FACING UNCERTAINTY IN COMPLEX CPS DESIGN

-- It's time to talk about the elephant in the room --

Bran Selić

Simula Research Laboratory (Norway) Malina Software Corp. (Canada) Zeligsoft (2009) Limited (Canada) University of Sydney (Australia) bselic@simula.no

AGENDA

• The problem of uncertainty in system design

- The U-Test H2020 project
- · U-Taxonomy: A conceptual model of uncertainty
- Applying the U-Taxonomy to CPS Testing
- Summary

3

A WHIFF OF THE ELEPHANT: THE "INTEGRATION" PROBLEM

Occurs when independently defined features interact

COMPLEX SYSTEM DESIGN

• ...requires knowledge of many different things...

A COMPLEX SYSTEM

WHERE THE ELEPHANT LIES

AGENDA

The problem of uncertainty in system design

- The U-Test H2020 project
 - · U-Taxonomy: A conceptual model of uncertainty
 - Applying the U-Taxonomy to CPS Testing
 - Summary

THE U-TEST H2020 PROJECT

U-Test: Testing Cyber-Physical Systems under Uncertainty

OBJECTIVE:

To improve the dependability of CPSs, via cost-effective model-based and search-based testing of CPSs under uncertainty, by (1) defining an <u>uncertainty taxonomy</u> and (2) holistic <u>modelling and testing frameworks</u> with considerable reliance on standards.

Duration: 2015 – 2018 Overall funding: € 3.71M Members: 9

AGENDA

The problem of uncertainty in system design

• The U-Test H2020 project

·U-Taxonomy: A conceptual model of uncertainty

- Applying the U-Taxonomy to CPS Testing
- Summary

UTEST APPROACH TO UNCERTAINTY

• Start with a general reference model of uncertainty

- Basis for a common conceptual framework for discussing and reasoning about uncertainty
- Includes capability to characterize uncertainty both quantitatively and qualitatively (e.g., for analyses)

Foundation for domain-specific specializations

 \checkmark E.g., testing of CPS

Set of all the things we need to know

BUT, WHAT IS "KNOWLEDGE"?

Knowledge is an elusive and controversial concept

 Philosophers have been disagreeing on its meaning for centuries
 Epistemology = a whole discipline dedicated to the study of knowledge

Knowledge is, irreducibly conjectural or hypothetical, generated by creative imagination [Wikipedia]

K. POPPER (1902-1994)

"Nothing can be known – not even this"

CARNEADES (213-129 BC)

KNOWLEDGE AND TRUTH

SO, WHAT'S LEFT?

THE U-TAXONOMY BELIEF MODEL

SOME KEY DEFINITIONS

- Belief Agent: an individual, group, or mechanism capable of acting or reasoning based on one or more beliefs that it holds
- Belief: An implicit or explicit opinion or conviction held by a belief agent
- Belief Statement: an explicit formulation of a belief ~ E.g., natural language, mathematical expression, binary code
- Topic: some objective phenomenon or concept that may be the subject of beliefs
- Evidence: objective information that may be used to justify a belief

U-TAXONOMY: UNCERTAINTY

MORE KEY DEFINITIONS

- Uncertainty: Lack of confidence by a belief agent in the accuracy (truthfulness) of a belief statement
- Uncertainty Measure: An explicit quantified or qualified expression, specified by a belief agent, of the degree of uncertainty (or confidence) associated with a belief statement
 - ✓NB: Not a measure of truthfulness, but of <u>belief of truthfulness of a</u> <u>statement</u>
- Indeterminacy Source: the direct causes of uncertainties associated with a belief statement
- Uncertainty Type:
 - ✓<u>Aleatory</u> uncertainty due to non-deterministic or variability phenomena
 - <u>Epistemic</u> uncertainty due to lack of information on the part of the belief agent

MEASURE MODEL

UNCERTAINTY MODEL - CLASSIFICATION

UNCERTAINTY MODEL -CHARACTERIZING UNCERTAINTY

UNCERTAINTY MODEL - PATTERNS OF UNCERTAINTY OCCURRENCE

UNCERTAINTY MODEL - RISK

SO, WHAT CAN WE DO WITH THIS?

Foundation for purpose-specific specializations

- Systematically identifying, collecting, specifying and discovering uncertainty requirements
 - Reference model for asking questions in a structured, precise, and systematic manner
 - RUCM-Uncertainty for specifying known uncertainty requirements and automated discovering of unknown uncertainty requirements
- Modeling, analysing and discovering software/system uncertainty behaviours
- Testing software/system under uncertainties

AGENDA

- The problem of uncertainty in system design
- The U-Test H2020 project
- · U-Taxonomy: A conceptual model of uncertainty
- Applying the U-Taxonomy to CPS Testing
 - Summary

PROPOSED TECHNICAL APPROACH

THE U-TEST H2020 PROJECT

U-Test: Testing Cyber-Physical Systems under Uncertainty

OBJECTIVE:

To improve the dependability of CPSs, via cost-effective model-based and search-based testing of CPSs under uncertainty, by (1) defining an uncertainty taxonomy and

(2) holistic modelling and testing frameworks with considerable reliance on standards.

<u>Approach</u>: start with *requirements* as a basis for:

- Specifying uncertainties
- Test case specification

U-TEST: TESTING WITH UNCERTAINTY

- Relinquish full deterministic control of test
- Use search-based testing techniques (combined with genetic algorithms) to explore the "unknown unknown" space and uncover unforeseen situations

Genetic algorithms

This research is currently in progress

RUCM: RESTRICTED USE CASE MODELING*

• A method (and tool) for specifying UML use cases based on restricted natural language

PhD thesis of Dr. Tao Yue at Carleton U. in Canada

- Facilitates transition from informal domain of user requirements to formal domain of engineering models
 - Automated translation of use cases to UML analysis models
- Tool and method currently in use by Simula Research Laboratory (Norway) and at the U. of Luxembourg
- Zen RUCM version of the tool used in the U-Test project by case study providers to specify their use cases

(*) T. Yue, L. Briand, and Y. Labiche, "aToucan: An Automated Framework to Derive UML Analysis Models from Use Case Models", ACM Trans. On Software Engineering and Methodology (24, 3), May 2015.

RUCM EXAMPLE

Use Case Name	Withdraw Fund		
Brief Description	ATM customer withdraws a specific amount of funds from a valid bank account.		
Precondition	The system is idle. The system is displaying a Welcome message.		
Primary Actor	ATM customer		
Secondary Actors	None		
Dependency	INCLUDE USE CASE Validate PIN.		
Generalization	None		
Basic Flow	Steps		
	1	INCLUDE USE CASE Validate PIN.	
	2	ATM customer selects Withdrawal through the system	
	3	ATM customer enters the withdrawal amount through the system.	
	4	ATM customer selects the account number through the system.	
	5	The system VALIDATES THAT the account number is valid.	
	6	The system VALIDATES THAT ATM customer has enough funds in the	
		account.	
	7	The system VALIDATES THAT the withdrawal amount does not exceed the	
		daily limit of the account.	
	8	The system VALIDATES THAT the ATM has enough funds.	
	9	The system dispenses the cash amount.	
	10	The system prints a receipt showing transaction number, transaction type,	
		amount withdrawn, and account balance.	
	11	The system ejects the ATM card.	
	12	The system displays Welcome message.	
	Postcondition	ATM customer funds have been withdrawn.	

RUCM4UNCERTAINTY

	Use Case Name(Be	elieft Monitor Windows and Doors
	Brief Description	aptify the monitoring personnel about a possible intrusion into the home.
 A modified 	Precondition(Belief	f) The max windows and doors options are not set.
version of the original RUCM	Primary Actor(Belie	ef) Intruder
	Secondary Actors (Belief)	Home Owner, Mongersonnel, Magnetic Switch
	Dependency(Belief	None
tool that	Generalization(Beli	lief) None
incorporates	Evidence Description	ion REF Experience
	IndeterminacySour Description	REF Unpredicted intrusion, R The entire use case (and/or
the	Belief Degree	Probability::80%
	Belief Agent	Fancisco Rojas Individudi STEPS) Curi De
UTaxonomy	Stated Time	treated as a specific kind of
	Basic Flow	Steps Belief Statement with its own
	(Untitly	1 IF Home Owner is outside TH
		The sustam enables the uncertainty characteristics and
		4 DO MAQCUNAC
		5 The system invokes the in
		6 The system VALIDATES THAT the status of windows and doors is normal.
		7 UNTIL Home Owner disables the monitoring of windows and doors
		8 ENDIF
		Postcondition None (Belief)
		URFS 5-6
Belief statement	's can be	Intruder breaks the windows or doors. Magnetic Switch detects the intruder.
characterized (e	0	The system VALIDATES THAT the status of windowws and doors is abnormal.
churacterizea (e	.9.,	Magnetic Switch alters the system to send a notification to the Monitroing personnel.
trustworthiness)		The system sends the intrusion notification to Monitoring personnel MEANWHILE the system alarms bell.
		Monitoring personnel phones the police.
		ABORT.
		(Belief)

Belief Specification

RUCM FOR THE U-TAXONOMY

 For this to work, it was necessary to merge two domain-specific languages:

MERGED METAMODEL

AGENDA

- The problem of uncertainty in system design
- The U-Test H2020 project
- · U-Taxonomy: A conceptual model of uncertainty
- Applying the U-Taxonomy to CPS Testing

• Summary

UNCERTAINTY AS PRIMARY DESIGN CONCERN

Methods that explicitly address uncertainty

Set of all the things we need to know

THE U-TEST H2020 PROJECT

 Primary focus on testing CPS in the presence of uncertainty

· Objectives:

- An extensible conceptual framework for representing and reasoning about uncertainty (the <u>U-Taxonomy</u>)
 - Status: Initial proposal available
 - · Potentially reusable beyond the testing context
- New methods for testing (initial work commencing)
 - Status: Experimental testbed and tool under construction
 - Status: Industrial case studies in development

THANK YOU!

An Uncertainty Taxonomy to Support Model-Based Uncertainty Testing of Cyber-Physical Systems MAN ZHANG, BRAN SELIC, SHAUKAT ALI, TAO YUE, OSCAR OKARIZ AND ROLAND NORGREN Technical Report TR 2015-3, Simula Research Laboratory https://www.simula.no/publications/uncertainty-taxonomy-support-model-based-uncertainty-testingcyber-physical-systems