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ABSTRACT

This demo dramatically illustrates how replacing ‘Classic’
TCP congestion control (Reno, Cubic, etc.) with a ‘Scalable’
alternative like Data Centre TCP (DCTCP) keeps queuing
delay ultra-low; not just for a select few light applications
like voice or gaming, but even when a variety of interactive
applications all heavily load the same (emulated) Internet
access. DCTCP has so far been confined to data centres be-
cause it is too aggressive—it starves Classic TCP flows. To
allow DCTCP to be exploited on the public Internet, we de-
veloped DualQ Coupled Active Queue Management (AQM),
which allows the two TCP types to safely co-exist. Visitors
can test all these claims. As well as running Web-based
apps, they can pan and zoom a panoramic video of a foot-
ball stadium on a touch-screen, and experience how their
personalized HD scene seems to stick to their finger, even
though it is encoded on the fly on servers accessed via an
emulated delay, representing ‘the cloud’. A pair of VR gog-
gles can be used at the same time, making a similar point.
The demo provides a dashboard so that visitors can not only
experience the interactivity of each application live, but they
can also quantify it via a wide range of performance stats,
updated live. It also includes controls so visitors can config-
ure different TCP variants, AQMs, network parameters and
background loads and immediately test the effect.

1. PROBLEM STATEMENT

Interactive latency-sensitive applications are becoming preva-

lent on the public Internet, e.g. Web, voice, conversational
and interactive video, finance apps, online gaming, cloud-
based apps, remote desktop. However, Choi et al [5] points
out that there is probably more desire than measurable de-
mand for interactive apps, because the lags in the general
Internet prevent such apps even being developed. In the
developed world, increases in access network bit-rate have
been giving diminishing returns, as latency has become the
critical bottleneck. Recently, much has been done to reduce
propagation delay, e.g. by placing caches or servers closer to
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users. However, latency is a multi-faceted problem [4], so
other sources of delay have become the bottleneck.

This demo focuses on dramatically cutting the queuing
delay component. Queuing delay is often not apparent [8],
but during periods of high load (whether brief or more per-
sistent), it becomes a major but intermittent component of
latency. This variability is either directly experienced by
the user, e.g. as stalls in Web browsing, or real-time appli-
cations use buffers to absorb most of the jitter, which turns
near-worst-case latency into the norm.

The demo does not follow the Diffserv approach [3], which
only reduces queuing for some traffic at the expense of other
more elastic traffic. That would be fine in the simplistic
traditional view where elastic (capacity-seeking or ‘greedy’)
TCP-like traffic is the culprit and other latency-sensitive
traffic is the victim. However, this is no longer a suffi-
cient model when some multimedia applications can be both
capacity-seeking (culprit) and latency-sensitive (victim).

Instead, the demo (Fig. 1) is motivated by the idea that,
often for each home, all apps will be latency-sensitive. For
instance, visitors can use finger gestures or VR goggles to
pan or zoom a sub-window of a panoramic video gener-
ated on servers representing ‘the cloud’ for the demo. Even
though media delivery is over TCP, which continually seeks
out capacity, and even though the base propagation delay to
the cloud servers is typical of a broadband ISP’s end-to-end
network (7 ms, which is emulated using netem in the demo),
visitors can verify that the queuing delay is so low that the
interaction feels natural, even under high load—the video on
the touchpad seems to stick to your finger. They can also
relate their experience to a visualization of the distribution
of queuing delay on the dashboard, even while they apply
heavy load from numerous other delay-sensitive apps.

Our demo builds on the state-of-the-art in Active Queue
Management (AQM), e.g. fq-CoDel [7], PIE [10], but shifts
into a completely new design space. All AQMs at least en-
sure that a queue will not keep growing until it fills the
buffer, which is important because buffers have often been
mistakenly bloated to try to prevent loss. In general, AQMs
introduce an increasing level of discard from the buffer the
longer the queue persists above a shallow threshold. This
gives sufficient signals to greedy flows to keep the buffer free
for its intended purpose: absorbing bursts.

Unlike fq_CoDel, the demo avoids combining AQM with
per-flow queuing (fq), which has the following two flaws
(amongst others). Firstly, fq isolates ‘victim’ interactive
flows from the queuing of ‘culprit’ long-running greedy flows,
but this does nothing for a greedy interactive media flow
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Figure 1: Demonstration of Ultra-Low Queuing Delay for all Applications using DCTCP over an Emulated

Broadband Access Link from the Public Internet

that is both culprit and victim. Secondly, whenever more
than one large flow is running, fq_CoDel can only give ev-
ery such flow constant bit-rate. This can seriously degrade
multimedia applications with a continually varying informa-
tion rate (e.g. VBR or constant quality video [9]). Indeed,
visitors can use the dashboard of our demo to replace our
AQM with fq_CoDel, to see how it makes HTTP Adaptive
Streaming (HAS) degrade by one or two levels of encoding.
The demo attacks the inherent queuing variation of TCP
itself. Even with a well-tuned AQM, a single Classic TCP
flow (Reno or Cubic) will intermittently build up a queue
of about one base round trip time (RTT) whenever a large-
enough object is transferred, which doubles the total RTT [12].

2. SOLUTION: FIX THE ROOT CAUSE

As capacity has scaled, ‘Classic’ TCP has increased the
scale of its saw-toothing rate variations. Our demo uses a
scalable TCP, specifically Data Centre TCP (DCTCP [2]),
which induces far smaller sawteeth and they stay small what-
ever the rate. They fit within a very shallow queue without
compromising utilization, and with hardly any delay and
throughput variation.

DCTCP does not only work in data centres. It was so-
called because it starves Classic TCP flows, so it could only
be deployed in private networks (like data centres) where all
stacks could be switched over at once. DCTCP requires the
network to mark the explicit congestion notification (ECN)
field [11] in the IP header rather than dropping packets.
Otherwise, if the peak of each little sawtooth induced a loss,
the loss probability would be infeasibly high. DCTCP flows
are designed to induce such frequent (aggressive) marking,
but Classic TCP flows mistake it for heavy congestion, so
they keep yielding more capacity share.

The demo allows visitors to verify our solution to this co-
existence problem: the DualQ Coupled AQM (DualQ for
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Figure 2: DualQ Coupled AQM: Two queues to pro-
tect low L4S latency; Coupling to balance flow rates

short). An overview is given here but an IETF draft [6] is
available for details. The DualQ is deployed in the down-
stream bottleneck of an emulation of broadband Internet
access (Fig. 2), where per-customer queues are typically lo-
cated. It uses two queues, offering services called ‘Classic’
and ‘Low-Latency, Low-Loss, Scalable’ (L4S). The DualQ
is like a semi-permeable membrane that stops the ‘Classic’
queue delaying the L4S, but allows bandwidth to be shared
freely between them. So DCTCP flows give stunningly and
predictably low queuing delay, but they do not starve the
bandwidth of competing Classic traffic. These claims are
quantified in a supporting paper, using a testbed built from
real data centre, core, access and residential network equip-
ment, including real DSL lines. The demo set-up has been
verified to be comparable to this testbed.

DualQ applies congestion signals to L.4S packets more ag-
gressively than it applies drop signals to Classic packets,
to exactly counterbalance the more aggressive response of
DCTCP to congestion signals. Visitors can start different
numbers of each type of flow and see live on the dashboard
that they all end up with similar rates, as if they were all
the same type of TCP. The DualQ AQM does not identify
transport layer flows to do this; it inspects nothing deeper
than the IP header.

The low delay service can only be enjoyed where all the
pieces are in place: DCTCP on the client & server and the
DualQ at the bottleneck queue. But every piece is incre-
mentally deployable. For instance, if there is no DualQ at
the bottleneck to generate the aggressive ECN markings,
DCTCP falls back to ‘Classic’ TCP behaviour. The reduc-
tion in queuing delay is so remarkable that we expect ISPs
to be keen to deploy the DualQ at known bottlenecks—
primarily the buffers feeding the access links in each direc-
tion. And the DCTCP code already in Windows and Linux
is good enough for testing, even though it could use some
improvements for the general Internet.

3. INTERACTIVE EXPERIENCE

The demo (Fig. 1) consists of 9 physical machines and ex-
tra equipment for two types of latency sensitive applications:
e Cloud-based Interactive Video applications: Panoramic
Interactive Video (PIV), Virtual Reality (VR);
e Web-based interactive applications: HTTP adaptive
streaming (HAS), game-suitability benchmarking tool,
web-browsing.
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Figure 3: Dashboard for Live Configuration & Analysis

The Web-based gaming and browsing are very sensitive to
extra delay, since there is a message exchange between the
client and the server during every user interaction. They are
also sensitive to the packet losses experienced with ‘Classic’
TCP, because they are prone to long time-out delays when-
ever a loss hit the tail of an object transfer. HAS video
is also sensitive to delay during interactions (rewind, etc.)
with the additional challenge of bursty bit-rate.

The cloud-based apps are perfect examples of the poten-
tial of ultra-low latency Internet access. With the PIV app,
visitors use finger-gestures on a touch-screen to control pan-
ning and zooming. The client sends control messages to a
proxy in the cloud that encodes a personalised HD scene on
the fly as a sub-window of a panoramic video feed from a
football match stitched together from multiple cameras. The
encoded sub-window is streamed to the client using TCP
over the Internet. In the VR case, the arrangement is sim-
ilar. The visitors head movements make the Oculus Rift
Virtual Reality (VR) goggles send scene selection messages
to a proxy in the cloud, which encodes the appropriate scene
from a spherical camera in a racing car and sends it back to
the goggles for rendering. Depending on the video activity,
these cloud-based apps alternate between capacity-seeking
and app-limited behaviour.

With DCTCP and the DualQ AQM, the round trip delay
from gesture to rendering is so low that the football video
seems to stick to your finger, even under high load. In the
immersive VR case, the delay is nearly imperceptible too,
although the experience is tainted by the frame-rate. With
other congestion controls and AQMs the extra queuing in-
troduces noticeable lag that becomes unusable under load.

4. INTERACTIVE CONFIG & ANALYSIS

A dashboard has been developed that visitors can use
to interactively configure different network conditions, TCP
congestion controls and extra traffic load. It also allows

visitors to visualize a wide range of resulting performance
metrics (updated every second), which they can correlate
live with the actual performance of the applications. The
dashboard (Fig. 3) consists of two main parts:

1. Client blocks (labelled as “1” in the figure), which are

sections allowing visitors to visualize and configure server-

to-client traffic load in our testbed. Each block (1a),
(1b) represents a different client-server pair, with their
own TCP stacks.

2. AQM/Link block (labelled as “2” in the figure), allow-
ing visitors to configure the network and visualize its
response to the traffic load.

4.1 Client block

Each client block can be configured to select a TCP con-
gestion control, e.g. DCTCP, Reno or Cubic, with or with-
out ECN support. Extra emulated RTT delay can also be
added. It includes the following graphical elements reflect-
ing contributions to network load:

e long-running TCP flows (bar plot on the left);
e short/web TCP flows (scatter plot on the right);
e application-limited (AL) TCP flows (single bar plot
directly below long-running flows on the left);
e constant bitrate (CBR) flow (single bar plot directly
below web traffic on the right).
Long-running flows simulate the behaviour of capacity-seeking
flows that generate bulk traffic. Visitors can choose the num-
ber of such long-running file downloads with the slider (for
demonstration purposes the dashboard remotely controls the
client’s downloads using the secure copy Linux command
(scp). AL flows are generated by all interactive applications
we demonstrate - PIV, VR, HAS, emulated online gaming
and web browsing (described in Section 3). CBR flow is em-
ulated with iperf [1]. The bar plot next to the slider displays
throughput for each file download flow, while a similar bar
plot below file downloads shows the sum of the throughput



for AL flows. The throughput for file downloads and AL
flows is shown relative to the “fair rate”, which is marked
with a line and calculated as link capacity excluding the
bandwidth taken by CBR and AL flows, divided by the num-
ber of downloads. If all file downloads get a fair share of the
bandwidth, their rate will be close to this line. The AL
flows might use less bandwidth than the file downloads at
times (being, by definition, application limited). However,
for completeness their rate is also shown relative to the cal-
culated fair share of the bandwidth. A CBR flow can be
turned on by selecting the desired rate, which is represented
as a percentage of the link capacity.

The short-running flows emulate web browsing, consisting
of 10 or 100 flows per second (selected with the radio but-
ton). The plot below the radio buttons shows completion
time for each of the flows in seconds. Both X and Y axes of
the plot are on a log scale. The completion time is displayed
as a measurement that includes TCP handshake by default,
which can be switched to the measurement excluding the
handshake (toggled by the radio buttons below both clients
blocks: “w/HS”, meaning “with HandShake”, and “wo/HS”,
meaning “without HandShake”). The “Clear” button below
the client blocks clears the completion time plots, removing
the old data points.

4.2 Link/AQM block

Within the link/AQM block there are three combo boxes
that allow visitors to configure the AQM (DualQ, RED,
PIE or fq-CoDel), link capacity, and base RT'T. The perfor-
mance visualization aspects of the block consists of 2 parts:
mark/drop probability and link utilization (on the left); and
queue delay (on the right). All the measurements are dis-
played separately for each client (A and B). Depending on
the selected AQM, the traffic shown as Client A and Client
B will go through the same or different queues. Nonetheless,
we always show them separately, so that it is clear how much
delay is experienced by each of the end systems. Mark/drop
probability and utilization measurements are shown both
as a per l-second sample (right) and as a 60-second history
(left). The Y-scale for the history plots is adjusted automat-
ically by default, but can also be changed to a fixed value,
selected from the respective combo-boxes. Queue delay is
shown in milliseconds per sample, as an inverted cumulative
probability distribution function (CDF) in the plots and the
average (avg) and 99 percentile (P99) values per sample.

S. CONCLUSIONS AND FUTURE WORK

In our demo visitors can load up an emulated broadband
Internet access with numerous interactive multimedia ap-
plications and enjoy remarkably low and predictably low
queuing delay, giving unprecedented interactivity for all ap-
plications at the same site, even under heavy load. This
demonstrates the following contributions:

1. the insight that all applications running at any one
time can be latency sensitive, so solutions like Diffserv
that give low delay for some at the expense of others
are not sufficient;

2. that replacing classic TCP with a scalable congestion
control, such as Data Centre TCP (DCTCP), addresses
the root cause of this problem—Classic’ TCP itself;

3. that our DualQ AQM enables DCTCP to be released
on the public Internet so that:

e DCTCP flows are isolated from the delay induced

by any Classic TCP flows, without making ‘Clas-
sic’ TCP delay any worse;

e they both share out the capacity as if they were
the same type of TCP, without any configuration
or flow inspection, even though DCTCP would
normally starve ‘Classic’ TCP flows (demonstra-
ble in our demo by disabling the DualQ);

4. a GUI/tool that allows visitors to select TCP conges-
tion controls, network configurations, AQMs and load
models, then correlate the live experience of all the
interactive applications with live quantifiable visual-
ization of the impact on performance of each choice.

Future work is planned to extend the functionality of the

tool to measure the performance of other applications and
mechanisms and to distribute the entire toolkit as an open-
source package.
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