
US010425324B2

(12) United States Patent
Camacho Villanueva et al .

(10) Patent No . : US 10 , 425 , 324 B2
(45) Date of Patent : Sep . 24 , 2019

(54) METHOD OF COMPUTING BALANCED
ROUTING PATHS IN FAT - TREES

(56) References Cited
U . S . PATENT DOCUMENTS

(71) Applicant : Fabriscale Technologies AS , Fornebu
(NO)

(72) Inventors : Jesus Camacho Villanueva , Valencia
(ES) ; Tor Skeie , Oslo (NO) ; Sven - Arne
Reinemo , Oslo (NO)

5 , 561 , 768 A * 10 / 1996 Smith GO6F 15 / 17343
712 / 13

7 , 496 , 797 B2 2 / 2009 Rooholamini et al .
7 , 724 , 674 B2 5 / 2010 Lysne
7 , 860 , 096 B2 12 / 2010 Johnsen et al .
8 , 139 , 507 B2 3 / 2012 Powers et al .
8 , 743 , 890 B2 6 / 2014 Johnsen et al .
9 , 007 , 895 B2 4 / 2015 Schlansker et al .

(Continued) (73) Assignee : Fabriscale Technologies AS , Fornebu
(NO) OTHER PUBLICATIONS

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .

(21) Appl . No . : 15 / 679 , 974

(22) Filed : Aug . 17 , 2017
(57)

(65) Prior Publication Data
US 2019 / 0058652 A1 Feb . 21 , 2019

(51)

Feroz Zahid , et al . ; “ SlimUpdate : Minimal Routing Update for
Performance - based Reconfigurations in Fat - Trees ” ; Conference Paper ;
Sep . 2015 . (9 pgs .) .

(Continued)
Primary Examiner — Dady Chery
(74) Attorney , Agent , or Firm - Oblon , McClelland ,
Maier & Neustadt , L . L . P .

ABSTRACT
A device and method for providing balanced routing paths in
a computational grid including determining a type of topol
ogy of the computational grid having a plurality of levels ,
wherein each level includes a plurality of switches , deter
mining whether the type of topology of the computational
grid is a fat - tree , determining whether the fat - tree is odd ,
determining whether the fat - tree is a regular fat - tree , com
puting a first set of routing paths for the computational grid
based on the determining of whether the fat - tree is odd and
is a regular fat - tree , computing a second set of routing paths
for the computational grid using a topology agnostic routing
technique , and configuring forwarding tables in said
switches with the first set of computed routing paths when
the topology is determined to be a fat - tree and with the
second set of computed routing paths when the topology is
determined to not be a fat - tree .

18 Claims , 38 Drawing Sheets

Int . Ci .
H04L 12 / 721 (2013 . 01)
H04L 12 / 755 (2013 . 01)
H04L 12 / 44 (2006 . 01)
U . S . CI .
CPC H04L 45 / 14 (2013 . 01) ; H04L 45 / 021

(2013 . 01) ; H04L 12 / 44 (2013 . 01)
Field of Classification Search
CPC . . . HO4L 41 / 0813 ; H04L 49 / 15 ; H04L 49 / 10 ;

HO4L 41 / 083 ; H04L 49 / 358 ; HO4L
41 / 0836 ; H04L 12 / 44 ; H04L 45 / 14 ; H04L

45 / 021 ; G06F 9 / 5077
See application file for complete search history .

(52)

(58)

- 105
103 103B

- - - - - 110

103A

101B

SA 00

US 10 , 425 , 324 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

9 , 014 , 201 B2
2013 / 0121149 Al
2013 / 0301645 AL
2013 / 0301646 AL
2014 / 0064287 Al
2014 / 0269342 A1
2015 / 0030034 A1
2016 / 0014049 A1 *

4 / 2015 Bogdanski
5 / 2013 Guay et al .
11 / 2013 Bogdanski et al .
11 / 2013 Bogdanski et al .
3 / 2014 Bogdanski et al .
9 / 2014 Baron
1 / 2015 Bogdanski et al .
1 / 2016 Zahid . H04L 45 / 48

709 / 226
6 / 2017 Haramaty HO4L 45 / 48
3 / 2018 Tasoulas G06F 9 / 5077

2017 / 0187614 A1 *
2018 / 0062925 A1 *

OTHER PUBLICATIONS
“ Multi - homed fat - tree routing with InfiniBand ” ; (8 pgs .) .
Bartosz Bogdanski , et al . ; “ Discovery and Routing of Degraded
Fat - Trees ” ; (6 pgs .) .
Feroz Zahid , et al . , “ Efficient Network Isolation and Load Balancing
in Multi - Tenant HPC Clusters ” ; Preprint Submitted to Journal of
Future Generation Computer Systems ; (30 pgs .) .
Jesus Escudero - Sahuquillo , et al . ; " A New Proposal to Deal with
Congestion in InfiniBand - Based Fat - Trees ” ; Article in Journal of
Parallel and Distributed Computing ; Jan . 2014 ; (19 pgs .) .
Fabriscale ; “ HPC Advisory Council ” ; Lugano , Mar . 2015 ; (32 pgs .) .
Feroz Zahid , et al . ; “ A Weighted Fat - Tree Routing Algorithm for
Efficient Load - Balancing in InfiniBand Clusters ” ; Conference Paper
PDP 2015 , Turku , Finland ; Mar . 5 , 2015 ; (27 pgs .) .
Bogdan Prisacari , et al . , “ Fast Pattern - Specific Routing for Fat Tree
Networks ” ; ACM Transactions on Architecture and Code Optimi
zation ; vol . 14 , No . 4 ; Article 36 ; Dec . 2013 (27 pgs .) .
“ Deploying HPC Cluster with Mellanox InfiniBand Interconnect
Solutions ” ; Reference Design ; Mellanox Technologies ; Jan . 2017
(40 pgs .) .
Eitan Zahavi ; “ Fat - Trees Routing and Node Ordering Providing
Contention Free Traffic for MPI Global Collectives ” ; CASS 2011 ;
Mellanox Technologies LTD ; EE Department — The Technion ; (27
pgs .) .

“ InfiniBand FAQ ” ; Mellanox Technologies ; Last Updated : Dec . 22 ,
2014 ; (16 pgs .) .
Eitan Zahavi , et al . ; " Optimized InfiniBand Fat - Tree Routing for
Shift All - to - All Communication Patterns ” ; Concurrency and Com
putation : Practice and Experience ; Published Online in Wiley
InterScience ; www . interscience . wiley . com ; (15 pgs .) .
Wei Lin Guay , et al . ; “ A Fat - Tree Routing Algorithm Using Dynamic
Allocation of Virtual Lanes to Alleviate Congestion in InfiniBand
Networks ” ; (11 pgs .) .
Bartosz Bogdanski , et al . ; “ A Fully Connected and Deadlock - Free
Switch - to - Switch Routing Algorithm for Fat - Trees ” ; ACM Trans
actions on Architecture and Code Optimization ; vol . 8 , No . 4 ;
Article 55 ; Jan . 2012 . (20 pgs .) .
Guay et al . ; “ USPTO Response to Office Action Under 37 CFR
1 . 111 ” ; U . S . Appl . No . 13 / 671 , 467 , filed Jul . 6 , 2015 ; (9 pgs .) .
Wei Lin Guay , et al . ; “ A Fat - tree Routing Algorithm Using Virtual
Lanes to Alleviate Congestion ” ; 2011 IEEE International Parallel &
Distributed Processing Symposium ; (12 pgs .) .
Feroz Zahid , et al . ; “ A Weighted fat - tree Routing Algorithm for
Efficient Load - Balancing in InfiniBand Clusters ” ; PDP 2015 , Turku ,
Finland ; Mar . 5 , 2015 . (26 pgs .) .
Feroz Zahid , et al . , “ Slim - Update : Minimal Routing Update for
Performance - based Reconfigurations in Fat - Trees ” ; Conference Paper ;
Sep . 2013 . (9 pgs .) .
Cyriel Minkenberg ; “ Interconnection Network Architectures for
High - Performance Computing ” ; Advanced Computer Networks
Guest Lecture ; May 21 , 2013 ; IBM Research Zurich ; (101 pgs .) .
Bartosz Bogdanski ; “ Optimized Routing for Fat - Tree Topologies ” ;
Thesis Submitted for the Degree of Philosophiae Doctor Depart
ment of Informatics ; Faculty of Mathematics and Natural Sciences ,
University of Oslo ; Jan . 2014 ; (155 pgs .) .
Bartoz Bogdanski ; “ Optimized Routing for Fat - Tree Topologies ” ;
Thesis Submitted for the Degree of Philosophiae Doctor Depart
ment of Informatics ; Faculty of Mathematics and Natural Science ,
University of Oslo ; Jan . 2014 ; (156 pgs .) .
" InfiniBand Architecture Overview ” ; Mellanox Technologies ; (276
pgs .) .

* cited by examiner

U . S . Patent Sep . 24 , 2019 Sheet 1 of 38 US 10 , 425 , 324 B2

VIOL

12eOr .

SOL
. . .

. .

VIB !
WS .

000 901
Hie

801 000
VEOL

{ } , { - - -

U . S . Patent

* : :

: : : : : : : : : : : : :

22 :

3 ?

? :

: : : : : : : :

Sep . 24 , 2019

:

: : : : : : : * * * * : : :

. . : : : : : : : : * * * : : : :

: .

*

??

: :

Sheet 2 of 38

:

???

: -

* * = = = =

12 - 14

???
5

, N

? :

. .

?

? ? ???

? :

:

3

: :

. : .

: : 33 :
?

? :

Bottom Level

, 11???????????????????? ?IIII

?? 10 , 425 , 324 32

:

Fig . 1B

U . S . Patent Sep . 24 , 2019 Sheet 3 of 38 US 10 , 425 , 324 B2

Top Level Middle Bottom Level
??????????????????

152 : 45 , 2 Level VY

1431
2

170

S 10 . :
* *

* *
*

*
* *

* *
* * *

.

Ras . 1

rritetett .

Fig . 1C

WWW XXX 492

U . S . Patent Sep . 24 , 2019 Sheet 4 of 38 US 10 , 425 , 324 B2

Identify input network topology ology 201 2

Fat - tree topology ? Compute paths for Random
Topology 203

Compute primary and redundant paths
for Fat - tree tonology

209 Store computed paths in
Routing - Database

Topology Changes N

L
Fat - tree topology ?

- 213
Compute paths for Random

Topology
-

Process down - link changes 1 ?

Process up - link changes

.
Change Operation mode NNN Update Routing - Database :

Store in Linear Porwarding Tables - - 223

225 All paths ?

229
Update Manager and

227
Change in Subnet manager ?

Fig . 2

U . S . Patent Sep . 24 , 2019 Sheet 5 of 38 US 10 , 425 , 324 B2

300 Check Odd Fat Tree

Determine number of bottom level
switches (B)

303 Determine maximum number of V . .
Brost channel adapters in a bottom

level switch (1)

.

305 Determine number of levels in the
tree topology (L)

LOE . . - 60€

Return Fat Tree is ODD

SL - 3 & H2 > BAY

moniom 313
Return Fat Tree is not ODD W22 in 315

Number of upward poris per bottom level
inter switch - 13urber of HCAs on the switch

321

Retur Fat Tree is not regular 317

Return Fat Tree is regular Fig . 3
.

2 yede man

405

Fig . 4

? . ? ?? . ?? ?? ? ? ? ? ??? ?? ?? ? ? ??? ?? ? ? ? ? ? ?

* * OOP 00000000000 " „ 1000000000000000 M

- - w w - - w * * * * * www w w w w * - - - - - - * * * - - - - - * - - - * - - - -
02

56
???? ??? ??? ????? ?? ??? ?? ??? ???? . * ????

Level Bottom Level Middle Level 420 DEV

Ta võE?stt ' ol sa 8€ Jo 9 jaayS 6107 ‘ tz ' d?s f?rd Sin

U . S . Patent Sep . 24 , 2019 Sheet 7 of 38 US 10 , 425 , 324 B2

do1 Level Middle Level WI03108 Leve)
Counter (S6 , P8) touk Counter (58 , 26) + +

981 ? . ? ?? ?? ? . ?? ?? ?? ? ? . ? ??? .

* * { 2d25) ajunos -

- DOGODI000000000 ! D000000000000000 Fig . 5

Counter (55 , P1) *

54
Counter (54 , P1) * *

Counter (51 , P2) * *

Counter (S3 , P5) * + Counter (S7 , PS) to Path 2

www www maten
15d

00000000000000
U . S . Patent

src _ dsi _ counter (S1 , P2) ott

src dst , counter (S2 , P2 .) + +

src _ dst _ counter (S6 , P8) vi

- - - - -

src dst counter (53 ,
25) tito

Sep . 24 , 2019

- - - -

* * * * * * * * * * zoo 000 0000 00
P3

sredst counter (54 ,
P1) . * *

Sheet 8 of 38

src _ dst _ counter (S7 ,

src dst _ counter (58 , P6) + +

25

3 .

$ 7

US 10 , 425 , 324 B2

Fig . 6

00000000 0000 ????

U . S . Patent Sep . 24 , 2019

????????????????
Sheet 9 of 38

$ 1

S10

S11 ?????????????? Base Patka SI - > D1 Base Path SI - > 02

DLD2

US 10 , 425 , 324 B2

Fig . 7A 1

$ 1 > D2 first redundant path
S101 first redundant path

$ 10
D1

$ 11
D2

Fig . 7B 0000000000000000 OPOOQ00000000000 ?? ???? ??? ???? ???? ?? ???? ??? ??? ?? ???? ?? ???? ??? ??? ?? ??? ?? ???? ??? ??? ???? ???? ???? ??? . ??? ??? ??? ??? ?? ??? ?? ??? ?? ???? ??? ??? ??? ??? ??? ???? ???? ???? ???? ???? ???? ???? ??? ???? ??? ???? ??? ???? ??? ????? ??? ???? ?? 00000000000000 Odd _ counter (SS , S1 , P1 , 1) + Odd _ counter (S4 , S1 , P1 , 1) .

US 10 , 425 , 324 B2 Sheet 10 of 38 Sep . 24 , 2019 U . S . Patent

????????????????
U . S . Patent

Odd counter (S6 , X , PS . 2) + of

13 : 1

Sep . 24 , 2019

???????????????? HERSORIODatagration

Sheet 11 of 38

font ??????????????? hmmmmm

Mammmm

SL - D2 Base path

D12

$ 1

D2 first redundant path

US 10 , 425 , 324 B2

$ 1 wey D2 second redundant path

i

Fig . 7C

MIDDENISSION

U . S . Patent Sep . 24 , 2019 Sheet 12 of 38 US 10 , 425 , 324 B2

M

???????????????? oooooooo oooooooy ???????????????? Fig . 8A

SX ED Base Paths

LLLLLLLLL

DOWOOD WODOO900

U . S . Patent

Pn1 _ n4 counter (P1 , P2 } + +

Pn1 _ h4 _ counter (P . 2 , P3) + +

Pri _ h4 _ counter (P1 , P4) + +

1 * Sx - > D Base Faths

Sep . 24 , 2019

P2 / P

4 ROO0C00000000000
Sheet 13 of 38

0

000000000000
US 10 , 425 , 324 B2

Fig . 8B

U . S . Patent Sep . 24 , 2019 Sheet 14 of 38 US 10 , 425 , 324 B2

51 - 04 Base Path

? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ wwwwwwwwwwwwwwwwwwww . mwmwmwmwmwmwmw { ???????????????? ~ ~ TT ??????????????? ???????????????? g _ Fig . 9A

ta _

? $ 1 - 03 Base Path
a _ ai

S1 - D2 Base Path |

accc yzed aseg IO - IS

0000000000000000
U . S . Patent

Pn2 end counter (P1 , 2 , P2 } * *

Pn2 end counter (P1 , 2 , P3) + * i

Pn2 and _ counter (P1 , 2 , P4 } * *

Sep . 24 , 2019

.

00000000000
t *

Sheet 15 of 38

00012 00000000
01

02

03

04

US 10 , 425 , 324 B2

Fig . 9B !

switch ost _ counter (S1 , D3) dice

switch ost counter (S2 , D5) fare for

POD000000000 @ IDO

U . S . Patent Sep . 24 , 2019

- - - - -

Sheet 16 of 38

- - - - - -

0000000000000000 03

05

US 10 , 425 , 324 B2

aber Path 2 .

Fig . 10

U . S . Patent Sep . 24 , 2019 Sheet 17 of 38 US 10 , 425 , 324 B2

Compute primary and redundant paths
for input tree

- - - - -

1 1 Determine whether input tree is ODD fat - tree
or a regular fat - tree

1102 Generate source switches

Generate destination switches annummer 1 103

Initialize : Half Size = FALSE :
Reset Counters ,
Mode = 1 ,

SRC DST PORT = 1)

ODD Tree ? Increment Mode

Mode < = 2 ?

- - - - - - - - - - - - - 1108
Increment Mode

1109
Mode | Paths - 0

sonra

Paths = Total Redundant paths

Initialize selected ports for base path and
redundant paths - 1112

Fig . 11A

U . S . Patent Sep . 24 , 2019 Sheet 18 of 38 US 10 , 425 , 324 B2

1120 Counter K = - 1
point

Increment K
1122 1

- : - : - : - : - : - : - : - :

Deterinine whether source switch is bottom level switch 1124

if Bottom level
N
INC = 1

Assign parameter INC =
- - No . of HCÁs of the source

switch
.

1

wwwat son 1126 Counter M = - 1

1127mm Increment M 1 *

1128 SRC DST Counter - 0

1129 Determine whether current source switch and
destination switch are 4 hops apart

Determine whether Case 0 : Fat Tree is 2 levels
& & Half Size & & Regular is TRUE ana

Compute parameter P based on mode , K , and
nunber of ports in destination switch 3

1132
* Source switch = = Destination switch

Current switch = source switch , parameter UP
upward ports , Hop () , Case 3 = FALSE . mm 1133 1

.

Compute Source - Destination path www . 1134

Fig . 11B 1 procent

U . S . Patent Sep . 24 , 2019 Sheet 19 of 38 US 10 , 425 , 324 B2

« Processed all destination ports in the destination switch ?

1

Processed all destination switches ?

1152 {

Processed al source switches ?

Processed all Paihs ?

1154 1154 Y
Mode < = 2 ?

Bar End

Fig . 110

U . S . Patent Sep . 24 , 2019 Sheet 20 of 38 US 10 , 425 , 324 B2

1200
. . : .

Compute parameter P
- 1203

.

Mode = 1 P = m
VII

1207 VII

Case 0 ????????????

IN
TRUE ?

1205

IVI Parameter aux number of HCAS
in destination switch

* 1213

1

1
P = (k % aux) * 3 + (k * 3) / aux V

P p % Num ports (destination switch)

Fig . 12

U . S . Patent Sep . 24 , 2019 Sheet 21 of 38 US 10 , 425 , 324 B2

Compute Best port

Determine port to examine
1301

Initialize ; check = TRUE

1303

Regular fat tree & & Hop = 1 & & next .
switch (port) = destination switch -

Increment parmeier pori - up . 1307

CO = hops until destination switch (port)
1331

Apply rules Check Conditions ?
1333

7315
- - - . . Hops ? & & Mode = 2 & & ! Odd

. . . .
Assign New path = TRUE based on a

condition being satisfied 1317
Update minimum counter CO : C6

post pos - - bp _ hop _ 00 %) ; C = C3 = (
. . : . 1321 ??? 1319 Best port = port

C4 - 04 - 1

1337
(4 = 0) 1323

N Check Check = IROË : - 1325 1327

C5 - cointer (caurent - switch , port) ,
C6 - sum of counters of next switcli All ports processed

. . Apply prioritization to determine hest port 13397
1329

Fig . 13

U . S . Patent Sep . 24 , 2019 Sheet 22 of 38 US 10 , 425 , 324 B2

Apply Rules

path number OOR
Switch is not at botto : 31 level

{ Odd Fat Tree & & path number > 0 & & switch at bottom level & & Mode = 2 & & * *
((src _ dst 4hop & & path _ number (5) OR (2 Level tree & & path _ number < 3 } } } |

- - - - - - - - - - - - - - - - Rule 2

path . ammber 1 & &
src _ dst _ 4hop Rule 3

Suarat 3 w

Rule 4 Ruie 4 141

U . S . Patent Sep . 24 , 2019 Sheet 23 of 38 US 10 , 425 , 324 B2

Rule 1

CO > co _ min - -
1501A

Return to Step 1301 in Fig . 13

1501B
c1 = infinite ; c ? = infinite 1501

c3 = counter { current switch , port) 1502

(CO AND hop < = } OR OOD Fat I ' rec) * * *
&

Bottom level switch ?
* 1503

1504 N Check Half Size =
FALSE to

1505
Check Half Size = TRUE

15072 Ovid Fat Tree ? N
- - - . - - .

1508 - - Path already taken =
-

casel = (Regular fat trec) AND (3 level) AND (half size)
case2 = (Regular fat tree) AND (! 3 level) AND (hali size) 1509

C4 = Get (C2 ; C4)

* exkl _ ta _ tree AND { path _ already taken - - Cl = 0 anos 1912

3 level OR case2
1514

hop 1 AND CO - 3 AND I case 1 AND lodd fat free
1516

- . - . - .
. - . - . - . - 1517 Y (hop (AND 3 level) OR casel * * * * ole . . . isten C4 = 0) OR (case2 AND mode = 1) 1518

Fig . 15A

U . S . Patent Sep . 24 , 2019 Sheet 24 of 38 US 10 , 425 , 324 B2

1550 L
W 1521
m bo

Return to Step 1301 in Fig . 13

. . TAI
Port - bp hop _ Ob ? N Hop - o

1522A

Retrieve switch / port used in the base path . 7523
aux _ switch = base _ path _ switch _ hop (path _ number - 1) 1524
aux _ port = base _ path _ port _ hop (path _ number - 1) - 1925
C1 = sredst _ counter (current switch , check port) 1526

C2 - odd counter next switch (check pori) ,
aux switch , aux port , path number) 1527

2 _ levei AND aux switch = next _ switch (check _ port) AND
path _ cumber - 2

1528

C3 = C2 ; C2 = C1 ; CI = Infinite
1529

. Aux port = base path port (current switch , dest _ port)
1530

1531
Aux port = = port - C1 = Infinite L

Fig . 15B

C3 = C4 C5 C6 = 0 ; Check FALSE best End

U . S . Patent Sep . 24 , 2019 Sheet 25 of 38 US 10 , 425 , 324 B2

Rule 3
1580 1541A

Hop - - O & & port ! = bp hop Ob
Hop = 1 ?

Return to Step 1301
in Fig . 13 Check _ port = { (k / up) % up) - ((m / up) % up)

- 1542
1541B 1343 . Check port < 0

(544 Check port up
1546 - - - - - - - - - - - - - - -

1545
* * * - - - - - - -

Check _ port = bp _ hop _ lb tem Check port = 0)

Check port * * up ;
Check port % = up

. 1548

www . home . Hop = 1 AND Half _ Size ?

. . . N

1553 .
Conditions ?

_ 1551
. . N

Check port % 2 = 0 - - -
* * min

Check port es eine Check port + +
- - - - - - - - - -

CO = hops until dest (check port) ; check
minimal path and avoid base port

1554 Hop - - 1 ?
1555

c3 = pnl _ 14 _ counter (bp hop _ lb , check _ port) 1556
Fig . 15C

U . S . Patent Sep . 24 , 2019 Sheet 26 of 38 US 10 , 425 , 324 B2

pe 1561
< Hop = 0 ? K

mm 1562
. . . * * * (sic _ ost _ Ahop AND Hop > 2) ÖR " N
Time . . Isrc _ dst _ 4hop AND hop > 1) . . .

y 1563 1564
Lero _ dst _ 4hop check _ port = hop - 2

1565
check port = hop - 1

pa 1566

check port (% up) + (m % up) + check port * op hop Or ;
check port to port ;
check _ port % = up

- 1568 1567 . . .
imba src _ dst _ 4hop ? check _ port = (k % np2) - (m % np2)

1574 1569 - 1573
check port = { (k ! wp) * (k % up) + (m / up) + (7 % up)) % up Check port < 0 ? aux + - up

1570 1575
check _ port * * bp _ hop Ob Check porto ?

1571 1576
N check port - (in / up) + (k % up) + (in / up) + (m % up) % up

Y
check port

* * . . bp _ hop _ 01
. . .

1577 check poit * * port ; check _ 0011 % - up Check pori - 0

1572 1578 . N check port
abp _ hop _ Ob 1579

Fig . 150 check _ port = (klup) % 3p 1583

Y check port to port
Check port % = up

1581 -
N . . . check _ porta

The bp hop _ 05 . . . - -
band check port - - (m / up) % up 1582 .

U . S . Patent Sep . 24 , 2019 Sheet 27 of 38 US 10 , 425 , 324 B2

- - 1586
Check : C0C0 min

Hop = 0 & & port - bp 0 0b & &
path number < BP . . .

Return to Step 1301 in Fig . 13

N m 1587

. . - - - - hop > O AND path number > O AND
[new pati _ found

1588

path taken =
port taken _ in _ previous path _ nunber (check _ port) - TRUE

Hop = = 0 ?

c3 = pn2 end counteribp hop Ob , path number , check port)

* * * *

.
Infinite

. src dst port (current switch , dest port , . . .
. path _ number , mode) ?

1592 592A
-

c1 = src dst counter (current _ switch , port) 1594

- - 1596
. (irop - O AND path _ number * * 2) OR

(hop AND path number 1 AND ! src dst thop) . . .
N

IVI

- - - - - - - - - - - - C3 - 0 I

1598
VIVIET

End

Fig . 15E

U . S . Patent Sep . 24 , 2019 Sheet 28 of 38 US 10 , 425 , 324 B2

Compute Source - Destination path

Current Switch * * * . . . Y
Destination switch ? . * *

to co min = c1 min = 42 min = c3 min
04 min 65 min 6 min infinite 1603

Best port - 0) ; port _ up
w 1605

Compute Best port | 1607 1609
N sc * * * B level OR (! $ _ leve AND ! src dsé poui (current switch , dest part , paih aumber , mode . c

AND path _ number = - 0

Best port check _ best _ port

Path number = 0) ?

1613 1615
counter (current switch , best port) * *

0 src ast counter { current switch , best port) > O AND hop =
AND O level . ANO 2 level AND path number > 0

Case 3 =
FALSE

1619

case3 = more than one minimal path _ from _ next _ switch to destination = = TRUE

src est counter { current switch , best port) * * NC

Fig . 16A

U . S . Patent Sep . 24 , 2019 Sheet 29 of 38 US 10 , 425 , 324 B2

1625
Path number - 0 AND B _ level ? -

- 1627

path _ number = 1 AND src _ dst _ 4hop AND hop = 1

pnl _ 54 _ counter { bp hop 1b , best port) + INC
163 - www

. do hop = 0 . .

1633
p12 _ end _ counter (op hop Ob , path _ number , best port) = INO

1635
(path number = 1 AND hop =) OR . .

(path number - 2 AND bop 0
AND src _ dst thop)

21

bp hop Or = best _ port 1637

; 1639
path _ number = (AND hop = O AND hea _ found

bp hop Ob = best port - - 1641

1643

path _ number = 0 AND (hop = 1 OR hop = 2) AND b level

Fig . 16B

U . S . Patent Sep . 24 , 2019 Sheet 30 of 38 US 10 , 425 , 324 B2

© 1645
* * * (hop = 1 AND Isrc dst thop) OR .

(hop = 2 AND src dst 4hop .) .

1647
switch dst counter (current switch , dest port) + + .

hop = 1 AND src _ dst _ 4hop
1649

bp hop _ 16 = bestport
? ? ?

hop = = (?
Y 7653

bp hop Oe = best pori 1655
www .

odd _ fat _ tree AND b _ level

1659 .
{ src dst 4hop AND path number < 5) OR

(2 level AND path _ number < 3)
1661

?????

aux switch = base path switch hop (path number - 1)
aux port = base path port hop (path _ number - 1)

odd counter (next switch best port } , aux switch , aux port , path number) #

Fig . 16C

U . S . Patent Sep . 24 , 2019 Sheet 31 of 38 US 10 , 425 , 324 B2

Hope
current switch = next switch (best port) ;
case4 = path _ number LAND sredst 4hop AND hop * 3 ;
cases = path sumber - 1 AND ! src dst 4hop AND hop) ;
case6 = ((odd fat tree AND path number > O) OR path _ number > 1) AND hop > 0 ;
case7 = current switch ! = dest switch AND

! src dst port (current switch , dest port , path number , mode) AND
! src dst port (current _ switch , dest port , base path , mode)

- - - - - - - - - - - - - - - - - - -

1665

N
case3 AND (case4 OR cases OR caseó) AND ! case7 O) AND ! case

aux port - src dst port (current switch , dest _ port , path number , mode) ;
SIC _ dst _ counter (current _ switch , port) * INC ;

current switch = dest swiich
Copy Source - destination - port from base path to redundant path wwwwwwwwwwwwwwwwwwwwwwwwwwwww

Fig . 16D

U . S . Patent Sep . 24 , 2019 Sheet 32 of 38 US 10 , 425 , 324 B2

C4 = Get (C2 ; (4)

C4 * infinite

1703

(Odd Fat Tree) AND (Next Switch through the current port to . .
current destination was computed)

.
. . . .

premom 1705

mamman Retum : Already Taken = TRUE ; C2 - C4 = Infinite

1707
caseo - 2 level AND lodd fat tree AND

half size

pain 1709

Next Switch through the current port is destination switch AND I Case 0

1711

Return : Already Taken = FALSE ; C2 - C4 - Infinite

. . * * (hop
+ . 1 OR (hop O AND 2 level AND lodd fat tree))

AND Half Size AND check half size

?? Verify Hall - Size ?
Check halt size = FALSE

Fig . 17A

U . S . Patent Sep . 24 , 2019 Sheet 33 of 38 US 10 , 425 , 324 B2

Look for next port hp 1719 1719 No Mininal Pathi
For every port in next switch through the current port

Path through next port is minimal 1721

Regular fat tree AND ((mode * 2 AND 2 leve : AND
hop : 0) OR (3 level AND hop = 1)) 1727 1723

1726 Ives yes 1725 port pos = port up . " 1737 -

moon then C4 - 0 , else C4 = Look for next port C2 = nfinite
for every mort is the next switch

No
End Loop

Hair Size ?
Yest

(op _ hun _ 1 % 2 = 1 AND port _ pos * post _ 119)
OR (bn Bop 1 % 2 = AND post _ p05 % 2 % }
AND port pos + 1 Sport 1 : P)
OR (on bop 1 % 2 - OAND post pos % 2 - 0
AND post _ pos - } * * ? ort _ ?? Only I hop to destinatiou from next ;

switch through Bext port 1729

- - - - - - - - - - -

Yes
get counter from next switch - aux port

(incremented in base pats) :
C - counter (next _ switcri , aux _ port)

1743 1741 C40 04z1
* C2 = Infinite

Return C4
1739

2 222
No C < 027

C4 - Switch _ dst _ counterriext switch , dest _ port)
02 - 0 1745

1735

Retum . Already Taken = FALSE ; C2 and C4 1747

End * *

Fig . 17B

U . S . Patent Sep . 24 , 2019 Sheet 34 of 38 US 10 , 425 , 324 B2

Check Best Port

case1 = 2 _ level AND half _ size AND regular _ fat _ tree mamman 1801

secondo i 1803
1 and case3 ? hop

1807
1805

current _ port = src _ dst port (current _ switch , dest _ port , case3 , mode)
current pori = sic dst port (current switch ,
dest port , path numbss , mode)

3809

current port OR case1

- . - . 1811
- . - - . - - . - - . - - . - current _ pori = best port ??

- - ' - - ' -

return current _ port
- ' - - ' - - ' - - '

1813

Fig . 18

U . S . Patent Sep . 24 , 2019 Sheet 35 of 38 US 10 , 425 , 324 B2

Process down - link changes

Get Broken Port 1901

switch = get _ switch (port) 1903

get all source dest pairs going through (port)
1905

Mark switchport as faulty - 1907
win

* All source - destination pairs ?
- 1909

get best alternative path 1911
Update Table

???????????????? +

Fig . 19

U . S . Patent Sep . 24 , 2019 Sheet 36 of 38 US 10 , 425 , 324 B2

Process up - link changes

Get Working Back Port

switch = get switch (port)

get all source dest pairs going through (port)
2005

Mark switch / port as operational
2007

pon . All source - destination pairs ?

2009
2011

Best Output Path ?

Update Table
2013

Fig . 20

U . S . Patent Sep . 24 , 2019 Sheet 37 of 38 US 10 , 425 , 324 B2

Change Operation mode

regular _ fat _ tree = fat - tree _ follows the definition of X - ary Y - tree accennann - 2101

case1 - (2 _ level _ fat - iree AND hali size AND regular _ fat _ tree) OR 3 _ level _ fat - tree 2103

- 2105
N

link _ down AND fault _ sumber 1 AND case1 AND lodd _ fat _ tree .

2107

update _ forwarding tables (mode2)

er0

2109

link up AND fault number O AND case ? AND lodo fai tree

updale forwarding tables (mode 1) . . . 2111

Fig . 21

2201

U . S . Patent

2210

2207 . . .

HARD DISK
REMOVABLE MEDIA DRIVE

2216

.

.

.

.

.

. . . .

. .

. . . .

2209

2204

2205

DISPLAY

2208

Sep . 24 , 2019

DISPLAY

MAIN
CONTROLLER I MEMORY

ROM

DISK CONTROLLER

COMMUNICATIONS NETWORK

KEYBOARD

BUS

2202

2215

POINTING DEVICE

Sheet 38 of 38

COMMUNICATION INTERFACE
PROCESSOR

LAN

2212

2214

2203

2213

MOBILE DEVICE
2217

Fig . 22

US 10 , 425 , 324 B2

US 10 , 425 , 324 B2

METHOD OF COMPUTING BALANCED using a topology agnostic routing technique , upon determin
ROUTING PATHS IN FAT - TREES ing that the topology is not a fat - tree , and configure for

warding tables in said switches with the first set of computed
FIELD OF THE INVENTION routing paths when the topology is determined to be a

5 fat - tree and with the second set of computed routing paths
The present disclosure relates to a system and method of when the topology is determined to not be a fat - tree .

computing balanced routing paths in fat - tree network According to one embodiment , there is described a non
topologies . transitory computer readable medium having stored thereon

a program that when executed by a computer causes the BACKGROUND computer to implement a method of providing balanced
routing paths in a computational grid . The method includes The background description provided herein is for the the steps of determining a type of topology of the compu purpose of generally presenting the context of the disclo tational grid , the computational grid having a plurality of sure . Work of the presently named inventor (s) , to the extent levels , wherein each level includes a plurality of switches , the work is described in this background section , as well as 15

aspects of the description that may not otherwise qualify as determining whether the type of topology of the computa
prior art at the time of filing , are neither expressly nor tional grid is a fat - tree , upon determining that the topology
impliedly admitted as prior art against the present disclo is a fat - tree : determining whether the fat - tree is odd , upon
sure . determining that the fat - tree is not odd , determining whether

The fat - tree network topology has several advantages 20 the fat - tree is a regular fat - tree , computing a first set of
over traditional routing topology . However , in the situation routing paths for the computational grid based on the
of an odd - fat tree (a special type of fat tree defined below) determining of whether the fat - tree is odd and whether the
balancing of connections within the switching architecture fat - tree is a regular fat - tree , upon determining that the
can be a problematic . topology is not a fat - tree : computing a second set of routing

25 paths for the computational grid using a topology agnostic
SUMMARY routing technique , configuring forwarding tables in said

switches with the first set of computed routing paths when
The foregoing paragraphs have been provided by way of the topology is determined to be a fat - tree and with the

general introduction , and are not intended to limit the scope second set of computed routing paths when the topology is
of the following claims . The described embodiments , 30 determined to not be a fat - tree .
together with further advantages , will be best understood by
reference to the following detailed description taken in BRIEF DESCRIPTION OF THE DRAWINGS
conjunction with the accompanying drawings .
According to one embodiment , there is described a Various embodiments of this disclosure that are proposed

method of providing balanced routing paths in a computa - 35 as examples will be described in detail with reference to the
tional grid . The method includes the steps of determining a following figures , wherein like numerals reference like
type of topology of the computational grid , the computa - elements , and wherein :
tional grid having a plurality of levels , wherein each level FIG . 1A illustrates according to an embodiment , an exem
includes a plurality of switches , determining whether the plary switched - fabric - network architecture ;
type of topology of the computational grid is a fat - tree , upon 40 FIG . 1B depicts an exemplary full - size regular fat tree
determining that the topology is a fat - tree : determining topology according to one embodiment ;
whether the fat - tree is odd , upon determining that the fat - tree FIG . 1C depicts according to an embodiment , a half - size
is not odd , determining whether the fat - tree is a regular fat - tree topology ;
fat - tree , computing a first set of routing paths for the FIG . 2 depicts according to one embodiment , a flowchart
computational grid based on the determining of whether the 45 illustrating the steps performed by a method in computing
fat - tree is odd and whether the fat - tree is a regular fat - tree , routing paths (primary paths and redundant paths) in a
upon determining that the topology is not a fat - tree : com - network topology , and recovering from a topology change .
puting a second set of routing paths for the computational FIG . 3 depicts an exemplary flowchart outlining the steps
grid using a topology agnostic routing technique , and con - performed to determine whether a network topology is an
figuring forwarding tables in said switches with the first set 50 odd fat - tree , and if that is not the case , whether the network
of computed routing paths when the topology is determined topology is regular or not .
to be a fat - tree and with the second set of computed routing FIG . 4 illustrates an exemplary tree - topology including
paths when the topology is determined to not be a fat - tree . three levels ;

According to one embodiment , there is described a device FIG . 5 illustrates an example depicting the computation of
for providing balanced routing paths in a computational 55 a first counter by one embodiment of the present disclosure ;
grid . The device includes processing circuitry configured to FIG . 6 illustrates an example illustrating the computation
determine a type of topology of the computational grid , the of a second counter ;
computational grid having a plurality of levels , wherein each FIG . 7A depicts exemplary base paths from a source
level includes a plurality of switches , determine whether the switch to destination host - channel - adapters (HCAs) ;
type of topology of the computational grid is a fat - tree , 60 FIG . 7B depicts a scenario of a link failure in the network
determine whether the fat - tree is odd , upon determining that of FIG . 7A and computation of redundant paths ;
the topology is a fat - tree , determine whether the fat - tree is FIG . 7C depicts the computation of redundant paths for
a regular fat - tree , upon determining that the fat - tree is not the network of FIG . 7B after a topology change ;
odd , compute a first set of routing paths for the computa - FIG . 8A depicts the working of a counter to balance first
tional grid based on the determination of whether the fat - tree 65 redundant paths in a second hop ;
is odd and whether the fat - tree is a regular fat - tree , compute FIG . 8B depicts computation of a new best port for the
a second set of routing paths for the computational grid first redundant path computation of FIG . 8A ;

US 10 , 425 , 324 B2

FIG . 9A illustrates exemplary source — destination paths a Gateway 105 . Each end node includes an FICA that is
in a three - level fat - tree ; configured to set up and maintain the link with a host device .

FIG . 9B illustrates a scenario of a failed link in the host device is for example a compute host , monitoring
network of FIG . 9A and computation of redundant paths ; host , administration host , distributed file system host (e . g .

FIG . 10 depicts an exemplary illustration of a switch - 5 Lustre host) , server host , or storage host . Switches may
destination counter according to one embodiment ; redun - include more than one port and forward packets from one
dant paths avoid depicted base paths due to the illustrated port to another in order to continue the transmission of the
top - level counters . packet within a subnet . A router can be used to forward

FIGS . 11A , 11B , and 11C depict a flowchart illustrating packets from one subnet to another subnet , if required .
the steps performed in computing primary and redundant 10 Subnet management is handled through Software Defined
paths in input tree network ; Networking (SDN) , which controls the network ' s physical

FIG . 12 depicts a flowchart illustrating the steps per elements and provides traffic engineering features , often via
formed in computing a parameter P corresponding to a port open , industry - standard interfaces .
on a destination switch ; By one embodiment , the HCA is an interface card or

FIG . 13 depicts a flowchart illustrating the steps per - 15 controller that bridges between a wire and the system bus of
formed in computing a best (i . e . , optimal) port of a switch a host device . Each end node includes at least one HCA ,
that is to be used in a route that includes the switch ; which sets up and maintains the link between the host device

FIG . 14 illustrates a flowchart depicting the steps per - and the rest of the entities on the network . Examples of such
formed in determining a rule of a plurality of rules that is to entities are : another HCA , a target device , or a switch . HCAS
be applied in determining the best port ; 20 provide port connections to other devices . The switches

FIG . 15A depicts a flowchart illustrating the steps per - 101B and 103B as depicted in FIG . 1A are used to physically
formed while applying a first rule ; connect devices within a network and forward incoming

FIG . 15B depicts a flowchart illustrating the steps per data traffic toward its destination . Switches have multiple
formed while applying a second rule ; ports that process and forward data across cables to the

FIG . 15C depicts a flowchart illustrating the steps per - 25 specific device (s) for which it is intended , thereby regulating
formed while applying a third rule ; the flow of traffic within the network . The network archi

FIGS . 15D and 15E depict a flowchart illustrating the tecture as shown in FIG . 1A is referred to as a switched
steps performed while applying a fourth rule ; fabric - architecture because when traffic is forwarded there is

FIGS . 16A , 16B , 16C , and 16D illustrate a flowchart a logical connection from one port to another , similar to the
depicting the steps performed in computing a source - desti - 30 old - style telephone switchboards .
nation path ; By one embodiment , a Subnet Manager (SM) is a soft

FIGS . 17A and 17B depict a flowchart illustrating the ware entity that configures a local subnet and ensures its
steps performed in executing a function that is performed to continued operation . It sets up primary and secondary paths
obtain counters of a switch ; between every end point so that traffic flow forwarding

FIG . 18 depicts a flowchart illustrating the steps per - 35 decisions are preprogrammed and data arrives at the desti
formed in determining whether a current port of a switch is nation node in the least amount of time . It must be appre
an optimal port ; ciated that there must be at least one SM present in a subnet

FIG . 19 depicts a flowchart illustrating the steps per - in order to manage all switch and router setups , and to
formed in processing down - link changes in the input net reconfigure the subnet when a link goes down or a new link
work ; 40 comes up . The SM can reside on any of the devices within

FIG . 20 depicts a flowchart illustrating the steps per - the subnet . Furthermore , it must be appreciated that there
formed in processing up - link changes in the input network ; may be multiple SMs in a subnet , as long as only one is

FIG . 21 illustrates an exemplary flowchart depicting the active at any moment . Non - active SMs , known as Standby
steps performed in changing a mode of operation of the Subnet Managers , keep copies of the active SM ' s forward
network ; and 45 ing information and verify that the active SM is operational .

FIG . 22 illustrates according to one embodiment , an If an active SM goes down , a standby SM takes over
exemplary computing device . responsibilities to ensure that the entire fabric continues with

its operation .
DETAILED DESCRIPTION By one embodiment , the switched - fabric - architecture can

50 be a regular fat tree . FIG . 1B depicts a full - size regular fat
According to one embodiment of the present disclosure , tree topology 150 including a plurality of levels (depicted as

FIG . 1A depicts an exemplary switched - fabric - network bottom level , middle level , and top level , respectively) . As
architecture 100 . The switched fabric architecture of FIG . shown in FIG . 1B , in a full - size fat tree topology , each level
1A includes point - to - point switch based interconnects that includes the same number of switches , wherein each switch
are designed for fault tolerance and scalability . A point - to - 55 has the same number of downward ports . Note that the
point fabric indicates that every link has exactly one device switches in the top level include only ports in the downward
connected at each end of the link . Accordingly , the I / O direction . Further , the number of ports per switch in the top
performance of such a switched architecture is enhanced by level is exactly half of the number of ports included in
controlling the loading and termination characteristics . switches belonging to any other level of the full - size fat tree
By one embodiment , the basic building blocks of 60 topology . Moreover , each switch at the bottom level includes

switched - fabric architecture are : Host channel adapters a plurality of HCAs .
(HCAs) , switches , subnet managers , and gateway . FIG . 1A FIG . 1C depicts according to an embodiment , a half - size
depicts switched - fabric architecture 100 including two sub fat - tree topology 170 . In such a topology , the number of
networks 101 and 103 , labeled subnet A and subnet B , switches in the top level is exactly half the number of
respectively . Each sub - network includes a plurality of inter - 65 switches in any other level of the tree topology . Moreover ,
connects (i . e . , switches 101B and 103B) connected by in such an architecture , the number of ports per switch (at
point - to - point links 110 to end - nodes (101A and 103A) and any level) is the same . In other words , the switches in the top

US 10 , 425 , 324 B2

level include a number of downward ports that is twice in ing LFTs . This provides a significant speed increase com
magnitude of the number of downward ports in switches at pared to methods that rewrite entire LFTs after a fault or
other levels . recovery .

In what follows is described a routing algorithm that The method further proceeds to step 211 , wherein a query
provides redundant routing paths in a computational grid 5 is made to determine whether any topology changes are
interconnected via switches . The routing algorithm of the detected . A topology change may occur due to a failed
present disclosure provides the following advantageous network link , a failed switch , and the like . If the response to
abilities : (a) it reduces the amount of downtime (experi - the query is negative (i . e . , no faults are detected in the
enced , for example , by data centers) that is caused by network elements) , the method proceeds to step 227 . How
network faults , (b) improves utilization of high - performance 10 ever , if the response to the query in step 211 is affirmative ,
data communication networks such as InfiniBand networks the method proceeds to step 213 . In step 213 , a query is
substantially . Moreover , the routing mechanism described performed to determine whether the topology under consid
herein is network agnostic (i . e . , independent of the network eration is a fat - tree topology . If the response to the query is
layout) , and provides for a dynamic and fast fault - tolerance negative , the method proceeds to step 215 . If the response to
technique to reduce application downtime . By one embodi - 15 the query if affirmative , the process proceeds to step 217 .
ment , there is provided a software defined networking In step 215 , upon determining that the topology of the
(SDN) interface that provisions for applications to configure network is a random topology , the method executes the
the network based on specific requirements without relying function of re - computing the routing paths (similar to that as
on human intervention . Moreover , by an embodiment , there executed in step 205) , while taking into account the failed
is provided a web - based GUI that allows for monitoring of 20 components of the network . Thereafter the method proceeds
fabric faults in a convenient fashion . to step 225 .

FIG . 2 depicts , according to one embodiment , a flowchart If the network topology is a fat - tree topology , the method
200 illustrating the steps performed by a method in com executes in step 217 , the process of handling topology
puting routing paths (i . e . , a primary routing path and redun changing events for down - links (i . e . , occurrence of faults) in
dant routing paths for a given source - destination pair) in a 25 the network . Further , in step 219 , the method executes the
network topology process of handling topology changing events for up - links

The method begins in step 201 , wherein a topology of an (i . e . , recovery from faults) of the network . The processes in
input network is determined . By one embodiment , the step 217 and 219 that correspond to the changing network
network topology can be identified based on in - band mes events in the down - links and up - links of the network spe
sages transmitted by the nodes of the network . For example , 30 cifically correspond to the process of identifying a failed
InfiniBand protocol (implemented in switched - fabric net - switch port or failed switch , and further determining all
works) provides a standard management specification that source - destination node pairs , whose routing paths utilize
enables exploring the fabric using in - band messages such the failed portion of the network . Alternate routing paths are
that the switches , compute nodes , and the links between determined that compute the routing paths which exclude
them can be obtained . The extraction algorithm traverses the 35 the failed portions of the network . Details regarding the
discovered connectivity graph created by performing these processes of handling topology changing events for down
standard management queries . The result of the extraction links and up - links of the network are described later with
algorithm is an index assignment and edge - labeling for each reference to FIGS . 19 and 20 , respectively .
switch and compute node . In this manner , the topology of The process then proceeds to step 221 , wherein a process
the input network can be obtained . Furthermore , verification 40 that performs a change in operation mode of the network is
may be obtained as to whether the input topology is a fat - tree executed . By one embodiment , networks may include for
topology . instance , two modes of operations : a first mode that corre

The method further proceeds to step 203 , wherein a query sponds to no faults in the network scenario , wherein a first
is made to determine whether the network topology deter - routing mechanism is executed , and a second mode , which
mined in step 201 is a fat - tree topology . If the response to the 45 corresponds to faults in the network , wherein a second
query is negative , (i . e . , the identified network topology is a routing mechanism is executed . By one embodiment , for
random network topology) , the method proceeds to step 205 , some networks , there may be two modes of operation : mode
else if the response to the query is affirmative , the process 1 corresponding to the case when there are no faults
continues to step 207 . detected , and mode 2 corresponding to the case when one or

In step 205 , the method executes a process of computing 50 more faults is / are detected . As such , after the detection of a
paths for the random topology . By one embodiment , an first fault , the operating mode of the network is switched
algorithm such as M - roots (also referred to as ‘ Multiple - from mode 1 to mode 2 , and when the network recovers
Roots ') is executed to determine routing paths and assign from the faults (i . e . , all links are operational) , the mode of
virtual lanes . The method thereafter proceeds to step 209 . the network is switched from mode 2 to mode 1 . It must be

In step 207 , the method executes a process of computing 55 appreciated that each mode of the network may have a
primary and redundant (i . e . , backup) routing paths for the unique routing mechanism . Details regarding the change in
fat - tree network topology . Details regarding this process are mode operation of the network are described later with
described later with reference to FIGS . 11A - 11C . Upon reference to FIG . 21 .
computing the routing paths , the process proceeds to step Further , the method proceeds to step 223 , wherein the
209 . In step 209 , the method stores the computed routing 60 updated routing paths (i . e . , paths that are computed upon
paths for the identified network topology in a routing detection of one or more failures or recoveries in the
database . For example , the network routing information may network) are used to update the routing tables stored in the
be stored in a route - forwarding table . By one embodiment , routing database . By one embodiment , two update opera
the base paths are stored in a Linear Forwarding Table tions may be performed : a trap - path update and an end - to
(LFTs) in the physical switches . After a fault or recovery , the 65 end update . In trap - path update , routing from a switch to the
newly computed paths are marked in the database , and such SM node (node where the Subnet Manager is running) is
that only marked paths need to be copied to the correspond - updated . It must be appreciated that this path requires to be

r

US 10 , 425 , 324 B2

(2)

updated because one needs to ensure that every switch in the level switch . The process in step 305 determines a number
network will be able to communicate with the SM node (for of levels (L) in the input tree topology .
example , to transmit data to other subnets) . The end - to - end In the formulas described herein , “ < = ” ” , “ Z ” , “ = ” , “ ” ,
path update is for providing a new route after a fault or and “ > = ” are relational operators , “ & & " is a logical AND
recovery for every affected path is detected . In doing so , one 5 operator with lower priority than relational operators , and
is ensured that every switch in the network will be able to " ! " is a logical NOT operator with higher priority than
continue communicating with a given destination switch relational operators . % is a modulo operator . + + is an
(within the network) in order to send data while avoiding operator that increases a variable by 1 , while - - is an operator
failed links . Also non _ end - to - end paths (i . e . paths from that decreases a variable by 1 .
non - bottom switch to HCA) and end - to - non _ end paths (i . e . 10 In step 307 , a query is made to determine whether the
from bottom switch to non - bottom switch) are updated if following condition is valid :
required .

The method further proceeds to step 225 to perform a L = = 2 & & H > B (1)
query as to determine whether all affected routing paths have
been accounted for . Specifically , a query is made to deter - 15 Specifically , a query is made to determine whether the

number of levels in the input tree topology is equal to two , mine whether an alternate routing path for each originally
computed routing path , which is affected by the failure is and whether the parameter H is greater than the parameter B .
computed . If the response to the query is negative , the If the response to the query in step 307 is affirmative , the
process loops back to step 211 , to repeat the steps 213 to 223 . process proceeds to step 309 , wherein the controller deter
However if the response to the query in step 225 is affir - 20 mines that the input tree topology is an odd fat - tree . If the
mative , the method proceeds to step 227 . response to the query in step 307 is negative , the process

In step 227 , the process makes a query to determine proceeds to step 311 , wherein a query is made to determine
whether there is a change in the node of the network that is whether the following condition is valid :
assigned to function as the subnet manager . In other words ,
the process determines whether the node that is currently 25 L = = 3 & & HP > B
assigned to function as the subnet manager is functioning Specifically , a query is made to determine whether the
correctly . If the response to the query in step 227 is affir number of levels in the input tree topology is equal to three
mative , the process proceeds to step 229 , wherein a new and whether the parameter H to the power of two is larger
node is assigned to function as the subnet manager . There than B . If the response to the query in step 311 is affirmative ,
after , the process proceeds to step 211 to repeat the process 30 the process proceeds to step 309 , wherein the controller
of computing routing paths and monitoring the network . If determines that the input tree topology is an odd fat - tree ,
the response to the query in 227 is negative , the process whereafter the process terminates . If the response to the
loops back to step 211 . It must be appreciated that as shown query in step 311 is negative , the process proceeds to step
in FIG . 2 , the process of routing and monitoring the network 313 . In step 313 , the controller determines that the input tree
is executed in a continuous and automatic manner . However , 35 topology is not an odd fat - tree , whereafter the process
the process may be terminated (and thereafter restarted) proceeds to step 315 , wherein a query is made to determine
based on user input . whether the input tree topology is regular or not . Specifi

It must be appreciated that the above described process cally , a query is made to determine whether the number of
may be performed by a controller / server that includes cir - upward ports per bottom level switch equals the number of
cuitry (described later with reference to FIG . 22) , and 40 HCAs on the switch . If affirmative , process proceeds to 317 ,
resides for instance , in the subnet manager or a predeter - wherein the controller determines that the input tree topol
mined node of the network . Alternatively , the controller / ogy is regular , whereafter the process terminates . If the
server may be located outside the network , and be imple response to the query in step 315 is negative , the process
mented for instance , in a distributed processing manner such proceeds to step 321 , wherein the controller determines that
as a ' cloud network ' . By one embodiment , the controller / 45 the input tree topology is not regular , whereafter the process
server may be implemented by a computing device such as terminates . By one embodiment , a determination as to
a computer system (or programmable logic) . The computing whether an input tree topology is an odd fat - tree is made so
device may be a special purpose machine including proces - as to develop a routing mechanism for the odd fat - tree in a
sor that configured to perform the process depicted in FIG . manner such that the paths (i . e . , primary path and redundant
2 . Moreover , the computing device may include special 50 paths) are well balanced across the odd fat - tree network . It
purpose logic devices (e . g . , application specific integrated must be appreciated that the routing mechanism which is
circuits (ASICs)) or configurable logic devices (e . g . , simple applicable to a generic tree - topology network may be not
programmable logic devices (SPLDs) , complex program equally effective (from a perspective of balancing the net
mable logic devices (CPLDs) , and field programmable gate work) when applied to an odd fat - tree because of the lower
arrays (FPGAs)) . Note that the terms ' controller ' and 55 number of disjoint paths from every source switch to a given
' server ' are used interchangeably , and imply a computing destination in the odd fat - tree .
device that includes a processor which is configured to In what follows is provided a detailed description of the
perform the functions recited herein . routing mechanism for various tree - topologies . In order to

By one embodiment of the present disclosure , the con facilitate a better understanding of the algorithms described
troller is configured to determine whether the input network 60 herein , a description of the various counters , modes of
tree topology is an odd fat - tree . FIG . 3 depicts an exemplary operation of the networks (based on the type of tree topol
flowchart 300 outlining the steps performed to determine ogy) , and other parameters is first described . Additionally , it
whether a network topology is an odd fat - tree . must be appreciated that the routing algorithms described

The process commences in step 301 , wherein a number of herein are applicable to a tree having a plurality of levels .
bottom level switches (B) are determined . Further , in step 65 However , for the sake of convenience , the following
303 , the process determines the maximum number of host description is provided with reference to a tree - topology that
channel adaptors (H) that are attached to a particular bottom has either two or three levels .

US 10 , 425 , 324 B2
10

Referring to FIG . 4 there is illustrated an exemplary FIG . 5 illustrates an exemplary example depicting the
tree - topology 400 including three levels : a bottom level 410 , computation of the counter counter (switch , port) . FIG . 5
a middle level 420 , and a top level 430 . Each level includes illustrates a three - level tree , wherein a first path (path 1) is
a predetermined number of switches 401 . By one embodi - routed from switch S7 to HCA labeled ' D ' . By one embodi
ment , each switch at the bottom level 410 includes a 5 ment , only all end - to - end base paths increment the counter
plurality of HCAs attached to each switch . Further , by one (switch , port) at each switch that is traversed in the path from
aspect of the present disclosure , the routing algorithms are the source to the destination . For instance , referring to path
configured to compute a primary path (also referred to as a 1 in FIG . 5 , the value of counter (S7 , P5) is incremented by
base path) and a predetermined number of redundant paths , one , as path 1 utilizes port 5 (P5) on switch S7 to traverse
for each source (i . e . , switch at the bottom level) - destination 10 to switch S3 in the middle level . In a similar manner , the
(i . e . , HCA) pair . values of counter (S3 , P5) , counter (S1 , P2) , counter (S4 , P1)

The tree - topology 400 in FIG . 4 can be partitioned in a are also incremented by one , as these switches (and corre
vertical fashion) into a plurality of subgroups 405 . As shown sponding ports) are utilized in traversing path 1 .
in FIG . 4 , in the case that a source switch and the destination in a similar manner , with respect to path 2 as shown in
HCA belong in different sub - groups , a total of four hops are 15 FIG . 5 , the values of counter (S8 , P6) , counter (S6 , P8) ,
required to reach the destination HCA . On the other hand counter (S2 , P2) , and counter (S5 , P1) are incremented by one
when the source switch and the destination HCA are in the as these switches (and their corresponding ports) are utilized
same sub - group , a total of two hops are required to reach the while traversing path 2 . Note that every subsequently com
destination . For instance , consider path labeled as path 1 in puted base path increases the corresponding counter counter
FIG . 4 . Path 1 corresponds to a base path from source switch 20 (switch , port) when traversing the switches and ports that are
S7 to a destination HCA (D1) . The path from source switch utilized by the base path from the source switch to destina
S7 to destination HCA (D1) includes four hops : first hop tion HCA .
from source switch S7 to switch S3 (in the middle level) via FIG . 6 depicts an exemplary example illustrating the
taking port P5 in S7 , second hop from switch S3 to switch computation of a second counter : source _ destination _ coun
S1 (top level) via the port P5 , a third hop from switch S1 to 25 ter (switch , port) . For sake of convenience this counter is
switch S4 (middle level switch in adjacent sub - group) via referred to herein as src _ dst _ counter (switch , port) . Note that
port P2 , and a fourth hop from switch S4 to switch B to the ‘ src ' corresponds to a current switch that lies on the path
which the destination HCA (D1) is attached) via port P1 . from a source switch to a destination HCA . For instance ,

In a similar manner , a route labeled path 2 is a base path referring to path 1 (e . g . , a base path) in FIG . 6 , which
from source S8 to destination HCA (D2) , which is attached 30 traverses the route : switch S7 - - S3 S1 S4 - S10 - > D , the
to switch S9 . Note that the source switch (S8) and the values of counters : src _ dst _ counter (S7 , P5) , src _ dst _ counter
destination HCA (D2) lie in the same sub - group . Accord (S3 , P5) , src _ dst _ counter (S1 , P2) , src _ dst _ counter (S4 , P1)
ingly , a total of two hops are required : a first hop from the are incremented by one . It must be appreciated that the
source switch S8 to switch S6 (middle level) via port P6 , and src _ dst _ counter (switch , port) is incremented (for each uti
a second hop from switch S6 to switch S9 , to which the 35 lization of a switch and the corresponding port) in the
destination HCA (D2) is attached computation of the base path and all redundant paths for a

According to one embodiment of the present disclosure , given source switch - destination HCA pair . In this aspect the
each switch / port (i . e . a 2 - tuple , < switch , port > , consisting of src _ dst _ counter (switch , port) functions in a similar manner
a switch ID and a port ID for a port at the switch) is assigned as the counter (switch , port) . Thus , the src _ dst _ counter
a plurality of variables . Each variable of the plurality of 40 (switch , port) enables the balancing of the base and redun
variables is computed based on a plurality of counters . A dant paths (i . e . , avoid taking similar switches and / or ports)
magnitude of the variable for each port determines whether when computing paths from a source switch to a destination
the particular switch / port is utilized in a routing path from a HCA .
source switch to a destination HCA . By one embodiment . However , the src _ dst _ counter (switch , port) is reset to a
each port in the switch is assigned a total of seven variables 45 value of zero for path computations (base path and redun
(00 - 06) . In what follows is provided a definition of each dant paths) of subsequent source switch - destination HCA
variable and the corresponding counters that are used to pairs . In this aspect the src _ dst _ counter (switch , port) differs
determine the magnitude of the variable . from the previously described counter (switch , port) . For

A first variable co is defined as the number of hops example , referring to FIG . 6 , the base path from source
required to reach a particular destination . For instance , 50 switch S8 to the same destination HCA (D) , utilizes the
referring to FIG . 4 , the value of the c0 variable for switch S7 switch S4 and port P1 to reach the destination (D) . In this
(corresponding to path 1) is 4 , as 4 hops are required to reach iteration of route computation for S8 to D , note that the value
the destination HCA (D1) . Similarly , the value of the co of the src _ dst _ counter (S4 , P1) counter is 1 , as this counter ,
variable for the switch S8 (with respect to path 2) is 2 , as 2 is first incremented for the computation associated with path
hops are required to reach the destination HCA (D2) . 55 P1 , then reset to zero , and then incremented again to 1 for

A second variable c / is defined as a temporary switch / port the computation associated with path P2 . By one embodi
variable . The variable is reset each time a new source ment , the value of the variable cl is determined by the
destination pair is computed . By one embodiment , the src _ dst _ counter (switch , port) counter .
purpose of the cl variable is to split redundant paths for the By one embodiment , a variable c2 is defined as the
same source - destination pair . In other words , the purpose of 60 minimal next switch / port counter (among all ports in a
the cl variable is to build paths traversing different links to switch having a minimal path , i . e . , a lowest number of hops
avoid use of the same links . In this manner , the routing path to a destination) . The variable c2 is incremented for
algorithm is able to route the redundant paths in a balanced every base path in each switch / port for all source - destination
manner . It must be appreciated that the cl variable is pairs .
incremented for every base path as well as for every redun - 65 By one embodiment , for odd fat - trees , variable c2 per
dant path , in every switch / port traversed for the current forms a different function : the variable c2 is used to split
source - destination pair . redundant paths for different source - destination pairs , when

US 10 , 425 , 324 B2
11 12

O

the corresponding base paths share a common switch / port . level , as the value of the counter : odd _ counter (S5 , S1 , P1 , 1)
Specifically , as described below with reference to FIGS . 7A is zero (before being incremented to one after S5 has been
to 7C , first redundant paths are split (i . e . , use different routes chosen) while odd _ counter (S4 , S1 , P1 , 1) is already one ,
to ensure balancing of paths) when the corresponding base thereby discouraging the usage of switch S4 for the first
paths share a switch / port in hop number 0 , i . e . the hop 5 redundant path from S1 > D2 . In this manner , a balanced
(connection) from the source switch to the next switch , also routing of redundant paths is achieved .
called the first hop . In a similar manner , second redundant FIG . 7C depicts a scenario wherein a fault occurs in the
paths are split , when the base paths share a switch / port in the first redundant path for S1 - > D2 . For instance , consider the
first hop . Further , third redundant paths are split when the link joining switch S5 to switch O fails . In this case , the
corresponding base paths share a switch / port in the second 10 second redundant path is computed to take the route
hop . S1 - - S6 - A - B - S11 . In this case , counter odd _ counter

FIGS . 7A to 7C depict an exemplary example illustrating (S6 , X , P5 , 2) is incremented , as the redundant path under
the computation of a third counter : odd _ counter () . By one consideration is path number 2 , the source switch in the base
embodiment , the odd _ counter () takes as input four param path which is utilized at hop = path _ number - 1 corresponds
eters : next _ switch (best _ port) , auxiliary _ switch , auxili - 15 to X , switch S6 corresponds to the parameter next _ switch
ary _ port , and path _ number . The parameter next _ switch (best _ port) , and port P5 corresponds to the parameter aux
(best _ port) corresponds to the ID of the switch that lies next iliary _ port i . e . , the port of the switch in the base path that is
(determined from a current switch under consideration) in utilized at hop = = path _ number - 1 , (i . e . hop 1) . In this man
the routing path , if best port is chosen as the port to utilize ner , the counter , odd _ counter () splits redundant paths by
in the current switch . Note that the routing algorithm 20 taking into account the switch / port utilized by the base path
includes a function (described later) that computes the best at hop = = redundant path _ number - 1 . In other words , the
port of a switch that is to be utilized in a route computation . counter odd _ counter () attempts to split , first redundant
Note also that current switch under consideration , current paths , when the base paths utilize the same switch / port .
switch , and switch under consideration , are equivalent terms Moreover , by one embodiment , the variable c2 is determined
throughout this description . 25 by computing the values of the odd _ counter () .

The parameter path _ number corresponds to a path ID . By By one embodiment of the present disclosure , a variable
one embodiment , for a given source switch - destination HCA c3 is defined as an overall switch / port variable for base path
pair , a base path (having path number 0) , and a predeter computations . In the instance of redundant paths , the vari
mined number (P) of redundant paths (having path numbers able c3 takes into account the current redundant path number
1 , 2 , 3 . . . P) are computed by the routing algorithm . 30 and the chosen port in the base path in order to split paths .

The parameter auxiliary _ switch corresponds to the ID of Further , another variable c4 is defined as a variable that
a switch that is utilized by the base path , at corresponds to a next switch that lies in a routing path , if a
hop = = path _ number - 1 . In a similar manner , the parameter currently computed best port is chosen in a current switch .
auxiliary _ port corresponds to the port of the switch in the Additionally , variable c5 is an overall switch / port variable
base path that is utilized at hop = = path _ number - 1 . 35 for the base path . Note that c5 is utilized in the cases where
By one embodiment of the present disclosure , the counter : variable c3 is not taken into account . Variable c6 corre

odd _ counter () is utilized in the path computations of odd sponds to a variable which is equal to a sum of all port
fat - trees . Further , odd _ counter () is incremented taking into variables for base paths .
account the above described four parameters . Referring to By an aspect of the present disclosure is defined a counter
FIG . 7A is depicted base paths from source switch S1 to 40 pnl _ h4 _ counter () , which takes as two input parameters :
destination HCAs D1 and D2 , respectively . Note that each of by _ hop _ lb , and best _ port . By one embodiment , the counter
the base paths (S1 > D1 , and S1 > D2) take four hops to pnl _ h4 _ counter () is utilized only when the source switch
reach their respective destinations (as the destination HCAS and the destination HCA are in different subgroups (i . e . , in
lie in a different sub - group than the source switch) , and the a three level switch , the source and destination are four hops
base paths differ only in the fourth hop (i . e . , the hop from 45 away) . The parameter bp _ hop _ 1b corresponds to the port
switch Z to S10 , and switch Z to S11) . taken by the base path in a middle level switch to reach an

Referring to FIG . 7B , consider the scenario where the link upper level switch i . e . , port taken in a second hop . The
connecting switch S1 to X fails , or alternatively , the port P1 best _ port parameter corresponds to an alternate port that
that is used for both base paths (S1 > D1 , and S1 D2) is in may serve as the best port (in case the previously computed
a malfunctioned state . In this case , redundant paths for the 50 best port fails) in the middle level switch .
two base paths are computed in a balanced manner as By one embodiment , the counter pnl _ h4 _ counter () is
follows : for the base path S1 - > D1 , a best port (other than used to balance , when the fat - tree is not an odd fat - tree , first
P1) is selected . Assume that the best port selected leads to redundant paths of different source - destination pairs , when
switch S4 in the middle level . Accordingly , the counter the base paths corresponding to the different source desti
odd _ counter (S4 , S1 , P1 , 1) is incremented . Note that the 55 nation pairs utilize the same link in the second hop . Spe
redundant path under consideration has path number 1 . cifically , the counter pnl _ h4 _ counter () is utilized to balance
Thus , the source switch in the base path which is utilized at first redundant paths in the second hop as illustrated in FIG .
hop = = path _ number - 1 corresponds to Si , and switch S4 8A and FIG . 8B . FIG . 8A depicts a three level fat - tree ,
corresponds to the parameter next _ switch (best _ port) . Fur - wherein the base paths for source - destination pairs (S1 , D) ,
ther , P1 corresponds to the parameter auxiliary _ port i . e . , the 60 (S2 , D) , (S3 , D) , and (S4 , D) utilize the same link in the
port of the switch in the base path that is utilized at second hop (outgoing link on port P1 of switch S6 in the
hop = = path _ number - 1 , (i . e . hop 0) . The first redundant path middle level that connects to switch S7 in the top level) .
is routed via S1 - S4 M - N - S10 . In such a setting , consider the scenario where the link

In a similar manner , the first redundant path for the base connecting switch S6 to switch S7 fails . Thus as shown in
path from S1 > D2 is routed from S1 ~ S50 - > N - S10 . 65 FIG . 8B , all the end - to - end base paths are incomplete as link
Note that in this case , the first redundant path chooses S5 (as connecting S6 to S7 (and thereby link connecting S7 to S9)
opposed to S4) as the switch to be utilized in the middle cannot be used . Thus , by one embodiment , in order to ensure

US 10 , 425 , 324 B2
13 14

that the first redundant paths of the source - destination pairs destination pair S1 - > D1 . In a similar manner , the counters
(S1 , D) , (S2 , D) , (S3 , D) , and (S4 , D) do not use link pn2 _ end _ counter (P1 , 2 , P3) and pn2 _ end _ counter (P1 , 2 ,
connecting switch S6 to S7 , the counter pnl _ h4 _ counter () P4) are incremented upon assigning ports P3 and P4 to the
is applied . second redundant paths for source destination pairs ,

Specifically , as shown in FIG . 8B , a new best port (of 5 S1 > D2 , and S1 > D3 , respectively . Further , while determin
switch S6) for the first redundant path for pair (S1 , D) is ing the port (on switch S1) that is to be assigned to the pair
computed . Assume that the new best port is port P2 . Accord S1 - > D4 , note that the value of counters pn2 _ end _ counter
ingly as shown in FIG . 8B , the first redundant path is routed (P1 , 2 , P2) , pn2 _ end _ counter (P1 , 2 , P3) , and
from switch S6 to switch S13 in the second hop . Subse - pn2 _ end _ counter (P1 , 2 , P4) are all equal to one . Thus , by
quently , the counter pnl _ h4 _ counter (P1 , P2) is incremented one embodiment , the port on switch S1 that is to be assigned
in order to dissuade (if possible) , the first redundant path of to the second redundant path from S1D4 , can be selected
the next pair (S2 , D) to use the same port (P2) . Thus , while in a random manner from the ports P2 , P3 , and P4 , or
determining an output port for the first redundant path of alternatively , the lowest number port i . e . , port P2 may be
(S2 . D) , the value of the counter pnl h4 counter (P1 , P2) is 15 assigned . First port searched depends on check _ port com
1 and the value of the counter pnl h4 counter (P1 , P3) is 0 . puted at step 1566 in FIG . 15D .
Accordingly , as shown in FIG . 8B , the first redundant path It must be appreciated that although the above description
for the pair (S2 , D) utilizes port P3 on switch S6 to traverse regarding the counter : pn2 _ end _ counter () is described with
to switch S14 in its second hop , whereafter the counter reference to balancing the second redundant paths for the
pnl _ h4 _ counter (P1 , P3) is incremented . In a similar man - 20 20 different source - destination pairs , the above technique of
ner , the first redundant path for pair (S3 , D) utilizes port P4 utilizing the pn2 _ end _ counter () counter is equally appli

cable to the first redundant path computations (e . g . , in cases on switch S6 to traverse to switch S15 in its second hop . where the source and destination are separated by two hops . However , while determining the output port for the first By a preferred embodiment of the present disclosure , in the
redundant path of pair (S4 , D) , the values of the counters 25 case where the source switch and the destination HCA
pnl _ h4 _ counter (P1 , P2) , pnl _ h4 _ counter (P1 , P3) , and belong two different sub - groups (i . e . , separated by 4 hops) ,
pnl _ h4 _ counter (P1 , P4) are all equal to one . In such a it is preferred to assign the same first hop (as the base path)
scenario , the output port on switch S6 that is to be assigned to the first redundant path , and perform the balancing
to the first redundant path for pair (S4 , D) may be deter operation with respect to the second redundant paths as
mined in a random manner a lowest port ID . or the like . First 30 described above with reference to FIG . 9A and FIG . 9B .

By one embodiment of the present disclosure , there is port searched depends on check _ port computed at step 1542 described another counter : switch - destination - counter in FIG . 15C . Thus , assuming port P2 is assigned to the first labeled as switch _ dst _ counter () . The switch _ dst _ counter () redundant path for (S4 , D) , the corresponding value of is applied to end - to - end base paths , wherein a top level
counter pnl _ h4 _ counter (P1 , P2) is further incremented to 35 switch in a fat - tree , and takes as input parameters : switch ID .
have a value of 2 . In this manner , the pnl _ h4 _ counter () is which corresponds to the ID of the top level switch , and
utilized to balance the redundant paths . destination port that corresponds to the ID of the HCA which
By one embodiment of the present disclosure , there is is attached to a bottom level switch .

described another counter : pn2 _ end _ counter () . This counter FIG . 10 is an exemplary illustration depicting the com
receives three input parameters : bp _ hop _ Ob , path _ number , 40 putation of the switch _ dst _ counter () . As shown in FIG . 10 ,
and best port . As stated previously , the parameters a first path (i . e . , path 1) is routed from source node X to
path _ number , and best port correspond to the path ID and destination HCA D3 . The path from switch X to HCA D3 is
the port that is to be utilized in the current switch , respec a four hop path , wherein switch S1 is utilized in the top level .

Accordingly , the value of the counter , switch _ dst _ counter tively . The parameter bp _ hop _ Ob is the output port that is 15 poft mal 15 45 (S1 , D3) is incremented by one in an effort to avoid utilizing taken (by a base path) in a bottom level switch . switch S1 in the top level by another base path . In a similar
By one embodiment , the counter pn2 _ end _ counter () is manner , the switch _ dst _ counter (S2 , D5) is incremented by

used to balance second redundant paths (in the first hop) for one , upon the switch S2 in the top level being assigned to the
the scenario when multiple source destination pairs utilize path from switch Y to destination HCA D5 . Any subsequent
the same path in the first hop . For instance , referring to FIG . 50 base path that utilizes a top level switch in a four - hop path ,
9A , there is depicted four base paths of source - destination increments the value of the respective switch _ dst _ counter ()
pairs : S1 > D1 , S1D2 , S1 - > D3 , and S1 - > D4 , respectively . by one . Note that the switch _ dst _ counter () is also applicable
Note that all the base paths utilize port P1 in switch S1 . in the case of a three - level fat - tree , wherein the source and

destination HCAs are separated by two hops . In this case , the Thus , in the event that port P1 fails (or alternatively , a link 55 switch _ dst _ counter is applied to the middle level switches connecting switch Si to switch S2 via port P1 fails) , the in a similar manner as described above . Moreover , by one
second redundant paths are balanced by utilizing the counter embodiment , the counter , switch _ dst _ counter () is appli pn2 _ end _ counter () , such that the redundant paths do not cable based on type of network topology , a mode of opera
utilize port P1 in the first hop . tion of the network (described later) , and a hop number of

FIG . 9B depicts the assignment of the first hop for the 60 the path under consideration . For instance , the counter
second redundant paths for the source - destination pairs : switch _ dst _ counter () is not applied in the cases where , the
S1 > D1 , S1 > D2 , S1 > D3 , and S1 > D4 , respectively . For network topology is a 3 - level regular fat - tree full size
sake of clarity only the first hop of the respective second network , or a 2 - level regular fat - tree half - size (operation in
redundant paths are depicted in FIG . 9B . a first mode) , or during a first hop in any 3 - level fat - tree .
As shown in FIG . 9B , the counter for the second redun - 65 In summary , Table I below depicts the above described

dant path , pn2 _ end _ counter (P1 , 2 , P2) is incremented when variables and the associated counter functions that are used
port P2 is assigned to the second redundant path for source to determine values to the respective counters .

CO

US 10 , 425 , 324 B2
15 16

TABLE I In step 1112 ports that are to be used for the routing of the
base path and the redundant path in the switch under

variables for ports of a switch and the corresponding counters that consideration are initialized to zero . For instance , by one
determine their value . embodiment , the parameters : bp _ hop _ Ob , corresponding to

Variable Counters involved in computation the port that is to be selected in hop zero (i . e . , the first hop)
for the base path ; bp _ hop _ 0c , corresponding to the port

hops _ until _ destination (port) selected in hop zero for the current redundant path ; src _ dst _ counter (current _ switch , port) bp _ hop _ Or corresponding to the port selected in hop zero for odd _ counter (next _ switch (best _ port) ,
auxiliary _ switch , auxiliary _ port , path _ number) the first full redundant path ; and the parameter bp _ hop _ lb
counter (switch , port) 10 corresponding to the port selected in hop - 1 (i . e . , the second
pn1 _ h4 _ counter (bp _ hop _ lb , best port) hop) for the base path are all initialized to zero . pn2 _ end _ counter (bp _ hop _ Ob , path number , best port)
counter (switch , port) Upon initializing the ports for the base path and the
switch _ dst _ counter (switch , dst _ port) redundant paths (step 1112) , the process proceeds to step
counter (switch , port) 1120 as shown in FIG . 11B .
counter (switch , port) 15 In step 1120 the value of counter k is initialized to - 1 . The

counter k is a parameter corresponding to a position of a
Turning now to FIGS . 11A , 11B , and 11C , there is source switch in a set of source switches that are generated

depicted a flowchart illustrating the steps performed in using the BFS algorithm .
computing primary and redundant paths for an input tree . In step 1121 , the value of counter k is incremented by one .

The process commences in step 1101 . wherein a query is 20 In step 1122 , a query is made to determine whether the
made to determine whether the input tree topology is one of current switch under consideration is a bottom level switch .
an Odd fat tree and a regular fat tree . The steps performed Specifically , as shown in step 1123 , if the response to the
in order to determine whether the input tree is an odd fat tree query is affirmative the process proceeds to step 1124 . If the
are described previously with reference to FIG . 3 . response to the query is negative , the process proceeds to

25 step 1125 . In steps 1102 and 1103 , the process generates source In step 1124 , a parameter INC is assigned a value which switches and destination switches , respectively . By one corresponds to the number of host channel adapters that are
embodiment , the source and / or destination switches are attached to the source switch (i . e . , at the bottom level) which generated by ordering the switches by starting at a bottom is under consideration . The process thereafter continues to level switch and searching the remaining switches via the 30 step 1126 .
ports attached based on a breadth - first search algorithm In step 1125 (when the switch under consideration) is not
(BFS) . In doing so , this process provides the advantageous a bottom level switch , the parameter INC is assigned a value
ability of ordering (i . e . , grouping) switches based on sub - of 1 .
groups . In step 1126 , a counter in is initialized to a value of - 1 .

Further , in step 1104 , a half _ size parameter is assigned to 35 The counter m is a parameter corresponding to a position of
FALSE , counters are reset to zero , a parameter correspond a destination switch in a set of destination switches that are
ing to an operating mode is assigned as mode = 0 , and a generated using the BFS algorithm .
source _ destination _ port corresponding to the port taken Further , in step 1127 , the value of the counter in is
from current switch to reach a particular destination under incremented by one . In step 1128 , the src _ dst _ counter
consideration is initialized to zero . 40 (described previously with reference to FIG . 6) is initialized

In step 1105 a query is made to determine whether the to a value of zero .
input tree is an ODD tree . If the response to the query is The process in step 1129 determines whether the current
affirmative , the process proceeds to step 1106 . However , if source switch and the destination switch under consideration
the response to the query in step 1105 is negative , the are 4 hops away (i . e . , belong to different subgroups) and
process continues to step 1107 . 45 stores the Boolean value of the determining in the variable

In step 1106 , the parameter mode is incremented by one src _ dst _ 4hop . For example , considering a three level fat
whereafter the process continues to step 1107 . tree , if the source and destination switches belong to differ

In step 1107 , a query is made to determine the value of the ent sub - groups , then the distance (number of hops) from the
parameter mode . Specifically , a query is made to determine source switch to the destination switch is 4 hops and
whether the parameter mode has a value which is less than 50 src _ dst _ 4hop is therefore set to TRUE .
or equal to two . If the response to the query is affirmative , Further , in step 1130 a query is made to determine
the process continues to step 1108 . If the response to the whether the current input tree is a fat tree that is 2 levels , and
query is negative , the process terminates . the input tree is a half - size tree and regular .

In step 1108 , the value of the parameter mode is incre In step 1131 , a function is executed to compute a param
mented by one . 55 eter P that corresponds to the starting port number in the

The process thereafter continues to step 1109 , wherein a destination switch under consideration , which is to be evalu
query is made to determine whether the value of the param - ated first (i . e . , verify if the particular port on the destination
eter mode is equal to one . If the response to the query is switch can be utilized to reach the host - channel adaptor) . For
affirmative , the process continues to step 1110 . However , if instance , assume that the destination switch has 10 ports ,
the response to the query is negative , the process continues 60 and the value of the parameter P is 4 . Thus , the ports on the
to step 1111 . destination switch are evaluated in the order 4 , 5 , 6 , 7 . . . 10 ,

In step 1110 , a parameter paths corresponding to a base 1 , 2 , and 3 . This is done for purpose of balancing the routing
path is initialized to zero (meaning base path) , whereafter paths in the input tree , as balancing may not be the same ,
the process continues to step 1112 . especially when counters have same value on each port .

In step 1111 , the parameter paths is initialized to the total 65 Thus , as described next in FIG . 12 , a different starting port
number of paths (i . e . , base path and redundant paths) that are based on the source switch is utilized to avoid paths reaching
to be computed for a given source - destination pair . the same destination that emerge from different switches in

m

17

respo

30

US 10 , 425 , 324 B2
18

the top level of the input tree . Specific details regarding the In step 1213 , a parameter aux is assigned a value corre
computation of the parameter P are described next with sponding to the number of host - channel adapters in the
reference to FIG . 12 . destination switch . Thereafter , in step 1215 , the parameter P

In step 1132 , a query is made to determine whether the is updated as follows : P = (k % aux) * 3 + (k * 3) / aux .
source switch is equal to the destination switch . If the 5 Finally , in step 1217 , the parameter P is computed as P = P
response to the query is affirmative , the process continues to % (Number of ports of the destination switch) , whereafter
step 1151 (FIG . 11C) . However , if the response to the switch the process of FIG . 12 terminates .
is negative , the process continues to step 1133 . Turning now to FIG . 13 is depicted a flowchart 1300

In step 1133 , the current switch under consideration starts illustrating the steps performed in computing a best (i . e . ,
from the source switch and the parameter up is assigned the optimal) port of a switch that is to be utilized for a route that
number of upward ports on the switch . Further , the param traverses the switch .
eter hop is initialized to () and an identifier (case3) which In step 1301 , each port in the current switch under
corresponds to more than one minimal path from the next consideration is evaluated to determine whether the port
switch to the destination is initialized to false . 15 could be used to route a path .

In step 1134 , a function is executed to compute , in a In step 1303 , a parameter check is initialized to TRUE
hop - by - hop manner , a routing path from the source switch to (e . g . , the parameter check is initialized to a value of 1) .
the destination switch . Details regarding the route compu In step 1305 , a query is made to determine whether the
tation are described later with reference to FIGS . 16A - D . input tree is a regular fat tree , and the value of parameter hop
The process thereafter proceeds to step 1150 as shown in 20 is 1 , and the next switch is not the destination switch . If the
FIG . 11C . response to the query is affirmative , the process continues to

In step 1150 , a query is made to determine whether all the step 1307 , else the process continues to step 1309 .
ports in the destination switch have been processed . If the In step 1307 , a parameter port _ up is incremented by one .
response to the query is affirmative , the process continues to In step 1309 , the counter c0 is initialized to a value that
step 1151 . If the response to the query is negative , the 25 corresponds to the number of hops required to reach the
process loops back to step 1132 . destination switch .

In step 1151 , a query is made to determine whether all In step 1311 , a function (labeled apply rules) is executed
destination switches have been processed . If the response to to determine which routing rule of a priority of rules is to be the query is affirmative , the process continues to step 1152 , applied to determine the routing path . By one embodiment , else the process loops back to step 1127 . the type of rule to be applied is determined based on a path In step 1152 , a query is made to determine whether all number , a type of fat - tree , a hop number , and a number of source switches have been processed . If the response to the hops to reach the destination . Details regarding the apply query is affirmative , the process continues to step 1153 , else
the process loops back to step 1121 . rules function are described next with reference to FIG . 14 .

Further , in step 1153 , a query is made to determine 35 Further , in step 1315 , a query is made to determine
whether all paths (i . e . number of predetermined back up whether the parameter hop and mode are both equal to 2 and
paths and base path) have been processed . If the response to that the input tree topology is not Odd . If the response to the
the query is affirmative , the process continues to step 1154 , query is affirmative , the process continues to step 1317 , else
else the process loops back to step 1120 . the process jumps to step 1325 .

In step 1154 , a query is made to determine whether the 40 In step 1317 , a counter corresponding to port - position
parameter mode is less than equal to 2 . If the response to the (referred to as port _ pos) is initialized as :
query is affirmative , the process continues to step 1108 , else port _ pos = bp _ hop _ 0c % 2 , wherein hp _ hop _ Oc corresponds
the process terminates . to the port selected in hop zero for the current redundant

FIG . 12 depicts a flowchart 1200 illustrating the steps path . Moreover the switch counters cl and c3 are initialized
performed in computing a parameter P corresponding to a 45 to zero .
port on a destination switch . Further , in step 1319 a query is performed to determine

In step 1201 , a query is made to determine whether the whether the counter port _ pos is equal to one . If the response
value of parameter mode is 1 . If the response to the query is to the query is affirmative , the process proceeds to step 1323 ,
affirmative , the process continues to step 1203 . However , if else the process continues to step 1321 .
the response to the query is negative , the process continues 50 In step 1321 , the value of counter c4 is decremented by
to step 1205 . one , whereafter the process continues to step 1325 . In

In step 1203 , the parameter P is assigned the value of contrast , in step 1323 , the value of counter c4 is set to zero .
counter m that corresponds to a position of the destination In step 1325 , a further query is made to determine whether
switch in a set of destination switches that are generated the parameter check is true . If the response to the query is
using the BFS algorithm . Thereafter the process continues to 55 affirmative , the process continues to step 1327 , else the
step 1217 . process continues to step 1329 .

In step 1205 , a query is performed to determine whether In step 1327 , the value of counter c5 is initialized based
the input tree satisfies a particular set of criteria (represented on the parameter counter? current _ switch , port) , which is
as case) . Specifically , a query is made to determine whether described previously with reference to FIG . 5 . Moreover , the
the input tree is a 2 - level tree , and whether the tree is 60 counter c6 is set to a value which corresponds to a sum of
half - size and a regular tree . If the response to the query is counters of the next switch obtained via counter
negative , the process continues to step 1207 , else the process (next _ switch , auxiliary _ port) .
continues to step 1213 . Thereafter the process continues to step 1329 , wherein a

In step 1207 , the parameter P is assigned a value of the prioritization policy is applied to determine the best port on
counter k that corresponds to a position of the source switch 65 the current switch under consideration . In order to compute
in a set of source switches that are generated using the BFS the prioritization , variables * _ lower and * _ equals (for the
algorithm . Thereafter the process continues to step 1217 . counters co to c6) are defined as follows :

171172

(5)

Czequals =

c3 equals = o Aotherwise
(9) c4 S1 , 1c4 < c4min

c4equals = { 0 , otherwise
c5 tower = { 0 , 1 otherwise

US 10 , 425 , 324 B2
19 20

the counters are updated as follows : cOmin , = c0 ; cl min = c1 ;
(1 , Ac0 < cOmin (1) c2min = c2 ; c3 min = c3 ; c4min = c4 ; c5min = c5 ; and cmin = c6 , and CU lower = { 10 , otherwise the port that satisfies the above conditions is deemed as the

best port to be used in the current switch . Note that coming
(1 , AcO = cOmin clmiy etc . is in the figures written as co _ min , cl _ min etc .

CUequals = 0 , otherwise In step 1339 , a query is made to determine if all ports of
the current switch have been evaluated . If the response to the (1 , Acl < clmin query is negative , the process continues to step 1303 , else lower 10 , otherwise the process terminates .

(1 , Acl = clmin C equals = 1 (4) 10 FIG . 14 illustrates a flowchart 1400 depicting the steps
clequals = 3 sequats 10 , 1 otherwise performed in determining a rule of a plurality of rules that

is to be applied in determining the best port . By one
2 fi , Ac2 < c2min embodiment , each rule of the plurality of rules manipulates
Cabwer 10 , A otherwise the values of counters co to c6 in order to determine the best

15 port to be utilized in a switch . (1 , 1c2 = c2min Clequals = 1 In step 1401 , a query is made to determine whether To , otherwise path _ number (corresponding to the path that is under con
sideration) is equal to 0 or whether the switch under con fl , Ac3 < c3min

c3lower = 1 o . sideration is not a bottom level switch . If the response to the otherwise query is affirmative , the process continues to step 1405 to
(1 , 1c3 = c3min C2equals = 1 apply a first rule (Rule 1) whereafter the process MOO

terminates . However , if the response to the query in step
1401 is negative , the process continues to step 1403 ,
wherein another query is made to determine whether the c4lower = To , otherwise 25 following condition : (Odd Fat Tree AND path _ number > 0
AND switch at bottom level AND Mode = = 2 AND (1 , 1c4 = c4minc3equats = 1 (10) (src _ dst _ 4hop AND path _ number < 5) OR (2 Level tree AND
path _ number < 3)) is TRUE .

fl , Ac5 < c5min (11) If the response to the query in step 1403 is affirmative , the
30 process continues to step 1409 to apply a second rule (Rule

2) whereafter the process 1400 terminates . However , if the
fl , Ac5 = c5min C4equals = 1 (12) response to the query in step 1403 is negative , the process

continues to step 1407 , wherein another query is made to
determine whether the following condition : path _ num

fl , Ac6 < c6min (13) 35 ber = = 1 & & src _ dst _ 4hop (i . e . , the source and destination
switches are separated by 4 hops) is true . If the response to
the query in step 1407 is affirmative , the process continues
to step 1413 to apply a third rule (Rule 3) whereafter the By one embodiment , the process determines the values of process 1400 terminates . However , if the response to the

variables * _ lower and * _ equals of equations (1) to (13) . 40 query in step 1407 is negative , the process continues to step
Upon computing the values of the variables , in step 1331 , a 1411 to apply a fourth rule (Rule 4) whereafter the process
query is made to determine whether at least one condition of 1400 terminates . Details regarding the rules 1 - 4 are
a plurality of conditions is satisfied . If the response to the described next with reference to FIGS . 15A to 15E .
query is negative , the process continues to step 1339 , else FIG . 15A depicts a flowchart 1500 illustrating the steps
the process continues to step 1333 . Specifically , if the 45 performed while applying the first rule . The process com
response is affirmative , the current port is selected , else the mences in step 1501A , wherein a query is made to determine
process performs the prioritization for the next port . By one whether the value of c0 counter is greater than comin . If the
embodiment , the plurality of conditions is expressed as response to the query is affirmative the process continues to
follows : step 1501B , else the process continues to step 1501 . Spe

50 cifically , the process in step 1501A avoids ports that increase
the number of hops in the route computation of a source

Priority Conditions destination pair . If the response in step is affirmative , then in
in Decreasing step 1501B , the process returns to step 1301 in FIG . 13 , else Order Conditions the process continues to step 1501 .
Condition 1 55 The process in step 1501 initializes the values of counters
Condition 2 cequals AND cl lower a and c2 to infinity . Further , in step 1502 , value of counter Condition 3 clequals AND ! (path _ taken) AND ! new _ path _ found) c3 for the current switch and port is retrieved . Next , crucial Condition 4 clequals AND c2 lower
Condition 5 ports for base path are computed as follows . c2equals AND c3 lower
Condition 6 c3equals AND C4lower In step 1503 a query is made to determine whether the
Condition 7 (odd fat tree) AND c4equals AND c5lower 60 condition CO AND hop is less than equal to 1 , OR ODD Fat
Condition 8 (odd fat tree) AND c5equals AND c6lower Tree) and the current switch under consideration is a bottom

level switch . If the response to the query is negative , the
Further , in step 1333 parameter new path (new _ process terminates . However , if the response to the query is

path found) is assigned TRUE (based on the condition that affirmative , the process continues to step 1504 .
no path has been previously taken via another path and no 65 In step 1504 , a query is made to determine whether the
new path previously being found) signifying that a path from parameter k is equal to zero . If the response to the query is
the current switch has been found . Thereafter , in step 1335 , affirmative , the process continues to step 1506 , else the

c5equals = 10 . A otherwise

Colower = 10 otherwise

Olower

21
US 10 , 425 , 324 B2

22
process continues to step 1505 . In steps 1505 and 1506 , the traversed by the base path in hop number = = path number - 1 ,
parameter check _ half _ size is set to FALSE and TRUE , are obtained , and stored in the variables aux _ switch and
respectively , whereafter the process continues to step 1507 . aux _ port , respectively .

In step 1507 , a query is made to determine whether the In step 1526 , counter for the current switch - port (i . e . ,
input tree topology is an Odd fat tree . If the response to the 5 src _ dst _ counter as described previously with reference to
query is negative , the process continues to step 1509 . FIG . 6) used only for the current path (i . e . , base and
However , if the response to the query is affirmative , the redundant ones for the same source - destination pair) is
process continues to step 1508 . obtained and stored in counter cl . Note that this counter is

reset for each new source - destination pair . In step 1508 , the parameter path _ already _ taken (corre
sponding to whether there exists a path through the current + 10 In step 1527 , counter c2 is set as follows : c2 = odd _ counter

(next _ switch (check _ port) , aux _ switch , aux _ port , path switch / port) is set to FALSE . In step 1509 , casel is set as : _ number) . Specifically , the counter takes into account the (Regular _ fat _ tree) AND (3 _ level) AND (! half _ size) , and next switch , path number , and switch and port taken in base case2 is set as : (Regular _ fat _ tree) AND (! 3 _ level) AND path in a hop number related to the current path number .
(half size) . 3 _ level indicates whether the input tree topology 15 Further the process continues to sten 1528 .
is a three level fat tree (TRUE) or not (FALSE) . In step 1528 , a query is made to determine whether the

Thereafter , in step 1510 , the counter c4 is set to a value following condition is valid : 2 level AND
which is computed based on a function (i . e . , Get (c2 , ?4) aux switch = = next switch (check port) AND path num
function , that obtains values of several counters) described ber = = 2 . If the response to the query is affirmative , the
later with reference to FIGS . 17A and 17B . 20 process continues to step 1529 , else the process terminates .

In step 1511 , a query is made to determine whether the In step 1529 , the values of counters are manipulated as
input tree is an odd fat tree and no path is already taken follows : c3 = c2 ; c2 = cl ; and cl = infinity . Thereafter , the pro
through the current port . If the response to the query is cess terminates .
affirmative , the process continues to 1512 , wherein the value Note that if the response to the query in step 1521 is
of counter cl is set to zero . Thereafter the process continues 25 negative , the process continues to step 1530 , wherein the
to step 1513 . If the response to the query in step 1511 is p ort utilized by the base path in the current switch (i . e . , the
negative , the process continues to step 1513 , wherein switch under consideration) is stored in the variable aux
another query is made to determine whether the input tree _ port , i . e . auxiliary port . Thereafter , the process continues to
topology is a three level fat tree and case2 (step 1509) is step 1531 , wherein the process prioritizes using the same
TRUE . 30 port as the base path for the switch when hop is not equal to

If the response to the query of step 1513 is affirmative , the zero . Specifically , as shown in step 1531 , if auxiliary port is
process continues to step 1514 wherein the value of counter equal to the port under consideration , then the counter cl is
c2 is set to zero , whereafter the process continues to step set to zero in step 1533 , else in step 1532 , the counter cl is
1515 . If the response to the query in step 1513 is negative , set to infinity . Thereafter , the process continues to step 1534 ,
the process continues to step 1515 . 35 wherein the counters which are not taken into account by the

In step 1515 , a query is made to determine whether the second rule are set to zero . Specifically , as shown in step
following condition is valid : hop = = 1 AND CO = = 3 AND 1534 , the counters c3 , c4 , c5 , and c6 are all set to zero and
! casel AND ! odd _ fat _ tree . If the response to the query is the parameter check is set to false . Thereafter , the process
affirmative , the process continues to step 1516 , wherein the 1550 of FIG . 15B terminates .
value of counter c3 is set to zero , whereafter the process 40 Turning now to FIG . 15C , there is depicted a flowchart
continues to step 1517 . However , if the response to the query 1580 illustrating the steps performed while applying the
in step 1515 is negative , the process continues to step 1517 . third rule . The process commences in step 1541A wherein a

In step 1517 a further query is made to determine whether query is made to determine whether hop is equal to zero and
the following condition is valid : (hop = = 0 AND 3 _ level) OR the current port under consideration is not equal to the port
casel OR (case2 AND mode = = 1) . If the response to the 45 utilized by the base path in the bottom level switch . If the
query is affirmative the process continues to step 1518 , response to the query is affirmative , the process continues to
wherein the value of counter c4 is set to zero , whereafter the step 1541B , wherein the process loops back to step 1301 in
process terminates . Note that if the response to the query in FIG . 13 . However , if the response to the query is negative ,
step 1517 is negative , the process terminates . the process continues to step 1541 .

Turning now to FIG . 15B , there is depicted a flowchart 50 In step 1541 , a query is made to determine whether hop
1550 illustrating the steps performed while applying the is equal to one . If the response to the query is affirmative , the
second rule . process continues to step 1542 . If the response to the query

In step 1521 , a query is made to determine whether hop is negative , the process continues to step 1548 .
is equal to zero . If the response to the query is negative , the In step 1542 , parameter check _ port is computed as :
process continues to step 1530 . However , if the response to 55 check _ port = ((k / up) % up) - ((m / up) % up) , wherein up is
the query is affirmative , the process continues to step 1522A . number of upwards ports of the current switch .
In step 1522A , a further query is made to determine whether The process in step 1543 performs a query to determine
the current port under consideration is the same port as that whether the value of the parameter check _ port is less than
used by the base path in the bottom level switch . If the zero . If the response to the query is affirmative , the process
response to the query in step 1522A is affirmative , the 60 continues to step 1544 , else the process continues to step
process continues to step 1522B , wherein the process exits 1545 .
the process of FIG . 15B , and continues to step 1301 in FIG . In step 1544 , the parameter check _ port is increased by the
13 . However , if the response to the query is negative , the parameter up (i . e . the number of upwards ports of the
process continues to step 1523 . switch) , whereafter the process continues to step 1547 .

In step 1523 , the switch and port traversed by the base 65 In step 1545 , another query is performed to determine
path during hop = = path number - 1 are retrieved . Specifically , whether check _ port is equal to bp _ hop _ 1b (i . e . , port
as shown in steps 1524 and 1525 the switch and port selected in hop 1 by the base path) . If the response to the

23
US 10 , 425 , 324 B2

24
query is affirmative , the value of check _ port is set to zero in In step 1562 a query is made to determine whether at least
step 1546 , whereafter the process continues to step 1547 . one of the following two conditions is satisfied : condition (a)

If the response to the query in step 1545 is negative , the whether the source node and destination node are four hops
process continues to step 1547 wherein the parameter away and the parameter hop is greater than two , or condition
check _ port is incremented by the parameter up , and further 5 (b) whether the source node and the destination node are not
the computation check _ port = check _ port % up is performed four hops away and the parameter hop is greater than one .
(wherein the % sign corresponds to the modulo operation) . If the response to the query in step 1562 is affirmative , the

The process then continues to step 1548 , wherein another process continues to step 1563 , else the process continues to
query is performed to determine if hop is equal to 1 , and step 1567 .
whether the input tree topology is Half - size . If the response 10 In step 1563 , a query is made to determine whether the
to the query is affirmative , the process continues to step source - destination node pair is not separated by a distance of
1549 , else the process continues to step 1554 . four hops . If the response to the query is negative , the

In step 1549 , a query is made to determine whether a set process continues to step 1564 , else the process continues to
of conditions is satisfied . Specifically , the query determines step 1565 .
if the following conditions are satisfied . 15 In step 1564 , the check _ port parameter is initialized to a

(! ((bp _ hop _ 0c % 2 = = 1 AND check _ port % 2 = = 1 AND value of hop - 2 , whereafter the process continues to step
p % 2 = = 1) OR (bp hop Oc % 2 = = 1 AND check _ port % 1566 . In step 1565 , the check _ port parameter is initialized to
2 – 0 AND p % 2 – 0) OR (bp _ hop _ 0c % 2 – 0 AND a value of hop - 1 , whereafter the process continues to step
check _ port % 2 = = 1 AND p % 2 = = 0) OR (bp _ hop _ 0c % 1566 .
2 = 0 AND check _ port % 2 – 0 AND p % 2 = = 1))) 20 In step 1566 , the port is selected taking into account :
Specifically , the query determines that when fat - tree is source switch position (i . e . , k) , destination switch position
half _ size , the redundant paths are routed based on the port (i . e . , m) , port computed in current switch , and the first hop
chosen in hop 0 (i . e . , bp _ hop _ 0c) , current port , and the in full redundant path (i . e . , hp _ hop _ Or) , by using the using
destination port . the equations depicted in step 1566 . Thereafter , the process

If the response to the query in step 1549 is affirmative , the 25 continues to step 1586 (FIG . 15E) .
process continues to step 1551 , else the process continues to The process in step 1567 performs a query to determine
step 1554 . whether the source node and the destination node are

In step 1551 , the process makes a query to determine separated by a distance of four hops . If the response to the
whether the value of check _ port % 2 is equal to zero . If the query is affirmative , the process continues to step 1569 , else
response to the query is affirmative , the process continues to 30 the process continues to step 1568 .
step 1553 , wherein the value of check _ port is decremented In step 1569 , the value of the parameter check _ port is
by one . If the response to the query of step 1551 is negative , computed as follows : checkport = { (k / up) + (k % up) + (m /
the process continues to step 1552 , wherein the value of the up) + (m % up)) % up . Further , in step 1570 , the process
parameter check _ port is incremented by one . Thereafter , as determines whether the value of the check _ port parameter is
shown in FIG . 15C , the process continues to step 1554 . 35 equal to the port that is utilized by the base path in the

In step 1554 , the counter co is set to a value that bottom level switch . If the response to the query of step 1570
corresponds to the number of hops until the destination is affirmative , the process continues to step 1571 , wherein
switch is reached . Further , in step 1554 , a query is also made the value of the check _ port parameter is updated as : check
to determine whether the path is a minimal path . Specifi _ port = ((m / up) + (k % up) + (m / up) + (m % up)) % up . If the
cally , a query is made to determine whether c0 is greater than 40 response to the query in step 1570 is negative , the process
cOmin . If the response to the query is affirmative , the process continues to step 1572 , wherein the value of the check _ port
continues back to step 1301 in FIG . 13 . Moreover , by one parameter is updated as : check _ port = check _ port + port , and
embodiment , a further query is made to avoid taking the further check _ port = check _ port % up . Thereafter , the pro
same port as that used by the base path in current hop . cess continues to step 1586 in FIG . 15E .
Specifically , a query is made to determine whether hop is 45 If the response to the query of step 1567 is negative (i . e . ,
equal to one and the current port is equal to the output port the source node and the destination node are located in the
selected in a middle level switch by the base path (i . e . , same sub - group , or in other words , the distance between the
bp _ hop _ 1b) . If the response to this query is affirmative , the source node and the destination is not four hops) , the value
process continues to step 1301 of FIG . 13 , else the process of the check _ port parameter is initialized as check _ port = (k
continues to step 1555 . 50 % np2) - (m % np2) .

In order to avoid taking the same port as the base path , in Further , in step 1573 the process performs a query to
step 1555 a query is made to determine whether hop number determine if the value of the check _ port parameter is less
is equal to one . If the response to the query is affirmative , the than zero . If the response the query is negative , the process
process in step 1556 retrieves the value of pnl _ h4 _ counter continues to step 1576 , else the process continues to step
when the port for second hop in the base path equals the 55 1574 .
value of the parameter bp _ hop _ 1b and the second hop in the In step 1574 , the value of the aux parameter is incre
redundant path number 1 equals the value of the parameter mented by value up (i . e . , number of upward ports on a
check _ port . Thereafter , the process of FIG . 15C terminates . switch) , whereafter the process continues to step 1575 .
If the response to the query in step 1555 is negative , the In step 1575 , a query is made to determine whether the
process of FIG . 15C terminates . 60 check _ port parameter is not equal to zero . If the response to
FIGS . 15D and 150 depict a flowchart illustrating the the query is negative , the process continues to step 1578 ,

steps performed while applying a fourth rule . else the process continues to step 1576 .
The process commences in step 1561 , wherein a query is In step 1576 , a query is made to determine whether the

made to determine whether the hop parameter is equal to value of the check _ port parameter is equal to the port
zero . If the response to the query is affirmative , the process 65 number that is used by the base path in the bottom level
continues to step 1562 , else the process continues to step switch . If the response to the query is negative , the process
1585 (FIG . 15E) . continues to step 1583 . However , if the response to the query

25
US 10 , 425 , 324 B2

26
is affirmative , the process continues to step 1577 , wherein infinite . Thereafter , the process continues to step 1594 . If the
the value of the check _ port parameter is made zero , where - response to the query in step 1592 is negative , the process
after the process continues to step 1583 . continues to step 1594 .

In step 1578 , the process performs a query to determine In step 1594 , the value for counter cl of the current switch
whether the value of the check _ port parameter is equal to the 5 and port is obtained . Further , the process continues to step
port number that is used by the base path in the bottom level 1596 , wherein a query is made to determine whether the
switch . If the response to the query is negative , the process following conditions : (hop = = 0 AND path _ number > = 2) OR
continues to step 1581 . However , if the response to the query (hop = 0 AND path _ number = 1 AND ! src _ dst _ 4hop) is
is affirmative , the process continues to step 1579 , wherein valid . If the response to the query is affirmative , the process
the value of the check _ port parameter is computed as : " continues to step 1598 , wherein the value of c3 counter is set
check _ port = (k / up) % up , whereafter the process continues to zero , whereafter the process terminates . Note that if the
to step 1581 . response to the query in step 1596 is negative , the process

In step 1581 , the process performs a query to determine of FIG . 15E terminated .
whether the value of the check _ port parameter is equal to the 15 FIGS . 16A - 16D illustrate a flowchart depicting the steps
port number that is used by the base path in the bottom level performed in computing a routing path for a source - desti
switch . If the response to the query is negative , the process nation pair .
continues to step 1583 . However , if the response to the query The process commences in step 1601 , wherein a query is
in step 1581 is affirmative , the process continues to step made to determine whether the current switch under con
1582 , wherein the value of the check _ port parameter is 20 sideration is the destination switch . If the response to the
computed as : check _ port = (m / up) % up , whereafter the pro query is affirmative , the process simply terminates (shown
cess continues to step 1583 . by connector ‘ A ’ in FIG . 16D) . However , if the response to

In step 1583 , the value of the check _ port parameter is the query is negative , the process continues to step 1603 ,
updated as : check _ port = check _ port + port , and further wherein the counters : cOmin , c1 min , c2 min , c3 min , C4min , c5 min ,
check _ port = check _ port % up . Thereafter , the process con - 25 and c6 min are initialized to infinity .
tinues to step 1586 in FIG . 15E . Further , in step 1605 the parameter best _ port (i . e . , the best

Turning to FIG . 15E , in step 1586 , the process verifies if port to be taken in the current switch to reach the next switch
the counter c0 is greater than cOmin and whether the condi - in the routing path) and the parameter port _ up (i . e . , the port
tion : hop = = 0 & & port = = bp _ 0 _ 0b & & path _ number < up is to be taken in the current switch) are both initialized to zero .
valid . If these conditions are valid , the process exits the 30 The process in step 1607 executes the function of com
flowchart of FIG . 158 , and continues to step 1301 in FIG . puting the best port in the current switch . Details regarding
13 . However , if the above conditions are not valid , the this function are described previously with reference to FIG .
process continues to step 1587 . The query in step 1586 is 13 .
performed in order to split paths after first hop , when the 28 In step 1609 , a query is made to determine whether the
number of redundant paths is greater than the upwards paths switch under consideration is a bottom level switch (param
number (i . e . , the number of upwards ports in a switch eter b _ level) , or , if the current switch under consideration is
denoted as “ up ”) . not a bottom level switch and the current path being com

In step 1587 , a query is made to determine whether the puted is a base path (i . e . path _ number = = 0) , whether no best
following conditions : hop greater than 0 , AND path _ number 40 port has been computed and stored yet (i . e . ! src _ dst _ port
is greater than 0 AND no new path is found , are valid . If the (current _ switch , dest _ port , path _ number , mode)) . Note that
response to the query in step 1587 is negative , the process the parameter src _ dst _ port obtains the stored port to take in
continues to step 1589 , else the process continues to step the current switch when going to the destination port taking
1588 . into account the path number and the mode of operation .

In step 1588 , path taken is assigned the value TRUE only 45 If the response to the query is negative , the process
if the port with the number check _ port has already been continues to step 1613 . However , if the response to the query
taken by a previous path , to ensure that the current path is is affirmative , the process continues to step 1611 wherein a
preferably a path not taken before . Otherwise , the parameter check _ best _ port function is executed to recheck the com
path _ taken is assigned the value FALSE . Thereafter , the puted best port . Details regarding the check _ best _ port func
process continues to step 1589 , wherein a query is made to 50 tion are described later with reference to FIG . 18 .
determine if value of the parameter hop is zero . If the In step 1613 , a query is made to determine if the path
response to the query is affirmative , the process continues to number of the currently computed path is zero . If the
step 1590 , else the process continues to step 1592 . response to the query is negative , the process continues to

In step 1590 , the c3 counter is updated based on the step 1617 . However , if the response to the query is affirma
pn2 _ end _ counter (described previously) . Specifically , the 55 tive , the process continues to step 1615 , wherein the value
value of the pn2 _ end _ counter is read for the output port of the counter : counter (current _ switch , best _ port) is incre
taken by the base path in the first hop (i . e . bp _ hop _ Ob) , the mented by one . Specifically , as described previously with
parameter path _ number and the parameter check _ port . reference to FIG . 6 , this counter is incremented in every base
By one embodiment , src _ dst _ port () function , obtains the path for every switch / port traversed .

stored port that is to be taken in current switch (parameter 60 In step 1617 , a query is made to determine the value of the
current _ switch) when going to destination port (the param - parameter case3 . Specifically , a query is made to determine
eter dest _ port) , taking into account the path number (param - whether the following condition is valid : src dst counter
eter path _ number) and the current mode (parameter mode) . (current _ switch , best _ port) > 0 AND hop = 0 ANT) b _ level
In step 1592 , a query is made to determine if a value for AND 2 _ level AND path _ number > 0 . If the response to query
src _ dst _ port is already stored for these four parameters . If 65 is negative , the process continues to step 1621 wherein case3
the response to the query is affirmative , the process contin - is assigned FALSE . However , if the response to the query is
ues to step 1592A , wherein the value of counter c3 is made affirmative , the process continues to step 1619 , wherein the

27
US 10 , 425 , 324 B2

28
parameter case3 is assigned TRUE only if more than one wherein the computed best port is assigned to the parameter
minimal path exists from the next switch to the destination hp _ hop _ Or (i . e . , the parameter corresponding to the port
switch . selected in hop zero for the first full redundant path) .

Further , the process in step 1623 increments the value of However , if the response to the query in step 1635 is
the counter src _ dst _ counter by INC , which was determined 5 negative , the process continues to step 1639 .
in step 1124 (in FIG . 11B) . Specifically , the process incre 1B) . Specifically , the process incre - In step 1639 , a further query is performed to determine if
ments the temporary switch / port counter . Note that this the following condition is valid : path _ number = 0 AND
counter is reset every time that a new source - destination pair hop = = 0 AND hca _ found (i . e . a Boolean parameter indicat is computed . The purpose of this counter is to split redundant ing that a the current switch has a host channel adapter paths for the same source - destination pair between them . 10 attached , in other words , that the switch is a bottom switch) . This counter is incremented for every base / redundant path in If the response to the query is affirmative , the process every switch / port traversed for the current source - destina
tion pair . continues to step 1641 , wherein the computed best port is

assigned to the parameter bp _ hop _ Ob (i . e . , the output port Further , the process continues to step 1625 as shown in
FIG . 16B , wherein a query is made to determine whether the 15 that is taken by a base path in a bottom level switch) .
path number (of the path currently under consideration) is However , if the response to the query is negative , the process
zero and whether the switch under consideration is a bottom continues to step 1643 .
level switch . If the response to the query is affirmative , the In step 1643 , another query is performed to determine
process continues to step 1627 , whereas if the response to whether the condition : path _ number = = 1 AND (hop = = 1 OR
the query is negative , the process continues to step 1639 . 20 hop = = 2) AND b _ level (i . e . , the current switch being a

The process in step 1627 performs a query to determine bottom level switch) is valid . If the response to the query is
whether the pnl _ h4 _ counter () (described previously with affirmative , the process continues to step 1645 (FIG . 16C) .
reference to FIG . 8B) is to be incremented . Note that the However , if the response to the query is negative , the process
pn1 _ h4 _ counter () is incremented when it is the first redun - continues to step 1653 as shown in FIG . 16C .
dant path being computed , and there are four hops from 25 In step 1645 another query is made to determine whether
source to destination (i . e . the source and destination are in the condition (hop = = 1 AND ! src _ dst _ 4hop) OR (hop = = 2
different groups of a 3 - level fat - tree) , and the hop number is AND src _ dst _ 4hop) is valid . If the response to the query is
1 (i . e . , the second hop , i . e . a middle level switch in a 3 - level affirmative , the process continues to step 1647 , else the
fat - tree) . As stated previously with reference to FIG . 8B , process continues to step 1649 . In step 1647 the value of the
there is a different counter for every port number selected in 30 counter switch _ dst _ counter is incremented by one .
the second hop in the base path together with the current In step 1649 , the process performs a further query to
selected port number in the second hop . Furthermore , this determine whether the parameter hop is equal to one and the
counter takes into account two port numbers for the second source - destination nodes are different subgroups . If the
hop in the base path and second hop in the first redundant response to the query is affirmative , the process continues to
path that can be in different switches in contrast to other 35 step 1651 , wherein the computed best _ port is assigned to the
counters . As such , this counter is very useful for regular parameter bp _ hop _ 1b . However , if the response to the query
fat - trees . is negative , the process continues to step 1653 , wherein a

If the response to the query in step negative , the process further query is made to determine whether the parameter
continues to step 1631 . If the response to the query if hop is equal to zero .
affirmative , the process continues to step 1629 , wherein the 40 If the response to the query in step 1653 is affirmative , the
value of the counter : pnl _ h4 _ counter () is incremented by process continues to step 1655 , wherein the computed
INC , which was determined in step 1124 (in FIG . 11B) . best _ port is assigned to parameter bp _ hop _ 0c (i . e . , the port

Further , the process in step 1631 performs a query to selected in hop zero for the current redundant path) . How
determine whether the value of parameter hop is zero . Note ever , if the response to the query in step 1653 is negative , the
that this query is performed in order to determine whether 45 process continues to step 1657 wherein the process performs
the counter : pn2 _ end _ counter ((described previously with a further query to determine whether the input tree is an odd
reference to FIG . 9B) is to be incremented by INC . This fat tree and the switch under consideration is a bottom level
counter is incremented when a redundant path different to switch . If the response to the query of step 1657 is affirma
the one described before in pnl _ h4 _ counter . There is a tive , the process continues to step 1659 , else if the response
different counter for every port number selected in the first 50 to the query is negative , the process continues to step 1663
hop in the base path together with the current selected port (as shown in FIG . 16D) .
number in the second hop and the current redundant path In step 1659 , a further query is performed to determine
number . This counter takes into account two port numbers whether the condition : (src _ dst _ 4hop AND path _ number < 5)
for the first hop in the base path and second hop in the OR (2 _ level AND path _ number < 3) is valid . If the response
current path that can be in different switches in contrast to 55 to the query is affirmative , the process continues to step
other counters . Also it takes into account the redundant path 1661 , wherein the switch and port traversed by the base path
number . As such , the above step is useful for regular during hop number path _ number - 1 are retrieved . Further
fat - trees . more , odd _ counter is incremented by one . It must be appre

If the response to the query in step 1631 is affirmative , the ciated that odd _ counter is used by one embodiment for odd
process continues to step 1633 wherein the value of the 60 fat - trees and is incremented taking into account the next
counter is incremented by one . However , if the response to switch through the current best _ port , the current redundant
the query is negative , the process continues to step 1635 . path number , the switch selected in the base path for the hop

Further , the process in step 1635 makes a query to number path _ number - 1 and the port selected for the same
determine whether the following condition is valid : hop . For example , if current path _ number is 1 , the switch
(path _ number = = 1 AND hop = = 0) OR (path _ number = = 2 65 and port taken into account in the base path are for the first
AND hop = = 0 AND src _ dst _ 4hop) . If the response to the hop (bottom level) . If the current path is 2 , then the switch
query is affirmative , the process continues to step 1637 and port taken into account in the base path are for the

29
US 10 , 425 , 324 B2

30
second hop (middle level in a 3 - level fat tree) . Note that the Further , in step 1717 , a query is made to determine
first hop is referred to herein as hop 0 , and second hop as hop whether the input tree is a half - size tree . If the input tree is
1 and so on . a half size tree , a Boolean parameter check _ half _ size is

Further , the process in step 1663 increments the hop assigned FALSE .
number by one for the next iteration , and updates the current 5 The process further proceeds to step 1719 (as shown in
switch as the next switch that is reached using the best port . FIG . 17B) , wherein for every port in the next switch through
Moreover , the values for Boolean parameters case4 , case5 , the current port under consideration , the process determines
case6 , and case7 are determined to be one of TRUE and whether the path through the next port is minimal (step
FALSE , based on at least the path number , hop , the source 1721) .
destination being in different subgroups , and the mode of If the response to the query in step 1721 is negative , the
operation . process loops back to step 1719 and performs the verifica

Further , the process continues to step 1665 , wherein a tion process for the next port . Upon performing the verifi
query is made to determine whether the following condition cation process for all ports , if it is determined that no
is valid : (case3 = FALSE) AND (case4 = = TRUE OR 15 minimal path exists , the process loops back to step 1705
case5 = = TRUE OR case6 = = TRUE) AND case7 = = FALSE . If (FIG . 17A) .
the response to query is negative , the process continues in However , if it is determined that the path through a port
FIG . 16D and terminates . However , if the response to the is minimal , then the process continues to step 1723 , wherein
query is affirmative , the process continues to step 1667 a query is made to determine whether the following condi
wherein the src _ dst _ counter is updated , and the source - 20 tion is valid : regular _ fat _ tree AND ((mode = - 2 AND 2 _ level
destination port from the base path is copied to the redundant AND hop = 1) OR (3 _ level AND hop = = 1)) . If the response
path , after which the process terminates . to the query is affirmative , the process continues to step

Turning now to FIGS . 17A and 17B , there is depicted a 1725 . However , if the response to the query is negative the
flowchart illustrating the steps performed in executing a process continues to step 1727 .
function that is performed to obtain counters of a switch . 25 In step 1727 counter c2 is initialized to infinity , and every
Specifically , the flowchart of FIGS . 17A and 17B depict a port in the next switch is analyzed to determine whether it
flowchart illustrating the steps performed to obtain value of is one hop away from the destination switch (step 1729) .
c2 and c4 counters of a switch . Note that the function Get If the response to the query in step 1729 is negative , the
that carries out these steps is called in step 1510 (depicted in process loops back to step 1727 to analyze the next port of
FIG . 15A) . 30 the switch . However , if the response to the query in step

The process begins in step 1701 , wherein the value of 1729 is affirmative , the process continues to step 1731 ,
counter c4 is initialized to infinity . wherein a parameter C is assigned the value of counter :

Further , in step 1703 , a query is made to determine counter (next _ switch , auxiliary _ port) .
whether the input tree is an Odd fat tree , and whether the Further , the process continues to step 1733 , wherein a
next switch through the current port to the destination was 35 query is made to determine whether the value of the param
previously computed . If the response to the query is affir - eter C is less that the value of value of counter c2 . If the
mative , the process continues to step 1705 . If the response response to the query is negative , the process loops back to
to the query is negative , the process continues to step 1707 . step 1727 . However , if the response to the query in step 1733

In step 1705 , the process returns the values of counters c2 is affirmative , the process continues to step 1735 , wherein
and c4 as infinite , and further returns a true value (i . e . , a 40 the counter c2 is assigned the value of the parameter C .
value of 1 , or TRUE) for the parameter already _ taken . Note Thereafter , the process loops back to step 1727 .
that the parameter already _ taken corresponds to the scenario In this manner , in step 1727 , upon analyzing all the ports
that the next switch through the current port was previously of the switch , the process continues to step 1745 , wherein
computed . Upon returning the values of counters c2 and c4 the value of counter c4 is assigned based on the switch
in step 1705 , the process terminates (as shown by connector 45 dst _ counter (as described previously with reference to FIG .

10) of the next switch . Thereafter , the process proceeds to
When the response to the query in step 1703 is negative , step 1747 , wherein the parameter already _ taken is assigned

the process in step 1707 assigns a Boolean value for the FALSE , and the respective values of counters c2 and c4 are
parameter caseo based on a number of levels in the input returned . Upon returning the values of counters c2 and c4 ,
tree , whether the input tree topology is not an odd fat tree 50 the process terminates .
and whether the input tree is a half - size tree . If the response to the query in step 1723 is affirmative , the

Further , in step 1709 , a query is made to determine process continues to step 1725 , wherein a query is made to
whether the next switch through the current port is the determine whether the input tree is half - size . If the response
destination switch and whether the parameter casel is to the query is negative , the process continues to step 1726 ,
FALSE . If the response to the query in step 1709 is negative , 55 wherein the counter c4 is assigned a value of 0 based on a
the process continues to step 1713 . However , if the response parameter port _ pos (i . e . , port position) being equal to the
to the query is affirmative , the process continues to step port _ up parameter , else the value of counter c4 is assigned
1711 , wherein the parameter already _ taken is assigned as as one . Thereafter , the process continues to step 1743 ,
FALSE , and the counters c2 and c4 are assigned a value of wherein the counter c2 is assigned a value of infinity , and the
infinity . Thereafter , the process of FIG . 17A terminates . 60 respective values of counters c2 and c4 are returned .

In step 1713 , a query is made to determine whether the If the response to the query in step 1725 is affirmative , the
following condition is valid : (hop = = 1 OR (hop = = 0 AND process continues to step 1737 , wherein the process deter
2 _ level AND ! odd _ fat _ tree)) AND ! Half _ Size AND mines whether the following condition is valid :
check _ half _ size . If the response to the query in step 1713 is (bp _ hop _ 1 % 2 = = 1 AND port _ pos = - port _ up) OR
negative , the process continues to step 1719 . If the response 65 (bp _ hop _ 1 % 2 = 0 AND port _ pos % 2 = = 1 AND port _ pos +
to the query is affirmative , the process continues to step 1 = port _ up) OR (bp _ hop _ 1 % 2 – 0 AND port _ pos % 2 = 0
1717 . AND port _ pos - 1 = - port _ up) .

“ S ') .

US 10 , 425 , 324 B2
31 32

If the above condition is valid (i . e . , true) , the process loops back to step 1909 to determine if all source - destination
continues to step 1739 , wherein the value of counter c4 is pairs that utilize the failed port have been processed .
assigned as 0 . In contrast , if the condition is not valid (i . e . , FIG . 20 depicts a flowchart illustrating the steps per
false) , the process continues to step 1741 , wherein the value formed in processing up - link changes in the input network .
of the counter c4 is assigned as 1 . 5 Specifically , FIG . 20 depicts a flowchart depicting the steps

Thereafter the process continues to step 1743 , wherein the performed , for example , when a faulty port has been
value of counter c2 is assigned as infinity , whereafter the restored i . e . , the faulty port becomes operational .
process returns the values of counters c2 and c4 , and then The process begins in step 2001 wherein the restored port

is obtained . Further , in step 2003 the switch to which the terminates .
FIG . 18 depicts a flowchart illustrating the steps per 10 restored port belongs to is identified .

formed in determining whether a current port of a switch is Further , the process in step 2005 determines all the
source - destination pairs that initially (i . e . , before the occur an optimal port (i . e . best port) . rence of the fault) utilized the restored port in routing of a The process commences in step 1801 wherein , casel is base path from the source to the destination . In step 2007 , assigned TRUE if the input tree topology is two level AND 15 15 the process marks the port and the corresponding switch as half size AND the topology is a regular fat tree . operational .

Further , in step 1803 , a query is made to determine In step 2009 , a query is made to determine whether all
whether hop is equal to one and case3 is TRUE . Note that source - destination pairs utilizing the current switch / restored
for case3 , there is a stored port if any redundant path from port have been processed . If the response to the query is
the current switch to the destination port was computed 20 affirmative , the process terminates . However , if the response
previously . Therefore , the path number is not taking into to the query is negative , the process continues to step 2011 .
account when case3 = = TRUE . If the response to the query in In step 2011 , for each of the source - destination pairs , a
step 1803 is affirmative , the process continues to step 1805 query is made to determine whether the best output path
wherein current port is set as : src _ dst _ port (current _ switch , from the source to the destination can utilize the restored
dest _ port , case3 , mode) . 25 port . If the response to the query is affirmative , the process

However , if the response to the query in step 1803 is continues to step 2013 , else the process loops back to step
negative , the process in step 1807 sets the value of the 2009 .
current port as : src _ dst _ port (current _ switch , dst _ port , path In step 2013 , the restored port is assigned as a port to be
_ number , mode) . used to route a path (e . g . , a base path) from the source to the

Further , the process continues to step 1809 , wherein a 30 destination . Specifically , by one embodiment , the forward
query is made to determine whether no current port is stored ing tables can be updated to reflect the change in the
OR casel is TRUE . assigned port to be used for the given source - destination

If the response to the query is affirmative , the process pair . Thereafter , the process loops back to step 2009 to
continues to step 1811 , else the process continues to step determine if all source - destination pairs that can potentially
1813 . 35 utilize the newly restored port have been processed .

In step 1811 the best port is stored as the current port , Turning now to FIG . 21 is depicted an exemplary flow
whereafter in step 1813 , the current port is returned to the chart depicting the steps performed in changing a mode of
function that initiated a call to the check best port function operation of the network . By one embodiment of the present
of FIG . 18 , whereafter the process of FIG . 18 terminates . disclosure , the mode of operation of the network is depen

FIG . 19 depicts a flowchart illustrating the steps per - 40 dent on a number of levels on the input tree topology , and
formed in processing down - link (i . e . , a failed link or port) a type of the input tree topology .
changes in the input network . By one embodiment , when the input tree topology is a

The process commences in step 1901 , wherein a faulty 2 - level fat tree that is both regular and half - size , the mode
port (also referred to herein as a broken port) is identified . of operation is both mode 1 and mode 2 as described below .
Further , the process in step 1903 determines the switch 45 In a similar manner , when the input tree is a 3 - level fat tree
which includes the faulty port . that is not an Odd fat tree , the mode of operation is both

In step 1905 , all source - destination pairs that utilize the mode 1 and mode 2 . In contrast , when the input tree is either
faulty port are determined , and the corresponding switch a 2 - level or a 3 - level fat tree that is an Odd fat tree , the mode
identified as the switch which includes the faulty port is of operation is only mode 2 .
marked as a faulty switch (step 1907) . 50 Specifically , by one embodiment of the present disclosure ,

Further , the process continues to step 1909 , wherein a some topologies have two operational modes with different
query is made to determine if all the source - destination pairs routing : mode 1 , wherein no faults are present in the
that utilize the faulty port (determined in step 1905) are network ; and mode 2 , wherein faults are present in the
processed . If the response to the query is affirmative , the network . In mode 1 of operation , a base path is computed for
process terminates . However , if the response to the query in 55 a given source - destination pair , whereas in mode 2 of
step 1909 is negative , the process continues to step 1911 , operation , another base path and redundant paths are com
wherein for the source - destination pair that is under consid - puted for that source - destination pair . The purpose of tran
eration (and that which uses the faulty port) , an alternate sitioning from one mode to another mode is to replace the
path (e . g . , lowest number of hops redundant path) is working base paths (for certain types of tree topologies) in
assigned as the base path for the source - destination pair . It 60 the occurrence of faults .
must be appreciated that the alternate path does not utilize Turning now to FIG . 21 , the process commences in step
the faulty port of the switch . 2101 wherein the input tree is determined to be a regular fat

The process then continues to step 1913 , wherein for the tree if the input tree follows the definition of X - ary Y - tree .
source - destination pair under consideration , the base path is Further , in step 2103 , parameter casel is assigned a value
updated to reflect the alternate path . Accordingly , a route 65 of TRUE , based on the input tree being either a 2 - level tree ,
corresponding to the source - destination pair is updated in which is half - size and regular , or the input tree being a
the forwarding table of the switches . Thereafter , the process 3 - level fat tree .

ase

US 10 , 425 , 324 B2
33 34

Further , the process continues to step 2105 , wherein a main memory 2204 . Such instructions may be read into the
query is made to determine whether the occurrence of a fault main memory 2204 from another computer readable
is a first fault instance (i . e . , fault _ number is one) , parameter medium , such as a hard disk 2207 or a removable media
casel is TRUE , and the input tree is not an odd fat tree . If drive 2208 . One or more processors in a multi - processing
the response to the query is affirmative , the process contin - 5 arrangement may also be employed to execute the sequences
ues to step 2107 , whereas if the response to the query is of instructions contained in main memory 2204 . In alterna
negative , the process continues to step 2109 . tive embodiments , hard - wired circuitry may be used in place

In step 2107 , the LFTs are updated in mode2 (i . e . , the of or in combination with software instructions . Thus ,
mode of operation of the network is mode 2) , whereafter the embodiments are not limited to any specific combination of
process of FIG . 21 terminates . However , if the response to 10 hardware circuitry and software .
the query in step 2105 is negative , the process in step 2109 As stated above , the computer system 2201 includes at
performs another query to determine whether the network least one computer readable medium or memory for holding
has completely recovered of all faults and there are no more instructions programmed according to any of the teachings
faults in the network , the value of parameter casel is TRUE , of the present disclosure and for containing data structures ,
and the input tree topology is not an odd fat tree . 15 tables , records , or other data described herein . Examples of

If the response to the query in step 2109 is affirmative , the computer readable media are compact discs , hard disks ,
process continues to step 2111 , wherein the LFTs are floppy disks , tape , magneto - optical disks , PROMs
updated in model of operation . Upon updating the routing (EPROM , EEPROM , flash EPROM) , DRAM , SRAM ,
paths , the process of FIG . 21 terminates . However , if the SDRAM , or any other magnetic medium , compact discs
response to the query is negative the process loops back to 20 (e . g . , CD - ROM) , or any other optical medium , punch cards ,
step 2107 to operate in the second mode . paper tape , or other physical medium with patterns of holes .

Each of the functions of the described embodiments may Stored on any one or on a combination of computer
be implemented by one or more processing circuits . A readable media , the present disclosure includes software for
processing circuit includes a programmed processor (for controlling the computer system 2201 , for driving a device
example , processor 2203 in FIG . 22) , as a processor includes 25 or devices for implementing the features of the present
circuitry . A processing circuit also includes devices such as disclosure , and for enabling the computer system 2201 to
an application - specific integrated circuit (ASIC) and circuit interact with a human user . Such software may include , but
components that are arranged to perform the recited func - is not limited to , device drivers , operating systems , and
tions . applications software . Such computer readable media fur

The various features discussed above may be imple - 30 ther includes the computer program product of the present
mented by a fabric - controller i . e . , a computer system or disclosure for performing all or a portion (if processing is
programmable logic . FIG . 22 illustrates such a computer distributed) of the processing performed in implementing
system 2201 . In one embodiment , the computer system 2201 any portion of the present disclosure .
is a particular , special - purpose machine when the processor The computer code devices of the present embodiments
2203 is programmed to compute balanced routing paths for 35 may be any interpretable or executable code mechanism ,
fat - tree network topologies . including but not limited to scripts , interpretable programs ,

The computer system 2201 includes a disk controller dynamic link libraries (DLLs) , Java classes , and complete
2206 coupled to the bus 2202 to control one or more storage executable programs . Moreover , parts of the processing of
devices for storing information and instructions , such as a the present embodiments may be distributed for better
magnetic hard disk 2207 , and a removable media drive 2208 40 performance , reliability , and / or cost .
(e . g . , floppy disk drive , read - only compact disc drive , read ! The term " computer readable medium ” as used herein
write compact disc drive , compact disc jukebox , tape drive , refers to any non - transitory medium that participates in
and removable magneto - optical drive) . The storage devices providing instructions to the processor 2203 for execution .
may be added to the computer system 2201 using an Acomputer readable medium may take many forms , includ
appropriate device interface (e . g . , small computer system 45 ing but not limited to , non - volatile media or volatile media .
interface (SCSI) , integrated device electronics (IDE) , Non - volatile media includes , for example , optical , magnetic
enhanced - IDE (E - IDE) , direct memory access (DMA) , or disks , and magneto - optical disks , such as the hard disk 2207
ultra - DMA) . or the removable media drive 2208 . Volatile media includes

The computer system 2201 may also include special dynamic memory , such as the main memory 2204 . Trans
purpose logic devices (e . g . , application specific integrated 50 mission media , on the contrary , includes coaxial cables ,
circuits (ASICs)) or configurable logic devices (e . g . , simple copper wire and fiber optics , including the wires that make
programmable logic devices (SPLDs) , complex program - up the bus 2202 . Transmission media also may also take the
mable logic devices (CPLDs) , and field programmable gate form of acoustic or light waves , such as those generated
arrays (FPGAs)) . during radio wave and infrared data communications .

The computer system 2201 may also include a display 55 Various forms of computer readable media may be
controller 2209 coupled to the bus 2202 to control a display involved in carrying out one or more sequences of one or
2210 , for displaying information to a computer user . The more instructions to processor 2203 for execution . For
computer system includes input devices , such as a keyboard example , the instructions may initially be carried on a
2211 and a pointing device 2212 , for interacting with a magnetic disk of a remote computer . The remote computer
computer user and providing information to the processor 60 can load the instructions for implementing all or a portion of
2203 . The pointing device 2212 , for example , may be a the present disclosure remotely into a dynamic memory and
mouse , a trackball , a finger for a touch screen sensor , or a send the instructions over a telephone line using a modern .
pointing stick for communicating direction information and modem local to the computer system 2201 may receive the
command selections to the processor 2203 and for control - data on the telephone line and place the data on the bus 2202 .
ling cursor movement on the display 2210 . 65 The bus 2202 carries the data to the main memory 2204 ,

The processor 2203 executes one or more sequences of from which the processor 2203 retrieves and executes the
one or more instructions contained in a memory , such as the instructions . The instructions received by the main memory

US 10 , 425 , 324 B2
35 36

2204 may optionally be stored on storage device 2207 or
2208 either before or after execution by processor 2203 .

The computer system 2201 also includes a communica
tion interface 2213 coupled to the bus 2202 . The commu
nication interface 2213 provides a two - way data communi - 5
cation coupling to a network link 2214 that is connected to ,
for example , a local area network (LAN) 2215 , or to another
communications network 2216 such as an InfiniBand net
work , Omni - Path network , or the Internet . For example , the
communication interface 2213 may be a network interface
card to attach to any packet switched LAN . As another
example , the communication interface 2213 may be a host
channel adapter (HCA) card . Wireless links may also be
implemented . In any such implementation , the communica - 16
tion interface 2213 sends and receives electrical , electro -
magnetic or optical signals that carry digital data streams
representing various types of information .

The network link 2214 typically provides data commu
nication through one or more networks to other data devices . 20
For example , the network link 2214 may provide a connec
tion to another computer through a local network 2215 (e . g . ,
a LAN) or through equipment operated by a service pro
vider , which provides communication services through a
communications network 2216 . The local network 2214 and 25
the communications network 2216 use , for example , elec
trical , electromagnetic , or optical signals that carry digital
data streams , and the associated physical layer (e . g . , CAT 5
cable , CAT 6 cable , coaxial cable , optical fiber , etc .) . The
signals through the various networks and the signals on the 30
network link 2214 and through the communication interface
2213 , which carry the digital data to and from the computer
system 2201 may be implemented in baseband signals , or
carrier wave based signals .

The baseband signals convey the digital data as unmodu - 35
lated electrical pulses that are descriptive of a stream of
digital data bits , where the term “ bits ” is to be construed
broadly to mean symbol , where each symbol conveys at
least one or more information bits . The digital data may also
be used to modulate a carrier wave , such as with amplitude , 40
phase and / or frequency shift keyed signals that are propa
gated over a conductive media , or transmitted as electro
magnetic waves through a propagation medium . Thus , the
digital data may be sent as unmodulated baseband data
through a “ wired ” communication channel and / or sent 45
within a predetermined frequency band , different than base
band , by modulating a carrier wave . The computer system
2201 can transmit and receive data , including program code ,
through the network (s) 2215 and 2216 , the network link
2214 and the communication interface 2213 . Moreover , the 50
network link 2214 may provide a connection through a LAN
2215 to a mobile device 2217 such as a tablet , personal
digital assistant (PDA) , laptop computer , or cellular tele
phone .

computing a first set of routing paths for the compu
tational grid based on the determining of whether the
fat - tree is odd and whether the fat - tree is a regular
fat - tree ;

upon determining that the topology is not a fat - tree :
computing a second set of routing paths for the com

putational grid using a topology agnostic routing
technique ; and

configuring forwarding tables in said switches with the
first set of computed routing paths when the topology
is determined to be a fat - tree and with the second set of
computed routing paths when the topology is deter
mined to not be a fat - tree .

2 . The method according to claim 1 , wherein computing
a first set of routing paths comprises :

initializing a set of port allocation counters for each
switch port of the computational grid ;

selecting a source switch and a destination switch from
the computational grid ;

selecting a path identifier representing a path to be com
puted from the source switch to the destination switch ;

selecting a preferred port in each hop of the path based on
prioritization rules and the port allocation counters ;

updating the port allocation counters , and continuing the
selecting of source switch , destination switch , path
identifier and preferred port until each of the destina
tion switches is reachable from the selected source
switch via multiple redundant routing paths .

3 . The method according to claim 2 , further comprising :
detecting a topology - changing event in the computational

grid ;
identifying switch ports that are negatively affected by the

topology - changing event ;
marking the negatively affected switch ports as faulty in

the first set of routing paths ;
selecting , for the negatively affected switch ports , alter

native routing paths from the multiple redundant rout
ing paths that circumvent the faulty switch ports ;

updating forwarding tables in the switches with the alter
native routing paths ;

waiting for further topology - changing events in the com
putational grid .

4 . The method according to claim 3 , further comprising :
identifying switch ports that are positively affected by the

topology - changing event ;
marking the positively affected switch ports as operational

in the first set of routing paths ;
determining whether routing paths that contain the posi

tively affected switch ports are better than other routing
paths among the multiple redundant routing paths , and
upon positive such determining , marking the better
output ports as preferred output ports and updating the
forwarding tables in the switches with the preferred
output ports .

5 . The method according to claim 2 , wherein the selecting
the preferred port further comprises :

selecting a starting port number before selecting the
preferred port ;

selecting the preferred port in each hop of the path based
on the starting port number .

6 . The method according to claim 2 , wherein the selecting
the preferred port in each hop of the path further comprises :

calculating the preferred port in each hop of the path
before selection of the preferred port in each hop of the

What is claimed is :
1 . A method of providing balanced routing paths in a

computational grid , comprising :
determining a type of topology of the computational grid ,

the computational grid having a plurality of levels , 60
wherein each level includes a plurality of switches ;

determining whether the type of topology of the compu
tational grid is a fat - tree ;

upon determining that the topology is a fat - tree :
determining whether the fat - tree is odd ; 65
upon determining that the fat - tree is not odd , determin -

ing whether the fat - tree is a regular fat - tree ; path .

38

10

Path 20

US 10 , 425 , 324 B2
37

7 . The method according to claim 6 , wherein the calcu 17 . A device for providing balanced routing paths in a
lating the preferred port in each hop of the path further computational grid , comprising :
comprises : processing circuitry configured to

determining a routing rule to be applied to determine the determine a type of topology of the computational grid ,
preferred port in each hop of the path ; and the computational grid having a plurality of levels ,

wherein each level includes a plurality of switches , applying a port prioritization based on applying the rout determine whether the type of topology of the compu ing rule . tational grid is a fat - tree , 8 . The method according to claim 6 , determine whether the fat - tree is odd , upon determining
wherein the selecting the preferred port in each hop of the that the topology is a fat - tree ,

path further comprises : determine whether the fat - tree is a regular fat - tree , upon
checking whether a port was previously determined for a determining that the fat - tree is not odd ,

particular destination and replacing the calculated pre compute a first set of routing paths for the computa
ferred port with the previously determined port when tional grid based on the determination of whether the
the checking determines that the port was previously 15 fat - tree is odd and whether the fat - tree is a regular
determined and the topology is not a regular half size fat - tree ,
two - level fat - tree . compute a second set of routing paths for the computa

9 . The method according to claim 7 , wherein determining tional grid using a topology agnostic routing technique ,
a routing rule to be applied to determine the preferred port upon determining that the topology is not a fat - tree , and
in each hop of the path further comprises : configure forwarding tables in said switches with the first

determining a type of rule to be applied based on a path set of computed routing paths when the topology is
number , a type of the fat - tree , a hop number , and a determined to be a fat - tree and with the second set of

computed routing paths when the topology is deter number of hops to reach a destination .
10 . The method according to claim 9 , wherein when the mined to not be a fat - tree .

path number is zero or when the switch under consideration 25 18 . A non - transitory computer readable medium having
25 stored thereon a program that when executed by a computer is a non - bottom level switch , a first type of rule is deter

mined to be applied . causes the computer to implement a method of providing
11 . The method according to claim 10 , wherein when the balanced routing paths in a computational grid , comprising :

fat - tree is odd and the path number is greater than zero and determining a type of topology of the computational grid ,
less than five and at least one additional condition is met , a 30 the computational grid having a plurality of levels ,
second type of rule is determined to be applied . wherein each level includes a plurality of switches ;

12 . The method according to claim 11 , when the first and determining whether the type of topology of the compu
tational grid is a fat - tree ; second types of rule are not determined to be applied , the

source and destination switches of the path belong to dif upon determining that the topology is a fat - tree :
ferent sub - groups and the path number is one , a third type of 35 determining whether the fat - tree is odd ;

rule is determined to be applied . upon determining that the fat - tree is not odd , determin
13 . The method according to claim 12 , when the first , ing whether the fat - tree is a regular fat - tree ;

second and third types of rule are not determined to be computing a first set of routing paths for the compu
applied , a fourth type of rule is determined to be applied . tational grid based on the determining of whether the

14 . The method according to claim 10 , wherein the first 10 fat - tree is odd and whether the fat - tree is a regular
type of rule includes setting a counter to a value which is fat - tree ;
computed based on a predetermined function that is per upon determining that the topology is not a fat - tree :
formed to obtain counters of a respective switch . computing a second set of routing paths for the com

15 . The method according to claim 2 , further comprising : putational grid using a topology agnostic routing
performing a change in an operation mode of the com - 45 technique ; and

putational grid , wherein the operation mode includes a configuring forwarding tables in said switches with the
first mode corresponding to no faults in the computa first set of computed routing paths when the topology
tional grid and a second mode corresponding to faults is determined to be a fat - tree and with the second set of
in the computational grid . computed routing paths when the topology is deter

16 . The method according to claim 1 , wherein the topol mined to not be a fat - tree .
ogy agnostic routing technique is MROOTS . to *

