
Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 1

Uncertainty Modeling Framework for the
Integration Level V.4

All the sections excluding Section 3.4: Man Zhang, Shaukat Ali, Tao Yue
manzhang@simula.no, shaukat@simula.no, tao@simula.no

Section 3.4: Phu Hong Nguyen
phu@simula.no

Simula Research Laboratory, Norway
Contact Person: Man Zhang (manzhang@simula.no)

Executive Summary

This document describes the Uncertainty Modeling Framework for
modeling integration level uncertainties in the context of Cyber-
Physical Systems (CPS). Section 1 presents an overview of the
framework, Section 2 documents a UML profile for modeling
uncertainties, referred to as UML Uncertainty Profile (UUP), Section
3 presents various model libraries related to uncertainty modeling,
and Section 4 presents our modeling methodology.

1 OVERVIEW OF CPS UNCERTAINTY MODELING FRAMEWORK
An overview of our CPS Uncertainty Modeling Framework (UncerTum) is shown in Figure 1. Notice that our
framework is exclusively developed to support developing test ready models together with uncertainty to
facilitate model-based testing. This means that our framework doesn’t support modeling of CPS and uncertainty
from the design and development perspective rather just supports modeling only at the level of detail that is
required to facilitate model-based testing.
At the core of the framework is the implementation of U-Model [1]. More specifically, the core part of the U-
Model is implemented as a UML Profile comprising of three UML profiles including Belief profile, Uncertainty
profile, IndeterminacySource profile and Measurement profile. All these profiles import Internal UUP library
that defines the necessary Enumerations required in the profiles. The framework also consists of a CPS UML
profile that permits modeling the specific aspects of the three levels of CPS, i.e., Application, Infrastructure, and
Integration required for supporting testing at the three levels.
The framework also consists of four UML model libraries including Risk Assessment Library, Measure Library,
Pattern Library, and Time Library that extend the UML MARTE profile [2]. The framework relies on the UML
Testing Profile V.2 to bring the MBT concepts into the models to support testing. Finally, the framework
provides a set of guidelines to use the overall framework to model uncertainty in CPS at the three levels to
support testing.

Figure 1. Overview of CPS Uncertainty Modeling Framework

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 2

2 PROFILE SPECIFICATION
This section describes the core uncertainty profile of the Uncertainty Modeling Framework (UncerTum).

2.1 UML Uncertainty Profile (UUP)
This section presents the stereotypes and classes that are part of the UUP and are shown in Figure 2.

Figure 2. UML profile diagram for Belief modeling

2.1.1 Belief Profile
2.1.1.1 «BeliefStatement»
This abstract stereotype implements the semantics of the U-Model::BeliefModel::BeliefStatement	 concept	 [1].	
As	 defined	 in	 [1]	 “A Belief is an implicit subjective explanation or description of some phenomena or notions
held by a BeliefAgent”. The Belief is an abstract concept that is usually held by one or more belief agents and
such belief is concretized as one or more belief statements. However, in terms of modeling, a model consists of
a set of model elements and this is the reason that we keep «BeliefStatement» as abstract and specialized it into
«BeliefElement», which is discussed next.
Extensions

• None
Generalizations

• None
Associations

• agent: «BeliefAgent» [*]
Optional many agents who hold a common belief statement

• substatements: «BeliefStatement» [*]
Optionally a belief statement refers to a set of sub-statements

• prerequisites: «BeliefStatement» [*]
The set of belief statements, on which this belief statement depends

• uncertainty: Uncertainty [*]
Optional many uncertainties associated with the belief statement

Attributes
• from: String[0..1]

Optional attribute to specify the time at which belief agent(s) made the belief statement
• duration: String[0..1]

Optional attribute to specify the duration of time for which the belief statement remains valid

• beliefDegree: Measurement [*]
Optional many measurements to specify the degree of belief the belief agents hold about the
belief statement. More details can be consulted in [1].

• beliefAgent: String[*]
Optional specification of a set of belief agents as a set of strings, who made this belief
statement.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 3

Constraints
[1] Belief Agent Constraint: There is at least one belief agent for a belief statement.

self.agent->size() +self.beliefAgent->size() >=1

[2] Belief Degree Measure Constraint: Each belief degree associated with the belief statement must have
an associated measure.

self.beliefDegree->size() >0 and self.beliefDegree->select(measurement:Measurement|

measurement->size()>0)->forAll(measurement:Measurement|(measurement.measureInDT->size()+

measurement.measureInDTViaClass->size()=1) xor (not measurement.measure.oclIsUndefined()))

[3] Belief Degree Measurement Constraint: Each belief degree associated with the belief statement must
have an associated measurement.

self.beliefDegree->size() >0 and self.beliefDegree->select(measurement:Measurement|

measurement->size()>0)->forAll(measurement:Measurement| not (measurement.measurementInVS.

oclIsUndefined() xor measurement.measurement.oclIsUndefined() xor measurement.

measurement.oclIsUndefined()))

[4] Belief Degree Measurement and Measure Constraint: Each belief degree measurement associated with
the belief statement must have a measure and associated measurement.

self.beliefDegree->size() >0 and self.beliefDegree->select(measurement:Measurement|

measurement->size()>0)->forAll(measurement:Measurement|(measurement.measureInDT-

>size()+measurement.measureInDTViaClass->size() + measurement.measure->size()) =

(measurement.measurement->size()+measurement.measurementInVS->size()))

[5] Uncertainty Measure Constraint: Each uncertainty associated with the belief statement must have an
associated measure.

self.uncertainty->size() >0 and self.uncertainty->select(uncertainty:Uncertainty|

uncertainty.uncertaintyMeasurement->size()>0)->forAll(uncertainty:Uncertainty|uncertainty.

uncertaintyMeasurement->forAll(measurement:Measurement| not measurement.measurementInVS.

oclIsUndefined() xor not measurement.measurement.oclIsUndefined()))

[6] Uncertainty Measurement Constraint: Each uncertainty associated with the belief statement must have
an associated measurement.

self.uncertainty->size() >0 and self.uncertainty->select(uncertainty:Uncertainty|

uncertainty.uncertaintyMeasurement->size()>0)->forAll(uncertainty:Uncertainty|uncertainty.

uncertaintyMeasurement->forAll(measurement:Measurement|measurement.measureInDT->size()+

measurement.measureInDTViaClass->size() =1 xor not measurement.measure.oclIsUndefined()))

[7] Uncertainty Measurement and Measure Constraint: Each uncertainty measurement associated with the
belief statement must have a measure and its associated measurement.

self.uncertainty->size() >0 and self.uncertainty->select(uncertainty:Uncertainty|

uncertainty.uncertaintyMeasurement->size()>0)->forAll(uncertainty:Uncertainty|

uncertainty.uncertaintyMeasurement->forAll(measurement:Measurement|(measurement.measureInDT-

>size()+measurement.measureInDTViaClass->size() + measurement.measure->size())=

(measurement.measurement->size()+measurement.measurementInVS->size())))

2.1.1.2 «BeliefElement»
This stereotype is specialization of «BeliefStatement» that is more relevant in the context of UML and modeling
in general.
 Extensions

• uml::Behavior
• uml::Constraint
• uml::Region
• uml::Vertex
• uml::Transition

Generalizations
• «BeliefStatement»

Associations
• None

Attributes
• None

Constraints

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 4

• None
2.1.1.3 «BeliefAgent»
This stereotype implements the U-Model::BeliefModel::BeliefAgent	 concept as defined in	 [1].	 As	 defined	 in	
[1],	“A BeliefAgent is a physical entity owning one or more Beliefs about phenomena/notion”.

Different methodologies might be used to specify a BeliefAgent. For example, if a BeliefAgent is specified as a
Class, then it is possible to describe its behavior (if needed) using a state machine for example. If a BeliefAgent
is captured as a Package, then it is just a categorization. In the methodology section (Section 4), we present the
possible ways belief agents can be modeled.

Extensions
• uml::Classifier
• uml::Package

Generalizations
• None

Associations
• beliefStatement: «BeliefStatement» [*]

Optional many belief statements held by a belief agent
Attributes

• None
Constraints

• None
2.1.1.4 «IndeterminacySource»
This stereotype implements the U-Model::BeliefModel::IndeterminacySource	 concept [1]. As defined in [1],
“It represents a situation whereby the information required ascertaining the validity of a BeliefStatement is
indeterminate in some way, resulting in Uncertainty being associated with that statement.”
Extensions

• uml::Classifier
• uml::Constraint
• uml::Property
• uml::Operation

Generalizations
• None

Associations
• None

Attributes
• description: String[0..1]

An optional description of the indeterminacy source as string
• nature: «IndeterminacySource» [1]

Nature of the indeterminacy source as defined in the U-Model and further elaborated in
Section 2.1.1.4.

• indeterminacyDegree: Measurement[*]
Optional many measurements associated with the indeterminacy source

• specs: Constraint[*]
Optional many constraints that describes the possible occurrences associated with the
indeterminacy source

Constraints
[1] Indeterminacy Source Measure Constraint: Each measure associated with the indeterminacy source

must have an associated measure.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 5

self.indeterminacyDegree->size() >0 and self.indeterminacyDegree->select(measurement:

Measurement| measurement->size()>0)->forAll(measurement:Measurement|measurement.measureInDT-

>size()+measurement.measureInDTViaClass->size() =1 xor not measurement.measure

.oclIsUndefined())

[2] Indeterminacy Source Measurement Constraint: Each measurements associated with the indeterminacy
source must have corresponding measurements specified.

self.indeterminacyDegree->size() >0 and self.indeterminacyDegree->select(measurement:

Measurement| measurement->size()>0)->forAll(measurement:Measurement| not measurement.

measurementInVS.oclIsUndefined() xor not measurement.measurement.oclIsUndefined())

[3] Indeterminacy Source Measurement and Measure Constraint: Each measurement associated with the
indeterminacy source must have a measure and its associated measurement.

self.indeterminacyDegree->size() >0 and self.indeterminacyDegree->select(measurement

:Measurement| measurement->size()>0)->forAll(measurement:Measurement |(measurement.measureInDT

->size()+measurement.measureInDTViaClass->size()+measurement.measure->size())=(measurement.

measurement->size()+measurement.measurementInVS->size()))

2.1.2 Uncertainty Profile
This section presents the Uncertainty Profile and the profile diagram is shown in Figure 3 followed by the
detailed descriptions of stereotypes and classes.
2.1.2.1 «Cause»
Anything from which an Uncertainty occurs in the BeliefStatement. The cause for an Uncertainty can be: 1)
another known Uncertainty, 2) something known and is not Uncertainty, 3) anything unknown. If a Cause is
Uncertainty, then it may be measured using Measurement.
Extensions

• uml::Element
Generalizations

• None
Associations

• None
Attributes

• description: String[0..1]
An optional description of the cause of an uncertainty as a string.

Constraints
• None

Figure 3. UML profile diagram for Uncertainty modeling

2.1.2.2 «Effect»
This is the concept from U-Model::UncertaintyModel::Effect [1].	 Effect represents the result of Uncertainty in
the BeliefStatement. An uncertainty may result into: 1) another known Uncertainty, 2) something known and
is not Uncertainty, 3) anything unknown.
Extensions

• uml::Element

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 6

Generalizations
• None

Associations
• None

Attributes
• description: String[0..1]

An optional description of the effect as a string.
• measurement: Measurement[*]

Optional many measurements associated with the effect
Constraints

[1] Effect Measure Constraint: Each measure associated with the effect must have a corresponding
measure.

self.measurement->size() >0 and self.measurement->select (measurement:Measurement|

measurement->size()>0)->forAll(measurement:Measurement|measurement.measureInDT->size()+

measurement.measureInDTViaClass->size() =1 xor not measurement.measure.oclIsUndefined())

[2] Effect Measurement Constraint: Each measurement associated with the effect must have corresponding
measurement specified.

self.measurement->size() >0 and self.measurement->select(measurement:Measurement| measurement-

>size()>0)->forAll(measurement:Measurement| not measurement.measurementInVS. oclIsUndefined()

xor not measurement.measurement.oclIsUndefined())

[3] Effect Measurement and Measure Constraint: Each measurement associated with the effect must have
associated measure and associated measurement.

self.measurement->size() >0 and self.measurement->select(measurement:Measurement| measurement-

>size()>0)->forAll(measurement:Measurement|(measurement.measureInDT-

>size()+measurement.measureInDTViaClass->size() =1 + measurement.measure->size()) =

(measurement.measurement->size()+measurement.measurementInVS->size()))

2.1.2.3 «Evidence»
This stereotype implements the semantics of the U-Model::BeliefModel::Evidence	 concept [1]. As defined in
[1], “Evidence is either an observation or a record of a real-world event occurrence or, alternatively, the
conclusion of some formalized chain of logical inference that provides information that can contribute to
determining the validity (i.e., truthfulness) of a BeliefStatement.”
Extensions

• uml::Element
Generalizations

• None
Associations

• None
Attributes

• description: String[0..1]
An optional description of the evidence as a string

Constraints
• None

2.1.2.4 «Lifetime»
This stereotype implements the U-Model::UncertaintyModel::Lifetime concept [1]. As defined in [1],
“Lifetime represents an interval of time, during which an Uncertainty exists”.
Extensions

• uml::Element
Generalizations

• None
Associations

• None

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 7

Attributes
• description: String[0..1]

An optional description of the lifetime as a string
Constraints

• None
2.1.2.5 Measurement
This is the concept adopted from the U-Model::BeliefModel::Measurement	 concept [1]. As defined in [1],
“Measurement expressing in some concrete form the subjective degree of uncertainty held by the agent to a
BeliefStatement”.
Extensions

• None
Generalizations

• None
Associations

• measureInDTViaClass: uml::Class[0..1]
An optional specification of measurement as a UML Class

• measurementInDT: uml::DataType[0..1]
An optional specification of measurement as a UML DataType

• measurementInVS: uml::ValueSpecification[0..1]
An optional specification of measurement as a UML ValueSpecification

• referredEvidence: uml::Element[*]
An optional manual specification of Evidence as any UML Element

Attributes
• evidence: String[*]

Optional many specification of Evidence as a set of String
• measure: Measure[0..1]

Optional specification of measure associated with the Measurement
• measurement: String[0..1]

An optional specification of the Measurement as a String
Constraints

• None
2.1.2.6 «Pattern»
This stereotype implements the semantics of the U-Model::UncertaintyModel::Pattern concept [1].	 A	 pattern	
represents	a	particular	pattern	in	which	an	uncertainty	can	occur.
Extensions

• uml::Element
Generalizations

• None
Associations

• None
Attributes

• description: String[0..1]
An optional description of the pattern as a string

Constraints
• None

2.1.2.7 «Risk»
This concept implements the U-Model::UncertaintyModel::Risk	concept [1].
Extensions

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 8

• uml::Package
• uml::Class

Generalizations
• None

Associations
• None

Attributes
• description: String[0..1]

An optional description of the risk as a string.
• measurement: Measurement[*]

Optional many measurements associated with the risk
Constraints

[1] Risk Measure Constraint: Each measure associated with the risk must have a measure specified.
self.measurement->size() >0 and self.measurement->select(measurement:Measurement| measurement-

>size()>0)->forAll(measurement:Measurement|measurement.measureInDT->size()+

measurement.measureInDTViaClass->size() =1 xor not measurement.measure.oclIsUndefined())

[2] Risk Measurement Constraint: Each measurement associated with the risk must have an associated
measurement.

self.measurement->size() >0 and self.measurement->select(measurement:Measurement| measurement-

>size()>0)->forAll(measurement:Measurement| not measurement.measurementInVS. oclIsUndefined()

xor not measurement.measurement.oclIsUndefined())

[3] Risk Measurement and Measure Constraint: Each measurement associated with Risk must have an
associated measure and measurement.

self.measurement->size() >0 and self.measurement->select(measurement:Measurement| measurement-

>size()>0)->forAll(measurement:Measurement|(measurement.measureInDT-

>size()+measurement.measureInDTViaClass->size()+measurement.measure->size())=

(measurement.measurement->size()+measurement.measurementInVS->size()))

2.1.2.8 Uncertainty
This is the concept adopted from the U-Model::BeliefModel::Uncertainty	 concept [1]. As defined in [1],
“uncertainty is a state (i.e., worldview) of some agent or agency – henceforth referred to as a BeliefAgent – that,
for whatever reason, is incapable of possessing complete and fully accurate knowledge about some subject of
interest.”
Extensions

• None
Generalizations

• None
Associations

• riskInDTViaClass: uml::Class[0..1]
An optional specification of risk as a UML Class associated with the uncertainty

• riskInDT: uml::DataType[0..1]
An optional specification of risk as a UML DataType associated with the uncertainty

• referredLifetime: uml::Element[0..1]
An optional specification of Lifetime as a UML Element associated with the uncertainty

• referredCause: uml::Element[0..1]
An optional specification of Cause as a UML Element associated with the uncertainty

• referredEffect: uml::Element[0..1]
An optional specification of Effect as a UML Element associated with the uncertainty

• referredPattern: uml::Element[0..1]
An optional specification of Pattern as a UML Element associated with the uncertainty

• referredIndeterminacySource: Element[*]

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 9

An optional many specifications of IndeterminacySource associated with the uncertainty
• uncertaintyMeasurement: Measurement[*]

Optional many specifications of Measurement associated with the uncertainty
Attributes

• kind: UncertaintyKind[1]
Specification of kind of uncertainty as one of the literals in the UncertaintyKind enumeration
(Section 2.2.9)

• from: String[0..1]
Optional attribute to specify the point in time at which the uncertainty specified

• field: TimeField[1]
This value is used for identifying a relative point in time when this Uncertainty exists

• lifeTime: String[0..1]
An optional specification of the Lifetime of uncertainty as a String

• locality: String[0..1]
An optional specification of the Locality of the uncertainty as a String

• indeterminacySource: String[0..1]
An optional specification of IndeterminacySource as a String

• cause: String[0..1]
An optional specification of Cause as a String

• effect: String[0..1]
An optional specification of Effect as a String

• pattern: String[0..1]
An optional specification of Pattern as a String

• risk: RiskLevel[0..1]
An optional specification of the risk level associated with the uncertainty as one of the literals
from the RiskLevel enumeration (Section 2.2.7)

• riskLevel: String[0..1]
An optional specification of the risk level associated with the uncertainty as a String

• findPosition: FindPosition [0..1]
The position to enable this indeterminacy source.

• enablePattern: EnablePattern[0..1]
The pattern to enable the associated indeterminacy source.

• selectSpecification: EnableSpecification[0..1]
The specification to enable the associated indeterminacy source, e.g. All – all associated
indeterminacy specifications are enabled.

Constraints
• None

2.1.3 IndeterminacySource Profile
This section presents the UML profile for the indeterminacy source. The corresponding profile diagram is
shown in Figure 4.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 10

Figure 4. UML profile diagram for IndetermiancySource modeling

2.1.3.1 IndeterminacySourceInput
This stereotype is implemented to specify the action that triggers the occurrence of «IndeterminacySource».
Extensions

• uml::Operation
• uml::Behavior

Generalizations
• None

Associations
• None

Attributes
• None

Constraints
• None

2.1.3.2 IndeterminacySourceSpecification
This stereotype is implemented to specify the condition that must be true for an indeterminacy source to occur.
Extensions

• uml::Constraint
Generalizations

• None
Associations

• triggeredBy: Element [*]
Optional action that triggers the occurrence of associated indeterminacy specification.

• releasedBy: Element [*]
Optional action that releases the occurrence of associated indeterminacy specification.

Attributes
• indeterminacyDegree: Measurement[0..1]

Optional specifications of Measurement associated with the indeterminacy source.
Constraints

[1] IndeterminacySpecification Constraint: The Element associated with IndeterminacySpecification by
triggeredBy must apply «IndeterminacySourceInput».

self.triggeredBy.getAppliedStereotype('UUP:IndeterminacySoureInput')<>null

2.1.3.3 EnablePattern
This enumeration is implemented to define options of pattern to enable indeterminacy source.
Literals

• Random
The indeterminacy source is introduced during execution by random

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 11

• Always
The indeterminacy source is always introduced during execution

• Measured
The indeterminacy source is introduced during execution by specified measurement, e.g. it can
be normal distribution

• Never
The indeterminacy source is never introduced during execution

2.1.3.4 FindPosition
This enumeration is implemented to define options of position to enable indeterminacy source.
Literals

• Random
The position of introducing indeterminacy source is random

• Any_Previous
The position of introducing indeterminacy source located in any previous position before
arrive the associated uncertainty

• Just_Previous
The position of introducing indeterminacy source located in one previous position before
arrive the associated uncertainty

• Specified
The position of introducing indeterminacy source located in the specified position modeled in
the test ready model by IndetermiancySourceInput

2.1.3.5 SelectSpecification
This enumeration is implemented to define options of specification to enable indeterminacy source.
Literals

• All
All associated IndeterminacySpecification should be introduced

• Random
Randomly select the specification are enabled during test execution

• Specified
the indeterminacy specifications are enabled during test execution based on the specified ones
by “enabled” attributes

2.1.4 Measurement Profile
This section presents the UML profile for the measurement. The corresponding profile diagram is shown in
Figure 5.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 12

Figure 5. UML profile diagram for Measurement modeling

2.1.4.1 «BeliefDegreeMeasure»
This stereotype implements the Measure concept of a BeliefDegree	as described in U-Model::BeliefModel	[1].
Extensions

• None
Generalizations

• «Measure»
Associations

• None
Attributes

• None
Constraints

• None
2.1.4.2 «BeliefDegree»
This stereotype implements the Measurement concept of a BeliefElement as described in U-
Model::BeliefModel	[1].
Extensions

• None
Generalizations

• Measurement
Associations

• None
Attributes

• None
Constraints

• None
2.1.4.3 «EffectMeasure»
This stereotype implements the Measure concept of an Effect as described in U-Model::UncertaintyModel	[1].
Extensions

• None
Generalizations

• «Measure»
Associations

• None

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 13

Attributes
• None

Constraints
• None

2.1.4.4 «EffectMeasurement»
This stereotype implements the Measurement concept of an Effect as described in U-
Model::UncertaintyModel	[1].
Extensions

• None
Generalizations

• «Measurement»
Associations

• None
Attributes

• None
Constraints

• None
2.1.4.5 «IndeterminacyDegreeMeasure»
This stereotype implements the Measure concept of an IndeterminacyDegree as described in U-
Model::BeliefModel	[1].
Extensions

• None
Generalizations

• «Measure»
Associations

• None
Attributes

• None
Constraints

• None
2.1.4.6 «IndeterminacyDegree»
This concept implements the Measurement concept of an IndeterminacySource as described in U-
Model::BeliefModel	[1].
Extensions

• None
Generalizations

• «Measurement»
Associations

• None
Attributes

• None
Constraints

• None
2.1.4.7 «Measure»
This stereotype implements the semantic of the U-Model::MeasureModel::Measure	concept	[1].
Extensions

• uml::Class
• uml::DataType

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 14

Generalizations
• None

Associations
• None

Attributes
• description: String[0..1]

An optional description of a measure as a string
Constraints

• None
2.1.4.8 «Measurement»
This stereotype implements the semantic of the U-Model::BeliefModel::Measurement	concept [1].
Extensions

• uml::Package
• uml::ValueSpecification

Generalizations
• None

Associations
• None

Attributes
• description: String[0..1]

An optional description of a measurement as a string.
Constraints

• None
2.1.4.9 «RiskMeasure»
This stereotype implements Measure of a Risk	as described in U-Model::UncertaintyModel	[1].
Extensions

• None
Generalizations

• «Measure»
Associations

• None
Attributes

• None
Constraints

• None
2.1.4.10 «RiskMeasurement»
This stereotype implements the Measurement of a Risk as described in U-Model::UncertaintyModel	[1].
Extensions

• None

Generalizations

• «Measurement»
Associations

• None
Attributes

• None
Constraints

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 15

• None
2.1.4.11 «UncertaintyMeasure»
This stereotype implements the Measure concept of an Uncertainty as described in U-Model::BeliefModel	[1].
Extensions

• None
Generalizations

• Measure
Associations

• None
Attributes

• None
Constraints

• None
2.1.4.12 «UncertaintyMeasurement»
This stereotype implements the Measurement concept of an Uncertainty as described in U-
Model::BeliefModel	[1].
Extensions

• None
Generalizations

• «Measurement»
Associations

• None
Attributes

• None
Constraints

• None

2.2 Internal UUP Library
This section presents our internal library that defines the various types used in the UUP. An overview of the
diagram is shown in Figure 6 followed by description.

Figure 6. Internal Library

2.2.1 Ambiguity
This concept implements the semantics from U-Model::MeasureModel::Ambiguity	[1].
Extensions

• None
Generalizations

• None

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 16

Associations
• None

Attributes
• None

Constraints
• None

2.2.2 FunctionType
This enumeration defines the type of function as defined in the package of U-Model::MeasureModel	[1].
Literals

• Entropy
As defined in U-Model::MeasureModel::Entropy [1]

• Distribution
As defined in U-Model::MeasureModel::Distribution [1]

2.2.3 Measure
This concept implements the semantics of the U-Model::BeliefModel::Measure concept [1].
Extensions

• None
Generalizations

• None
Associations

• None
Attributes

• function: String[0..1]
Optional specification of the function to use as a measure

• functionType: FunctionType[0..1]
Optional specification of the type of function as one of the literals from the FunctionType
enumeration.

Constraints
• None

2.2.4 NonSpecificity
Semantics are adopted from U-Model::MeasureModel::	NonSpecificity	[1]
Extensions

• None
Generalizations

• Vagueness
Associations

• None
Attributes

• None
Constraints

• None
2.2.5 IndeterminacyNature
Semantics adopted from U-Model::BeliefModel::IndeterminacyNature	[1].
Literals

• InsufficientResolution
As defined in U-Model::BeliefModel::IndeterminacyNature:: InsufficientResolution [1]

• MissingInfo

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 17

 As defined in U-Model::BeliefModel::IndeterminacyNature::MissingInfo [1]
• Non-determinism

As defined in U-Model::BeliefModel::IndeterminacyNature::Non-determinism [1]
• Composite

As defined in U-Model::BeliefModel::IndeterminacyNature::Composite [1]
• Unclassified

As defined in U-Model::BeliefModel::IndeterminacyNature::Unclassified [1]
2.2.6 Probability
Semantics from U-Model::MeasureModel::Probabilitys	[1]
Extensions

• None
Generalizations

• Measure
Associations

• None
Attributes

• interval: String[0..1]
Optional specification of an interval of probability as a String

• confidenceLevel: String[0..1]
Optional specification of the confidence level related to Probability

• confidenceInterval: String[0..1]
Optional specification of the confidence interval related to Probability

Constraints
• None

2.2.7 RiskLevel
Semantics from U-Model::UncertaintyModel::RiskLevel	[1]
Literals

• Low
Specifying the lowest level of risk

• Medium
Specifying the medium level of the risk

• High
Specifying the high level of the risk

• Extreme
Specifying the highest level of the risk

2.2.8 TimeField
Semantics from U-Model::UncertaintyModel::TimeField	[1]
Literals

• Past
As defined in U-Model::TimeField::Past [1]

• Present
As defined in U-Model::TimeField::Present [1]

• Future
As defined in U-Model::TimeField::Future [1]

2.2.9 UncertaintyKind
This enumeration defined the type of uncertainty as defined in the package of U-Model::UncertaintyModel	[1]
Literals

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 18

• Environment
As defined in U-Model::UncertaintyModel::Environment [1]

• GeographicalLocation
As defined in U-Model::UncertaintyModel::GeographicalLocation [1]

• Content
As defined in U-Model::UncertaintyModel::Content [1]

• Time
As defined in U-Model::UncertaintyModel::Time [1]

• Occurrence
As defined in U-Model::UncertaintyModel::Occurrence [1]

2.2.10 Vagueness
Semantics from U-Model::MeasureModel::Vagueness	[1]
Extensions

• None
Generalizations

• Measure
Associations

• None
Attributes

• None
Constraints

• None

2.3 CPS Profile
This section presents the CPS Profile to denote which model element belongs to which of the three CPS testing
levels: Application, Infrastructure and Integration.

Figure 7. CPS Profile

3 MODEL LIBRARIES
This section presents the four model libraries that we defined including: 1) Measure Library, 2) Pattern Library,
3) Risk Library, 4) Time Library.

3.1 Measure Library
The Measure library consists of three further libraries including: 1) Ambiguity, 2) Probability, and 3) Vagueness
libraries.
3.1.1 Ambiguity Library
In this section, we describe different measures that are related to the Ambiguity	 [1]. An overview diagram is
shown in Figure 8.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 19

Figure 8. Ambiguity Library

3.1.1.1 BeliefInterval
This data type contains necessary parameters to define a belief interval1 [3].
Associations

• min: Belief
the lower bound of BeliefInterval specified by Belief

• max: Plausibility
the upper bound of BeliefInterval specified by Plausibility

3.1.1.2 Belief
This data type contains necessary parameters to define a belief2 [3].
Attributes

• degree: Real
the value of degree of belief

3.1.1.3 Plausibility
This data type contains necessary parameters to define a plausibility3 [3].
Attributes

• degree: Real
the value of degree of plausibility

3.1.1.4 Distribution
This abstract data type implements to specify the common known distribution in the mathematics.
Attributes

• expression: String [1]
the expression of the Distribution specified by String

3.1.1.5 PossibleDistribution
This data type implements to specify the possible distribution [4].
3.1.1.6 PignisticDistribution
This data type implements to specify the pignistic distribution [5].
3.1.1.7 HartleyMeasure
This data contains the necessary parameter to specify value using Hartley measure [6] to measure uncertainty.
Attributes

• h: Real [1]
the value specified by Hartley measure

1 This concept borrows from Dempster-Shafer is used to specify belief interval that is a boundary of probability.
2 This concept from belief function in Dempster-Shafer Theory represents the degree of belief supported by the evidence directly.
3 This concept from plausibility function in Dempster-Shafer Theory represents the degree of plausibility supported by maximum share of
the evidence.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 20

3.1.1.8 U_Uncertainty
This data type contains the necessary parameter to specify value using U-uncertainty function [7] to measure
uncertainty.
Attributes

• u: Real [1]
the value specified by U-uncertainty

3.1.1.9 AlternativeMeasure
This data type contains the necessary parameter to specify value using the alternative measure [8] to measure
uncertainty.
Attributes

• a: Real [1]
the value specified by alternative measure

3.1.1.10 ShannonEntropy
This data type contains the necessary parameter to specify value using Shannon Entropy to measure uncertainty.
Attributes

• h: Real [1]
the value of Shannon entropy with default bit unit

3.1.1.11 Conflict
This data type is used to specify the weight of conflict between two beliefs [9].
Associations

• weight: Real[1]
the value of weight of conflict between beliefs

• left: Belief [0..1]
the first parameter of conflict function [9]

• right: Belief [0..1]
the second parameter of conflict function [9]

3.1.1.12 DissonanceMeasure
This data type contains the necessary parameter to specify value using dissonance measure [10] to measure
uncertainty.
Attributes

• e: Real [1]
the value specified by Dissonance measure

• complementary: Real [0..1]
optional value of complementary [11, 12]

Associations
• conflict: Conflict [*]

the set of conflicts used for computing the value specified by Dissonance measure
3.1.2 Probability Library
This section presents our Probability Library. An overview diagram is shown in Figure 9.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 21

Figure 9. Probability Library

3.1.2.1 ProbabilityDistribution
This abstract concept represents the common probability distribution concept, and we further implement 10
common known probability distributions in the probability model library.
3.1.2.2 NormalDistribution
This data type contains necessary parameters to define the Normal distribution.
Attributes

• standDev: Real [1]
the value of standard deviation in the normal distribution

• mean: Real [1]
the value of mean in the normal distribution

3.1.2.3 BinomialDistribution
This data type contains necessary parameters to define the Binomial distribution.
Attributes

• prob: Probability [1]
the probability in the binomial distribution

3.1.2.4 BernoulliDistribution
This data type contains necessary parameters to define the Bernoulli distribution.
Attributes

• prob: Probability [1]
the probability in the Bernoulli distribution

• trials: Integer [1]
the trials in the Bernoulli distribution

3.1.2.5 ExponentialDistribution
This data type contains necessary parameters to define the Exponential distribution.
Attributes

• mean: Real [1]
the value of mean in the exponential distribution

3.1.2.6 GammaDistribution
This data type contains necessary parameters to define the Gamma distribution.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 22

Attributes
• k: Integer [1]

the value of shape parameter in the gamma distribution
• mean: Real [1]

the value of mean (scale parameter) in the gamma distribution
3.1.2.7 PoissonDistribution
This data type contains necessary parameters to define the Poisson distribution.
Attributes

• mean: Real [1]
the value of mean in the passion distribution

3.1.2.8 UniformDistribution
This data type contains necessary parameters to define the Uniform distribution.
Attributes

• min: Real [1]
the value of minimum in the uniform distribution

• max: Real [1]
the value of maximum in the uniform distribution

3.1.2.9 GeometricDistribution
This data type contains necessary parameter to define the Geometric distribution.
Attributes

• p: Real [1]
the value of parameter p in the Geometric distribution

3.1.2.10 TriangularDistribution
This data type contains necessary parameters to define the Triangular distribution.
Attributes

• min: Real [1]
the value of lower limit, normally represents as a in the triangular distribution

• max: Real [1]
the value of upper limit, normally represents as b in the triangular distribution

• mode: Real [1]
the value of mode, normally represents as c in the triangular distribution

Constraints
[1] min is less than max

self.min < self.max

[2] mode is between min and max
self.min <= self.mode and self.max >= self.mode

3.1.2.11 LogarithmicDistribution
This data type contains necessary parameters to define the Logarithmic distribution.
Attributes

• theta: Real
the value of parameter theta in the Logarithmic distribution

3.1.2.12 Percentage
This data type implements the common known percentage concept.
Attributes

• value: Real
the value of percentage with default % unit

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 23

3.1.2.13 Probability
This data type contains necessary parameter to specify the common probability value.
Attributes

• value: Real
the value of probability

Constraints
[1] A probability value ranges from 0.0 to 1.0

self.value <= 1.0 and self.value > 0.0

3.1.2.14 ConfidenceLevel
This data type contains necessary parameters to specify the value of confidence level.
Attributes

• value: Probability [1]
the value of confidence level specified by Probability

3.1.2.15 ConfidenceInterval
This data type contains necessary parameters to specify the value of confidence interval.
Attributes

• value: GenericType [1]
the value of estimator

• error: GenericType [1]
the value of error in the confidence interval

• level: ConfidenceLevel [1]
the value of confidence level, also called confidence coefficient, in the confidence interval

3.1.3 Vagueness Library
This section presents the Vagueness Library [1]. An overview diagram is shown in Figure 10.

Figure 10. Vagueness Library

3.1.3.1 HedgeKind
This enumeration implements the classical kind of Hedge related Fuzzy Set [13].
Literals

• A_Little
corresponds to the mathematic representation [𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝]0.2

• Slightly
corresponds to the mathematic representation [𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝]0.3

• Very
corresponds to the mathematic representation [𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝]4

• Extermely
corresponds to the mathematic representation [𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝]2

• Very_Very
corresponds to the mathematic representation [𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝]5

• More_or_Less

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 24

corresponds to the mathematic representation [𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝]
• Somewhat

corresponds to the mathematic representation [𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝]
• Indeed

corresponds to the mathematic representation

2[𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝]4

1 − 2[𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝]4
	
, 0	 ≤ 𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝	 ≤ 0.5
, 0.5 < 𝑑𝑒𝑔𝑟𝑒𝑒	𝑜𝑓	𝑚𝑒𝑚𝑒𝑏𝑒𝑟𝑠ℎ𝑖𝑝 ≤ 1

3.1.3.2 MembershipDegree
This data type contains necessary parameters to specify the value of membership degree.
Attributes

• value: Real [1]
the value of membership

• hedge: HedgeKind [0..1]
optional value to specify the kind of hedge

• element: String [0..1]
the value to specify the element

3.1.3.3 FuzzySet
This data type contains necessary parameters to specify the value of fuzzy set [14].
Associations

• items: MemebershipDegree [*]
the set of membership in the fuzzy set

• fuzzyEntropy: FuzzyEntropy [*]
the set of fuzzy entropy of the fuzzy set

• fuzziness: Fuzziness[*]
the set of the degree of fuzziness of the fuzzy set

• roughness: Roughness[0..1]
optional value of the degree of roughness of the fuzzy set

3.1.3.4 FuzzySetCut
This data type contains necessary parameters to specify the cut of fuzzy set [15].
Attributes

• alpha: Real [1]
the value of alpha in the fuzzy cut

• isStrong: Boolean [0..1]
the value to represent the strong fuzzy cut or not

Associations
• fuzzySet: FuzzySet [1]

the value of fuzzy set for the cut
Constraints

[1] A alpha value ranges from 0.0 to 1.0
self.alpha <= 1.0 and self.alpha =>0.0

3.1.3.5 FuzzyEntropy
This data type implements to specify the value of fuzzy entropy [16].
3.1.3.6 Fuzziness
This data type implements to specify the value of fuzziness [17, 18].
3.1.3.7 Roughness
This data type implements to specify the value of roughness [19].

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 25

3.1.3.8 EuclidFuzziness
This data type implements to specify the value of Euclid fuzziness [17, 18].
Generalizations

• Fuzziness
3.1.3.9 HammingFuzziness
This data type implements to specify the value of Hamming fuzziness [17, 18].
Generalizations

• Fuzziness
3.1.3.10 MinkowskiFuzziness
This data type implements to specify the value of Minkowski fuzziness [17, 18].
Generalizations

• Fuzziness
3.1.3.11 FuzzySetOperationKind
This enumeration implements the common kind of operation of fuzzy set.
Literals

• Union
Union operation between fuzzy set

• Intersection
Intersection operation between fuzzy set

• Complement
Complement operation between fuzzy set

3.1.3.12 FuzzyLogicOperation
This enumeration implements the common kind of operation supported by fuzzy logic.
Literals

• AND
And operation

• OR
Or operation

• NOT
Not operation

3.1.3.13 LFuzzySet
This data type implements to specify the value of L-Fuzzy Set [20].
Generalizations

• FuzzySet
3.1.3.14 IntuitionisticFuzzySet
This data type implements to specify the value of Intuitionistic fuzzy set [21].
Generalizations

• FuzzySet
3.1.3.15 IntervalValuedFuzzySet
This data type implements to specify the value of interval valued fuzzy set [22-24].
Generalizations

• FuzzySet
3.1.3.16 VagueSet
This data type implements to specify the value of vague set [25].
Generalizations

• FuzzySet

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 26

3.1.3.17 FuzzyLogic
This data type implements to specify the fuzzy logic [14].
Attributes

• var: String [1]
the variable in the fuzzy logic

• set: FuzzySet [1]
the fuzzy set used for mapping the value

3.1.3.18 FuzzyNumber
This data type implements to specify the fuzzy number [14].
Attributes

• number: String [1]
the value of fuzzy number specified by String

3.1.3.19 TriangularFuzzyNumber
This data type implements the necessary parameters to specify the triangular fuzzy number.
Generalizations

• FuzzyNumber
Attributes

• isSharped: Boolean[1]
the value to decide triangular fuzzy number or triangular sharped fuzzy number

• a: Real [1]
the lower bound of triangular fuzzy number

• b: Real [1]
the medium bound of triangular fuzzy number

• c: Real [1]
the upper bound of triangular fuzzy number

3.1.3.20 FuzzyInterval
This data type implements to specify the fuzzy interval [14].
Attributes

• min: FuzzyNumber[1]
the lower bound of fuzzy interval

• max: FuzzyNumber [1]
the upper bound of fuzzy interval

3.1.3.21 RoughSet
This data type implements to specify the rough set [19].
3.1.3.22 Sharpness
This data type implements to specify the value of sharpness [26].

3.2 Pattern Library
This section presents the Pattern Library [1]. An overview diagram is shown in Figure 11.

Figure 11. Pattern Library

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 27

3.2.1.1 Random
This data type implements the Random in the U-Model::UncertaintyModel::Random [1]. As defined in [1],
“An	Random	Uncertainty that occurs without definite method, purpose or conscious decision”.
3.2.1.2 AperiodicPattern
This data type implements the Aperiodic in the U-Model::UncertaintyModel::Aperiodic [1], and borrow the
parameters from MARTE Library [2]. As defined in [1], “an Aperiodic pattern occurs at irregular intervals of
time”.
Attributes

• distribution: ProbabilityDistribution
As defined in the MARTE_Library:: BasicNFP_Types::AperiodicPattern [2]

3.2.1.3 IrregularPattern
This data type from MARTE [2] contains the necessary parameters to specify irregular pattern.
Generalizations

• AperiodicPattern
Attributes

• phase: Duration
As defined in the MARTE_Library:: BasicNFP_Types::IrregularPattern [2]

• interarrivals: Duration
As defined in the MARTE_Library:: BasicNFP_Types::IrregularPattern [2]

3.2.1.4 SporadicPattern
This data type implements the Sporadic in the U-Model::UncertaintyModel::Sporadic [1], and borrow the
parameters from MARTE Library [2]. As defined in [1], “an uncertainty occurs occasionally”.

Generalizations

• AperiodicPattern
Attributes

• minInterarrival: Duration
As defined in the MARTE_Library:: BasicNFP_Types::SporadicPattern [2]

• maxInterarrival: Duration
As defined in the MARTE_Library:: BasicNFP_Types::SporadicPattern [2]

• jitter: Duration
As defined in the MARTE_Library:: BasicNFP_Types::SporadicPattern [2]

3.2.1.5 BurstPattern
This data type from MARTE [2] contains the necessary parameters to specify burst pattern.
Generalizations

• AperiodicPattern
Attributes

• minInterarrival: Duration
As defined in the MARTE_Library:: BasicNFP_Types::BurstPattern [2]

• maxInterarrival: Duration
As defined in the MARTE_Library:: BasicNFP_Types::BurstPattern [2]

• miniEventInterval: Duration
As defined in the MARTE_Library:: BasicNFP_Types::BurstPattern [2]

• maxEventInterval: Duration
As defined in the MARTE_Library:: BasicNFP_Types::BurstPattern [2]

• burstSize: Integer
As defined in the MARTE_Library:: BasicNFP_Types::BurstPattern [2]

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 28

3.2.1.6 SystematicPattern
This data type implements the Systematic in the U-Model::UncertaintyModel::	 Systematic [1]. As defined in
[1], “an	Systematic uncertainty occurs in some methodical pattern”.
3.2.1.7 PeriodicPattern
This data type implements the Periodic in the U-Model::UncertaintyModel::Periodic [1], and borrow the
parameters from MARTE Library [2]. As defined in [1], “an Uncertainty that occurs in repeated periods or at
regular intervals.”.
Generalizations

• SystematicPattern
Attributes

• period: Duration
As defined in the MARTE_Library:: BasicNFP_Types::PeriodicPattern [2]

• jitter: Duration
As defined in the MARTE_Library:: BasicNFP_Types::PeriodicPattern [2]

• phase: Duration
As defined in the MARTE_Library:: BasicNFP_Types::PeriodicPattern [2]

• occurrences: Integer
As defined in the MARTE_Library:: BasicNFP_Types::PeriodicPattern [2]

3.2.1.8 PersistentPattern
This data type implements the Persistent in the U-Model::UncertaintyModel::	 Persistent [1]. As defined in
[1], “an	uncertainty lasts forever4”.

Generalizations

• SystematicPattern
Attributes

• phase: Duration
the duration of the uncertainty lasting

3.2.1.9 TransientPattern
This data type implements the Transientin the U-Model::UncertaintyModel::Transient[1]. As defined in [1], “an	
uncertainty does not last long”.
Generalizations

• AperiodicPattern
3.2.1.10 OpenPattern
This data type from MARTE [2] contains the necessary parameters to specify open pattern.
Attributes

• interArrivalTime: Duration
As defined in the MARTE_Library:: BasicNFP_Types::OpenPattern [2]

• arrivalRate: Frequency
As defined in the MARTE_Library:: BasicNFP_Types::OpenPattern [2]

3.2.1.11 ClosePattern
This data type from MARTE [2] contains the necessary parameters to specify close pattern.
Attributes

• population: Integer
As defined in the MARTE_Library:: BasicNFP_Types::ClosePattern [2]

• extDelay: Duration

4 “The definition of “forever” varies. For example, an uncertainty may exist permanently until appropriate actions are taken to deal with the
uncertainty. On the other hand, an uncertainty may not be able to resolve and stays forever.” [1] M. Zhang, B. Selic, S. Ali, T. Yue, O.
Okariz, and R. Norgren, “Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model,” in ECMFA, 2016.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 29

As defined in the MARTE_Library:: BasicNFP_Types::ClosePattern [2]

3.3 Time Library
This section presents time concepts borrowed from MARTE Library[2]. An overview diagram is shown in
Figure 12.

Figure 12. Time Library

3.3.1.1 DateTime
This data type from MARTE_Library [2] contains the necessary parameters to specify common date time.
Attributes

• value: Real [0..1]
the data time specified by Real number

• literal_value: String [0..1]
the date time specified by String

3.3.1.2 Duration
This data type from MARTE_Library [2] contains the necessary parameters to specify common duration.
Attributes

• best: Real [0..1]
As defined in the MARTE_Library::BasicNFP_Types::NFP_Duration [2]

• worst: Real [0..1]
As defined in the MARTE_Library::BasicNFP_Types::NFP_Duration [2]

• unit: MARTE_Library::MARTE_MeasurementUnits::TimeUnitKind [0..1]
As defined in the MARTE_Library::BasicNFP_Types::NFP_Duration [2]

• clock: String [0..1]
As defined in the MARTE_Library::BasicNFP_Types::NFP_Duration [2]

• precision: Real [0..1]
As defined in the MARTE_Library::BasicNFP_Types::NFP_Duration [2]

3.3.1.3 Frequency
This data type from MARTE_Library [2] contains the necessary parameters to specify common frequencey.
Attributes

• value: Real [0..1]
As defined in the MARTE_Library:: BasicNFP_Types::NFP_Frequency [2]

• precision: Real [0..1]
As defined in the MARTE_Library:: BasicNFP_Types:: NFP_Frequency [2]

• unit: MARTE_Library::MARTE_MeasurementUnits::FrequencyUnitKind [0..1]
As defined in the MARTE_Library:: BasicNFP_Types:: NFP_Frequency [2]

3.3.1.4 FrequencyUnitKind
This enumeration from MARTE_Library::MARTE_MeasurementUnits::FrequencyUnitKind [2] lists the kinds
of unit of frequency.
literals

• Hz
Represents hertz, one cycle per second

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 30

• KHz
kilohertz, 102	𝐻𝑧

• MHz
megahertz, 10@	𝐻𝑧

• GHz
glgahertz, 10A	𝐻𝑧

• rmp
radian per second, 0.0167𝐻𝑧, 2𝜋	𝑟𝑚𝑝 = 1	𝐻𝑧

3.3.1.5 TimeUnitKind
This enumeration from MARTE_Library::MARTE_MeasurementUnits::TimeUnitKind [2] lists the kinds of unit
of time.
literals

• s
second

• tick
represents logic time, often used for logic clock

• ms
millisecond 10F2	𝑠

• us
microsecond 10F2	𝑚𝑠

• min
minute, 60	𝑠

• hrs
hour, 60	𝑚𝑖𝑛

• dys
day, 24	ℎ𝑟𝑠

3.4 Risk Library
This section describes our model library for risk assessment that consists of some key approaches for assessing
risk. Figure 13 shows an overview of our model library for risk assessment. This model library allows us to
specify the key elements that are used for assessing risk, either quantitatively or qualitatively. Therefore, the
library contains two sub model libraries RiskQualitativeAssessment and RiskQuantitativeAssessment. Besides,
some data types are imported from the Probability model library.

Figure 13. An overview of Risk Assessment model library

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 31

3.4.1 Risk Qualitative Assessment
To qualitatively assess risk, we adopt the Risk Matrix approach [27] for identifying, assessing, and ranking risks.
According to [28], to produce a risk matrix, some basic rules should be followed. First, the basis for risk matrix
is the standard definition of risk as a combination of severity of the consequences occurring in a certain accident
scenario and its probability [29]. Second, the severity of consequences, probability, and output risk index can be
divided into different levels, respectively, with qualitative descriptions and scales. Third, the calculation process
of matrix producing is presented by the logic implication as: IF probability is P AND severity of consequence
(impact) is I THEN risk is R [29]. Some examples of impact assessment, probability of occurrence, and a
possible Risk Matrix (risk rating scale) is recalled from [27] in Table 1, Table 2, and Table 3.

Table 1. Probability of Occurrence (P)

Probability Range Interpretation
0-10% Very Unlikely to Occur

11-40% Unlikely to Occur
41-60% May Occur About Half of the Time
61-90% Likely to Occur

91-100% Very Likely to Occur

Table 2. Risk Matrix Impact Assessment (I)

Impact Category Definition
Critical An event that, if it occurred, would cause program failure (inability

to achieve minimum acceptable requirements).
Serious An event that, if it occurred, would cause major cost/schedule

increases. Secondary requirements may not be achieved.
Moderate An event that, if it occurred, would cause moderate cost/schedule

increases. but important requirements would still be met.
Minor An event that, if it occurred, would have cause only a small

cost/schedule increase. Requirements would still be achieved.
Negligible An event that, if it occurred, would have no effect on the program.

Table 3. Possible Risk Rating Scale (R)

P
I

Negligible Minor Moderate Serious Critical

0-10% Low Low Low Medium Medium
11-40% Low Low Medium Medium High
41-60% Low Medium Medium Medium High
61-90% Medium Medium Medium Medium High

91-100% Medium High High High High

In the model library we introduce data types such as RiskLevel, Risk_ProbabilityLevel, and Risk_ImpactLevel
as showed in Figure 14.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 32

Figure 14. Using Risk Matrix for Qualitative Assessment of Risk

The value riskIndex in RiskQualitativeAssessment can be derived from the values of Risk_ProbabilityLevel
and Risk_ImpactLevel according to the calculation process of matrix producing. Each data type is presented in
the following.
3.4.1.1 RiskQualtitativeAssessment
This data type contains the derived risk index.
Extensions

• None
Generalizations

• None
Associations

• impact : Risk_ImpactLevel [1]
Any risk is based on impact assessment. This impact is assigned a value of type
Risk_ImpactLevel below.

• probability : Risk_ProbabilityLevel [1]
Any risk is based on a probability of its occurrence. This probability is assigned a value of
type Risk_ProbabilityLevel below.

Attributes
• /riskIndex : RiskLevel [1]

This attribute represents the qualitative assessment of risk.
Constraints

• None
3.4.1.2 RiskLevel
This data type represents the possible risk rating scale.
Extensions

• None
Generalizations

• None
Associations

• None
Attributes

• None

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 33

Constraints
• None

3.4.1.3 RiskLevel_3Scale, RiskLevel_4Scale, RiskLevel_5Scale
RiskLevel_3Scale, RiskLevel_4Scale, and RiskLevel_5Scale are enumeration types that define literals used to
specify the levels of risk. We provide different scales to be used in different situations. In this version, we have
three different scales with the corresponding levels. The indication of each level can be defined in a Risk
Matrix, e.g. the three-scale risk ranking in Table 3. A risk matrix can be created according to the need of
granularity in risk assessment.
Literals

• VeryLow
• Low
• Medium
• High
• Extreme

Generalizations
• RiskLevel

3.4.1.4 Risk_ProbabilityLevel
This data type contains the possible risk probability rating scale.
Extensions

• None
Generalizations

• None
Associations

• None
Attributes

• None
Constraints

• None
3.4.1.5 Probability_3Scale, Probability_4Scale, Probability_5Scale, Probability_7Scale
Probability_3Scale, Probability_4Scale, Probability_5Scale, and Probability_5Scale are enumeration types that
define literals used to specify the probability if a risk could occur. We provide different scales to be used in
different situations. The enumerations are imported from the Probability model library. The indication of each
level of impact can be defined in table, e.g. Table 1.
Literals

• Impossible
• VeryUnlikely
• Unlikely
• Even
• Likely
• VeryLikely
• Certain

Generalizations
• Risk_ProbabilityLevel

3.4.1.6 Risk_ImpactLevel
This data type contains the possible risk impact rating scale.
Extensions

• None
Generalizations

• None
Associations

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 34

• None
Attributes

• None
Constraints

• None
3.4.1.7 Risk_ImpactLevel_4Scale, Risk_ImpactLevel_5Scale
Risk_ImpactLevel_4Scale, Risk_ImpactLevel_5Scale are enumeration types that define literals used to specify
the levels of risk impact. We provide different scales to be used in different situations. In this version, we
introduce two different scales with the corresponding levels. The indication of each level of impact can be
defined like in Table 2.
Literals

• VeryLow
• Low
• Medium
• High
• Extreme

Generalizations
• Risk_ImpactLevel

3.4.2 Risk Quantitative Assessment
To quantitatively assess risk, we adopt the extension of risk matrix approach [28]. In [2], the authors claim that
increasing the number of input variable levels and risk levels will indirectly reduce the probability of risk tie
occurrence. Moreover, in the limiting case, the levels of two input variables are single discrete values instead of
several equal length value ranges. In this case, to maximize the elimination of risk ties, the original calculation
process of Risk Matrix approach must be accordingly redefined in another way better than logic implication and
Borda method [28].
The multiplication formula could naturally be selected as the new calculation process for the extension of Risk
Matrix approach because the most commonly used way to express risk is the expected value. The calculation
process of risk matrix can be redefined to quantify risk index as follows:

𝑅𝑖𝑠𝑘 = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	×𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
Therefore, in the model library for quantitatively assessing risk we have data types such as Severity,
Risk_QuantitativeAssessment as showed in Figure 15.

Figure 15. Overview of a model library for Quantitative Assessment of Risk

3.4.2.1 Risk_QuantitativeAssessment
This data type contains the quantifiable value of risk.
Extensions

• None
Generalizations

• None
Associations

• None
Attributes

• riskIndex : Real [1]

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 35

The value of risk index.
• severity : Severity [1]

The severity of risk.
• probability : Probability [1]

The probability of risk. This data type is imported from the Probability model library.
Constraints

• The value of riskIndex must be positive.
3.4.2.2 Severity
This data type contains the possible severity of consequences of risk.
Extensions

• None
Generalizations

• None
Associations

• None
Attributes

• severityValue : Real [1]
The value of severity.

Constraints
• The value of severityValue must be positive.

4 MODELING METHODOLOGY
In this section, we present a modeling methodology for the U-Model notations. The rest of this section is
organized as follows: Section 4.1 presents the overview of modeling activities, Section 4.2 presents modeling
activities at Application Level, Section 4.3 presents modeling activities at Infrastructure Level, Section 4.4
presents modeling activities at Integration level, and Section 4.5 presents the modeling activities of applying
UUP which is invoked at above three level.

4.1 Overview
The modeling methodology is naturally organized from the viewpoints of the three types of stakeholders:
Application Modeler, Infrastructure Modeler and Integration Modeler, as shown in Figure 16. For activities
performed by each type of modelers, we distinguish them by tagging each of them (in their names) using “AP”,
“IF” and “IT”, respectively.
As shown in Figure 16, all modelers are recommended to start from creating a package (i.e., AP1, IF1 and IT1),
which is used to group and contain model elements for each respective level. Next, application and
infrastructure modelers apply the U-Model notations to model system behaviors of the application and
infrastructure levels, respectively (i.e., AP2 and IF2). These two structured activities are further elaborated in
Sections 4.2 and 4.3. When these two activities are finished, integration modelers take their results as inputs and
perform IT2: Model Integration Behavior. Details of this structured activity are further discussed in Section 4.4.

Figure 16. Overview of CPS UML Methodology

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 36

4.2 Application Level
The application level modeling activities include three sequential steps: creating application level class diagrams
(AP2.1), creating application level state machines (AP2.2) and applying the UUP notations on the created class
and state machines (AP2.3).
A class diagram created for the application level should capture domain concepts that are needed for specifying
the API information to gain access to the data and behavior of the system. It is important to mention that such a
class diagram usually needs to specify Signal, which is a Classifier for specifying communication of send
requests across objects. When creating a class diagram for the application level, for each class, each of its
attributes captures an observable system attribute, which may be typed by a DataType in the UUP’s Model
Libraries (Section 3) or MARTE_Library [2]. An attribute may represent a physical observation on a device
(e.g., Battery Status on an X4 device). Each operation of a class in a class diagram represents either the API of
the application software or an action physically performed by an operator (e.g., switching on or off of an X4
device).
Each state in a state machine created for the application level is defined, with an OCL constraint specifying its
state invariants. Such an OCL constraint is constructed, based on one or more attributes of one or more classes
of an application level class diagram. Each transition in a state machine should have its trigger defined as a call
event corresponding to an API or a physical action defined in the class diagrams of the application level, and
have its guard condition modelled as an OCL constraint on the input parameters of the trigger of the transition.
Next, application modelers need to apply UUP on state machines (AP2.3) to specify uncertainties and apply the
UTP profile to add testing information (e.g., indicating TestItem).

Figure 17. Application Level Guideline

4.3 Infrastructure Level
For the infrastructure level, a similar modeling procedure as the one defined for the application level should be
followed to derive class diagrams and state machines, apply UUP and the UTP profile, as shown in Figure 18.
One difference is that attributes of the infrastructure level class diagrams should capture observable
infrastructure attributes. For example, an attribute can be the percentage of data loss between an X4 device and
the Radio Antenna. Operations of the infrastructure level class diagrams represent APIs for manipulating
infrastructure level components. Regarding state machines, they should be consistent with the infrastructure
level class diagrams. In other words, states should have their invariants defined as OCL constraints based on the
attributes defined in the infrastructure level class diagrams, and transitions having their triggers defined as call
events or time/change events.

Figure 18. Infrastructure Level Guideline

4.4 Integration Level
Recall that, activity IT2 is started after class diagrams and state machines created for the application and
infrastructure levels. As shown in Figure 19, the IT2 activity starts from creating integration level class
diagrams (IT2.1) and state machines (IT2.2), followed by applying UUP and the UTP profile.
Regarding creating class diagrams for the integration level, such a class diagram should focus on specifying
interactions between the application software and infrastructure. Particularly, signal receptions should be
defined to model events that a class can receive from the infrastructure and/or application levels. Each signal
reception corresponds to an instance of Signal defined in a created integration level class diagram. Notice that
creating class diagrams for the integration level is not mandatory. Model elements that have been defined in the
application and infrastructure level class diagrams can appear in the integration level class diagrams and they
should be specified from the perspective of integration level modelers.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 37

There are different ways of defining model elements for the integration level. One way is to refine the created
application and infrastructure level state machines by directly introducing new model elements to them. For
example, a state in the application level can send a Signal to the infrastructure level and vice versa. Transitions
of a state machine in the application (infrastructure) level should capture triggers of type Signal Reception and
effects containing Signals from the infrastructure (application) level. Another way is to keep the application and
infrastructure level state machines untouched by applying a specific modeling methodology (e.g., Aspect
Oriented Modeling methodologies) to specify crosscutting behaviors separately. In addition, one should also
benefit from advanced features of UML State Machines (e.g., concurrent state machines, parallel regions) to for
example refer to existing state machines defined in the application and infrastructure levels.

Figure 19. Integration Level Guideline

4.5 Apply UML Uncertainty Profile (AP2/IF2/IT2)
Recall that the activity of applying UML Uncertainty Profile (UUP) is invoked at all the three levels. We tag
each type of activities of the activity diagrams from Figure 20 to Figure 29 with S, C and A to represent
structured activities, call behavior and normal activity nodes. As shown in Figure 20, applying UUP starts from
applying the «BeliefElement» stereotype on any allowed state machine model element according to UUP. Then
a modeler can optionally specify values for the “from” and “duration” attributes of the stereotype, model belief
agents, model belief degree, and/or model uncertainties (Figure 20).

Figure 20. Applying UUP

As shown in Figure 21, there are two ways to model belief agents (S1.1 and S1.2). A modeler can specify belief
agents simply as one or more strings via the “beliefAgent” attribute of «BeliefElement» (S1.1). She/he can also
create a package to organize all the belief agents (S1.2). In this case, each belief agent can be modelled as a
class in the package and the package is stereotyped with «BeliefAgent». Alternatively, one can model each
belief agent as a class and stereotype it with «BeliefAgent». The other option is to model each belief agent as a
class and stereotype it with «BeliefAgent» and also stereotype the package with «BeliefAgent». When choosing
to apply options 2, 3 and 4, one needs to link a created belief agent package to the agent attribute of
«BeliefElement» (S2).

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 38

Figure 21. Model «BeliefAgent»

Modeling BeliefDegree is presented in Section 4.5.1 and modeling uncertainties is discussed in Section 4.5.2.
4.5.1 Measurement Modeling
Modeling measurements and measures are important for applying UUP. These activities are used to measure
beliefDegree, Uncertainty, indeterminacyDegree, Risk and Effect. As shown in Figure 22, one first needs to
create a package to contain measurements for indeterminacyDegree, beliefDegree,
uncertaintyMeasurement, measurement of Risk and measurement of Effect (A1). Then, a modeler can
optionally specify Evidence (S1), followed by the specification of each measurement instance and its
corresponding measure (S3 and S2).

Figure 22. Common Measurement Modeling Activity

A. Specify Evidence
As shown in Figure 23, there are two ways to specify evidence. Option 1 is to specify evidence as a String value
(in the “measurement” attribute of Measurement). Option 2 is to create a package for evidence if such a
package does not exist and optionally stereotype it with «Evidence» (S1.2.1). One can then create any UML
model element to represent evidence, according to UUP and optionally stereotype it with «Evidence» (S1.2.2).
The last step of Option 2 is to link either the package or UML model elements representing evidence to the
“referredEvidence” attribute of Measurement (S1.2.3).

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 39

Figure 23. Specify Evidence

B. Specify Measure

As shown in Figure 24, to specify a measure, a modeler needs to create a class diagram (A1) and then create
instances of Measures (for measurements of either “indeterminacyDegree”, “beliefDegree”,	
“uncertaintyMeasurement”, measurement of Risk or measurement of Effect) as classes or datatypes (A2). One
then needs to add attributes to these classes or datatypes by using the datatypes defined in the Measure Libraries.
One can optionally apply corresponding measure stereotypes (e.g., «UncertaintyMeasure») to the classes or
datatypes (A4). The last step is to link a measure to an instance of Measurement (A5).

Figure 24. Specify Measure

C. Specify Measurement
There are three ways to specify measurements, as shown in Figure 25: specifying a measurement as a String of
the measurement attribute of Measurement (A1), ValueSpecification (A2), and an OCL constraint owned by a
class or datatype representing a measure, based on the attributes defined in the class or datatype (A3.1). One can
also optionally apply «MeasurementConstraint» to an OCL constraint defined to specify a measurement (A3.2).

Figure 25. Specify Measurement

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 40

4.5.2 Uncertainty Modeling
As shown in Figure 26, one first needs to specify the kind of an uncertainty (A1), optionally specify values for
attributes “from”, “field”, and “locality” of the uncertainty, optionally model Lifetime (or Cause, Pattern,
Effect) of the uncertainty, optionally define IndeterminacySource(s), optionally model
uncertaintyMeasurement and Risk.

Figure 26. Model Uncertainty

A. Model Lifetime/Cause/Pattern/Effect of Uncertainty
A modeler has two options to specify Lifetime/Cause/Pattern/Effect of an uncertainty, as shown in Figure 27.
One option is to simply specify an instance of these as a String value owned by the uncertainty (via attributes
“lifetime”, “cause”, “effect”, “pattern”	 or “risk” of Uncertainty). The second option needs to start from
creating a package for Lifetime/Cause/Pattern/Effect if such a package does not exist, and optionally apply
«Lifetime», «Cause», «Pattern», or «Effect» (S1.2.1). After creating packages, one needs to create
Lifetime/Cause/Pattern/Effect as any UML model element and optionally apply the corresponding
stereotypes. Since Effect can be measured, an instance of it can be optionally associated with one or more
measurements (Section 4.5.1). The last step of Option 2 is to associate each created package or element to
corresponding attributes of Uncertainty, i.e., “referredPattern”,	 “referredEffect”,	 “referredLifetime”,	 or	
“referredCause”.

Figure 27. Model Lifetime/Cause/Patten/Effect of Uncertainty

In addition, the option 3 is newly added. Firstly, the «Cause» is mandatory to apply on the transition when it
transits to the different target states (S1.3.1). The next step of option 3 is to link transition applied «Cause» to
Uncertainty via “referredCause” attribute.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 41

B. Model IndeterminacySource
As shown in Figure 28, a modeler can simply specify an indeterminacy source as a String value of attribute
“indeterminacySource” of Uncertainty (Option 1). Alternatively, one can create a package to organize
indeterminacy sources (A2.2.1), create instances of any UML Classifier/Constraint/Operation/Constraint to
represent an indeterminacy source and apply the «IndeterminacySource» stereotype on them (A2.2.2.1-
A2.2.2.4), create instances of the Constraint to represent the occurrence of the indeterminacy source and apply
«IndeterminacySpecification» on them (A2.2.3). Based on the implementation of Test APIs that enable to
trigger/release the occurrence of the indeterminacy source, the modeler optionally creates instances of the
Operation/Behavior to represent the IndeterminacySourceInput and apply «IndeterminacySourceInput»
(A2.2.5.1/ A2.2.5.2), and further link with IndeteminacySpecification by the “triggeredBy”/	 “releasedBy”
attribute. In addition, the modeler can specify the nature and description of each indeterminacy source (A2.2.7),
specify measurements for each indeterminacy source (C1), and associate the created
IndeterminacySource/IndeterminacySpecification to the “referredIndeterminacySource”/	 “relatedIndSpecs”
attribute of Uncertainty (A2.2.8).

Figure 28. Model IndeterminacySource

It is possible to model these indeterminacy related concepts in different ways. Therefore, to ease the modeling
process, we summarize our recommendations for applying this part of the profile in Table 4, based on our
experience.

Table 4. Recommendations For applying the Indeterminacy Source part of the UUP profile

Stereotype Applied Base Element
S1: States of the environment of the CPS are indeterminate, such as the
batteryStatus.
 R1 «IndeterminacySource» Property
 «IndeterminacySpecification» Constraint
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint
 R2 «IndeterminacySource» Constraint
 «IndeterminacySpecification» FALSE (default)
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint
S2: Input data is indeterminate.
 R1 «IndeterminacySource» Operation
 «IndeterminacySpecification» Constraint
 «IndeterminacySourceInput» Constraint
S3: Occurrences of an event from the environment (e.g., “pressing the
button”) are indeterminate.
 R1 «IndeterminacySource» Property
 «IndeterminacySpecification» Constraint
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint
 R2 «IndeterminacySource» Constraint
 «IndeterminacySpecification» FALSE (default)
 Op1 «IndeterminacySourceInput» Operation
 Op2 «IndeterminacySourceInput» Operation, Constraint

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 42

C. Model Risk
A modeler can also optionally associate an uncertainty to Risk. As shown in Figure 29, one can simply specify
Risk as a String value of the “riskLevel” attribute of Uncertainty (Option 1) or one of the predefined risk levels
in enumeration RiskLevel (Option 2). Alternatively, one can create a package for Risk if such a package does
not exist, followed by creating classes and/or datatypes to represent Risks and optionally applying «Risk»
(A4.3.2). Afterwards, a modeler can also optionally specify measurement for Risk (C1), and link the created
classes and datatypes to Uncertainty via the “riskInDTViaClass” and/or “riskInDT” attributes (A4.3.3).

Figure 29. Model Risk

ACKNOWLEDGMENT
This research was supported by the EU Horizon 2020 funded project U-Test (Testing Cyber-Physical Systems
under Uncertainty). Tao Yue and Shaukat Ali are also supported by RCN funded Zen-Configurator project, RFF
Hovedstaden funded MBE-CR project, RCN funded MBT4CPS project, and RCN funded Certus SFI.

REFERENCE
[1] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, “Understanding Uncertainty in Cyber-

Physical Systems: A Conceptual Model,” in ECMFA, 2016.
[2] O. M. Group, "UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded Systems,"

June, 2011.
[3] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,” The annals of

mathematical statistics, pp. 325-339, 1967.
[4] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy sets and systems, vol. 1, no. 1, pp.

3-28, 1978.
[5] P. Smets, and R. Kennes, “The transferable belief model,” Artificial intelligence, vol. 66, no. 2, pp.

191-234, 1994.
[6] R. V. L. Hartley, “Transmission of information,” Bell System Technical Journal, pp. 535-563, 1928.
[7] M. Higashi, and G. J. Klir, “Measures of uncertainty and information based on possibility

distributions,” International Journal of General Systems, vol. 9, no. 1, pp. 43-58, 1982.
[8] M. T. Lamata, and S. Moral, “Measures of entropy in the theory of evidence,” International Journal Of

General System, vol. 14, no. 4, pp. 297-305, 1988.
[9] G. Shafer, A mathematical theory of evidence: Princeton university press Princeton, 1976.
[10] R. R. Yager, “Entropy and specificity in a mathematical theory of evidence,” International Journal of

General System, vol. 9, no. 4, pp. 249-260, 1983.
[11] U. Höhle, "Fuzzy plausibility measures." pp. 7-30.

Simula Research Laboratory, Technical Report 2016-01 Sep, 2017

 43

[12] U. Höhle, "Entropy with respect to plausibility measures." pp. 167-169.
[13] M. Negnevitsky, Artificial intelligence: a guide to intelligent systems: Pearson Education, 2005.
[14] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353, 1965.
[15] K. George J, and Y. Bo, “Fuzzy sets and fuzzy logic, theory and applications,” -, 2008.
[16] B. Kosko, “Fuzzy entropy and conditioning,” Information sciences, vol. 40, no. 2, pp. 165-174, 1986.
[17] D. Didier, and P. Henri, “Fuzzy sets and systems: Theory and Applcation.,” Mathematics in Scince and

Engineering, vol. 144, 1980.
[18] H.-J. Zimmermann, Fuzzy set theory—and its applications: Springer Science & Business Media, 2011.
[19] Z. Pawlak, “Rough sets,” International Journal of Computer & Information Sciences, vol. 11, no. 5,

pp. 341-356, 1982.
[20] J. A. Goguen, “L-fuzzy sets,” Journal of mathematical analysis and applications, vol. 18, no. 1, pp.

145-174, 1967.
[21] K. Atanassov, and C. Georgiev, “Intuitionistic fuzzy prolog,” Fuzzy Sets and Systems, vol. 53, no. 2,

pp. 121-128, 1993.
[22] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,”

Information sciences, vol. 8, no. 3, pp. 199-249, 1975.
[23] I. Grattan‐Guinness, “Fuzzy Membership Mapped onto Intervals and Many‐Valued Quantities,”

Mathematical Logic Quarterly, vol. 22, no. 1, pp. 149-160, 1976.
[24] K. U. Jahn, “Intervall‐wertige Mengen,” Mathematische Nachrichten, vol. 68, no. 1, pp. 115-132,

1975.
[25] W. L. Gau, and D. J. Buehrer, “Vague sets,” Systems, Man and Cybernetics, IEEE Transactions on,

vol. 23, no. 2, pp. 610-614, 1993.
[26] A. De Luca, and S. Termini, “A definition of a nonprobabilistic entropy in the setting of fuzzy sets

theory,” Information and control, vol. 20, no. 4, pp. 301-312, 1972.
[27] P. R. Garvey, and Z. F. Lansdowne, “Risk matrix: an approach for identifying, assessing, and ranking

program risks,” Air Force Journal of Logistics, vol. 22, no. 1, pp. 18-21, 1998.
[28] H. Ni, A. Chen, and N. Chen, “Some extensions on risk matrix approach,” Safety Science, vol. 48, no.

10, pp. 1269-1278, 2010.
[29] A. S. Markowski, and M. S. Mannan, “Fuzzy risk matrix,” Journal of hazardous materials, vol. 159,

no. 1, pp. 152-157, 2008.

