 Date 2016-10-26 Deliverable No. 3.1

Contact Person Phu Hong Nguyen Organization Simula Research Laboratory

Phone +47 900 255 81 E-Mail phu@simula.no

mailto:phu@simula.no

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 2 of 48

Document Version History

Version No. Date Change Author(s)

0.1 2016-04-14 Initial document outline Phu Hong Nguyen

0.2 2016-07-06 Updated initial document outline Phu Hong Nguyen

0.3 2016-08-12 Sections 1-3 Phu Hong Nguyen

0.4 2016-08-30 Complete outline of D3.1 Phu Hong Nguyen

0.5 2016-10-04 Integrating contribution from SRL Man Zhang, Shaukat Ali, Tao
Yue, Phu Hong Nguyen

0.6 2016-10-04 Integrating contribution from TUW Daniel Moldovan, Hong-Linh
Truong, Phu Hong Nguyen

0.7 2016-10-06 Integrating contribution from FF Martin Schneider, Phu Hong
Nguyen

0.8 2016-10-10 Complete version for reviews Phu Hong Nguyen

0.9 2016-10-24 Some minor revisions All

1.0 2016-10-26 Complete version for Project
Coordinator

All

Contributors

Name Partner Part Affected Date

Man Zhang SRL Sections 4.4, 5.3, TR4, TR5 2016-10-04

Shaukat Ali SRL Sections 4.4, 5.3, TR4, TR5 2016-10-04

Tao Yue SRL Sections 4.4, 5.3, TR4, TR5 2016-10-04

Phu Hong Nguyen SRL All

Martin Schneider FF Sections 4.2, 5.1 2016-10-06

Daniel Moldovan TUW Sections 4.3, 5.2, TR1, TR2, TR3 2016-10-04

Hong-Linh Truong TUW Sections 4.3, 5.2, TR1, TR2, TR3 2016-10-04

Reviewers

Name Partner Part Affected Date

Robert Magnusson NMT All 2016-10-13

Karmele Intxausti IKL All 2016-10-14

Fabien Peureux EGM All 2016-10-19

Malin Hedman NMT All 2016-10-19

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 3 of 48

Table of Contents

Executive Summary ... 5

Abbreviations .. 6

1 Introduction .. 7

1.1 Objectives of the Deliverable .. 7

1.2 Relationship to other U-TEST Deliverables .. 7

1.3 Structure of the Deliverable .. 8

2 Background ... 9

2.1 Model-Based Testing ... 9

2.2 UML Testing Profile (UTP) ... 10

2.3 Search-Based Software Engineering .. 10

3 Related Work .. 10

4 Uncertainty Testing Framework ... 11

4.1 Overview of Uncertainty Testing Framework.. 11

4.2 Uncertainty Testing Framework At Application Level ... 12

4.2.1 Test Coverage Strategies .. 13

4.2.2 Test Data Generation ... 13

4.2.3 Uncertainty Model Evolution at Application Level ... 13

4.2.4 Test Case Generation from Evolved State Machines ... 19

4.3 Uncertainty Testing Framework At Infrastructure Level ... 21

4.3.1 Test Coverage Strategies .. 21

4.3.2 Test Data Generation ... 29

4.3.3 Uncertainty Model Evolution at Infrastructure Level... 29

4.4 Uncertainty Testing Framework at Integration Level .. 29

4.4.1 Uncertainty Model Evolution at Integration Level ... 31

4.4.2 Test Case Generation at Integration Level ... 31

4.4.3 Test Case Minimization at Integration Level .. 31

4.4.4 Test Case Execution at Integration Level .. 31

5 Summary and Conclusion ... 32

5.1 UTF at Application Level .. 32

5.2 UTF at Infrastructure Level .. 32

5.3 UTF at Integration Level .. 32

Appendix ... 34

Technical Report 1 - Integrating Transition Correctness Test Strategies in IBM RSA 9.5.............. 34

Technical Report 2 - Platform for Run-Time Testing of Cyber-Physical Systems 38

Technical Report 3 - Integrating Run-Time Testing Strategies with our Platform for Run-Time
Testing of Cyber-Physical Systems .. 41

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 4 of 48

Technical Report 4 - Interactively Evolving Test Ready Models with Uncertainty Developed for
Testing Cyber-Physical Systems .. 47

Technical Report 5 - Uncertainty-based Test Case Generation and Minimization for Cyber-
Physical Systems: A Multi-Objective Search-based Approach .. 47

Bibliography .. 47

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 5 of 48

Executive Summary

This deliverable presents the Uncertainty Testing Framework (UTF) V.1 with various test strategies
developed for uncertainty testing of Cyber-Physical Systems (CPS). The test strategies that we have
developed and integrated into the UTF can support for uncertainty testing at the three levels
(application, infrastructure, and integration) of CPS. More specifically, the UTF takes the test ready
models specified with the Uncertainty Modeling Framework (UMF) as input, and (automatically)
produces abstract test cases and executable test cases as output. Furthermore, this deliverable also
reports on our search-based approaches for searching unknown uncertainty behaviors based on
known uncertainty behaviors. The results of test case generation from known and unknown
uncertainty models for the pilot cases are presented and discussed. This deliverable shows that we
have successfully achieved Milestone 3 with the UTF V.1 for uncertainty testing at the three levels of
CPS. Our UTF V.1 has provided a concrete foundation for achieving Milestone 4, in which we
continue to improve the testing framework and apply it more extensively for the pilot cases.

Keywords: Cyber-Physical Systems, Model-Based Testing, Uncertainty Testing, Testing Framework

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 6 of 48

Abbreviations

AMQP Advanced Message Queuing Protocol

APML All Paths with Maximum Length

ASP All Simple Path

CPS Cyber-Physical Systems

Dx Deliverable number x

EGM Easy Global Market

FPX Future Position X

FF Fraunhofer FOKUS

IEC International Electro-technical Commission

IEEE Institute of Electrical and Electronics Engineers

IKL Ikerlan

ISO International Organization for Standardization

JSON JavaScript Object Notation

MARTE Modeling and Analysis of Real-Time and Embedded Systems

MBT Model-Based Testing

MQTT Message Queuing Telemetry Transport (protocol)

NMT Nordic Medtest

OCL Object Constraint Language

OMG Object Management Group

SBSE Search-Based Software Engineering

SRL Simula Research Laboratory

SUT System Under Test

TR Technical Report

TUW Technische Universität Wien

U-Taxonomy Uncertainty Taxonomy

ULMA ULMA Handling Systems

UMF Uncertainty Modeling Framework

UTF Uncertainty Testing Framework

UTP UML Testing Profile

WP Work Package

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 7 of 48

1 Introduction

This report is the first official deliverable of the work package “Developing Uncertainty Testing
Framework” (WP3). The Uncertainty Testing Framework (UTF) is one of the key outcomes of U-Test.
The main objectives of this deliverable are given in Section 1.1. We show in Section 1.2 the
relationship of this deliverable to the other deliverables of U-Test project. The structure of this
deliverable is presented in Section 1.3.

1.1 Objectives of the Deliverable

The goal of this deliverable is to present the UTF that we have developed. Our UTF supports for
testing uncertainties and uncertain behaviors of Cyber-Physical Systems (CPS) at three levels:
application, infrastructure, and integration. We developed and integrated different testing strategies
in the UTF. These testing strategies take the test ready models specified in the UMF as inputs for
uncertainty testing.

As reported in the previous deliverables, we developed the Uncertainty Taxonomy (U-Taxonomy) [2]
and Uncertainty Modeling Framework (UMF) [3]. We used U-Taxonomy and UMF for specifying and
modeling different uncertainties of CPS, at three levels, i.e., application, infrastructure, and
integration. In this deliverable, we show how our UTF (V.1) bases on the U-Taxonomy and the UMF.
We developed UTF on the state of the art of Model-Based Testing (MBT) techniques, and especially
customized for uncertainty testing at the three levels (application, infrastructure, and integration) of
CPS. Moreover, this deliverable reports the definition of search-based approaches for searching
unknown uncertainty behaviors. The searching is based on known uncertainty behaviors at the three
levels of CPS. Finally, the initial results of test case generation from known and unknown uncertainty
models for the pilot cases are presented and discussed.

This report provides the first version of our UTF. We are still making possible improvement on the
UTF. The further iteration and refinements of UTF will be available in the next U-Test reports.

1.2 Relationship to other U-TEST Deliverables

This deliverable presents the results of U-Test’s Work Package 3 that has relationships with other U-
Test deliverables and work packages. In particular, the specification of the uncertainty requirements
from two U-Test use cases (D1.1) [1], the U-Taxonomy (D1.2) [2], and the UMF (D2.1) [3] are the
prerequisites of the UTF. In addition to that, UTF is also built on the state of the art of MBT
techniques and standards, e.g., UML Testing Profile (UTP), ISO/IEC/IEEE 29119 Software Testing
Standards. With the test ready models specified with the UMF as inputs, UTF has implemented
different test strategies and MBT techniques for uncertainty testing at the three levels (application,
infrastructure, and integration) of CPS. In other words, the output of the UMF is the main input of
UTF. We modeled the test-ready models of the use cases by using UMF. These test-ready models are
used in the UTF for test case generation.

The results of UTF will be used for U-Test’s next active work packages such as Tool(s) Demonstrator
(D4.2), Report on test case executions (D5.1), Dissemination (D6.3), and Exploitation (D7.2).

Figure 1 shows again the overall workflow of the methodology in our U-Test project and more
specifically where the UTF is located in the workflow of U-Test project.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 8 of 48

Figure 1 – U-Test workflow

Input:

 All previous Deliverables

Extension

 N/A

Consumers of D3.1 (that are currently active)

 D4.2 (EGM, FF): Tool(s) Demonstrator

 D5.1 (FPX and ULMA): Report on test case executions

 D7.2 (For Exploitation): Value Opportunities

 D6.3: Dissemination

Consumers of D3.1 (not active yet)

 D5.2 Empirical Evaluation of the Cost-Effectiveness of Test Strategies

 D5.3 Validation With or Without U-Test

1.3 Structure of the Deliverable

The deliverable consists of this main document and its appendix (as technical reports). The main
content of this document gives the condensed presentation of the UTF. More details of some
specific key results of the UTF can be found in the technical reports. The technical reports provide
more detailed technical aspects of the UTF such as U-Evolve for evolving test ready models to
discover unknown uncertainty [30].

Figure 2 depicts the relationships and the structure of this deliverable. Section 1 gives an overview of
the deliverable.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 9 of 48

Figure 2 – The structure of this deliverable

The remainder of this deliverable is organized as follows. Section 2 provides briefly some background
concepts that are used in this deliverable, e.g., MBT, UTP. In Section 3, we discuss some related MBT
approaches to better position the contribution of our UTF in particular and U-Test work in general.
An overview of the UTF is given in Section 4.1. How our UTF, which supports uncertainty testing at
the application level, infrastructure level, and integration level of CPS, are provided in Sections 4.2,
1.1, and 4.4 correspondingly. Aiming at the comprehensiveness of this document, for presenting
technical details on some specific topics, we organized them into technical reports (TRs). TR1, TR2,
and TR3, which provide more technical details for Section 1.1, are included in the Appendix. TR4 and
TR5, which provide more technical details for Section 4.4, are in forms of two separate PDF files
attached with this document. We summarize the whole deliverable and give our conclusions in
Section 5.

2 Background

In this section, we briefly provide some background concepts and techniques that are used in the
deliverable. To be more specific, our UTF has been (partly) developed on these key concepts and
techniques. First, Model-Based Testing (MBT) is shortly introduced in Section 2.1. In Section 2.2, we
present the first standardized language for supporting MBT, which is called the UML Testing Profile
(UTP). UTP is leveraged in our UTF. Section 2.3 gives a short introduction to Search-based Software
Engineering methodology that is employed in UTF for discovering unknown uncertain behaviors.

2.1 Model-Based Testing

Testing is currently the most widely used technique in industry to gain some confidence in the
quality of a system, normally in a cost-efficient way. MBT is a variant of testing that mainly
encompasses the insight of using models, e.g. UML models that are extended for the purpose of
testing of real-time embedded systems such as the OMG UML Testing Profile [7] for testing, and
OMG MARTE [11] for Modeling and Analysis of Real-Time and Embedded Systems. More specifically,
MBT relies on the behavior models of a system under test (SUT) and/or its environment to
(automatically) derive test cases for the system [28]. Therefore, MBT allows the tests derivation

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 10 of 48

process to be structured, reproducible, programmable, and documented. The results of the 2014
MBT User Survey suggest that MBT has positive effects on efficiency and effectiveness [27]. The
study presented in [25] shows that MBT approach is more systematic, and more effective in
detecting issues compared to the manual testing approach in certain areas. Under U-Test project,
the UTF is developed based on the state of the art of MBT research.

2.2 UML Testing Profile (UTP)

The UML Testing Profile (UTP)1 was the first industry-driven, standardized language to support MBT.
Before that, proprietary attempts have been undertaken to use UML for doing MBT. The UTP [7]
augments UML with test-specific concepts that are lacking in UML itself for designing, visualizing,
specifying, analyzing, constructing, and documenting the artifacts commonly used in and required
for various testing approaches, especially model-based testing. MBT specifications expressed with
the UTP are independent of methodology, domain, tool, or system type. UTP was efficiently applied
to foster early testing and to establish test automation by generation of executable test scripts. UTP
has been applied to various industrial and research case studies to increase automation in test
execution and test design [21] in various domains such as telecommunications, enterprise services
choreographies, and e-Health [6, 7, 26]. Under U-Test project, the state of the art development of
UTP is leveraged into the UMF as well as UTF.

2.3 Search-Based Software Engineering

Search-based Software Engineering (SBSE) attempts to solve a variety of software engineering
problems by reformulating them as search problems [12]. Search algorithms are a set of generic
algorithms. These generic algorithms are used to find optimal or near optimal solutions to problems
that have large complex search spaces. SBSE in recent years has shown very promising results for
various problems including requirements, architecture, design, and testing [13]. We employed SBSE
in our context to evolve functional and known uncertainty models towards unknown uncertainty
models capturing unknown uncertain behaviors.

3 Related Work

Most recent advances on MBT research area have been summarized in [27], [28]. There are some
studies, e.g., [16, 17], [4], [10], and [24] that are more or less close to our work on the UTF in
particular, and U-Test in general. However, none of them has dealt with the uncertainty of CPS.

Uppaal /Uppaal TRON presented in [17], [16], and [14] are modeling and testing languages, and tools
that allow testing real-time behavior of embedded systems using timed automata that is essential
for CPS. These were already employed for conformance testing of CPS. In [16], the authors present a
tool for online testing of real-time systems called T-UPPAAL. The experiences in applying this tool
and technique on an industrial case study are reported in [17]. Uppaal approach has been extended
in [14] to support both offline and online testing of real-time systems. In other words, test cases can
be generated and executed online, or they can be generated offline and executed later. However,
Uppaal approach has not (directly) addressed the uncertainty of CPS.

Risk-based testing [4], [10] leverages risk assessments to support for all phases of the test process in
optimizing testing efforts and limiting risks for the SUT. A risk-based testing approach and its
application in a large project show how this approach can lead to more efficient testing with
improved quality by focusing more efforts on critical functions [4]. Different risk-based testing
approaches have been analyzed in [10] based on a taxonomy of risk-based testing. The taxonomy
provides a framework to categorize, assess, and compare risk-based testing approaches. Risk-based

1 http://www.omg.org/spec/UTP/

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 11 of 48

testing approaches are relevant for uncertainty testing because risk is an uncertainty state from
where the outcome has undesired effect, which may result in unfortunate and negative impact on
various concerns such as cost.

Fuzzing or fuzz testing [24], [15] is a testing methodology that stresses the interface of the SUT with
invalid input data. If the implementation of the SUT processes invalid input data instead of rejecting
them, these weaknesses might lead to intentionally or unintentionally crash the SUT or to modify its
behavior in an unintended way. Therefore, invalid input data could be one of the main sources of
the uncertainty of CPS. In [24], the authors present a new approach in fuzzing, i.e., behavioral
fuzzing. This approach allows generating test cases by employing model-based behavioral fuzzing.
The authors of [15] propose to integrate fuzzing into conformance testing and show how the
robustness testing procedure for telecommunication products can be improved in that way.

4 Uncertainty Testing Framework

Section 4.1 gives an overview of the UTF. Next, Section 4.2 presents the details of UTF for supporting
uncertainty testing at the application level of CPS. Similarly, Sections 1.1 and 4.4 present the details
of UTF for supporting uncertainty testing at the infrastructure and integration levels of CPS
correspondingly.

4.1 Overview of Uncertainty Testing Framework

Figure 3 shows a high-level overview of the UTF with its input and output. The main input of UTF is
the test-ready models that we have created by using the UMF.

Figure 3. An overview of Uncertainty Testing Framework

Our UTF is composed of the model-based test generation strategies that take as input the test-ready
models above. These test-ready models cover the use cases for generating test for known
uncertainties at the application level, infrastructure level, and integration level of CPS. On the other
hand, UTF also integrates the uncertainty model evolution strategies aiming at discovering unknown
uncertainties. The uncertainty measurement process can drive the test generation strategies with
the support from the Uncertainty Measurement Calculator. We have demonstrated this approach at
the integration level presented in Section 4.4. Because executing the large number of generated
abstract test cases is impractical, we proposed a search-based approach to minimize the number of
generated executable test cases while maximizing the coverage of transition. Last but not least, we
developed a prototype as a proof-of-concept, in which the generated test cases can be executed.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 12 of 48

The details of UTF for supporting uncertainty testing of CPS at three different levels are presented in
the following sections.

4.2 Uncertainty Testing Framework At Application Level

Uncertainties at the application level comprise all the stimuli from the environment of the
application level of the SUT. The project’s pilots provide examples and described them in uncertainty
use cases in D1.1, characterized using the uncertainty taxonomy described in D1.2 and semi-formally
described in UML models according to the UMF developed in WP2. The purpose of uncertainty
testing is (i) discovering known uncertain behaviors resulting from uncertainties that may be known
at design time, and (ii) discovering unknown uncertain behaviors that may occur in the presence of
yet unknown uncertainties.

Figure 4: Relationship between Uncertainty Testing Framework (UTF) and other U-Test artifacts.

Uncertainties are representing stimuli to the system under test (SUT) that may cause uncertain
behaviors located in the output space of the SUT. We distinguish between uncertainties known at
design time (‘known uncertainties’) causing possibly uncertain behavior and unknown uncertainties
that may cause unknown uncertain behavior. The Uncertainty Taxonomy allows describing their
relevant characteristics whilst the UMF provides a means to describe them in terms of UML models.
The UTF at the application level (UTF-AL) employs these models to search for known and unknown
certainties that reveal uncertain behavior of the SUT. U-Test’s pilots from the healthcare and the
logistics domain provide Uncertainty Use Cases that serves the validation of the approach developed
in U-Test.

Since we do not know these unknown uncertainties, we employ search-based techniques to walk
efficiently through the input space. State machines are the individuals constituting the population of
each generation. State machines are evolved through mutation and crossover. We employ a set of
mutators specific to UML state machines, where each mutator becomes a mutation when applied to
a specific element of a state machine. Furthermore, we employ crossover to recombine and swap
mutations between state machines. Aiming at measuring whether we are approaching an
uncertainty that may expose known or unknown uncertain behavior or if we have already discovered
one, we exploit different outputs of the SUT as inputs to a fitness function for a genetic algorithm
tailored to uncertainty testing. The genetic algorithm is part of the UTF for the Application Level
(UTF-AL). The different parts of the genetic algorithm we employ to evolve state machines are
explained in more detail in Section 4.2.3.

The uncertainty use cases modeled using UMF provide the starting point for UTF-AL. State machines
describe all the valid interactions of the environment with the SUT from the viewpoint of the SUT.
More details can be found in Deliverable 2.2 (D2.2). Transitions capture all this information in terms
of guards, triggers, and effects specifying under which circumstances some effect behavior may
occur. Additionally, the UMF enables to describe characteristics of known uncertainties. These

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 13 of 48

modeled uncertainties form the basis for evolving state machines. Thus, we exploit the coupling
effect [8], [23]. The goal is to gain state machines of which at least one path reveals known or
unknown uncertain behavior.

4.2.1 Test Coverage Strategies

We use the following coverage strategies to measure and guide the progress of evolving state
machines.

Strategy Measurand2 Description & Specification

Transition
Coverage

State
Machine

Traditional transition coverage.

#𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑
#𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑎𝑙𝑙

Uncertainty
Coverage

UMF Model How many modeled uncertainties are covered by evolved state
machines and corresponding test cases of an evolved UMF model.

#𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑
#𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑖𝑒𝑠𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑

Mutation
Coverage

State
Machine

This is the ratio of mutations covered by all generated test cases of
a single evolved state machine and all the mutations applied to the
state machine.

#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑
#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑎𝑙𝑙

Known
Uncertainty
Space
Coverage

All
generations
of evolved
state
machines
related to a
single
uncertainty

The Uncertainty Space in the context of a known uncertainty is
spanned by all the possible inputs and all the mutations of the
corresponding state machine.

For this milestone, possible inputs are operations as trigger of the
transitions and removing a trigger and an effect (the factor 2 stems
from this).

#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

#𝑠𝑡𝑎𝑡𝑒𝑠×(#𝑠𝑡𝑎𝑡𝑒𝑠−1)×#𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠×2

4.2.2 Test Data Generation

With respect to UTF-AL v1, we rely on test data generation facilities provided by Microsoft’s Spec
Explorer [19]. Additionally, we can include test data from earlier test runs. Such information can be
provided together with the UMF model that serves as initial input for the UTF-AL.

4.2.3 Uncertainty Model Evolution at Application Level

In this section, we describe how we would evolve state machines with the help of modeled
uncertainties aiming at two goals: finding instances of known uncertainties including their
circumstances of them and the related uncertain behaviors the SUT reveals, and finding unknown
uncertainties through evolving state machines with information provided by modeled uncertainties,
use cases in terms of state machines and the SUT’s interfaces.

2 An entity quantified by a measurement, that is, the element we would like to measure through the test
coverage strategy.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 14 of 48

4.2.3.1 Overview

Figure 5 gives an overview of the process of state machine evolvement following the scheme of a
genetic algorithm.

Figure 5: Overview of Uncertainty Testing for the Application Level

Step Input

contents

Actions

uses

Output

added contents

1.

M
U

TA
TI

O
N

UMF-Model (WP2)

- functional state
machines

- modeled uncertainties
- use case-specific fitness

factors
- execution invariants

Mutation

- uncertainties
- state machines

See Section 4.2.3.3.

Evolved UMF-Model

- mutated state
machines

2. Evolved UMF-Model

- mutated state machines

Test Case Generation

employs Microsoft Spec
Explorer

- mutated state machines
- execution invariants

See Section 4.2.4.

UTF Test Model

- test cases

3. UTF Test Model

- test cases

Test Case Execution
(WP4/WP5)

UTF Test Model

- mutated state

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 15 of 48

Step Input

contents

Actions

uses

Output

added contents

includes test code generation

- test cases
- test adapter (EGM)

machines
- fitness function
- generated test

cases
- traces

4. UTF Test Model

- mutated state machines
- fitness function
- generated test cases
- traces

Fitness Calculation

- mutated state machines
- traces
- use case-specific fitness

factors
- fitness factors

See Section 4.2.3.5.

Evolved UMF Model

- mutated state
machines

- fitness values

5. Evolved UMF Model

- mutated state machines
- fitness values

Selection

tournament selection

- mutated state machines
- fitness values

See Section 4.2.3.2.

Evolved UMF Model

- selected,
mutated state
machines

- fitness values

6.

C
R

O
SS

O
V

ER

Evolved UMF Model

- selected, mutated state
machines

- fitness values

Crossover

- selected, mutated state
machines

- fitness values

See Section 4.2.3.4.

UMF Test Model

- crossbred state
machines

7. Evolved UMF-Model

mutated state machines

Test Case Generation

employs Microsoft Spec
Explorer

- mutated state machines
- execution invariants

See Section 4.2.4.

UTF Test Model

- test cases

8. UTF Test Model

test cases

Test Case Execution
(WP4/WP5)

includes test code generation

- test cases
- SUT-specific test adapter

UTF Test Model

- mutated state
machines

- fitness function
- generated test

cases
- traces

9. UTF Test Model

- mutated state machines
- fitness function
- generated test cases

Fitness Calculation

- mutated state machines
- traces
- use case-specific fitness

Evolved UMF Model

- mutated state
machines

- fitness values

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 16 of 48

Step Input

contents

Actions

uses

Output

added contents

traces factors
- fitness factors

See Section 4.2.3.5.

10. Evolved UMF Model

- mutated state machines
- fitness values

Selection

- mutated state machines
- fitness values

See Section 4.2.3.2.

Evolved UMF Model

- selected,
mutated state
machines

- fitness values

4.2.3.1.1 Individual

In genetic algorithms, an individual is a candidate solution. For the described approach, an individual
could be the whole state machine, a path through the state machine, or a set of one or more
mutations. In a first step, we consider whole state machines as individuals aiming at eventually
having a state machine that is able to generate as many test cases that trigger as many uncertain
behaviors as possible.

4.2.3.1.2 Fitness

The fitness of an individual is the quality of the candidate solution in terms of the optimization
goal(s). Fitness calculation is essential to reveal successfully and efficiently uncertain behaviors. To
do so, we distinguish the following types of fitness constituents:

 Use case-specific factors: e.g. difference between measured and actual positions for the
GeoSports case study.

 System-specific factors: these are system-specific goals that are not necessarily related to a
certain use case, e.g. response time or revealing unknown behavior.

Section 4.2.3.5 briefly describes how fitness values are calculated and mapped.

4.2.3.1.3 Building the first generation

Building the first generation of individuals aims at covering the known uncertainties modeled using
the UMF developed in WP2. Further generations use information beyond this to find also unknown
uncertainties.

This approach has two advantages: on one hand, we exploit the coupling effect [8], [23] stating that
test cases that detects simple faults may help finding more complex faults . On the other hand, we
use the search-based testing approach developed for finding unknown uncertainties in order to
cover known uncertainties as well. Thus, it is only required to model use cases with intended
interaction of the environment with the SUT and the corresponding known uncertainties. The
complexity of creating models for uncertainty testing is also reduced. Additionally, a single approach
for uncertainty testing is required and thus, reduces the complexity of the UTF-AL as well. We
describe how we perform mutations, including those mutations based on modeled uncertainties, in
a later section.

4.2.3.2 Selection

We use tournament selection for selecting state machines for the next generation and for crossover
to select paths (see Section 4.2.3.4). This allows us to escape local optima.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 17 of 48

4.2.3.3 Mutation

Mutation is performed on one hand using information from modeled uncertainties, and on the other
hand independent from that by using information of the system’s application level interfaces
described by the UMF model. We apply mutations to transitions based on this information and
select paths for further mutation based on their fitness values after the first generation has been
created and corresponding test cases have been generated and executed. Several mutations of the
same element are allowed. If such a combination does not respect execution invariants (see Section
4.2.4), no test cases will be generated, the fitness of the resulting state machine will be 0, and thus,
eventually eliminated by the genetic algorithm.

For the first generations, we apply mutations solely based on modeled uncertainties. Thus, we are
covering known uncertainties and the modeled use cases in the earlier generations of evolved state
machines. As coverage of the known uncertainty space (see Section 4.2.1) increases, mutations
based on system’s interfaces instead of using information from modeled uncertainties are
introduced that may represent unknown uncertainties and thus, reveal unknown uncertain
behaviors.

Based on the literature [9] [18], we use the mutation operators as described in Table 1 and adapted
them to UML state machines.

Mutation Operator Description Constraints/Comments

Add Transition Adds a new transition by
duplicating an existing one and
setting a new source and
target state.

Remove Transition Completely removes the
transition.

Transitions having an initial
state as source or a final node
as target must not be removed.

Remove Transition (with State
Merge)

Completely remove the
transition. Merge the source
and target state if the removed
transition is the only one
connecting them.

Transitions having an initial
state as source or a final node
as target must not be removed.

Reverse Transition Swap source and target of the
transition.

Transitions having an initial
state as source or a final node
as target must not be reversed.

Change Source/Target of
Transition

Move the source/target of the
transition to any other state.

In case the target state of the
transition is changed, the
target must not be the initial
state.

In case the source state of the
transition is changed, the
source must not be the final
node.

Remove Trigger of Transition Transforms the transition to a
completion transition.

Change Trigger of Transition Change Operation to another
one of the same interface.

Table 1 – Mutation Operators for UML State Machines (UTF-AL)

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 18 of 48

If we perform mutation based on modeled uncertainties, we select any transition with a CallEvent as
a trigger that refers to an operation that is subject of an Application Level Uncertainty with a direct
impact, impacted element or that refers to an operation of a Component that is subject of an
Application Level Uncertainty with a direct impact, impacted element.

4.2.3.4 Crossover

Test cases and the mutations they cover are the atomic piece of information to perform uncertainty
testing at the application level. Therefore, we solely consider mutations along paths to perform
crossover of state machines. We use the following crossover methods:

 Combine all mutations of both parents. This yields one new child UML state machine.

 Combine the mutations of the fittest path(s): This yields 𝑛2 new state machines where 𝑛 is
the number of fittest paths considered for crossover.

4.2.3.5 Fitness

4.2.3.5.1 Fitness Calculation

As briefly mentioned in Section 4.2.3.1.2, we consider two types of fitness factors: use case-specific
factors and system-based factors.

Figure 6. Model-based Means to Specify Fitness Factors

To specify use-case specific factors, UMF (see D2.2) provides stereotypes to identify elements that
allow obtaining values from test runs («FitnessFactorProviders») that may be compared with an
expected value by the corresponding counterpart («ExplicitProvider»). These can be used for
instance, to measure the distance between a measured position and the actual position. For
measured values without any comparative value, «ImplicitProviders» can refer to them. An optional
threshold can be specified together with a ‘metricGoal’ that specifies whether the actual, measured
value should be minimized, maximized or approach the threshold. In case of «ExplicitProviders», the
difference between the actual and the expected value can be minimized or maximized. System-
specific factors can be identified by the same means. Furthermore, we use generic measures such as
response time, CPU load, and memory consumption if we can obtain these values from the SUT.

4.2.3.5.2 Fitness Mapping

Fitness values are calculated based on test logs obtained from test case executions. The mapping of
calculated fitness values is done in two steps:

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 19 of 48

1. In the first step, we identify the path through the mutated state machine that represents the
test case. We set the fitness value of the path to the fitness value of the test case.

2. In the second step, we aggregate the fitness values of all paths to the state machine.

4.2.4 Test Case Generation from Evolved State Machines

Test cases are generated from the evolved state machines by Microsoft’s Spec Explorer [19]. To
ensure that generated test cases are actually executable test cases, we maintain so-called execution
invariants during test case generation. These execution invariants describe functional dependencies
that have to be maintained under all circumstances, e.g., that a device has to be switched on before
it can be configured. These invariants are expressed as behavioral descriptions with a stereotype
«ExecutionInvariant» (see Figure 7). We employ UML Interactions to describe these dependencies.
During test case generation, they are transformed such that they are maintained for all generated
test cases.

Figure 7: Metamodel for ExecutionInvariants

We perform uncertainty testing and state machines at the application level. Describing valid
interactions of the environment with the SUT, generating arbitrary paths through the evolved state
machines may result in test cases that cover only original, non-mutated elements. In particularly,
this may happen in the first generations of evolved state machines that contain only a few
mutations. Therefore, we have to ensure that each path cover at least one mutation.

We use a profile to annotate which mutations are applied to state machines. This allow to identify
the elements of an evolved state machine that have to be covered by all test cases and to configure
Spec Explorer’s test case generation engine accordingly.

Figure 8 depicts the profile for state machine mutation. A «UTestDirective» captures all the
mutations in the form of «StateMachineMutation» for one individual.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 20 of 48

Figure 8 – Stereotypes for State Machine Mutations

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 21 of 48

4.3 Uncertainty Testing Framework At Infrastructure Level

In this section we describe our strategies for testing CPSs at the infrastructure level.

4.3.1 Test Coverage Strategies

Testing the infrastructure of CPSs brings its particular challenges due to the run-time uncertainty
associated to the infrastructure. Infrastructure failures can appear due to incorrect infrastructure
operation, such as unexpected infrastructure behavioral transitions. Failures can also appear at run-
time in correctly operating infrastructures due to various causes, as captured in the infrastructure
uncertainty taxonomy in Deliverable D1.2, Section 4.2 “Infrastructure level uncertainties
properties classes”. Thus, to correctly test and identify uncertainties in the infrastructure of CPSs,
we have focused on:

 Testing the correctness of the infrastructure state transitions according to the CPS state
transition belief model captured as state diagrams in D2.2.

 Testing at run-time if specific uncertainty-affected properties of CPSs still hold, indicating if
an uncertain CPS behavior has occurred or not.

Figure 9. Uncertainty Testing at Infrastructure Level Overview

Figure 9 show an overview of uncertainty testing at the infrastructure level of CPS. For testing
uncertainty at infrastructure level we use as input UML Class Diagrams and State Diagrams described
using the U-Test Uncertainty Modeling Framework. State Diagrams are used by our State Machine
Transition Correctness Testing Strategies (Section 4.3.1.1). The transition correctness strategies
generate abstract test plans, which after being implemented by a SUT expert, are executed by
CertifyIT. In turn, the UML Class Diagrams describing the SUT components and uncertainty profile
are used by our Run-Time Testing Strategies (Section 4.3.1.2) to generate run-time tests
descriptions, which are used to implement and execute tests with TUW Platform for Run-Time
Testing of Cyber-Physical Systems (Appendix, Technical Report 2).

4.3.1.1 State Machine Transition Correctness Testing Strategies

This first category of testing strategies focuses on testing if the SUT behaves as expected according
to the expected behavior described as UML state diagrams. State diagrams describe the belief we
have about what are the possible states of each system component, and the possible transitions
between those states.

To test state transition correctness we define two test strategies for generating the test plan to be
executed. The strategies consider the information in the state diagrams as state transition graphs,
and focus on testing:

a) All state transitions paths starting with an initial state and ending in a final state.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 22 of 48

b) Only state transitions paths, which pass at least one state that has at least one Infrastructure
Uncertainty Stereotype (as defined in Uncertainty Core Profile in Deliverable D2.1, Section
4.2.1.3 Infrastructure Level) applied between an initial state and a final state.

We use the steps captured in Figure 10 to generate abstract test plans for testing correctness of CPS
state transitions. We start from defining the UML state diagrams of CPS infrastructure use cases
(Step 1-2). Then, we analyze each defined state machine, and determine the transition paths to be
captured in the generated abstract test plan (Step 3-4). The particular mechanism for determining
the transition paths to test is presented further in this section (Listing 1, and Listing 2). Further, for
each test path, we generate an abstract test plan (Steps 5-6). In general, an abstract test plan will
contain methods to: (i) assert that the CPS is in a particular state, (ii) invoke transition triggers
needed to move the system to another state, and (iii) ensure the guard conditions on the inspected
transition is true, so that we can follow in testing particular paths, in case transitions are determined
by particular conditions.

Figure 10: Generating abstract transition correctness test plans flow

To generate abstract test plans testing the correctness of state transitions starting from state
diagrams we first process each state diagram and determine the sequence of states and transitions,
which must be tested. We consider each state diagram as describing a state graph, in which states
represent graph vertices and state transitions the graph edges.

To traverse the state graph we employ a recursive algorithm, which starts from the initial state of
the CPS (Listing 1) and on each encountered transition it branches and inspects each next state. The
main logic for generating testing paths containing the states and transitions to test in a single test
plan is captured in Listing 2. The used algorithm ensures that we consider a transition only once for a
given test-plan. This ensures we do not enter infinite cycles. However, a test plan might contain the
same state multiple times, if the state can be reached through a transition originating in a different
state each time. Lines 10-12 of the algorithm depicted in Listing 2 check if the transition currently
inspected has been encountered before in the particular test path under construction, and if yes, it
does not consider the transition again.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 23 of 48

Listing 1: Navigating state diagram and finding test paths algorithm - Part 1

In the explore_state function depicted in Listing 2 we start from a given state, the current test path
we are constructing, and the list of test paths constructed by now. If the state, which we are
processing, is a Final State, then we add the test path under construction to the generated test paths
list. Otherwise, we iterate through each state transition possible from the current state (Line 7), and
clone the current test path (Line 17). Cloning the path is required to ensure that for each possible
transition we generate a different test plan. We add to the test plan generated so far the transition
we are investigating and its end state to the test plan generated so far (Lines 18-19). We recursively
call the explore_state function with the next state as parameter. After all recursive calls terminate
we have a list of states and transitions (test_paths), which we should consider testing. If an
explored state path does not lead to a Final State and has no other transitions to explore, then a
notification is shown to the user (Lines 5-6).

Listing 2: Navigating state diagram and finding test paths algorithm - Part 2

ALGORITHM generate_test_paths_for_state_diagram

INPUT: states_transition_graph

OUTPUT: test_paths

1 -- start by analyzing the CPS initial state

2 SET initial_state TO states_transition_graph.get_initialState

3

4 SET test_path TO [initial_state]

5 CALL explore_state(initial_state, test_path, test_paths)

6

7 RETURN test_paths

ALGORITHM explore_state

INPUT: state, test_path, test_paths

1 -- only add a test path if it can reach a final state

2 IF state IS FinalState THEN

3 CALL test_paths.add_path(test_path)

4 RETURN

5 ELSE IF state.get_transitions IS EMPTY DO

6 CALL notify_user(state)

7 END IF

8

9 FOR EACH transition IN state.get_transitions DO

10 -- do not take the same transition twice in the same path to avoid cycles

11 -- states can be taken more times

12 IF transition IN test_path THEN

13 CONTINUE

14 END IF

15

16 -- for each new transition we have a potentially new testing path

17 SET new_path TO test_path.clone()

18 SET next_state TO transition.get_end_state

19 CALL new_path.add_entry([transition,next_state])

20

21 -- explore the next state indicated by the current transition

22 CALL explore_state(next_state, new_path, test_paths)

23 END FOR

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 24 of 48

We leave the deciding on how and if we should test a particular test path to individual testing
strategies. Currently we have implemented two strategies for testing state transition correctness,
captured in Table 2. Each strategy takes as input a list of test paths and generates for each path an
abstract test plan. Each abstract test plan contains a set of abstract methods to be implemented for
particular CPSs. The methods belong to three categories: (i) methods returning void, (ii) methods
invocating particular CPS APIs, and (iii) methods asserting the CPS is in a certain state. The first
category is used for creating methods, which initialize the CPS to its Initial State, and clean up after
the test has terminated. Methods invocating particular CPS APIs are used to activate the CPS state
transition triggers, and ensure for each tested transition that its guard conditions are fulfilled.

Based on the generated test paths, we now generate abstract test plans for each path, using one of
our test plan generation strategies. Each strategy performs the following steps:

 Starts from UML state diagrams capturing the CPS states and transitions between states

 Processes the “Triggers” and “Guards” placed on the state transitions

 Processes the Uncertainty Stereotypes associated to CPS states

 Produces an “abstract” test plan, which must be implemented and made concrete before
executing them on particular CPS.

Table 2: Supported test plan generation strategies for testing state transition correctness

Test Plan Generation Strategies Description

1 Test correctness of state transitions in
all test paths

Tests all state transition paths starting with an initial
state and ending in a final state.

2 Test correctness of state transitions in
uncertainty affected test paths.

Generates test plans only for test paths, which have at
least one state with at least one Infrastructure
Uncertainty Stereotype, as defined in Uncertainty
Core Profile in Deliverable D2.1, Section 4.2.1.3
Infrastructure Level.

4.3.1.1.1 Strategy for Testing Correctness of State Transitions in All Test Paths

Listing 3 depicts the algorithm of test transition correctness strategy 1. We iterate through each test
path entry containing a state and the transition to the next path state (Lines 3-5). For each state we
encounter we add an additional set of abstract methods to the test plan generated. Depending on
the type of state we encounter, we generate different methods in the abstract test plan. If the state
is the Initial State, we generate and add to the test plan an abstract method (Lines 10-12), which
must be implemented to initialize the CPS under test. Similar, when we encounter a Final State we
generate a method for cleaning up after the test execution, and add the generated test plan to a list
of test plans returned by our approach. If navigating the state diagram we encounter a state
different than Initial and Final state, then we first generate a method to be used in asserting that the
system has reached the expected state (Lines 21-22). Next, we look at the transition captured in the
investigated test path, taking the system from this state to another. If the transition has guard
conditions, they indicate the transition takes place only IF certain conditions are met. Thus, we add
to the generated test plan, for each guard condition, an abstract method to be implemented to force
the system (if necessary) to fulfill the transition conditions, to ensure the system follows the
transition path we are investigating and testing (Lines 26-36). Transitions can also have associated
triggers, i.e., actions that must be taken on the system for the transition to take place. Thus, for each
transition trigger, we add to the test plan an abstract method used to invoke the trigger and force
the transition to take place (Lines 38-40).

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 25 of 48

ALGORITHM generate_transition_correctness_tests

INPUT: test_paths

OUTPUT: test_plans

1 FOR EACH test_path IN test_paths DO

2 SET test_plan TO EMPTY

3 FOR EACH entry IN test_path:

4 SET state TO entry.state

5 SET transition TO entry.transition

6

7 IF state is InitialState THEN

8 -- for the initial state we create an abstract method which must be

9 -- implemented to do all required initial setup of the system

10 SET abstract_method TO generate_abstract_method(return="void",

11 name="SetupInInitialState")

12 test_plan.add(abstract_method)

13 ELSE IF state is FinalState THEN

14 -- for final state the method implementation should perform necessary

15 -- cleanup after testing

16 SET abstract_method TO generate_abstract_method(return="void",

17 name="CleanupInFinalState")

18 test_plan.add(abstract_method)

19 ELSE

20 -- create method to assert that we have reached the current state

21 SET abstract_assert_method TO

22 generate_abstract_assert_method(return="boolean",

23 state_name=state.name)

24 test_plan.add(abstract_assert_method)

25

26 FOR EACH guard in transition.guards:

27 -- for each transition, force if needed the CPS to a state in

28 -- which each Guard returns OK

29 -- CPS might have multiple transitions from a state, depending on

30 -- the guard value

31 SET abstract_invocation_method TO generate_invocation_method(

32 target=guard.target,

33 parameter=guard.parameter,

34 value=trigger.value)

35 test_plan.add(abstract_invocation_method)

36 END FOR

37

38 FOR EACH trigger in transition.triggers:

39 -- for each transition, invoke all triggers to perform the

40 -- transition, and check all guard conditions,

41 -- and assert that the state we reach after the transition is the

42 -- expected state

43 SET abstract_invocation_method TO generate_invocation_method(

44 target=trigger.target,

45 method=trigger.method,

46 args=trigger.parameters)

47 test_plan.add(abstract_invocation_method)

48 END FOR

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 26 of 48

49 END IF

50 END FOR

51 -- add generated abstract test plan

52 test_plans.add(test_plan)

53 END FOR

54 RETURN test_plans

Listing 3: Test strategy 1 - Generating abstract transition correctness test plans from test paths

4.3.1.1.2 Strategy for Testing Correctness of State Transitions in Uncertainty-affected Test Paths.

Listing 4 depicts the algorithm of test transition correctness strategy 2, in which we consider for
testing the generated test paths, which pass through at least one state, which has at least, one
Infrastructure Uncertainty stereotype applied to it, as defined in Uncertainty Core Profile in
Deliverable D2.1, Section 4.2.1.3 Infrastructure Level. The only difference between test transition
correctness strategy 1 and 2, is that in the uncertainty-based strategy we add an additional
verification (at Line 3) to check if any state in the test path has InfrastructureUncertainty.

Listing 4: Test strategy 2 - Generating abstract transition correctness test plans only for test paths under uncertainty

4.3.1.2 Run-Time Testing Strategies

This second category of infrastructure testing strategies focuses on testing if the SUT behaves as
expected at run-time. Testing only transition correctness cannot determine all health problems that
can occur at run-time for complex systems due to uncertain behaviors. Thus, testing CPSs at run-
time is very important for determining if uncertain behaviors have taken place causing failures or
behavioral errors. Further, complex CPSs can contain components acquired from third parties, which
are “black box” to the tester, i.e., they allow no access to their inner workings. In may cases, testing
third party components might only be possible at run-time. This is because not enough knowledge
about their behavior is available for performing transition correctness testing. Examples of such
third-party components are the X4 units in the GeoSports use case, or the Scanner in the ULMA
Handling Systems Demonstrator use case, described in U-Test deliverable D1.1.

ALGORITHM generate_transition_correctness_tests_with_uncertainty

INPUT: test_paths

OUTPUT: test_plans

1 FOR EACH test_path IN test_paths DO

2

3 IF ANY state in test_path.entries HAS InfrastructureUncertainty

4 SET test_plan TO EMPTY

5 FOR EACH entry IN test_path:

6 ... -- rest is same as generate_transition_correctness_tests

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 27 of 48

Figure 11: Generating run-time tests descriptions flow

Our approach for run-time testing on CPS is captured in Figure 11, and relies on UML Class Diagrams
defined for each CPS, which must be tested (Steps 1-2). In the approach we use a set of strategies,
which process the class diagrams (Step 3), and generate descriptions of what, how, and when to test
at run-time (Step 4). The result of our approach is a collection of descriptions, which should be used
at run-time to execute concrete tests implemented for particular systems. In the following we first
discuss the content of the generated test descriptions, after which we introduce our strategies for
processing UML Class Diagrams and generating the test descriptions.

4.3.1.2.1 Run-time Tests Description

Given that uncertain behaviors can appear anytime during the run-time of a system, we have first
identified when to execute run-time tests. We have identified two testing times: (i) periodic testing,
and (ii) event-based testing.

4.3.1.2.1.1 When to test infrastructure at run-time

a. Periodic testing

In Periodic testing, tests must be executed at certain time intervals, depending on the tested
component and the nature of the uncertainties the component can exhibit. One periodic test can
cover one or more uncertainties.

Example of periodic test: GeoSports use case, UC1_INFR_1_QUUPPA

 Test every minute that heartbeat detected by body-sensor is > 0

b. Event-based testing

In Event-based testing, tests must be executed after a certain event has occurred in the CPS. An
event can be associated to a particular CPS component, e.g., if component started/stopped.

An event can also be associated to particular CPS component states. Example:

 ULMA Handling Systems Demonstrator, UC2_INFR_1.1:
o IF “Packet received by the wearehouse” event then TEST Scanner State != 0 (scanner

is operating)

 FPX/NMT GeoSports use case UC1_INFR_1_QUUPPA:
o IF “Trainer activates Quuppa sensor” then test “body sensor measures athlete

heartbeat”

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 28 of 48

An event could also be associated with the result of another test execution, to enable uncertainty
identification through more fine-grained tests executed on demand in case of event. Example:

 FPX/NMT GeoSports use case UC1_INFR_1_QUUPPA:
o IF “heartbeat detected by body-sensor is > 0” fails, then test “Quuppa is active”

4.3.1.2.1.2 How to test infrastructure at run-time

Testing infrastructure at run-time implies considering the particular capabilities of the CPSs
components, and their testing capabilities. While one might be able to directly access and test a
component over which one has full control, third party components might be more difficult to test
directly. Thus, to test at run-time CPSs we focus on two testing mechanisms:

a. Direct testing:

 A direct test is executed against the API/capability of the tested component.

 Example: ULMA Handling Systems Demonstrator, UC2_INFR_1.1
o Testing that Scanner status is behaving normally by leveraging Scanner API to

retrieve Scanner Status value
o “assert scanner.Status == 0”

b. Indirect testing:

 An indirect test is executed against the API/capability of another system component.

 Example: FPX/NMT GeoSports use case, UC1_INFR_1_QUUPPA
o Assert Quuppa body sensor measures athlete heartbeat by collecting measurement

data through invoking API of the Quuppa management service.
o “assert managementService.CollectedHeartbeat != empty and values

(managementService.CollectedHeartbeat) != null”

4.3.1.2.2 Strategies for generating run-time tests descriptions

For generating the descriptions on how/what/when to test at run-time we employ a conceptual
strategy described as pseudo-code in Listing 5. In our approach we first take as input an UML Class.
For each of the class attributes, we generate a description for executing a “direct” test to verify if the
value of the attribute is within expected values (Lines 4-7). In this conceptual representation we
leave out the particular implementation of the test description generation (Line 5), as this must be
done according to particular run-time tests execution mechanisms. For a particular implementation
please check Technical Report 1 in Appendices. Further, we iterate through each association
relationship found on the UML class. An association between two UML Classes implies
communication between CPS components of the type represented by the classes. Thus, for any
association we generate a test description for an “indirect” test (Lines 12-16). The generated indirect
test descriptions are meant to state that the components belonging to the currently investigated
UML Class must check that the components, which they are accessing, are accessible. As in the case
of the tests generated for class attributes, we leave out the implementation of the particular test
description generation (Lines 13-14). Our approach iterates through all classes captured in a CPS
class diagram and for each class returns the descriptions of the direct and indirect tests, which
should be executed, on the CPS at run-time.

ALGORITHM generate_run_time_tests_description

INPUT: uml_class

OUTPUT: [direct_tests_descriptions, indirect_tests_descriptions]

1 -- generate description for testing the value of each attribute

2 -- we assume each attribute can be tested directly on the CPS component

3 -- represented by the UML class

4 FOR EACH attribute in uml_class.get_attributes DO

5 SET test_description TO generate_direct_test(uml_class, attribute)

6 CALL direct_tests_descriptions.add(test_description)

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 29 of 48

7 END FOR

8

9 -- generate description for testing connectivity between CPS components

10 -- for each UML association relationship present on the uml_class

11 -- connectivity test descriptions are generated as indirect tests

12 FOR EACH association in uml_class.get_relationships DO

13 SET test_description TO generate_indirect_test(uml_class,

14 association.associated_class)

15 CALL indirect_tests_descriptions.add(test_description)

16 END FOR

17

18 RETURN [direct_tests_descriptions, indirect_tests_descriptions]

Listing 5: Run-time testing - Generating test from UML class diagrams

4.3.2 Test Data Generation

Our approach relies on two data sources used in infrastructure testing:

a. Information captured as UML Profiles, Class Diagrams, and State Diagrams during the CPS
modeling phase, as described in D2.1 and D2.2. This information is used in generating the
abstract transition correctness tests and run-time test descriptions.

b. Expert knowledge brought by CPS owner/user used in the implementation of the concrete
tests according to particularities of the tested CPS.

4.3.3 Uncertainty Model Evolution at Infrastructure Level

The focus of our work so far was to generate tests and test CPSs at the infrastructure level. We have
not defined so far approaches for model evolution at infrastructure level.

4.4 Uncertainty Testing Framework at Integration Level

This section presents the overview of the work related to UTF at the integration level from the
following fours perspectives as shown in Figure 12: 1) Test Model Evolution (C1), 2) Test Case
Generation (C2), 3) Uncertainty-Based Test Case Minimization (C3), 4) Test Case Execution (C4). This
subsection only provides an overview of each of these activities and all the technical details are
provided in the form of two technical reports ([30] and [29]) attached with this deliverable as two
separate documents (TR4.pdf and TR5.pdf). Test Model Evolution (C1) is described in Section 1.1.1,
Test Case Generation (C2) in Section 4.4.2, Uncertainty-based Test Case Minimization (C3) in Section
4.4.3), and Test Case Execution (C4) in Section 4.4.4.

As shown in Figure 12, the initial input of the UTF (C0) at Integration Level (UTF at Integration Level),
i.e., test ready model is the output of the UMF as presented in the deliverables D2.1/D2.2.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 30 of 48

Figure 12. The Overall of Uncertainty Testing Framework at Integration Level

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 31 of 48

4.4.1 Uncertainty Model Evolution at Integration Level

As shown in Figure 12, the key inputs of Uncertainty Test Model Evolution are initial test ready
models (outputs of UMF) of CPS with specified subjective belief information (belief agent,
uncertainty and related measurement) and real data collected in the GeoSport case study (X4
device). The process of evolving test ready model contains three main steps 1) verifying the initial
test ready model applied UMF (D2.1/D2.2) against real data via model execution by using IBM RSA
Simulation Toolkit, then outputting the suggested actions of evolved model elements to User to
update the test ready model 2) Evolving subjective uncertainty measurements based on the evolved
objective uncertainty measurement via model execution and 3) Evolving state invariants (test oracle)
and guards of transitions by using dynamic invariant detector- Daikon, then outputs the suggested
OCL constraints of evolved invariants to User to update the test ready model accordingly. More
details including the evaluation are presented in the TR4.pdf attached with this deliverable (see the
Appendix of this deliverable). The TR is also available online at [30].

4.4.2 Test Case Generation at Integration Level

As shown in Figure 12, the input of Test Case generation (C2) is test ready model, which could be 1)
initial version from C0, or 2) evolved version from C1. The process of test case generation contains
three main steps:

1) Generating abstract test cases by using JGraph [22] according to two developed test case
generation strategies: All Simple Path (ASP) and All Paths with Maximum Length (APML),

2) Generating the uncertainty measurement based on the developed Uncertainty Measurement
Calculator, which is implementation of Uncertainty Theory, and

3) Generating executable test cases based on generated/minimized abstract test cases.

More details including evaluations are presented in the TR5.pdf attached with this deliverable (also
available online at [29]) (see the Appendix of this deliverable).

4.4.3 Test Case Minimization at Integration Level

The test case minimization (C3) at integration level is proposed, because the number of abstract test
cases generated by C1 is typically very large for any non-trivial CPS and it is impossible to execute all
of them. As shown in Figure 12, the problems developed in the test case minimization is a multi-
objective search problem and thus we opted for the commonly used multi-objective search
algorithm, i.e. NSGA-II, based on the guideline [5]. Further we develop four concrete search
problems, aiming to minimize the number of test cases and maximize coverage of transition,
according to these four objectives respectively 1) The average number of uncertainties covered by
the subset of the test cases after minimization; 2) The average percentage of uncertainty space
covered by the subset of the test cases after minimization; 3) The average uncertainty measure (UM,
defined in appendix) of the subset of test cases after minimization; 4) The average number of unique
uncertainties covered by the subset of test cases after minimization. More details including
evaluations are presented in the TR5.pdf attached with this deliverable as a separate document and
is also available online at [29] (see the Appendix of this deliverable).

4.4.4 Test Case Execution at Integration Level

During the test execution (C4) as shown in Figure 12, 1) the test oracles (constraints) are checked at
runtime by integrated EMF Library and Eclipse OCL, 2) the test data are generated by EsOCL before
the test execution or generated randomly at runtime, 3) the indeterminacy sources are introduced
into test execution based on specified constraints applied «IndeterminacySource», and 3) the test
log are handled by the integrated Log4j. More details including evaluations are presented in the
TR5.pdf attached with this deliverable as a separate document and is also available online at [29]
(see the Appendix of this deliverable).

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 32 of 48

5 Summary and Conclusion

In this section, we summarize the overall achievements of our work according to Milestone 3 (M3)
for developing the UTF to support uncertainty testing at application level (Section 5.1), infrastructure
level (Section 5.2), and integration level (Section 5.3). For each level, we also present our plan to
achieve Milestone 4 (M4).

5.1 UTF at Application Level

Achievement of M3

For the UTF V.1 at the Application level, we developed a search-based approach aiming at
discovering both, known and unknown uncertain behaviors. We adapted the building blocks of the
genetic algorithm to uncertainty testing, employing information from modeled uncertainties and the
corresponding use cases in form of UML state machines, and provided model-based means for
describing fitness factors and mutations to UML state machine transitions. Through test coverage
strategies, we are able to guide the search-based testing process.

Plan for achieving M4

The main focus of the developments for the next milestone is improving the genetic algorithm with
mutation operators for guards and effects in form of UML activities, investigate options for
exploiting more information from uncertainties and optimizing the fitness function in order to
increase the chances for discovering unknown uncertain behavior.

5.2 UTF at Infrastructure Level

Achievement of M3

The second milestone was achieved through the introduction of two classes of test strategies for
infrastructure level: (i) state machine transition correctness strategies, and (ii) run-time testing
strategies. For each strategy class we have introduced two test-plan generation strategies. The
strategies where implemented as IBM RSA Plug-Ins, ensuring their applicability on the UML Models
developed in the context of WP2.

The strategies from the first category generate abstract test plans. These abstract test plans when
implemented as Junit tests can be executed by CertifyIt. The run-time testing strategies generate
descriptions of run-time tests, which are usable in conjunction with a Run-Time Testing Platform
provided by TUW (described in this deliverable in Technical Report 2).

We have applied the test strategies to generate test plans for UC1_INFR_1_QUUPPA and
UC2_INFR_1.1 use cases modeled in D2.1.

Plan for achieving M4

For M4 we will focus on providing the first version of algorithms for model evolution. We plan to
start from the Uncertainty Taxonomy at the Infrastructure Level, and analyze the State and Class
diagrams of each U-Test use case. Based on the taxonomy we will be able to detect where
uncertainties can appear in each use case, uncertainties not captured during the modeling phase,
and enrich the U-Test use cases models with them.

5.3 UTF at Integration Level

Achievement of M3

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 33 of 48

We have successfully reached the M3 regarding the UTF V.1 for uncertainty testing of the
Integration level of CPS. More specifically, we developed the evolution approach for Uncertainty
Test Model at the Integration level, which aims to improve the quality of test ready models, evolve
captured uncertainty, and potentially discover unknown uncertainty and model elements. Secondly,
test case generation strategies have been developed to generate abstract test cases as well as
executable test cases. The test case generation process can be driven by uncertainty measurement
based on the developed Uncertainty Measurement Calculator. Thirdly, because executing the large
number of generated test cases is impractical, we proposed a search-based approach to minimize
the number of test cases while maximizing the coverage of transition. Last but not least, we
developed a prototype as a proof-of-concept for our approaches above, in which the generated test
cases can be executed. The test cases were generated with the input is the test ready models at the
integration level (covering 66% of use cases at the integration level for M3).

Plan for achieving M4

As we have made a concrete foundation in the UTF V.1 for uncertainty testing of the Integration
level of CPS, we will continue improving our framework along the way to M4. In achieving M4, we
will use the test ready models, which cover 100% the use cases at the integration level, for test
generation.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 34 of 48

Appendix

The Appendix section summarizes the technical reports that provide more detailed technical aspects
of the UTF.

Technical Report 1 - Integrating Transition Correctness Test
Strategies in IBM RSA 9.5

In this report we discuss how we apply and integrate our strategies for generating transition
correctness tests described in Section 4.3.1.1 “State Machine Transition Correctness Testing
Strategies” in IBM Rational Software Architect (IBM RSA). We use for the infrastructure level
modeling of CPSs as primary modeling tool version IBM Rational Software Architect (IBM RSA) 9.5.
IBM RSA is one of the most mature and widely used UML modeling tools. By employing it to create
our models we increase the adoption chances of our approach, as our models can be imported and
used in other IBM RSA instances.

Thus, we implement a series of IBM RSA Plug-Ins for applying the transition correctness test plan
generation strategies described in Section 4.3.1.1 “State Machine Transition Correctness Testing
Strategies” over the CPS infrastructure models described in D2.1 and D2.2. IBM RSA is built on top of
Eclipse Integrated Development Environment, which provides and easy to use extension mechanism
relying on Plug-Ins.

Transition Correctness Tests Generation IBM RSA Plug-In

Figure 13: Transition Correctness Strategy IBM RSA Plug-In

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 35 of 48

We implement our strategies in Java as a specific type of plug-ins called “Transformation Extensions”
(code depicted as Eclipse project in Figure 13).

We have named our Transformation plug-in “StateMachineTransformation”, belonging to a plug-ins
group called “ac.at.tuwien.dsg.uml.statemachine.export.transformation”.

The Plug-In code is located in an open-source GitHub code repository at
https://github.com/tuwiendsg/COMOT4U/tree/master/T4U/UncertaintyTestsGeneration/TUWUML
2StateMachineTransformation. The particular classes implementing the plug-in are located in the
“src/ac/at/tuwien/dsg/uml/statemachine/export/transformation/” subdirectory.

The StateMachineTransformation is applicable only to UML State Diagrams. The plug-in extends the
“com.ibm.xtools.transform.core.RootTransform”, enabling it to access state diagram information
relying on Eclipse UML2 API from package “org.eclipse.uml2.uml.” We define an internal
representation model for the states graph in the StateMachineStateGraph class. Based on the
StateMachineStateGraph class we implement the two test plan generation strategies described in
Section 4.3.1.1: class TransitionCorrectnessTestStrategy implements test plan generation strategy 1,
while class PathWithUncertaintyTestingStrategy implements the second strategy considering
uncertain test paths.

The glue between the test plan generation strategies and the UML State Diagram processing is
implemented in StateMachineTransformationRule class. StateMachineTransformationRule takes as
input an UML State Diagram represented as a org.eclipse.uml2.uml.StateMachine object, parses the
object, and constructs a StateMachineStateGraph. Further, it calls the test plan generation strategy
in use to generate based on the StateMachineStateGraph a test plan. The test plan is generated
relying on Eclipse AST/DOM API to generate Java class files. Thus, an abstract test plan is generated
as an abstract Java class. In order to execute the test plan on particular CPSs, a concrete class
implementing all test plan abstract methods must extend the abstract class.

Using the Transition Correctness Tests Generation IBM RSA Plug-In

To use the plug-in please follow the following steps:

 Install:

 Import the plugin project in your RSA run-time and deploy it to local host (or install plug-in
Jar from deployment).

 Or just run as Eclipse Application the plug-in project (no install required, local run)

 Use:

 Create a new Transformation Configuration: "File -> New -> Other -> Transformations ->
Transformation Configuration".

 Choose transformation type: Check "show all transformations".

 Choose "ac.at.tuwien.dsg.uml.statemachine.export.transformation"
-> "StateMachineTransformation" (Figure 14).

 From transformation "Source and Target" tab select source state machine diagram and
target location where transformation file should be generated (Figure 15).

 From "Select Test Generation Strategy" tab select the test generation strategy to use when
generating the test plan (Figure 16).

 Execute the transformation (Figure 17).

 Right click on Target project and Refresh

 Test abstract plan generated file will be named as
[TestStrategySimpleName]_TestPlanForStateMachine_[StateMachineName] (Figure 18).

Extend:

To extend our plug-in with other test generation strategies one must consider the most important
Java classes we provide in our implementation:

https://github.com/tuwiendsg/COMOT4U/tree/master/T4U/UncertaintyTestsGeneration/TUWUML2StateMachineTransformation
https://github.com/tuwiendsg/COMOT4U/tree/master/T4U/UncertaintyTestsGeneration/TUWUML2StateMachineTransformation

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 36 of 48

1. Most important classes for extending the plug-in are:

 AbstractStateMachineTestStrategy: class which has the abstract "generateTestPlan"
method. The class must be sub-classed and the method implemented for any custom
strategy.

 StateMachineTestEngineFactory: factory class holding all supported strategies. Any new
subclass of AbstractStateMachineTestStrategy must be added in "supportedStrategies".
After this they will appear on the selection tab and be called when required.

 StateMachineStateGraph: class holding state machine parsed information. The class has
methods ("toString", and "getStatesWithUncertainties()") which give good examples on how
to go deeper and extract state information such as uncertainties, and the uncertainties'
parameters.

 StateMachineTransformationRule: class which contains the "createTarget" method which
creates the StateMachineStateGraph from a state machine diagram. If user wants to add
more information to StateMachineStateGraph then the rule can be modified to extract more
information from the machine diagram.

Usage example screenshots:

In the following screenshots we exemplify the usage of our State Machine Transformation Plug-In in
IBM RSA. We apply our plug-in to ULMA Infrastructure profile described in D2.1 Section 5.3.2.

Figure 14: Creating a new State Machine Transformation Configuration

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 37 of 48

Figure 15: Choosing the State Diagram used in the Test Generation

Figure 16: Choosing Test Plan Generation Strategy

Figure 17: Executing the State Machine Transformation Plug-In

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 38 of 48

Figure 18: Abstract Test Plan Generated by the State Machine Transformation Plug-In

Technical Report 2 - Platform for Run-Time Testing of Cyber-
Physical Systems

This technical report presents our platform for testing at run-time CPSs. All details of this TR can be
found in [20].

Run-Time Testing Platform Functionality

In the following we also present here an overview over our platform, to ensure the deliverable is
understandable standalone. Documentation and demos of our testing platform are available at
http://tuwiendsg.github.io/RuntimeVerification/, and the code is available at
https://github.com/tuwiendsg/RuntimeVerification .

 Our run-time testing platform provides functionality for (Figure 19):

 Specifying the logical structure of CPSs through a JSON representation capturing their
deployment stack and communication dependencies (Step 1).

 Managing the run-time structure of elastic CPSs, introducing a decentralized notification-based
system for managing the addition/removal of system components (Step 2).

 Specifying run-time tests and tests execution description, introducing a domain-specific
language for defining periodic and event-driven execution of direct and indirect verification tests
on different system components (Step 3).

 Executing tests, introducing a distributed mechanism based on remote code execution for
execution of tests and collection of test enforcement results (Step 4).

 Notifying interested parties about the test results, introducing mechanisms for notifying users
about changes in the tests results (Step 5).

http://tuwiendsg.github.io/RuntimeVerification/
https://github.com/tuwiendsg/RuntimeVerification

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 39 of 48

Figure 19: Functionality of Platform for Run-Time Testing of CPSs

Run-Time Testing Platform Implementation

Figure 20: Platform for Run-Time Testing Prototype

We implement our run-time testing platform prototype in Python due to its low resource
consumption and reduced complexity in deploying and operating the platform. Our platform has a
centralized Testing Orchestrator providing most of the platform's functionality, and a Test Executor
component deployed along system components to enforce tests. We expect custom test executors
to be implemented for particular target systems, and provide a Messaging Queue. The queue acts as
a communication broker between the Testing Orchestrator and Test Executors, hiding their
particular implementation details from each other. We use RabbitMQ for the queuing middleware,
as it supports both AMQP and MQTT protocols, providing a queuing solution applicable to a wide
range of systems and components. The platform's functionality is divided between: (i) a System
Structure Manager handling any structure-related operation; (ii) an Events Manager handling the
processing of events received from the test executors due to test results or addition/removal of

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 40 of 48

system component instances; (iii) a Tests Execution Manager dispatching run-time tests; (iv) a
Persistence Manager using SQLite to persist system and tests information; and (v) a UI Manager
handling interactions with the platform's web user interface. For ease of use and integration with
third party software components, we implement the interactions with our run-time testing platform
as RESTful services using Flask and JSON. We also implement a web-based interface relying on HTML,
Javascript and D3.js enabling human users to interact with our platform. A run-time test is a self-
contained sequence of Python code and we provide a library to report the results of particular test
executions. We also provide contextualization mechanisms that injects in each python test variables
denoting the ids and uuids of the test target and executor to be used in the test.

Run-Time Tests Description Language

#Description

#name: "TestName"

#description: "human readable description"

#timeout: 10

#Triggers

#every: 30 s

#event: "E1" , "E2" on UnitType.VirtualMachine

#event: "E1FFF" , "E2" on UnitType.Process

#Execution

#executor: UnitType.VirtualMachine for UnitType.VirtualMachine, UnitType.VirtualContainer,
UnitType.Process

#executor: UnitType.VirtualContainer for UnitType.Process

#executor: UnitType.SoftwareContainer for UnitType.SoftwareContainer

#executor: UnitType.SoftwareContainer for UnitID."A-Za-z0-9_", UnitID."Process.ProcessNAME",
UnitUUID."A-Za-z0-9_."

#executor: UnitID."A-Za-z0-9_" for UnitID."Process.ProcessNAME", UnitUUID."A-Za-z0-9_."

Listing 6: Run-Time Tests Description Language

We introduce a domain specific language and format for specifying what/when/how to test for a
run-time test. The language literals are explained in Table 3, and its keywords in Table 4. The test
description uses the UnitType indicator

Table 3: Run-Time Tests Description Language: Literals

Literal Description

UnitType Represents a component type according to CPS infrastructure profile captured in D2.1

ID Represents a custom component ID used to identify a component (e.g., a system
component) in the system’s design-time structure

UUID Represents the unique ID of a deployed system component instance. An elastic system
component (e.g., web server) can have multiple instances running at one time.

Event Represents a custom defined system event identified by its name or ID (e.g., scale-out)

Table 4: Run-Time Tests Description Language: Keywords

Keyword Description

Description Marks the test description section

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 41 of 48

name Marks the name of the test to be executed

description Human-readable description of the test to be executed

timeout Defines a timeout in which test result must be received before considering the test failed

Triggers Marks the test triggers section defining when the test is executed

event Specifies that the test should be executed when certain events are encountered

on Used to specify on which system component the event must be detected to trigger test
execution

every Used to specify periodical test execution

Execution Marks the section describing what component executes the test

executor Defines for which components the test is executed, and which components will execute it

for Used to define what component executes a test defined for the same

Technical Report 3 - Integrating Run-Time Testing Strategies with
our Platform for Run-Time Testing of Cyber-Physical Systems

In this report we discuss how we apply and integrate our strategies for generating descriptions for
run-time tests described in Section 4.3.1.2 “Run-Time Testing” with our Run-Time Testing Platform
presented in the previous Technical Report 2 .

As for the previous testing strategies, we implement the run-time testing strategies as an IBM RSA
plug-in. The plug-in takes as input this time a UML Class Diagram defined in IBM RSA in a UML Profile
Based on the UML Class the plug-in first generates the CPS description in the format accepted by our
Run-time Testing Platform. Further, for each class captured in the class diagram, the plug-in will
generate corresponding run-time tests descriptions, according to the testing strategy employed
(from the two described in Section 4.3.1.2).

The Plug-In code is located in an open-source GitHub code repository at:

https://github.com/tuwiendsg/COMOT4U/tree/master/T4U/UncertaintyTestsGeneration/TUWUML
2StateMachineTransformation. The particular classes implementing the plug-in are located in the
“src/ac/at/tuwien/dsg/uml/ classdiagram/export/transformation/” subdirectory.

https://github.com/tuwiendsg/COMOT4U/tree/master/T4U/UncertaintyTestsGeneration/TUWUML2StateMachineTransformation
https://github.com/tuwiendsg/COMOT4U/tree/master/T4U/UncertaintyTestsGeneration/TUWUML2StateMachineTransformation

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 42 of 48

Figure 21: Run-Time Testing Strategy IBM RSA Plug-In

We implement our run-time testing strategies in Java as a specific type of plug-ins called
“Transformation Extensions” (code depicted as Eclipse project in Figure 13). We have named our
Transformation plug-in “ClassDiagramToRunTimeTestsTransformation”, belonging to a plug-ins
group called “ac.at.tuwien.dsg.uml.classdiagram.export.transformation”.

The ClassDiagramToRunTimeTestsTransformation is applicable only to UML Class or UML Package
types. The plug-in extends the “com.ibm.xtools.transform.core.RootTransform”, enabling it to access
UML class diagram information relying on Eclipse UML2 API from package “org.eclipse.uml2.uml.”
Based on the Eclipse UML2 API we implement the test plan generation algorithm from Section
4.3.1.2.2 in two classes: class TestPropertiesAtRuntimeStrategy implements run-time tests
generation for each UML Class attributes, while class TestConnectivityAtRuntimeStrategy generates
run-time connectivity tests for all UML Class associations.

The glue between the run-time tests description generation classes and the UML Class Diagram
processing is implemented in ClassDiagramToRunTimeTestsRule class.
ClassDiagramToRunTimeTestsRuletakes as input an UML Class Diagram represented as a
org.eclipse.uml2.uml.ClassImpl object. Further, it calls the testing strategy in use to generate based
on the UML Class run-time tests descriptions. The test plan is generated relying on particular
configuration templates used by our Run-Time Testing Platform. By replacing the content of the
used configuration files one can extend our approach to generate test descriptions for other testing
platforms. Thus, our plug-in generates only the descriptions needed to test CPSs at run-time. In
order to execute the tests, for each description a test implementation for a particular CPPS must be
provided and submitted to the Run-Time Testing Platform.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 43 of 48

Using the Run-Time Testing Correctness IBM RSA Plug-In

To use the plug-in please follow the following steps:

 Install:

 Import the plugin project in your RSA run-time and deploy it to local host (or install plug-in
Jar from deployment).

 Or just run as Eclipse Application the plug-in project (no install required, local run)

 Use:

 Create a new Transformation Configuration: "File -> New -> Other -> Transformations ->
Transformation Configuration"

 Choose transformation type: Check "show all transformations".

 Choose "ac.at.tuwien.dsg.uml.classdiagram.export.transformation" ->
"ClassDiagramToRunTimeTestsTransformation" (Figure 22).

 From transformation "Source and Target" tab select source state machine diagram and
target location where transformation file should be generated (Figure 23).

 From "Select Test Generation Strategy" tab select the test generation strategy to use when
generating the test plan (Figure 24).

 Run the transformation.

 Right click on Target project and Refresh.

 The system description will be generated in a file having the name of the UML Package
containing the UML Classes (Figure 25).

 The generated tests will be structured in one folder per UML Class, having names
Test_[attribute_property_name] (Figure 26).

 Use the generated system description and tests description in conjunction with the Run-
Time Testing platform described in Technical Report 2 .

Extend:

To extend our plug-in with other test generation strategies one must consider the most important
Java classes we provide in our implementation:

1. Most important classes for extending the plug-in are:

 AbstractClassDiagramTestStrategy: class, which has the abstract
"generateTestConfig" method. The class must be sub-classed and the method
implemented for any custom strategy.

 ClassDiagramTestEngineFactory: factory class holding all supported strategies. Any new
subclass of AbstractClassDiagramTestStrategy must be added in "supportedStrategies".
After this they will appear on the selection tab and be called when required.

Usage example screenshots:

In the following screenshots we exemplify the usage of our Class Diagram to Run-Time Tests
Transformation Plug-In in IBM RSA. We apply our plug-in to ULMA Infrastructure profile described in
D2.1 Section 5.3.2.

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 44 of 48

Figure 22: Creating a new Class Diagram to Run-Time Tests Transformation Configuration

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 45 of 48

Figure 23: Choosing the UML Package containing the UML Classes used in Test Generation

Figure 24: Choosing the Run-Time Tests Generation Strategy

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 46 of 48

Figure 25: Generated JSON CPS Description for Run-Time Testing Platform

Figure 26: Generated Run-Time Test Description for Testing Connectivity between Sorter and Scanner

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 47 of 48

Technical Report 4 - Interactively Evolving Test Ready Models with
Uncertainty Developed for Testing Cyber-Physical Systems

Please see TR4.pdf attached with this deliverable as a separate document. The TR is also available
online at [30].

Technical Report 5 - Uncertainty-based Test Case Generation and
Minimization for Cyber-Physical Systems: A Multi-Objective
Search-based Approach

Please see TR5.pdf attached with this deliverable as a separate document. The TR is also available
online at [29].

Bibliography
[1] U-Test Deliverable Report on Requirements Collection.
[2] U-Test Deliverable Report on Taxonomy D 1. 2.
[3] U-Test Deliverable Report on Uncertainty Modelling Framework V1
[4] Amland, S., Risk-based testing:: Risk analysis fundamentals and metrics for software testing

including a financial application case study. Journal of Systems and Software, 2000. 53(3): p.
287-295. Available from:
http://www.sciencedirect.com/science/article/pii/S0164121200000194.

[5] Arcuri, A. and L. Briand. A practical guide for using statistical tests to assess randomized
algorithms in software engineering. in 2011 33rd International Conference on Software
Engineering (ICSE). 2011. IEEE.

[6] Bagnato, A., A. Sadovykh, E. Brosse, and T.E.J. Vos. The OMG UML Testing Profile in Use--An
Industrial Case Study for the Future Internet Testing. 2013. IEEE.

[7] Baker, P., Z.R. Dai, J. Grabowski, I. Schieferdecker, and C. Williams, Model-driven testing:
Using the UML testing profile. 2007: Springer Science & Business Media.

[8] DeMillo, R.A., R.J. Lipton, and F.G. Sayward, Hints on Test Data Selection: Help for the
Practicing Programmer. Computer, 1978. 11(4): p. 34-41. Available from: 10.1109/C-
M.1978.218136.

[9] Fabbri, S.C.P.F., M.E. Delamaro, J.C. Maldonado, and P.C. Masiero. Mutation analysis testing
for finite state machines. in Software Reliability Engineering, 1994. Proceedings., 5th
International Symposium on. 1994. IEEE.

[10] Felderer, M. and I. Schieferdecker, A taxonomy of risk-based testing. International Journal on
Software Tools for Technology Transfer, 2014. 16(5): p. 559-568.

[11] Gérard, S. and B. Selic, The UML–MARTE Standardized Profile. IFAC Proceedings Volumes,
2008. 41(2): p. 6909-6913.

[12] Harman, M. and B.F. Jones, Search-based software engineering. Information and software
Technology, 2001. 43(14): p. 833-839.

[13] Harman, M., S.A. Mansouri, and Y. Zhang, Search-based software engineering: Trends,
techniques and applications. ACM Computing Surveys (CSUR), 2012. 45(1): p. 11.

[14] Hessel, A., K.G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou, Testing real-
time systems using UPPAAL, in Formal methods and testing. 2008, Springer. p. 77-117.

[15] Johansson, W., M. Svensson, U.E. Larson, M. Almgren, and V. Gulisano. T-Fuzz: Model-based
fuzzing for robustness testing of telecommunication protocols. in 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation. 2014. IEEE.

http://www.sciencedirect.com/science/article/pii/S0164121200000194

D3.1 Version 1.0 Confidentiality Level: PU

20.03.2017 U-TEST Page 48 of 48

[16] Larsen, K.G., M. Mikucionis, and B. Nielsen. Online testing of real-time systems using uppaal.
in International Workshop on Formal Approaches to Software Testing. 2004. Springer.

[17] Larsen, K.G., M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time embedded software
using UPPAAL-TRON: an industrial case study. in Proceedings of the 5th ACM international
conference on Embedded software. 2005. ACM.

[18] Li, J.-h., G.-x. Dai, and H.-h. Li. Mutation analysis for testing finite state machines. in
Electronic Commerce and Security, 2009. ISECS’09. Second International Symposium on.
2009. IEEE.

[19] Microsoft. Spec Explorer. [cited 2016 September 25th]; Available from:
https://msdn.microsoft.com/en-us/library/ee620411.aspx.

[20] Moldovan, D. and H.-L. Truong. A Platform for Run-time Health Verification of Elastic Cyber-
physical Systems. in International Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems. 2016. London, UK

[21] Mussa, M., S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj. A survey of model-driven
testing techniques. 2009. IEEE.

[22] Naveh, B. JGrapht. 2016 [cited 2016; Available from: http://jgrapht.org/.
[23] Offutt, A. The coupling effect: fact or fiction. in Proceedings of the ACM SIGSOFT ’89 Third

Symposium on Software Testing, Analysis, and Verification. 1989. ACM.
[24] Schneider, M., J. Großmann, I. Schieferdecker, and A. Pietschker. Online model-based

behavioral fuzzing. in Software Testing, Verification and Validation Workshops (ICSTW), 2013
IEEE Sixth International Conference on. 2013. IEEE.

[25] Schulze, C., D. Ganesan, M. Lindvall, R. Cleaveland, and D. Goldman, Assessing model-based
testing: an empirical study conducted in industry, in Companion Proceedings of the 36th
International Conference on Software Engineering. 2014, ACM: Hyderabad, India. p. 135-144.

[26] Stefanescu, A., M.-F. Wendland, and S. Wieczorek. Using the UML testing profile for
enterprise service choreographies. 2010. IEEE.

[27] Utting, M., B. Legeard, F. Bouquet, E. Fourneret, F. Peureux, and A. Vernotte, Chapter Two-
Recent Advances in Model-Based Testing. Advances in Computers, 2016. 101: p. 53-120.

[28] Utting, M., A. Pretschner, and B. Legeard, A taxonomy of model-based testing approaches.
Software Testing, Verification and Reliability, 2012. 22(5): p. 297-312.

[29] Zhang, M., S. Ali, T. Yue, and M. Hedman, Uncertainty-based Test Case Generation and
Minimization for Cyber-Physical Systems: A Multi-Objective Search-based Approach.
Technical Report, 2016. Simula Research Laboratory, Technical Report 2016-13. Available
from: https://www.simula.no/file/utestingtrpdf/download.

[30] Zhang, M., S. Ali, T. Yue, and R. Norgren, Interactively Evolving Test Ready Models with
Uncertainty Developed for Testing Cyber-Physical Systems. Technical Report, 2016. Simula
Research Laboratory, Technical Report 2016-12. Available from:
https://www.simula.no/file/ist-u-evolvesubmittedtrpdf/download.

https://msdn.microsoft.com/en-us/library/ee620411.aspx
http://jgrapht.org/
https://www.simula.no/file/utestingtrpdf/download
https://www.simula.no/file/ist-u-evolvesubmittedtrpdf/download

