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Abstract 

As compared with classical software/system testing, uncertainty-wise testing explicitly 
addresses known uncertainty about the behavior of a System Under Test (SUT), its 
operating environment, and interactions between the SUT and its operational 
environment, across all testing phases, including test design, test generation, test 
optimization, and test execution, with the aim to mainly achieve the following two goals. 
First, uncertainty-wise testing aims to ensure that the SUT deals with known uncertainty 
adequately. Second, uncertainty-wise testing should be also capable of learning new 
(previously unknown) uncertainties such that the SUT’s implementation can be improved 
to guard against newly learned uncertainties during its operation. The necessity to 
integrate uncertainty in testing is becoming imperative because of the emergence of new 
types of intelligent and communicating software-based systems such as Cyber-Physical 
Systems (CPSs). Intrinsically, such systems are exposed to uncertainty because of their 
interactions with highly indeterminate physical environments. In this chapter, we provide 
our understanding and experience of uncertainty-wise testing from the aspects of 
uncertainty-wise model-based testing, uncertainty-wise modeling and evolution of test 
ready models, and uncertainty-wise multi-objective test optimization, in the context of 
testing CPSs under uncertainty. Furthermore, we present our vision about this new testing 
paradigm and its plausible future research directions.  

Keywords— Uncertainty-wise Testing; Cyber-Physical System; Belief Test Ready Model; Model 
Evolution; Model-Based Testing.  
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1 INTRODUCTION 
Uncertainty is unpreventable in the behavior of a Cyber-Physical Systems (CPSs) given its close interaction with 

its physical environment [1-4]. Predicting the exact behavior of the physical environment of a CPS is not viable, 

and a common practice is to make assumptions about the physical environment during the design and testing of 

the CPS. The correct behavior of a CPS is only guaranteed when such assumptions prove to be true. Given the 

complexity of problems being solved by CPSs in critical domains, these systems must function safely even when 

experiencing uncertainty in their physical environment to avert any harms. Thus, we argue that uncertainty (i.e., 

lack of knowledge) in the behavior of a CPS, its operating environment, and in their interactions, must be 

considered explicitly during the testing phase. To this end, we propose, in this chapter, Uncertainty-wise Testing 

(UWT), which is a new testing paradigm that explicitly takes uncertainty into consideration at various testing 

phases, including test design, test generation, test optimization, and test execution, to make sure that the 

implementation of a CPS is sufficiently robust against its uncertain physical environment. 

This chapter introduces UWT particularly in the context of CPSs. Note that this chapter surveys the existing works 



 

 

in this area rather than providing new scientific and research contributions; therefore, we refer to relevant references 

where further details can be consulted. In particular, we survey the following three key topics in the field of UWT.  

First, we introduce Uncertainty-wise Model-Based Testing (UWMBT) that focuses on model-based testing of CPSs 

in the presence of uncertainty with the explicit consideration of known uncertainty on test ready models. Such test 

ready models capture the behavior of a CPS together with uncertainty in its environment and interactions between 

them. Particularly, we will introduce uncertainty-wise test modeling and evolution, which aims to improve the 

quality of modeled test ready models with uncertainty using the real operational data of CPSs. With machine 

learning techniques, invariants and observed uncertainties can be abstracted from such data that can be used to 

further enhance test ready models. Such improved test ready models can be used to generate additional test cases 

as compared to the initial test ready models. In addition, uncertainty-wise test generation will also be discussed. 

Notice that such test ready models are the key inputs for an uncertainty-wise model-based test generation tool that 

generates test cases from the models using uncertainty-wise test case generation strategies. The generated test cases 

are then executed on a CPS to ensure that it handles the known uncertainty specified in the models during its 

operation, in addition to discovering unknown uncertainty, i.e., the uncertainty not specified in the models.  

Second, we will survey about uncertainty-wise multi-objective test optimization. Since test case execution on a 

real CPS is not only time consuming, but also resource intensive, test optimization is necessary. When performing 

multi-objective test optimization, in addition to cost and effectiveness objectives uncertainty-wise optimization 

objectives must also be considered. In this topic, we particularly focus on uncertainty-wise test set minimization 

and uncertainty-wise test case prioritization. Finally, we also provide a detailed survey of existing uncertainty-wise 

testing techniques for CPSs.  

We organize our chapter as follows. Section 2 discusses uncertainty-wise model-based testing and uncertainty-wise 

test modeling and evolution in detail followed by uncertainty-wise multi-objective test optimization (Section 3). 

Section 4 discusses the detailed state-of-the-art related to CPS testing under uncertainty. Finally, Section 5 

summarizes and concludes the chapter. To make the paper more readable, we provide a detailed list of abbreviations 

that will be used in this chapter as shown in Table 1.  

 

 

 

 

 

 



 

 

Abbreviation Description 
APML All Paths with Maximum Length 
ASP All Simple Paths 
BTRM Belief Test Ready Model 
CPS Cyber-Physical System 
ETSI European Telecommunications Standards Institute 
ICT Information and Communications Technology 
IEC International Electrotechnical Commission 
IEEE Institute of Electrical and Electronics Engineers 
ISO International Organization for Standardization 
ITU International Telecommunication Union 
JCGM Joint Committee for Guides in Metrology 
MARTE Modeling And Analysis of Real-Time Embedded Systems 
MBE Model-Based Engineering 
MBT Model-Based Testing 
MDE Model Driven Engineering 
NIST The National Institute of Standards and Technology 
OASIS Organization for the Advancement of Structured Information Standards  
OCL Object Constraint Language 
OMA Open Mobile Alliance 
OMG Object Management Group 
OSI Open Systems Interconnection 
RFP Request For Proposal 
RTF Revision Task Force 
SACM Structured Assurance Case Metamodel 
SBT Search-Based Testing 
TDL Test Description Language 
TRM Test Ready Model 
UMF Uncertainty Modeling Framework 
UML Unified Modeling Language 
UTF Uncertainty Testing Framework 
UTP UML Testing Profile 
UUP UML Uncertainty Profile 
UWMBT Uncertainty-Wise Model-Based Testing 
UWT Uncertainty-Wise Testing 
UWTG Uncertainty-Wise Test Generation 
UWTM Uncertainty-Wise Multi-Objective Test Set Minimization 
UWTP Uncertainty-Wise Multi-Objective Test Case Prioritization 

2 UNCERTAINTY-WISE MODEL-BASED TESTING 
In this section, we first briefly summarize two main research trends of test generation and point readers to existing 

literature reviews or surveys for details in Section 2.1. Second, we discuss our perspective and vision of 

uncertainty-wise test generation, with a particular focus on uncertainty-wise MBT (Section 2.2). Last, we highlight 

two important aspects (i.e., tool support in Section 2.3 and standardization in Section 2.4) in terms of enhancing 

the possibility of being applied in practical and industrial settings.  

Table 1. List of Abbreviations 



 

 

2.1 Overview of Test Generation 

Automated test generation [5-8] is in principle about automatically generating test cases by following certain 

generation strategies, including automatically generating test data, based on one or more software artifacts such as 

program structures and software/system design models. Depending on which type(s) of software artifacts to use, 

there exist many test generation techniques such as symbolic execution [9, 10], program structural coverage based 

test generation [11, 12], and model-based test case generation [13]. Depending on which mechanism to use for test 

generation, there exist other test generation techniques such as combinatorial testing [6] and search-based testing 

[7, 14].  

When particularly looking into the research stream of MBT [15], there are many MBT techniques that have been 

proposed. Such techniques take very diverse types of models as input and generate test cases either automatically 

or semi-automatically. We term such models as Test Ready Models (TRMs) in general, which refer to all types of 

models that are used as input for generating test cases. TRMs can be very different, depending on testing contexts 

and objectives. For example, in [16], the authors proposed a restricted natural language based test case specification 

language (named as RTCM) to specify test case specifications (one type of TRMs), from which executable test 

cases can be generated. TRMs are also often specified as UML models. For example, the authors of [17] proposed 

a model-based framework, named as TRUST, for automatically generating executable test cases from UML state 

machines.  

Search-based testing (SBT) [7, 8] is getting more and more attention these days. SBT is about using meta-heuristic 

optimization search techniques (e.g., Genetic Algorithm [18]) for enabling fully-automated or partially automated 

testing tasks such as generating test cases or test data. Researchers and practitioners have advanced this field by 

proposing varying types of testing techniques, summarized in [7, 14]. When talking about search-based test 

generation particularly, interesting solutions have been proposed in the last ten years. For example, EvoSuite [19] 

is an automated test suite generation tool for testing Java programs.  

2.2 Uncertainty-wise Test Generation (UWTG) 

Considering the fact that, models are the key artifacts of any MBT technique, in this section, we first put our focus 

on modeling methodologies. Second, we discuss uncertainty-wise test generation strategies.  

2.2.1 Uncertainty-wise modeling 

In this section, we first define TRMs in the context of MBT, based on which we further define TRMs with 

uncertainty information explicitly captured (Section 2.2.1.1). After that, we discuss uncertainty modeling from a 

general perspective (Section 2.2.1.2). In the last three subsections, we discuss modeling notations and 

methodologies for modeling TRMs with uncertainty (Section 2.2.1.3), how they fit into a typical system 

development lifecycle (Section 2.2.1.4), and what measures one should take to ensure the quality of developed 

TRMs with uncertainty via verification and model evolution techniques (Section 2.2.1.5).  



 

 

2.2.1.1 Belief test ready models 

We define TRMs, in the context of MBT, as models, which can come in diverse forms (e.g., UML) capturing 

information that is necessary and sufficient to enable MBT, for the purpose of generating test cases and other 

required information such as test stimuli and expected test results. TRMs are test ready in the sense that they are 

amenable for test generation. TRMs are models in the sense that they capture required information at an abstract 

level. It is, therefore, important to differentiate TRMs from models specifying test cases themselves.  

TRMs are often particularly designed for the purpose of testing by test engineers, rather than system engineers. To 

be able to develop TRMs, test engineers need to have a certain level of understanding of system behaviors and 

interactions with their operating environments. In addition, as a modeler, a test engineer needs to establish required 

modeling skills to be able to use proposed modeling notations (e.g., UML) and a corresponding tool 

implementation.  

Belief Test Ready Models (BTRMs) are a specific type of TRMs with uncertainty information explicitly captured 

as part of the models. Such uncertainty information is specified by test engineers to capture their beliefs about 

model elements of a BTRM, associated with one or more uncertainties due to “lack of knowledge” about a BTRM 

when the BTRM was developed. Belief and Uncertainty should be measured/quantified such that an MBT 

technique can benefit from the quantified belief and uncertainty information by proposing uncertainty-wise test 

generation and optimization techniques. In order to do so, a modeling methodology particularly designed for 

specifying and quantifying uncertainty is needed. Such a methodology ideally should be easy to use, sufficiently 

expressive in terms of capturing all required information, and ideally based on standard modeling notations, as we 

described above. Most importantly, uncertainty modeling is the key to developing BTRMs and for enabling UWTG 

required to capture uncertainty information explicitly. 

2.2.1.2 Uncertainty modeling in general 

Uncertainty Modeling in software engineering is a new modeling paradigm; therefore, new modeling notations, 

tools, and methodologies are required to enable the specification and modeling of uncertainty and its related 

concepts for the purpose of analyzing any uncertainty-related aspects of a system, and generating other artifacts 

(e.g., test cases) by taking the uncertainty information into account. Such an uncertainty-modeling paradigm ideally 

should support the specification/modeling of uncertainty at different levels of abstractions, depending on particular 

needs. For example, at the requirements engineering phase, uncertainty should be explicitly captured as an 

important attribute of requirements, similar to their other attributes such as Verifiability and Completeness. This is 

however not the current practice as the community lacks understanding of the importance of explicitly specifying 

not only requirements but also associated uncertainties and confidence of requirement engineers for the specified 

requirements. Another example is that uncertainty can be specified as part of TRMs, which are collectively named 

as BTRMs as we discussed above. 



 

 

To understand what uncertainty is in the context of software engineering in general, recently, a conceptual model, 

named as U-Model [20], has been proposed to define uncertainty, belief, belief agent, indeterminacy source and 

other related concepts. U-Model was proposed from the perspective of software engineers (e.g., requirements 

engineers, test engineers) to understand uncertainty. In other words, U-Model was defined from a subjective 

perspective. U-Model can be considered as the first attempt towards the direction of pursuing a common 

understanding of uncertainty in the software engineering community. There are a few possibilities of applying U-

Model. First, it can be extended for particular purposes. For example, U-Model can be extended for understanding 

and classifying uncertainty in Cyber-Physical Systems (CPSs). Second, U-Model can be implemented as an 

independent domain specific language. Third, U-Model can be integrated with other modeling notations. For 

instance, a UML uncertainty profile, named as UUP, has been developed, based on U-Model, to facilitate the 

development of BTRMs, as discussed in [21]. Another example is to integrate U-Model with other purpose-specific 

modeling/specification methodologies, such as use case modeling. In [22, 23], the authors presented a framework, 

named as U-RUCM, for the purpose of capturing uncertainties in use case models and facilitating the discovery of 

unknown uncertainties. It is worth mentioning that U-RUCM was built on a well-established use case modeling 

paradigm (Zen-RUCM) [24-26]. In that case, U-Model was used as the basis to develop, for instance, uncertain 

alternative flows and uncertain sentences. Among all of them, the key motivation of U-Model was to facilitate the 

common understanding of uncertainty in the software engineering community. As long as the common 

understanding is built, we believe uncertainty modeling will form a new modeling paradigm. Consequently, tools 

and corresponding standards will be developed and proposed such that we can put uncertainty modeling into 

practice. 

Considering the fact SysML has been widely used for system modeling [27, 28], in the context of uncertainty-wise 

testing of CPSs, it is therefore also important to seek opportunities of bringing uncertainty modeling to SysML. 

The latest version of SysML 1.4 includes a very limited capability of modeling distribution (via e.g., «Normal», 

«Uniform»), which is, however, from the perspective of being “complete”, and when comparing with U-Model at 

the conceptual level, there is a huge potential to extend this capability by 1) introducing more comprehensive list 

of probability distribution types (e.g., triangular distribution) and other types of measures (e.g., fuzziness and 

ambiguity) and 2) introducing other U-Model concepts (e.g., belief, indeterminacy source) to SysML. Another 

possibility is to extend the requirements modeling part of SysML by introducing subjective uncertainty to textual 

requirement statements. The idea is similar to U-RUCM, which however particularly focuses on use case modeling, 

not only on textual requirement statements.  

In summary, we believe U-Model can be a starting point for developing a standardized uncertainty-modeling 

paradigm such that it can be integrated with other modeling solutions for different purposes in various contexts. 

OMG has started the standardization activities of Uncertainty Modeling [29].  

2.2.1.3 Modeling belief test ready models 



 

 

As we discussed earlier, BTRMs are the key input to enable MBT of a system under uncertainty. Therefore, 

practically useful and meaningful modeling notations, tools and methodologies are required to enable the 

development of such BTRMs. In [21], the authors have developed a UML-based, uncertainty-wise modeling 

framework, named as UncerTum. UncerTum was proposed to enable the development of BTRMs for the purpose 

of testing CPSs under uncertainty. In other words, it is not a generic modeling solution for developing general 

BTRMs. However, some aspects of UncerTum can serve for general BTRM modeling. Nevertheless, we are not 

aware of any other uncertainty modeling solutions for developing BTRMs.  

UncerTum is built on a set of well-known modeling technologies, including UML, MARTE, OCL and UTP. More 

specifically, in the current implementation of UncerTum, UML class diagrams and state machines are the artifacts, 

on which uncertainty information is attached. The rationale behind selecting these two particular UML notations 

is because they are commonly used for enabling MBT [15, 30-32]. The core of UncerTum is the UML Uncertainty 

Profile (UUP), as we discussed above, which is built on U-Model. UUP enables the modeling of belief, uncertainty, 

and measurement and it also defines an extensive list of model libraries for specifying uncertainty patterns (e.g., 

Periodic), measures (e.g., Probability) and time (borrowed from MARTE). UncerTum has been integrated with an 

MBT framework named as UncerTest [33], which will be discussed in details in Section 2.2.2. One can adopt, 

adapt or extend UncerTum for other UML modeling notations such as UML sequence and activity diagrams in 

case such notations are needed to support particular MBT techniques such as [34, 35]. One can also adopt, adapt 

or extend UncerTum for developing BTRMs for testing other types of systems, in addition to CPSs. Other well-

applied modeling notations (e.g., SysML) can be also extended to enable uncertainty modeling; therefore, 

UncerTum is a very nice example to exemplify how such an extension can be developed.  

2.2.1.4 Modeling uncertainty in a lifecycle 

Conforming to classical software/system development life cycles and following the transformation principles of 

MDE, there is a possibility to develop a full uncertainty modeling/tooling/methodology chain. Such a chain of 

uncertainty modeling can start from specifying uncertainty requirements, to modeling uncertainty at the 

architecture and design level, and all the way for developing BTRMs. Developing such a toolchain is very useful. 

For example, at the requirements engineering phase, uncertainty requirements are specified by requirements 

engineers, who explicitly indicate, by using certain uncertainty requirements specification methodology (e.g., U-

RUCM), “places” where they lack confidence about a requirement statement and their confidence level indicating 

to what extent they lack knowledge on what they are specifying. The ultimate objective is to eventually eliminate 

explicitly specified uncertainties at the requirements engineering phase as much as possible, which is however in 

practice not always possible. Instead, one might want to discover as many uncertainty requirements as possible and 

as early as possible, such that mitigation plans can be made before it gets too late. Therefore, automated uncertainty 

requirements analyses are preferred in such context, as briefly discussed in [22]. For uncertainty requirements that 

have to be carried on to the next phase of the development lifecycle, software/system designers and developers 



 

 

then need to keep in mind such uncertainty requirements and find ways to mitigate them if possible. During the 

testing phase, uncertainty requirements can be transferred as part of BTRMs such that systems can be tested against 

those uncertainty requirements. 

2.2.1.5 Verifying and evolving belief test ready models 

TRMs are expected to be correct and complete in terms of enabling MBT before they are used as the input of an 

MBT solution. Therefore, it is necessary and important to verify their correctness and completeness, both 

syntactically and semantically. Nowadays, most of the existing modeling tools can facilitate automated checking 

of syntactic correctness of models. However, dedicated techniques and tools are needed to check their semantics 

and their completeness. Especially when verifying BTRMs, correctness and completeness of the uncertainty 

information of a BTRM have to be verified. Therefore, novel techniques for verifying uncertainty aspects of 

BTRMs or other belief models (e.g., uncertainty requirements specified in U-RUCM) are urgently needed. 

However, currently, we are not aware of such solutions and future development in this research direction is 

welcomed. 

As we discussed earlier, a BTRM model captures subjective uncertainty at the beginning as they were specified 

from the perspective of one or more modelers, who are defined as belief agents in U-Model. However, there is a 

possibility to continuously evolve BTRMs when more and more evidence is collected to update belief agents’ 

understanding of uncertainty, which eventually and ideally should be reflected in future revisions of original 

BTRMs. There might be many ways to achieve this objective. Here, in this section, to inspire readers, we introduce 

one of such methodologies, which is named as UncerTolve [36, 37]. UncerTolve was developed in the context of 

supporting MBT of CPSs under uncertainty, with the objective of evolving BTRMs continuously, motivated by 

the hypothesis that high-quality BTRMs have higher chance to result in high-quality test cases. In [36, 37], the 

authors proposed a framework for interactively evolving BTRMs, specified with UncerTum (Section 2.2.1). An 

original BTRM means a BTRM developed by a test engineer with her/his beliefs containing subjective uncertainties 

captured as part of the model. UncerTolve aims to mine objective uncertainties from real data of the system, which 

can be collected in various ways, including obtaining real operational data from previous deployments of the same 

system and/or the same types of systems and obtaining test logs from previously executed test cases. Such data 

that reflect execution results of the systems, are objective and can be used for deriving meaningful information that 

can be used to improve the quality of the BTRM. For example, previously-unknown uncertainties can be discovered 

from such data; the original BTRM can be refactored with more precisely defined state invariants (specified as 

OCL constraints, if the BTRM was developed with UncerTum, i.e., extended UML state machines); the uncertainty 

measurements of the original BTRM can be improved by reflecting not just subjective aspects, but also objective 

aspects. UncerTolve relies on machine learning techniques to achieve these objectives and we believe there exist 

many other techniques for enabling the evolutions of BTRMs. Future investigations are definitely needed towards 

this research direction.  



 

 

2.2.2 Uncertainty-wise test generation 

In this section, we discuss UncerTest and our visions beyond UncerTest, including interesting future research 

directions. 

2.2.2.1 UncerTest and beyond 

As we discussed earlier, test generation includes two parts: test case generation and test data generation. In the 

context of MBT, TRMs are used as the basis to generate both test data and test cases. Various strategies have been 

proposed in the literature. In the following section, we discuss potentials of using uncertainty information to guide 

the generation of test cases and test data.  

Typical test generation in the context of MBT with TRMs specified mainly as state machines rely on structural 

coverage criteria such as state coverage, transition coverage, and path coverage [11, 12, 38, 39], which are defined 

on TRMs. For example, in UncerTest, BTRMs are queried to generate abstract test cases from BTRMs by following 

two commonly used test case generation strategies: all simple paths (ASP) and all paths with maximum length 

(APML). Of course, UncerTest can be integrated with other generation strategies and further investigation is 

required to understand which strategies are better in which situations.  

In the context of UWTG, there are in principle two kinds of mechanisms to generate abstract test cases. One 

mechanism is about generating abstract test cases from BTRMs as other MBT techniques do, but during the 

generation, each test case is attached with uncertainty information (e.g., the number of uncertainties covered by 

the test case). One of the challenges of MBT is that an MBT technique often generates a large number of test cases; 

therefore, finding a way to reduce the number of test cases to be eventually executed is very critical. Hence, 

uncertainty information attached to each test case can be used to define test optimization heuristics/strategies, as 

we will discuss in Section 3. In other words, this test case generation strategy itself is not specific to UWTG, but 

deriving/calculating uncertainty information for test cases by taking uncertainty information specified in BTRMs 

as the input is uncertainty-wise. It is also important to mention that different theories (e.g., probability theory [40] 

and uncertainty theory [41]) can be applied during the uncertainty information generation process for test cases. 

Which theory to apply depends on how the uncertainty information was obtained and specified as part of BTRMs 

at the first place, which determines whether prerequisites of a specific theory are satisfied. For example, applying 

probability theory requires that sufficient data observed from previous executions of the SUT such that uncertainty 

can be measured with probability. Otherwise, one might consider using uncertainty theory [41].   

The second mechanism utilizes uncertainty information specified as part of BTRMs to guide the generation of the 

test case. In other words, one needs to propose uncertainty-wise test generation strategies. Such a strategy can be 

designed, for example, to find a minimum number of paths but covering as many uncertainties as possible, with 

the ultimate objective of minimizing the number of test cases to be executed eventually. Notice that the difference 



 

 

with the first mechanism is that test optimization (e.g., test selection) is integrated as part of test case generation. 

The second mechanism defines two sequential steps: generation first and then optimization.  

It is hard to say, in a general context, which mechanism is better at the moment, as we, the community, need to 

collect more experience about UWTG, particularly about diverse application contexts of UWTG, uncertainty-wise 

test generation, optimization strategies, and accompanied empirical studies.   

Test data generation [5, 42] is also an important part of test generation. For generating executable test cases, new 

test data (often named as artificial data) can be generated by following some strategies or actual data that has been 

taken from previous operations. Sometimes, it is also possible to combine artificial data and actual data. Cost-

effectively generating effective test data is always a challenge in testing. Therefore, in the literature, many test data 

strategies have been proposed, including random test data generations [42], boundary-value analysis based test 

data generations [42] and equivalent partitioning based test data generations [43]. Search algorithms have been 

also successfully used in the past for test data generation, as reported in [7, 8, 44]. There also exist constraint 

solvers that help to generate valid test data. One of such constraint solver is EsOCL [45], which was built based on 

search algorithms to efficiently find valid test data. In the current implementation of UncerTest, a random test data 

generation strategy was applied to generate test data for generated abstract test cases. However, in the future, it is 

worth investigating uncertainty-wise test data generation strategies such that high quality and uncertainty-oriented 

test data can be generated. For example, uncertainty related results of test executions (e.g., the number of observed 

uncertainties) can be used for future test data generation.  

2.3 Tool Support 

Automation is all about tool support. Therefore, it is important to recognize the importance of tooling in the context 

of test generation. There exist a large number of test generation tools. Well-known open source test generation 

tools include [19, 46-48] and commercial test generation tools include [49-51].  

Tooling is especially important for MBT, as applying modeling tools to produce TRMs is not always 

straightforward. Therefore, the usability, applicability, and expressiveness of a modeling tool should be taken into 

account when producing an MBT framework. From industrial practitioners’ perspective, it is important to select a 

tool with good applicability, usability, and expressiveness for easier adoption. The success of any automated MBT 

solution depends on these properties of its tool implementation, based on which a methodology is often provided 

to further ease the process of applying an MBT solution, especially considering such a solution is often non-trivial. 

2.4 Standardization  

Considering the fact that standards play increasingly important role in industrial practices, we conducted a survey 

to understand whether there are standardization bodies and standards that are relevant for uncertainty modeling. 

Motivating by this, we identify standardization bodies such as European Telecommunications Standards Institute 



 

 

(ETSI) and Object Management Group (OMG) and standards that are relevant to modeling and testing CPSs under 

uncertainty. In this section, we first provide an overview of relevant standards and standardization bodies. Second, 

we summarize the procedure of selecting standardization bodies. Finally, we present a list of the selected 

standardization bodies in Appendix A.  

2.4.1 Context 

Standardization bodies are commonly classified, according to their geographical designation, into three types: 

international, regional and national standardization bodies [52]. International standardization bodies develop 

international standards. There are four most well-known and well-established international standardization bodies: 

the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), the 

International Telecommunication Union (ITU), and the IEEE Standards Association. Under these four 

standardization bodies, a large number of standards have been defined. For the regional level standardization bodies, 

we only consider EU standards, among which the European Telecommunications Standards Institute (ETSI) 

produces a lot of standards in ICT. We do not include any national standardization body into the consideration, as 

standards produced by national level standardization bodies inherently have limited application scopes, in 

comparison to international and EU standards.   

We aim to define methodologies to test CPSs under uncertainty. One important mean to achieve this objective is 

to rely on MBE technologies. Therefore, the first criterion of selecting relevant standardization bodies such as the 

OMG is to include standards in MBE field (C1). As we aim to devise testing methodologies, the second selection 

criterion is to include standardization bodies and standards that are relevant to the testing field (C2). For example, 

one of the highly relevant standards is the OMG’s UML Testing Profile (UTP) 2 [53]. The third selection criterion 

is to select standardization bodies and standards that are relevant to software-intensive systems, particularly CPSs 

(C3). 

2.4.2 Relevant standardization bodies and standards 

Based on the selection criteria C1-C3 presented above, we started from screening through the standards of the 

standardization bodies: ISO, IEEE, IEC, JCGM, OMG, ETSI and OASIS from two perspectives: modeling 

uncertainty and CPS, and testing uncertainty and CPS. As the results of the first step, we pre-selected a set of 

standardization bodies and standards as shown in the first column of Appendix A. In the second column of 

Appendix A, we indicate whether a standard is for modeling, testing, Model-based Testing (MBT), or others. In 

the fourth column of Appendix A, we indicate whether a specific standard explicitly defines or describes 

Uncertainty (including Probability) and Uncertainty Measurement.  

As one can see from Appendix A, in terms of modeling, OMG defines standards on system and software modeling: 

UML [54], SysML [55], MARTE [56], OCL [57] and MOF [58]. ISO/IEC defines UML [59], OCL [60] and KDM 



 

 

[61] modeling notations, which are also defined and maintained by OMG. In addition, ISO/IEC also defines RM-

ODP [62] for enabling conceptual modeling of complex systems such as CPSs.  

In terms of testing and MBT, OMG defines UTP. ETSI also defines standards on model-based testing: ETSI TR 

102 840 V1.2.1 [5], ETSI ES 202 951 V1.1.1 (2011-07) [63] and ETSI EG 201 015 V2.1.1 (2012-02) [64] as 

shown in Appendix A. ISO/IEC/IEEE 29119 [65] is a widely recognized standard for testing. In addition, ISO/IEC 

joined the effort to define the ISO/IEC 9646 series [66] for supporting conformance testing of OSI. As shown in 

Appendix A, a number of standards have been also defined in IEEE from the aspects of system and software 

verification and validation [67], test documentation [68], unit testing [69] and classification of Software Anomalies 

[70].  

In Appendix A, we also include standards (from ISO, IEC and/or IEEE under Other) that are relevant to various 

aspects of system and software engineering, including vocabulary, architecture description, development lifecycle, 

risk management and assessment, and quality assurance. Particularly, we collected standards that are relevant to 

Uncertainty and Uncertainty Measurement, as indicated in the column “Uncertainty” of the table. ISO 61508 [71], 

OMG SysML [55] and MARTE [56] define concept Probability, which is one type of uncertainty measures. OMG 

SACM defines Evidence, Confidence and Confidence Level, which are all relevant to uncertainty and several 

concepts defined in U-Model. ISO/IEC and JCGM defined few standards on Uncertainty Measurement. The 

concept of Uncertainty and few relevant concepts are explicitly defined in ISO 31000 (as shown in Appendix A). 

2.4.3 Conclusion 

Based on the results of the above-presented survey, we can conclude that there does not exist any standard, which 

can be used as it is for modeling uncertainty and relevant concepts both subjectively and objectively. We, therefore, 

initiated the standardization activity of Uncertainty Modeling at OMG. Details can be found in [29].  

3 UNCERTAINTY-WISE MULTI-OBJECTIVE TEST OPTIMIZATION 
In this section, we detail uncertainty-wise multi-objective test optimization from the following aspects. Section 3.1 

provides a formal definition for multi-objective search problem followed by formally defining uncertainty-wise 

multi-objective search problem (Section 3.2). Section 3.3 presents uncertainty-wise multi-objective test 

optimization in detail while Section 3.4 and Section 3.5 present uncertainty-wise multi-objective test set 

minimization and test case prioritization, respectively. Section 3.6 illustrates the above-mentioned uncertainty-

wise multi-objective test set minimization and test case prioritization with examples and Section 3.7 provides a list 

of examples for cost-effectiveness measures based on the state-of-the-art. Last, Section 3.8 presents a set of 

guidelines when applying search-based techniques for addressing multi-objective test optimization problems, 

which is also applicable for uncertainty-wise multi-objective test optimization. 



 

 

3.1 Multi-Objective Search Problem 

Generically speaking, a multi-objective optimization problem has a set of objectives (Obj) to meet that often have 
trade-off relationships among them. 

Obj = {o1, o2, .., onon}, where non is the total number of objectives for a particular optimization problem. Each 
objective oi is measured with a measure classified into one of following three categories:1) Cost Measures, 2) 
Effectiveness Measures, and 3) Efficiency Measures. Our aim is always to decrease the cost, increase the 
effectiveness, and/or increase the efficiency. Mathematically speaking, we have a set of Cost measures and 
Effectiveness Measures: 

CostMeasure = {cm1, cm2, …, cmncm}, where ncm is the total number of cost measures. 

EffectMeasure = {em1, em2, …emnem}, where nem is the total number of effectiveness measures. 

In addition, a set of efficiency measures can also be defined: 

EfficiencyMeasure = {ec1, ec2, …, ecnec}, where nec is the total number of efficiency measures. An efficiency 

measure is typically calculated as Effectiveness per Cost. Assuming that all combinations of effectiveness measures 

(EffectMeasure) per cost (CostMeasure) are valid, then nec = ncm*nem. However, not all such combinations are 

always valid and thus nec < ncm*nem.  

Assuming that there are a set of possible optimization solutions: 

PS = {ps1, ps2, …, psnps}, where nps is the total number of valid solutions that are typically huge and require an 

optimized way to the find the best solution. Let us suppose, we have three functions: 1) CMF() is a function that 

takes input a solution psi from PS and an objective measured with cost measure cmi and returns an overall cost 

objective value for the solution measured with cmi, 2) EMF() is a function that takes input a solution psi from PS 

and an objective measured with an effectiveness measure emi and returns the overall effectiveness objective value 

for the solution measured using emi, 3) ECF() is a function that takes input a solution psi from PS and an objective 

measured with an efficiency measure eci and returns the overall efficiency value of the solution measured using 

eci. 

A multi-objective search problem then can be formally defined as finding the best solution psk out of PS such that 

it holds the following three conditions: 

Condition 1: "cm in CostMeasure, "ps in PS - psk, CMF(psk, cm) <= CMF(ps, cm). Notice that "ps in PS refers to 

the explored solutions, of all the nps number of solutions.  

Condition 2: "em in EffectMeasure, "ps in PS - psk, EMF(psk, em) >= EMF(ps, em). Once again, "ps in PS refers to 

the explored solutions, of all the nps number of solutions. 

Condition 3: "ec in EfficiencyMeasure, "ps in PS - psk, ECF(psk, ec) >= ECF(ps, ec). Once again, "ps in PS refers 

to the explored solutions, of all the nps number of solutions. 

For instance, one of our previous works [72] employed multi-objective search (e.g., NSGA-II [73]) for 

investigating the resource-ware test case prioritization problem by taking into test resource (e.g., hardware) usage 

into account. To address such a problem, we proposed and formally defined three effectiveness objectives (i.e., test 



 

 

resource usage, fault detection capability and prioritization density) and one cost measure (i.e., total time). The 

fitness function was further defined by considering these four cost-effectiveness measures, which was further 

incorporated into seven multi-objective search algorithms (e.g., NSGA-II) for empirical evaluation in terms of their 

performance and scalability. 

3.2 Uncertainty-Wise Multi-Objective Search Problem 

An uncertainty-wise multi-objective search problem is a specialization of the generic multi-objective search 

problem, where an additional dimension of objectives is added to the search problem, i.e., Uncertainty. Assuming, 

we have a set of Uncertainty Measures: 

UncerMeasure = {um1, um2, …, umnum}, where num is the total number of measures that can be used to measure 

the uncertainty of a solution from different uncertainty perspectives. Assume that there is a function UMF() that 

takes input a solution psi from PS and an objective measured with an uncertainty measure umi and returns the 

overall uncertainty value associated with the solution measured using umi. 

An uncertainty-wise multi-objective search problem has to meet an additional condition described below: 

Condition 4: "um in UncerMeasure, "ps in PS - psk, UMF(psk, um) <= or >= UMF(ps, um). Once again, "ps in PS 

refers to the explored solutions, of all the nps number of solutions. 

3.3 Uncertainty-Wise Multi-Objective Test Optimization 

Building on the previous definitions, an uncertainty-wise multi-objective test optimization aims at optimizing a set 
of test cases TC = {tc1, tc2, …, tcntc}, where ntc is the total number of test cases to optimize based on cost, 
effectiveness, efficiency, and uncertainty objectives.  

3.3.1 Cost, Effectiveness, Efficiency, and Uncertainty Attributes 

Test cases have a set of Cost, Effectiveness, Efficiency, and Uncertainty attributes associated with them: 

CostAtt = {cat1, cat2, .., catncat}, where ncat is the total number of cost-related attributes, and each cati has exactly 

one type that can be measured with a basic data type such as Integer, Real, and Boolean or an advanced data type.  

EffectAtt = {efat1, efat2, .., efatnefat}, where nefat is the total number of effectiveness-related attributes, and each 

efati has exactly one type that can be measured with a basic data type such as Integer, Real, and Boolean or an 

advanced data type. 

EfficiencyAtt = {ecat1, ecat2, .., ecatnecat}, where necat is the total number of efficiency related attributes and each 

ecati has exactly one type that can be measured with a basic data type such as Integer, Real, and Boolean or an 

advanced data type. 

UncertaintyAtt = {uat1, uat2, .., uatnuat}, where nuat is the total number of uncertainty attributes and each uati has 

exactly one type that can be measured with a basic data type such as Integer, Real, and Boolean or an advanced 

data type. 



 

 

3.3.2 Cost, Effectiveness, Efficiency, and Uncertainty Attribute Values 

Each test case tci in TC has four sets of associated values that can be used to calculate the four types of objectives, 
i.e.,  

CostVali = {cvali1, cvali2, …, cvalincat}, where ncat is the total number of cost-related attributes measured with the 

Cost measures. 

EffectVali = {efvali1, efvali2, …, efvalinefat}, where nefat is the total number of effectiveness related attributes 

measured with the Effectiveness measures. 

EfficiencyVali = {ecvali1, ecvali2, …, ecvalinecat}, where necat is the total number of efficiency related attributes 

measured with the Efficiency measures. 

UncertaintyVali = {umvali1, umvali2, …, umvalinuat}, where nuat is the total number of uncertainty related attributes 

measured with the Uncertainty measures. 

3.3.3 Calculation of cost, effectiveness, efficiency, and uncertainty objectives 

In the context of a test optimization problem, the input for the search is the set of test cases, i.e., TC and its 

associated sets of cost, effectiveness, efficiency, and uncertainty attribute values for the ntc number of test cases. 

A solution psk in PS, in this context, would be a set of test cases from TC, i.e., either a subset (if it is a test set 

minimization problem) or the same subset but with the best order to execute the same set of test cases (prioritization 

problem). 

The calculation of an objective oi (Cost/Effectiveness/Efficiency/Uncertainty) can be performed in different ways 

and is often dependent on the problem being solved. A simplest and straightforward way to calculate an objective 

is to take an average of the solution. For example, a cost measure cmi corresponding to a cost attribute, e.g., catk 

can be calculated as follows:  

cmi = (∑j=1 to ntc cvaljk)/ntc, where cvaljk represents a value for a jth test case in TC corresponding to the catk cost 

attribute.   

Similarly, for an effectiveness measure emi corresponding to an effectiveness attribute, e.g., efatk can be calculated 

as follows: 

emi = (∑j=1 to ntc efvaljk)/ntc, where efvaljk represents a value for a jth test case in TC corresponding to the efatk 

effectiveness attribute. 

For an efficiency measure eci corresponding to an efficiency attribute, e.g., ecatk can be calculated as follows: 



 

 

eci = (∑j=1 to ntc ecvaljk)/ntc, where ecvaljk represents a value for a jth test case in TC corresponding to the ecatk 

effectiveness attribute. 

For an uncertainty measure umi corresponding to an uncertainty attribute, e.g., uatk can be calculated as follows: 

umi = (∑j=1 to ntc umvaljk)/ntc, where umvaljk represents a value for a jth test case in TC corresponding to the uatk 

uncertainty attribute. 

Given that each objective, i.e., cmi, emi, eci, and umi, may take a value in different ranges, a common practice is to 

normalize the values calculated for the objectives. There are two commonly used normalization functions in the 

context of search-based multi-objective for software engineering problems depending on two conditions: 

Condition 1: If maximum and minimum values for a calculated objective are known, then the following 

normalization function must be used: 

N1(x) = (x - xmin) / (xmax - xmin), where xmax represents the known maximum value that can be taken by the variable 

x and xmin represents the known minimum value that can be taken by the variable x.  

Condition 2: If the maximum and minimum values for a calculated objective are not known, then one of the 

following normalization functions should be used: 

N2(x) = (x/(x+ ß)), where ß is any value greater than 0 [74, 75].  

Notice that there exists another normalization function for this condition: 

N3(x) = 1- α-x , where α = 1.001 is typically used [74, 75].  

However, the experiments reported in [74-76] suggest using N2 instead of the N1 normalization function.   

Our ultimate aim is to minimize cost, maximize effectiveness and efficiency, whereas at the same time minimize 

(or maximize) uncertainty depending on the problem at hand, i.e.,  

"cm in CostMeasure, Minimize(cm) && "em in EffectMeasure, Maximize(em) && "ec in EfficiencyMeasure, 

Maximize(ec) && "um in UncerMeasure, Minimize/Maximize(um).   

3.4 Uncertainty-Wise Multi-Objective Test Set Minimization (UWTM) 

In the case of UWTM, our aim is to find a minimum number of test cases (mtc) out of the total number of test cases 

ntc in TC that meet all the required cost, effectiveness, efficiency, and uncertainty objectives. Thus, the number of 

test cases (mtc) in a solution in PS can be any combination of a number of test cases in TC, i.e., from 1 to ntc-1. In 

this way, the possible number of minimization solutions can be calculated as follows:  



 

 

nps =  ntcC1+ ntcC2+..+ ntcCntc-1 = 2ntc-1 

PS = {ps1, ps2, …, ps2ntc-1} 

If mtc=ntc, then it means that there is no minimization at all. Irrespective of which cost, effectiveness, efficiency, 

and uncertainty measures are selected for UWTM, a mandatory cost objective must be defined that considers test 

set minimization. Depending on the problem at hand, such an objective can be defined in different ways. One way 

to define such objective is to calculate the percentage of test set minimization (TMP), which can be calculated as: 

TMP = 1 - ntci/ntc, where ntci is the total number of test cases in the psi solution in PS and ntc is the total number 
of test cases in TC.  

Another way of defining a cost objective measuring test set minimization can simply be a number of minimized 
test cases (NMTC):  

NMTC = ntci is the number of minimized test cases in a solution psi. 

Given the fact that TMP is a percentage, it will produce a value between 0 and 1 and doesn’t need normalization. 

In the case of NMTC, a normalization function may be needed to scale its value between 0 and 1. A common 

problem with both TMP and NMTC is that a search algorithm will favor a solution with the lower number of test 

cases and can potentially lead to selecting no test cases at all. In order to avoid search reaching to such a situation, 

various mechanisms can be employed. For example, a typical way is to control a search algorithm to produce 

solutions with at least x number of test cases, where x is always greater than 1.           

An uncertainty-wise multi-objective test set minimization can formally be defined as finding the best solution psk 

from PS which has a minimum number of test cases that meet the four conditions specialized as follows: 

Condition 1: "cm in CostMeasure, "ps in PS - psk, CMF(psk, cm) <= CMF(ps, cm) and mpsk < mps and mpsk ¹ 0, 

where mpsk is the number of test cases in the psk solution and mps is the number of test cases in the ps solution. 

Notice that "ps in PS refer to the explored solutions of all the nps number of solutions. 

Condition 2: "em in EffectMeasure, "ps in PS - psk, EMF(psk, em) >= EMF(ps, em) and mpsk < mps and mpsk ¹ 0, 

where mpsk is the number of test cases in the psk solution and mps is the number of test cases in the ps solution. 

Once again, "ps in PS refers to the explored solutions of all the nps number of solutions. 

Condition 3: "em in EfficiencyMeasure, "ps in PS - psk, ECF(psk, ec) >= ECF(ps, ec) and mpsk < mps and mpsk ¹ 0, 

where mpsk is the number of test cases in the psk solution and mps is the number of test cases in the ps solution. 

Once again, "ps in PS refers to the explored solutions, of all the nps number of solutions. 

Condition 4: "um in UncerMeasure, "ps in PS - psk, UMF(psk, um) <= or >= UMF(ps, um) and mpsk < mps and mpsk 

¹ 0, where mpsk is the number of test cases in the psk solution and mps in the number of test cases is the ps solution. 

Once again, "ps in PS refers to the explored solutions, of all the nps number of solutions. 



 

 

3.5 Uncertainty-Wise Multi-Objective Test Case Prioritization (UWTP) 

UWTP is concerned with prioritizing the test cases in a specific order to execute. This is in contrast with UWTM, 

where we wanted to minimize the number of test cases without considering any order of execution. However, test 

set minimization and test case prioritization may be combined together. There are three possible ways: 1) Minimize 

test cases and then prioritize the minimized test cases, 2) Prioritize test cases and then minimize them, 3) Prioritize 

and minimize the test cases at the same time.  

Generally speaking, when performing UWTP, our aim is to find a best order to execute the total number of test 

cases ntc that are available in TC such that it meets all the required cost, effectiveness, efficiency, and uncertainty 

objectives. Thus, as opposed to the test set minimization problem, where the number of test cases (mtc) in a solution 

in PS can be any combination of number of test cases in TC, UWTP keeps the number of test cases to the same as 

the total number of test cases in TC, i.e., ntc. Thus, in the case of UWTP, each test case can possibly appear at each 

location, and thus the possible number of prioritization solutions can be calculated as follows:  

nps =  (ntc)*(ntc-1)*(ntc-2)*…1 = ntc! 

PS = {ps1, ps2, …, psntc!} 

Regardless of the selection of cost, effectiveness, efficiency, and uncertainty measures for an UWTP, a mandatory 

effectiveness objective must be defined that calculates the effectiveness of prioritization. Depending on the 

problem at hand, such a prioritization objective can be defined in a variety of ways. One example to calculate the 

effectiveness of prioritization is using Prioritization Impact (PI) of a location of an order of a test case, which can 

be calculated as follows:  

PIi = (ntc-p+1)/ntc, where p represents the pth location in a prioritization solution. In other words, the test cases 

with low cost, high effectiveness, high efficiency, and low uncertainty must be ordered to execute at the earlier 

positions. For example, at the first location, i.e., p=1, PIi =1, whereas at p=ntc, PIi = 1/ntc. Such number is already 

scaled between 0 and 1, and thus doesn’t require normalization. A higher value means a high priority. 

Another way of defining such an effectiveness objective measuring prioritization impact can simply be the position, 

i.e., p, where p ranges from 1 to ntc and we aim to order the best test case in terms of cost, effectiveness, efficiency, 

and uncertainty in the earlier position. The fact that p is a number greater than 1, indicates that normalization of p 

between 0 and 1 may be required. In this particular case, since we know the maximum (i.e., ntc) and minimum 

(i.e., 1) values for the position, we can use the following normalization function: 

N1(p) = (p) / (ntc - 1) 

Typically, when performing test case prioritization, it is not possible to execute all the test cases (i.e., ntc). The 

execution of the number of test cases is limited by time budget, for example, a certain percentage of test cases. 

Such time budget can be fixed and encoded in the search problem as an additional constraint that must be satisfied 



 

 

by a solution. Such time budget can be calculated in different ways. For example, as a certain percentage of test 

cases, e.g., 10% or 20%. Another example is to set this time budget based on the actual execution time, such as in 

terms of the maximum number of hours.  

An uncertainty-wise multi-objective test set prioritization problem can formally be defined as finding the best 

solution psk from PS, which has test cases in the best order to execute such that it meets the following four 

conditions specialized for UWTP: 

Condition 1: "cm in CostMeasure, "ps in PS - psk, CMF(psk, cm) <= CMF(ps, cm) and tbg <= bg, where tbg 

represents the overall time budget for the psk solution and bg represents the available time budget for test case 

prioritization. Notice that "ps in PS refer to the explored solutions of all the nps number of solutions. 

Condition 2: "em in EffectMeasure, "ps in PS - psk, EMF(psk, em) >= EMF(ps, em) and tbg <= bg, where tbg 

represents the overall time budget for the psk solution and bg represents the available time budget for test case 

prioritization. Once again, "ps in PS refers to the explored solutions, of all the nps number of solutions. 

Condition 3: "em in EfficiencyMeasure, "ps in PS - psk, ECF(psk, ec) >= ECF(ps, ec) and tbg <= bg, where tbg 

represents the overall time budget for the psk solution and bg represents the available time budget for the test case 

prioritization problem. Once again, "ps in PS refers to the explored solutions of all the nps number of solutions. 

Condition 4: "um in UncerMeasure, "ps in PS - psk, UMF(psk, um) <= or >= UMF(ps, um) and tbg <= bg, where 

tbg represents the overall time budget for the psk solution and bg represents the available time budget for the test 

case prioritization problem. Once again, "ps in PS refers to the explored solutions, of all the nps number of solutions. 

3.6 Examples of UWTM and UWTP 

In this section, using the formalism defined from Section 3.1 to Section 3.5, we will provide UWTM and UWTP 

examples. The both examples will demonstrate the applications of UWTM and UWTP for testing an industrial CPS 

case study. The need for these UWTM and UWTP arose in the context of a project, where we are developing new 

methods to test CPSs in the presence of uncertainty [77]. Our overall solution was Uncertainty-Wise Model-Based 

Testing (UWMBT) as defined in Section 2.2. The expected behavior of a CPS under test together with uncertainty 

was modeled with UncerTum (Section 2.2.1) and then using our tool support a set of abstract test cases was 

generated [33]. Given the complexity of models, the number of generated test cases was large and it was practically 

impossible to execute all the generated test cases, and thus required the development of not only UWTM but also 

UWTP. In the following sub-sections, we will present the UWTM and UWTP solutions that we developed as 

examples. Their details and evaluations are reported in [33, 78] and interested readers are suggested to consult 

these references for further information. The rest of this section is organized as follows: In Section 3.6.1, we present 

the example of UWTM and example of UWTP in Section 3.6.2. 



 

 

3.6.1 Example of UWTM 

In our previous work reported in [33], we defined four UWTM problems and demonstrated their application for an 

industrial CPS case study. Test cases, in this case, were generated from stereotyped UML State machines as 

discussed in Section 2.2.1 using different uncertainty-wise test generation strategies including All Simple Paths 

with Uncertainty (ASP) and All Paths with Uncertainty and a Fixed Maximum Length (APML) as discussed in 

Section 2.2.2 and in [33]. Each generated test case had sets of associated EffectiveAtt and UncertaintyAtt attributes 

as listed below: 

EffectiveAtt = {ntran}, where ntran represents the number of transitions covered by a test case 

UncertaintyAtt = {nun, nuun, um), nun represents the number of uncertainties in a test case, nuun represents the 

number of unique uncertainties in a test cases, and um represents the overall uncertainty of a test case calculated 

using the uncertainty measure defined in Uncertainty Theory [41]. 

Notice that it is not always necessary to have all four kinds of attributes (Cost, Effectiveness, Efficiency, and 

Uncertainty as discussed in Section 3.3) associated with test cases. In this particular UWTM, we defined the 

following Cost, Effectiveness, and Uncertainty Objectives: 

Obj = {PTM, ANU, PUS, AUM, PUU, PTR} 

CostMeasure ={PTM}, where PTM is the same as TMP as defined in Section 3.4 and measures the percentage of 

minimization.  

EffectMeasure = {PTR}, where PTR is an effectiveness measure used to calculate the overall transition coverage 

achieved by a minimized solution. The formula for calculating PTR can be found in [33]. 

UncerMeasure = {ANU, PUS, AUM, PUU}, where ANU is an uncertainty measure used to calculate an average 

number of uncertainties covered by a minimized solution. PUS is another uncertainty measure used to calculate 

the overall uncertainty space covered by a minimized solution. Notice that the concept of uncertainty space is 

defined in uncertainty theory [41] and is adopted in our work. The formula for calculating PUS can be found in 

[33]. AUM is used to calculate the overall average uncertainty measure of a minimized test set. Recall that 

uncertainty measure is defined in Uncertainty theory [41] and is adopted in our work. The formula for calculating 

AUM can be found in [33]. The fourth uncertainty measure we defined is PUU, which is used to calculate the 

overall average number of unique uncertainties covered by a minimized solution. The formula for PUU can be 

consulted in [33]. 

Given that not all the uncertainty measures can be used at the same time, we developed four UWTM problems 

described below: 



 

 

UWTM1 = CostMeasure {PTM}, EffectMeasure = {PTR}, and UncerMeasure = {ANU} 

UWTM2 = CostMeasure {PTM}, EffectMeasure = {PTR}, and UncerMeasure = {PUS} 

UWTM3 = CostMeasure {PTM}, EffectMeasure = {PTR}, and UncerMeasure = {AUM} 

UWTM4 = CostMeasure {PTM}, EffectMeasure = {PTR}, and UncerMeasure = {PUU} 

In the above four UWTMs, the cost objectives must be minimized, whereas the effectiveness and uncertainty 

objectives must be maximized. Depending on the definitions of uncertainty measures, uncertainty objectives may 

be minimized or maximized. In our context, all the uncertainty objectives must be maximized, e.g., we aim to cover 

as much uncertainty as possible with a minimized solution.  

A variety of multi-objective search algorithms may be used to solve our UWTMs. As an initial evaluation, we opted 

for the most commonly used multi-objective search algorithm, i.e., NSGA-II [73] to solve our UWTMs. We used 

its implementation in the jMetal framework [80]. We empirically evaluated the four UWTMs using an open source 

case study of SafeHome, where we compared the four UMTMs in terms of their effectiveness with mutation testing. 

Based on the results of our experiment, we found that UWTM4 was able to find the best-minimized solution in 

terms of minimized number of test cases and mutation score (i.e., the number of seeded faults found). Notice that 

these minimized number of test cases and mutation score are comparable across all the four UWTMs. UWTM4 

managed to achieve PTM of 91%, whereas it managed to achieve 100% mutation score [33]. 

With the best UWTM, i.e., UWTM4, we minimized the number of test cases for the industrial CPS case study of 

GeoSports (GS) [81]. We used one use case focusing on testing the implementation of GS in the presence of 

uncertainties and generated test cases using our UWMBT technique with the tool presented in [33]. With UWTM4, 

we managed to minimize 83.9% of test cases and managed to discover 98 uncertainties when executing the 

minimized test cases. 18 out of these 98 were newly discovered uncertainties. All the details of UWTMs and 

empirical evaluations can be consulted in [33]. 

3.6.2 Example of UWTP 

Our previous work [78]  reported an Uncertainty-wise Test Case Prioritization Problem (UWTP) that we defined 

and demonstrated its application in an industrial CPS case study. The same as the UWTMs, test cases were obtained 

using our UWMBT techniques as described in Section 2.2.2 and full details in [78]. Each generated test case had 

the following sets of associated CostAtt, EffectiveAtt, and UncertaintyAtt attributes listed below: 

CostAtt = {etime}, where etime is the execution time for a test case 

EffectiveAtt = {ntran}, where ntran represents the number of transitions covered by a test case 



 

 

UncertaintyAtt = {oun, um}, where oun represents the number of uncertainties observed as the result of execution 

of the test case and um represents the overall uncertainty of a test case calculated using the uncertainty measure 

defined in Uncertainty Theory [41]. 

The same as any other multi-objective test optimization problem, it is not mandatory to have all the four types of 

attributes that we defined. In our UWTP, we defined the following Cost, Effectiveness, and Uncertainty objectives: 

Obj = {PET, ANOU, AUM, PTR} 

CostMeasure = {PET}, where PET is the overall execution time for the prioritized set of test cases. The formula 

for calculating PET can be found in [78]. Notice that in this work, we had access to the execution time of each test 

case; therefore, we opted for time budget based on the overall execution of test cases. For example, we wanted to 

prioritize test cases based on x% of the total time budget, where total time budget was equal to the total time to 

execute all the ntc test cases. 

EffectMeasure = {PTR}, where PTR is an effectiveness measure used to calculate the overall transition coverage 

achieved by a minimized solution. The formula for calculating PTR can be found in [78]. 

UncerMeasure = {ANOU, AUM}, where ANOU is an uncertainty measure used to calculate an average number of 

observed uncertainties in the last execution of the test cases contained in a prioritized solution. The formula for 

calculating ANOU can be found in [78]. AUM is used to calculate the overall average uncertainty measure of a 

prioritized test set. Recall that uncertainty measure is defined in Uncertainty theory and is adopted in our work. 

The formula for calculating AUM can be found in [78].  

In terms of PI, i.e., Prioritization Index, we used the formula presented in Section 3.5, i.e., (ntc-p+1) /ntc. Our 

uncertainty-wise multi-objective prioritization problem was represented as follows: 

UWTP = CostMeasure = {PET}, EffectMeasure = {PTR}, and UncerMeasure = {ANOU, AUM} 

In the above UWTP, the cost objective must be minimized, and the effectiveness objective must be maximized, 

whereas uncertainty objectives must be maximized as well, i.e., we wanted to prioritize the solutions based on both 

the modeled subjective uncertainties and the observed uncertainties that were discovered as the result of the last 

test execution. 

In terms of evaluation, we used the same industrial CPS case study, i.e., GeoSports as our UWTMs. Once again we 

selected NSGA-II for solving our UWTP; although we also compared the performance of NSGA-II with a greedy 

algorithm as the comparison baseline [78]. In addition, to assess the scalability of NSGA-II in terms of solving 

UWTP problems with varying complexities, we also simulated, in total, 72 problems ranging from simpler to the 

complex problems. The results of our evaluation showed that NSGA-II significantly outperformed Greedy for the 

industrial case study and also for the 72 simulated problems. We concluded that, on average for both industrial and 



 

 

simulated problems, NSGA-II improved prioritization by 22% as compared to the Greedy algorithm. These results 

showed that NSGA-II is cost-effective and scalable for solving our Uncertainty-Wise Test Case Prioritization 

problem for a variety of problems [78]. 

3.7 Examples of Cost and Effectiveness Measures 

In this section, we present some examples of cost, effectiveness, and uncertainty objectives from the literature, 

which are related to multi-objective test optimization. Table 2 presents the name and a short description of these 

objectives together with references where the details can be found. 

Label Name Description 
Effectiveness 
E1 The percentage of reduction in test set size (TMP) TMP measures the percentage of reduction in test set size 

compared with original test set [83]. For example, see its use in 
[83, 84]. 

E2 The percentage of reduction in fault detection by 
selected test cases 

The number of faults detected by the original test set TC is nf, 
whereas the number of faults detected by the optimized test cases 
is mf. Such reduction in fault detection [83] is calculated as 
1-(mf/nf)*100%. 

E3 The rate of fault detection “A measure of how quickly a test set detects faults during the 
testing process” [85]. Such measure is used with test case 
prioritization.  

E4 Coverage of statements of code 
(Total coverage and additional coverage) 

“A measure of the percentage of statements that have been 
executed by test cases” [86, 87]. 

E5 Coverage of event 
(Total coverage and additional coverage) 

“A measure of the percentage of events that have been executed 
by test cases” [88, 89]. 

E6 Coverage of call-stack “A test set is represented by a set of unique maximum depth call 
stacks; its minimized test set is a subset of the original test set 
whose execution generates the same set of unique maximum 
depth call stacks” [90]. 

E7 Operational coverage “An operational abstraction is a formal mathematical description 
of program behavior: it is a collection of logical statements that 
abstract the program's runtime operation. Operational coverage 
(defined below) measures the difference between an operational 
abstraction and an oracle or goal specification.” [86] 

E8 def-use Coverage  “A measure of the percentage of definitions that have been 
executed by test cases.” [79, 91] 

E9 Coverage of Branch 
(Total probability and additional probability) 

“A measure of the percentage of branches that have been 
executed by test cases.” [86, 91, 92] 

E10 Coverage of Block 
(Total probability and additional probability) 

“A measure of the percentage of blocks that have been executed 
by test cases.” [93] 

E11 Coverage of Functions 
(Total coverage and additional coverage) 

“A measure of the percentage of functions that have been 
executed by test cases.” [85] 

E12 Coverage of Interaction 
(Total probability and additional probability) 

“A measure of the percentage of interactions that have been 
executed by test cases.” [88, 89] 

E13 Percentage of Transition Coverage (PTR) PRT measures the percentage of the total number of unique 
transitions covered by the minimized [33] or prioritized [78] 
subset of test cases. 

E14 Probability of exposing faults  
(Total probability and additional probability) 

FEP [85, 94] is the commonly used metric to measure the 
probability of exposing faults is fault-exposing-potential. It can 
be calculated as: 
FEP= km/tm, where km is the number of killed mutants by TC, 
and tm is total mutants in TC.  

E15 Probability of faults existence  
(Total probability and additional probability) 

“Faults are not equally expected to exist in each function; rather, 
certain functions are more liable to contain faults than others. 
This fault proneness can be associated with measurable software 
attributes. Test cases based on their history of executing fault-

Table 2. List of cost, effectiveness, and uncertainty objectives 



 

 

Label Name Description 
prone functions are prioritized taking the advantage of their 
association.” [95] A metric to measure as a metric of fault 
proneness is a fault index [95]. 

E16 Average Percentage of Faults Detected (APFD) 
(only prioritization) 

APFD [85, 96] measures the average percentage of faults 
detected after prioritization. It can be calculated as: 
APFD = 1-(∑ i=1 to nf ps(i))/(nf*ntc)+1/(2ntc),  where ntc is 
number of test cases in TC, F = {f1, …, fnf} is the set of nf faults 
revealed by TC, and ps(i) is the first position of test cases in the 
prioritized test cases which reveals fault fi . 

E17 Unit-of-fault-severity-detected-per-unit-test-cost 
APFDc (only prioritization)  

APFDc [97] measures the average of percentage of faults detected 
with cost after prioritization.  

E18 Customized Test Requirement There are some characteristics of requirement of test cases, e.g., 
importance [98], risk[99], customer-assigned priority [98, 100, 
101],  implementation complexity (CI) [98, 101], requirement 
changes [101], completeness (CT) [101], traceability (TR) [101], 
dependency [102], scope [103], property relevance [104]. 

E19 Feature Pairwise Coverage (FPC) FPC is defined to measure how many feature (testing 
functionalities) pairs can be achieved by a produced solution 
[84]. 

E20 Fault Detection Capability (FDC) FDC measures the fault detection capability of an obtained 
solution. In [84], fault detection is defined as the successful 
execution rate (manage to detect faults) for a test case in a given 
time, e.g., a week.  

E21 Average Execution Frequency (AEF) AEF measures the average execution frequency of a solution 
during a given time (e.g., a week) using the execution frequency 
of each included test cases [84]. 

E22 Prioritization Density (PD) PD measures how many test cases can be prioritized by a given 
solution with available test resources (e.g., hardware) [72]. 

E23 Test Resource Usage (TRU) TRU is defined to measure how many available test resources 
(e.g., hardware) can be used by a solution [72]. 

E24 Mean Priority (MPR) MPR measures the importance of the test cases in a solution, 
which is determined based on the type of test requirements [105]. 

E25 Mean Probability (MPO) MPO measures the likelihood that a solution (including a number 
of test cases) in terms of detecting faults [105]. 

E26 Mean Consequence (MC) MC measures the impact of a failure of the test cases in a solution 
that the system can have on the environment [105]. 

E27 Configuration Coverage (CC) CC measures the overall configuration coverage of a solution 
with a set of a number of test cases [106]. 

E28 Test API Coverage (APIC) APIC measures the overall test API coverage of a solution [106]. 
E29 Status Coverage (SC) SC measures the overall status coverage of a solution [106]. 
Cost 
C1 Saving Factor, SF (unit is dollars) This is measured based on “savings in time are associated with 

savings in dollars through engineer salaries, accelerated business 
opportunities” [72]. 

C2 Overall Execution Time (OET) OET measures the total execution time for a solution (including 
a number of test cases) based on the historical execution data 
[84].  

C3 Number of test cases (NMTC) NMTC measures the number of test cases that need to be 
executed. For example, see its use in [33]. 

C4 Number of statements A measure of the number of statements that have been executed 
by test cases. For example, see its use in [96]. 

C5 Total Time (TT) TT measures the total time cost for a solution including test case 
execution time and test resource allocation time [72]. 

C6 Time Difference (TD) TD measures the difference in time between a pre-given time 
budget and execution time for a solution (that consists of a 
number of test cases) [105]. 

Additional Measures  
A1 Average Normalized Number of Uncertainties 

Covered (ANU) 
ANU is used to measure the average normalized number of 
uncertainties covered by the minimized number of test cases [33]. 

A2 Percentage of Uncertainty Space Covered (PUS) PUS measures the percentage of the total set of uncertainty 
spaces of a belief state machine [21] covered by the minimized 
subset of test cases [33]. 



 

 

Label Name Description 
A3 Average Overall Uncertainty Measure (AUM) AUM measures the average overall uncertainty of the minimized 

[33] or prioritized [78] subset of test cases. 
A4 Percentage of Unique Uncertainties Covered 

(PUU) 
PUU measures the percentage of the total number of unique 
uncertainties covered by the minimized subset of test cases [33]. 

A5 Average Number of Observed Uncertainties 
(ANOU) 

ANOU measures the average number of observed uncertainties 
by the prioritized test cases [78]. 

 

3.8  Analyzing Results 

In this section, we discuss a set of guidelines extracted based on our previous experience of applying SBST to 

address various multi-objective test optimization problems including uncertainty-wise multi-objective test 

optimization. We present these guidelines from the following perspectives, which include: 1) fitness function that 

discusses what should be paid attention when defining and formulating fitness function; 2) multi-objective 

algorithms that discuss how to select and compare multi-objective search algorithms; 3) evaluation metrics that 

present how to select appropriate evaluation metrics for evaluating the performance of multi-objective search 

algorithms; and 4) statistical tests that discuss how to select proper statistical tests for analyzing the results obtained 

by the multi-objective search algorithms in conjunction with the defined fitness function. It is worth mentioning 

that the summarized guidelines are considered as generic recommendations, which are applicable to any multi-

objective test optimization problems (including uncertainty-wise multi-objective test optimization problems). 

3.8.1 Fitness function 

It is well recognized that a fitness function is defined for assessing the quality of solutions obtained during the 

search, and thus defining an appropriate fitness function is of paramount importance to obtain optimal solutions 

when addressing multi-objective test optimization problems. The first key step to define a proper fitness function 

is to formally formulate the required objectives as a set of cost-effectiveness measures based on the specific domain 

knowledge. For instance, to tackle the multi-objective test set minimization problem [84], we discussed with the 

test engineers of our industrial partner (with the telecommunication domain) and proposed five objectives that 

should be taken into account. These five objectives were further formulated as four effectiveness measures (i.e., 

objective functions) and one cost measure, which includes 1) test set minimization to measure the amount of 

reduction in terms of the number of test sets, 2) feature pairwise coverage to measure how many feature (testing 

functionalities) pairs can be achieved by a solution, 3) fault detection capability to measure the capability of 

detection faults based on the historical data; 4) average execution frequency that measures how often the minimized 

test cases can be executed based on the execution history; and 5) overall execution time to measure the overall time 

taken for executing the minimized test cases.  

It is worth mentioning that it is practically possible to further refine the defined cost-effectiveness measures based 

on particular restrictions from particular domains, and thus it is recommended to first finalize the cost-effectiveness 

measures (objective functions) before defining fitness function (Recommendation, R1). For instance, with respect 

to the effectiveness measure fault detection capability, it is common in the existing literature to define such measure 



 

 

using the number of detected faults (bugs). However, in the context of our case (i.e., telecommunication domain) 

[84], such information related with the number of faults is not available from the historical execution data, and thus 

we proposed to measure the fault detection capability by calculating the number of successful executions out of 

the total number of executions (a successful execution means faults can be detected by executing a specific test 

case). The measurement of fault detection capability was further discussed, agreed and finalized with the test 

engineers from our industrial partner. Therefore, we recommend practitioners defining the cost-effectiveness 

measures based on the particular domains since it is sometimes possible that the common measures from the state-

of-the-art cannot fulfill the practical requirements from the domains (R2).  

Once the cost-effectiveness measures are formally formulated, the next step is to incorporate these measures into 

a fitness function that is used to guide the search towards finding optimal solutions. Based on the state-of-the-art, 

the fitness function can be defined using two means including 1) directly using the defined cost-effectiveness 

measures as the fitness function when the Pareto-based multi-objective algorithms (e.g., NSGA-II) are further 

employed in conjunction with the fitness function; and 2) assigning particular weights to each cost-effectiveness 

measure and converting the multi-objective test optimization problem to a single-objective test optimization 

problem if the weight-based multi-objective algorithms are applied (e.g., RWGA). One general guide to 

recommend is that the first mean should be applied if all the objectives hold equivalent priority, i.e., the objectives 

are considered as equally important and the second mean is chosen if there are specific priorities (i.e., user 

preferences) among the objectives in practice, e.g., fault detection capability is more important than the test 

minimization percentage for the test set minimization problem (R3). Notice that the performance of Pareto-based 

search algorithms will be significantly decreased when the number of cost-effectiveness measures (objectives) is 

more than six [107] and thus it is suggested to limit the number of objectives less or equal to six if the Pareto-based 

search algorithms are to be applied (R4). However, it is worth mentioning that one of our previous works [108] 

proposed a new Pareto-based search algorithm (named UPMOA) to incorporate user preferences into NSGA-II, 

which made it possible for the Pareto-based search algorithms to handle the multi-objective test optimization 

problems with various user preferences.   

In addition, if the weight-based search algorithms are to be employed, there are three weight assignment strategies 

defined and applied in the existing literature [109], which include: 1) Fix Weights (FW) assignment strategy that 

assigns pre-defined quantitative weights (between 0 to 1) to each objective (e.g., 0.5 to the fault detection capability) 

based on the user preferences from domain experts (e.g., test engineers); 2) Randomly-Assigned Weights (RAW) 

assignment strategy that randomly generates normalized weights (between 0 and 1) for each test optimization 

objective that satisfy the defined user preferences; and 3) Uniformly Distributed Weights (UDW) assignment 

strategy that generates normalized weights for objectives, which 1) meet the user preferences; and 2) guarantee the 

uniformity for the generated weights with the aim of ensuring that each search direction is explored with equal 

chances. The experiment results from [109] showed UDW can manage to achieve better performance as compared 



 

 

with the other two weight assignment strategies (i.e., FW and RAW), which can be used as a guide when there is a 

need to apply these weight-assignment strategies for weight-based genetic algorithms (R5). 

3.8.2 Multi-objective search algorithms 

After the fitness function is properly defined, the next step is to select multi-objective search algorithm to 

incorporate the fitness function before running the search. As mentioned before, Pareto-based and weight-based 

multi-search algorithms can be used and all these algorithms have intrinsic randomness because of several factors 

such as initial random population, the use of a crossover, and mutation operators. Thus, it is recommended to repeat 

each algorithm at least 10 times [74, 107], which can ensure that the results obtained by the search algorithms are 

not achieved at random and thereby reducing the random variations inherited in the search algorithms (R6).  Such 

recommendation can be used as a general guide to any multi-objective test optimization problems at hand including 

uncertainty-wise test optimization. 

The selection of a multi-objective search algorithm for dealing with a specific problem is also an important 

perspective that may have a huge impact on the performance of a search-based approach. Most of the existing 

works chose NSGA-II for solving multi-objective test optimization problems (e.g., [106] for test case prioritization, 

[110] for test case selection) and NSGA-II has proven to achieve promising results for addressing various multi-

objective test optimization problems. However, several existing works have shown that Random-Weighted Genetic 

Algorithm (RWGA) can achieve better performance than NSGA-II, e.g., test set minimization problem [84]. 

Therefore, how to select the most appropriate multi-objective search algorithms largely depends on particular 

optimization problems and we would recommend applying and comparing at least NSGA-II (Pareto-based) and 

RWGA (weight-based) when solving a multi-objective test optimization problem when all the objectives are 

equally important (R7). However, as discussed before, if the objectives hold certain priories (i.e., user preferences), 

UPMOA [108] or RWGA are recommended to apply and compare since the traditional Pareto-based search 

algorithms (e.g., NSGA-II) cannot handle the multi-objective test optimization problems with user preferences 

(R8).  

Furthermore, to assess the performance and justify the applicability of a multi-objective search algorithm, it is 

usually recommended to compare the chosen algorithms with at least, one baseline algorithm for a sanity check 

(e.g., random search or greedy algorithm) (R9) [74, 84, 107, 108, 111, 112]. Such practice can prove that the 

problem to be addressed at hand is complex enough, which requires the applications of an advanced multi-objective 

algorithm (e.g., NSGA-II). This recommendation is once again a generic one and applicable to any multi-objective 

test optimization problems, and even single objective test optimization problems. 

Moreover, another important decision to make while employing multi-objective search algorithms lies in setting 

parameters for the selected algorithms. A typical practice is to use the default parameter settings that are for 

example provided by the jMetal library (e.g., crossover rate is 0.9, mutation probability is set as 1/n where n is the 



 

 

total number of variables (e.g., test cases) and population size is 100) [105, 106, 112]. Such default settings have 

often provided good results and thus it is recommended to use at least the default settings for the selected multi-

objective search algorithms (R10). Notice that parameter tuning is an alternate technique to find the best parameter 

settings for the multi-objective search algorithms but parameter tuning is quite expensive in practice [75], which 

is considered as an optional recommendation if there are sufficient resources (e.g., manual effort) in practice for 

such parameter tuning activity. Interested readers can consult [75] for more details in terms of some parameter 

tuning techniques and key observations for search-based software engineering. 

3.8.3 Evaluation metrics 

It is critical to employ proper evaluation metrics for evaluating the performance of multi-objective search 

algorithms along with the defined fitness function. The evaluation metrics can be chosen when different types of 

multi-objective search algorithms are applied, i.e., weight-based search algorithms and Pareto-based search 

algorithms. In terms of weight-based multi-objective search algorithms, it is recommended to directly use the 

obtained fitness function values as evaluation metrics for assessing the performance of algorithms (R11). Recall 

that weight-based search algorithms convert a multi-objective test optimization problem into a single-objective test 

optimization problem by assigning weights to each objective. When the search process is terminated, one fitness 

function value is produced that represents the quality of the corresponding solution. In addition, if users are also 

interested in particular individual objective (e.g., fault detection capability), it is also possible to compare the 

solutions obtained by search algorithms using each individual objective function value. However, notice that only 

the fitness function value can represent the overall quality of a solution obtained by a search algorithm.  

With respect to the Pareto-based multi-objective search algorithms, it is recommended to employ standard quality 

indicators (e.g., hypervolume (HV), Epsilon (𝜖), Generalized Spread (GS), Generational Distance (GD)) as 

evaluation metrics to evaluate the performance of algorithms (R12). Our previous work [107] has proposed a 

practical guide in terms of selecting quality indicators for assessing the performance of Pareto-based multi-

objective search algorithms based on theoretical foundations, literature review and extensive empirical experiment, 

and thus it is always recommended to use this guide for choosing quality indicators when there is a need for Pareto-

based search algorithm evaluation (R13). We briefly summarize the guide as below to make the book chapter self-

contained. More details related to such guide can be consulted in [107]. 

1. When a user is only concerned whether the obtained solutions are optimal or not (Convergence): If an ideal 

set of objective values (i.e., optimal objective values such as the best value for the objective of test 

minimization percentage is 0 when all the test cases are eliminated) is unknown for a multi-objective 

optimization problem, any of the quality indicators from GD, Euclidean Distance from the Ideal Solution 

(ED), 𝜖 and Coverage (C) is recommended. On the opposite, ED is suggested if an ideal objective set is 

known before. 



 

 

2. When a user is also concerned with the Diversity of the obtained solutions in addition to the convergence: 

When the number of objectives for a particular multi-objective optimization problem is more than six, 

Inverted Generational Distance (IGD) is recommended. Otherwise, HV is suggested if the number of 

objectives is less than or equal to six. 

3. When a user prefers evaluating the performance of Pareto-based search algorithms from the two 

perspectives of Convergence and Diversity separately: Such situation may sometimes occur since separate 

quality indicators to measure convergence and diversity may be more accurate than the combined quality 

indicators, e.g., HV and IGD (mentioned as above). In this case, if the ideal objective set is known, ED 

together with Pareto front size (PFS) and GS are recommended. Otherwise, any of the quality indicators 

from GD, ED, 𝜖 and C together with PFS and GS can be applied. It is worth mentioning that assessing the 

performance of Pareto-based multi-objective search algorithms from the two separate perspectives makes 

it difficult to draw a definite and clear conclusion which multi-objective search algorithm is better and thus 

we usually recommend selecting the combined quality indicators from (i.e., HV or IGD) with the aim of 

assessing the algorithm performance.  

In addition, the running time taken by the search algorithms (both weight-based and Pareto-based multi-objective 

search algorithms) is also recommended to consider when evaluating the performance of algorithms since it would 

be practically infeasible to apply a search-based approach if it took the unacceptable running time to obtain optimal 

solutions (R14).  

3.8.4 Statistical tests 

Recall that search algorithms are usually required to be run at least 10 times due to the random variations inherited 

and a large amount of data results will be obtained when the search process is finished. Thus, it is a common 

practice to employ standard statistical tests to analyze the results obtained and extracts the key observations. Notice 

that the following described statistical tests are generic and applicable to all the multi-objective search algorithms 

and any multi-objective optimization problems. 

First, it is recommended to perform the descriptive statics (e.g., mean, median and standard derivation) with the 

aim of acquiring direct impressions how good the results are (with the values of mean and median) and how the 

results are distributed (with the values of standard derivation) (R15). Moreover, we recommend performing the 

Vargha and Delaney statistics (A12), which is a non-parametric effect size measure (R16). More specifically, in the 

context of SBSE, A12 is usually employed to measure the probability of yielding higher values for each objective 

function and fitness function value when comparing two multi-objective algorithms A and B. The two algorithms 

are considered to have equivalent performance if A12 is 0.5. The algorithm A has higher chances to obtain better 

solutions than the algorithm B if the value of A12 is greater than 0.5.  



 

 

In addition, to compare the difference significance of several multi-objective search algorithms, it is recommended 

to perform a set of significance tests discussed as follows (R17). First, we recommend performing the Kruskal–

Wallis test together with the Bonferroni Correction [113] with the aim of determining if there are significant 

differences among multiple sets of results (samples) obtained by multi-objective search algorithms. Notice that the 

Bonferroni Correction is used to adjust the p-value obtained by the Kruskal–Wallis test [113, 114]. If the adjusted 

p-value of the Kruskal–Wallis test is more than 0.05, it indicates that there are no significant differences observed 

among the results obtained by various search algorithms and thus it can be concluded that the performance of 

search algorithms is statistically similar.  

If the adjusted p-value is less than 0.05 that indicates that there exist significant differences among the results 

among by different search algorithms, the following statistical tests are recommended. First, the Shapiro-Wilk test 

[114] is recommended to determine the normality of obtained data samples with the aim of selecting an appropriate 

statistical test for checking the significance of the difference. The significance level is usually set as 0.05, i.e., a 

data sample is normally distributed if the p-value from the Shapiro-Wilk test is greater than 0.05. On the condition 

that the sample data is normally distributed, it is recommended to perform t-test (parametric test) [113] for 

determining whether there exist significant differences between the results obtained by different search algorithms. 

When the sample data is far away from a normal distribution, the Mann-Whitney U test (non-parametric test) [113] 

is suggested to determine the significance of the difference between the results obtained by different search 

algorithms. Similarly, the significance level is usually set as 0.05, i.e., there is a significant difference observed 

between the obtained results if the p-value is less than 0.05. 

In addition, to assess the scalability of the multi-objective search algorithms, we recommend the Spearman’s rank 

correlation coefficient (𝜌) [113] to measure the correlations between the results obtained by the algorithms and the 

complexity of problems (R18). The value of 𝜌 ranges from -1 to 1, i.e., a value greater than 0 denotes a positive 

correlation between the results of search algorithms and the complexity of problems while a negative correlation 

is observed when the value of 𝜌 is less than 0. A value of ρ close to 0 indicates that there is no correlation between 

the results obtained by search algorithms and the complexity of problems. Moreover, it is also recommended to 

report significance of correlation using Prob>|𝜌|, i.e., a value that is lower than 0.05 means that the observed 

correlation is statistically significant. For instance, with respect to addressing the test set minimization problem, 

our previous work [84] assessed the scalability of ten multi-objective search algorithms by measuring the 

correlation (using the Spearman’s rank correlation coefficient) between the obtained results and the increasing 

complexity of problems measured by the number of features (i.e., testing functionalities of systems) included. The 

results showed that the performance of most of the multi-objective search algorithms was not significantly 

decreased when the problems become more complex when dealing with our test set minimization problem. 



 

 

In summary, this section presents in total 18 recommendations (Rs) as shown in Table 3 that can be used by 

researchers and practitioners when there is a need to apply multi-objective search algorithms to tackle uncertainty-

wise multi-objective test optimization problems. 

Table 3. Summary of the Recommendations 
R # Category Description 

1 

Fitness Function 

It is recommended to first finalize cost-effectiveness measures (objective functions) before 
defining fitness function. 

2 It is recommended to define cost-effectiveness measures based on particular domains to fulfill 
practical requirements. 

3 

It is recommended to directly use objective functions as fitness function when Pareto-based multi-
objective algorithms are applied. If weight-based multi-objective algorithms are applied, it is 
recommended to assign weights to each objective function and convert the multi-objective test 
optimization problem to single-objective test optimization problem. 

4 It is recommended to limit the number of objectives less or equal to six if Pareto-based search 
algorithms are to be applied. 

5 It is recommended to apply Uniformly Distributed Weights (UDW) assignment strategy when 
there is a need to use weight-based genetic algorithms. 

6 

Multi-Objective Search 
Algorithms 

It is recommended to repeat each multi-objective search algorithm at least 10 times for reducing 
the random variations inherited in search algorithms. 

7 
It is recommended to apply and compare at least NSGA-II (Pareto-based) and RWGA (weight-
based) when solving a multi-objective test optimization problem when all the objectives are 
equally important. 

8 It is recommended to apply and compare UPMOA or RWGA if the objectives hold certain 
priorities (i.e., user preferences). 

9 It is recommended to compare the selected multi-objective search algorithms with at least one 
baseline algorithm for a sanity check (e.g., random search or greedy algorithm). 

10 It is recommended to use at least the default settings for the selected multi-objective search 
algorithms. 

11 

Evaluation Metrics 

It is recommended to directly use the obtained fitness function values as evaluation metrics for 
assessing the performance of weight-based multi-objective search algorithms. 

12 It is recommended to employ standard quality indicators (e.g., hypervolume (HV), Epsilon (𝜖)) as 
evaluation metrics to evaluate the performance of Pareto-based multi-objective search algorithms. 

13 It is recommended to use the guide from [107] for choosing quality indicators when there is a need 
for evaluating the performance of Pareto-based search algorithms. 

14 It is recommended to compare the running time taken by the search algorithms when evaluating 
the performance of algorithms. 

15 

Statistical Tests 

It is recommended to perform the descriptive statics (e.g., mean, median and standard derivation) 
for acquiring direct impressions of the results. 

16 
It is recommended to perform the Vargha and Delaney statistics (A12), which is a non-parametric 
effect size measure for comparing which algorithm can have a higher chance of obtaining better 
results. 

17 

When comparing the difference significance of several multi-objective search algorithms, it is 
recommended to first perform the Kruskal–Wallis test together with the Bonferroni Correction. If 
the adjusted p-value is less than 0.05, the Shapiro-Wilk test is recommended to determine the 
normality of obtained data samples. If the data samples are normally distributed, t-test (parametric 
test) is recommended. Otherwise, the Mann-Whitney U test (non-parametric test) is recommended. 

18 
It is recommended to perform the Spearman’s rank correlation coefficient (𝜌) to measure the 
correlations between the obtained results and the complexity of problems when assessing the 
scalability of multi-objective search algorithms. 

 

4 THE STATE OF ART 
This section presents the state of the art related to uncertainty-wise testing for CPSs, which includes: 1) a summary 

of the primary studies collected in a systematic mapping study that we conducted to review testing of CPSs under 

uncertainty/non-determinism (Section 4.1) and a summary of the existing literature in terms of multi-objective test 

optimization (Section 4.2).  



 

 

4.1 Summary of the Systematic Mapping 

We conducted a systematic mapping study on testing CPSs under uncertainty by collecting and analyzing in total 

26 research papers from the existing literature. In this section, we present the state-of-the-art on uncertainty-wise 

testing for CPSs.  

The work reported in [115] deals with time simulation methods that are applicable for testing protocol software 

embedded in communicating systems. Two types of non-determinism are discussed in [115], which include: 1) 

internal non-determinism that refers to “the nondeterministic implementation of the software under test” [116-

118]; and 2) external non-determinism that refers to “is triggered by the concurrent (and reactive) environment of 

the software” [119]. Internal non-determinism can be handled through changing the implementation of the SUT to 

remove non-determinism and test a set of serialization variants of the original implementation. To tackle external 

non-determinism, simulation time is used to control the level of non-determinism caused by the environment of 

the SUT. The test system is controlled in such a manner that external non-determinism is allowed, reduced or 

eliminated based on the instructions given by testers. To be more specific, external non-determinism can be 

eliminated through simulation scheduling that serializes the communication between the test environment and the 

SUT. Simulation with deterministic discrete timing is used to enhance the controllability of testing while allowing 

several possible orders for the events. By allowing external non-determinism, simulation time is used to scale 

timing in such a way that the tests can be executed in a host. The described methods have been evaluated in and 

applied to testing protocols for several standards.  

In order to support black-box MBT of real-time embedded systems, the authors in [120] proposed a UML-based 

methodology to model the structure, behaviors, and constraints of the environment, where non-determinism was 

intensively captured. To be more specific, intervals were applied to model timeout transitions. The unexpected 

behaviors of users could be captured through non-deterministic attributes whose legal values were constrained in 

OCL. For the non-determinism of transitions, a probability distribution could be used. A set of stereotypes was 

proposed to capture the above-mentioned non-determinism. The approach was applied to and assessed using two 

industrial case studies. Based on the environment models, the black-box model based testing could be fully 

automated using search-based test case generation techniques and the generation of code simulating the 

environment. 

The work in [121] extended the environment modeling methodology presented in [120] with a focus on the 

simulation for automated testing. A Java-based simulator was generated from the environment models using the 

model to text transformations. The non-determinism was handled when generating the simulator by a non-

deterministic engine that obtained the values of non-deterministic occurrences from the simulation configuration 

generated by the test framework. Therefore, the simulation becomes deterministic for each specific simulation 

configuration. The test framework aimed to find a simulation configuration that could lead to a system failure/error 

using search-based techniques [122, 123]. Once such simulation configuration was found, a JUnit test case would 



 

 

be automatically generated, which is used to define two important components of the simulation including: (1) the 

configuration of the environment, e.g., number of sensors/actuators and their initialization; (2) the non-

deterministic events in the simulation, e.g., variance in time-related events such as physical movements of hardware 

components, occurrence and type of hardware failures and actions of the user(s). The proposed techniques were 

evaluated with three artificial problems and two industrial real-time embedded systems. 

Using input from the environment models [120], Iqbal et al. focused on the selection of the test cases to facilitate 

the black-box testing of real-time embedded systems and investigated three test automation strategies, i.e., random 

testing (as a baseline), adaptive random testing and genetic search-based testing in [124]. By random testing, test 

cases were randomly selected based on uniform probability. The basic idea of adaptive random testing was to 

reward diversity among test cases, as failing test cases usually tend to be clustered in contiguous regions of the 

input domain. A fitness function was defined to guide the search by estimating how close a test case can trigger a 

failure. The three approaches were validated using an industrial real-time embedded system, and the results showed 

that none of the three test automation strategies could fully dominate the others in all testing conditions. Moreover, 

the authors also provided practical guidelines in terms of applying these three techniques based on the experiment 

results.  

In [125], a tool named UPPAAL-TRON [126] was proposed for online black-box conformance testing of real-time 

embedded systems based on non-deterministic timed automata specifications where non-deterministic action and 

timing were allowed. The notion of relativized timed input/output conformance was defined and it was possible to 

test the conformance of the system online based on the timed automata model and its environment assumptions 

that were explicitly captured. UPPAAL-TRON was implemented with a randomized online testing algorithm by 

extending the mature UPPAAL model-checker. It could generate and execute tests event-by-event in real-time 

through stimulating and monitoring the IUT (implementation under test). To perform these two functions, 

UPPAAL-TRON essentially computed the possible set of states symbolically based on the timed trace observed so 

far. The approach was further applied to test a rail-road intersection controller and was assessed in terms of error 

detection capability and computation performance. Moreover, some experience were shared in [126] with respect 

to applying UPPAAL-TRON in advanced electronic thermostat regulator that controls and monitors the 

temperature of industrial cooling plants. 

Due to the lack of tool and techniques that could systematically tackle models capturing the indeterminacy as a 

result of concurrency, timing and limited observability and controllability, David et al. [127] proposed a number 

of principles and algorithms of model-based test generation with UPPAAL tool support, aiming at efficiently 

testing the real-time embedded system under uncertainty. The methods proposed were complementary with each 

other in terms of the allowed uncertainty and observability.  



 

 

Specifically, online testing is effective when the system is highly non-deterministic [125, 126]. The main idea of 

online testing is to continually compute the possible set of states the model can occupy as test inputs/outputs or 

delays are observed. The uncertainty that the tester has about the possible state was thus captured by the state-set. 

While testing a system with partial observability, testing based on partially observable games techniques, such as 

UPPAAL-POTIGA, a timed game solver for partially observable timed games [128] could be applied. 

So as to devise deterministic test requirements yielding the maximum network stress test scenarios for testing real-

time embedded systems, the precise timing information of the interactions, i.e., messages in a UML sequence 

diagram, was required [129]. However, such information was not always available, and thus timing uncertainty 

would impact the effectiveness of the generated test cases in terms of revealing real-time faults. In order to address 

timing uncertainty when generating test requirements, Garousi adapted the barrier scheduling heuristic and 

proposed a wait-notify stress test methodology (WNSTM) [129]. To increase the chances of discovering real-time 

faults originating from network traffic overloads, WNSTM generated stress test requirements by installing barriers 

via a counting semaphore before the maximum-stressing messages of each sequence diagram. WNSTM was further 

evaluated on a prototype distributed real-time system based on a real-world case study, and the results showed that 

WNSTM was effective in terms of detecting real-time faults. 

Ali et al. tackled the test minimization problem in the context of uncertainty-wise testing [130]. The heuristics were 

defined to minimize cost (time) and maximize effectiveness (transition coverage) and uncertainty-related attributes 

that were measured using uncertainty theory. The goal of this work was to evaluate the impact of various mutation 

and crossover operators on the performance of NSGA-II in terms of solving the test minimization problem. Three 

mutation operators and three crossover operators, resulting in nine combinations for the setting of NSGA-II, were 

evaluated in a real CPS case study. The results showed that the Blend Alpha crossover operator together with the 

polynomial mutation operator showed the best performance. 

Executable test cases could be generated from test ready models yielding to subjective uncertainties, as they were 

developed based on testers’ assumptions about the expected behaviors of a CPS, its expected physical environment, 

and the potential future deployments. Zhang et.al presented [36] a model evolution framework (UncerTolve) to 

interactively improve the quality of test ready models, i.e., reduce the uncertainty, based on operational data. 

UncerTolve was characterized by three key features: 1) model execution was applied to validate the syntactic 

correctness and conformance of test ready models against real operational data; 2) the objective uncertainty 

measurements of test ready models, i.e., probabilities, were evolved via model execution; and 3) a machine learning 

technique was applied to evolve state invariants and guards of transitions. UncerTolve was evaluated using one 

industrial CPS case study and the results were promising.  

A model-based testing framework for probabilistic systems was presented in [131], where both an offline algorithm 

and an online algorithm for test generation were proposed. The probabilistic input/output transition systems 



 

 

(pIOTSs) were employed to capture the probabilistic requirements of the SUT, and statistical methods were applied 

to assess if the frequencies of the observation during test execution conformed to the probabilities in the 

requirements according to the conformance relation defined in this paper. This framework was proved to be 

mathematically correct via the classical soundness and completeness properties.  

As an extension to their previous work in [131], the authors presented key concepts of an MBT framework for 

probabilistic systems with continuous time in [132]. A solid core of a probabilistic test theory was provided to 

handle real-time stochastic behaviors, which were captured via Markov automata. Compared with their previous 

work, the novelty of this work was the inclusion of stochastic time and exponential delays. 

A smart device is non-deterministic in nature due to many reasons, such as the inaccuracy in an analog 

measurement. In order to assess the reliability confidence in the smart device under non-determinism, a black-box 

test environment was developed to automate the generation and execution of test data and the interpretation of the 

results in [82]. A finite state machine could be used to capture the system behavior, which was defined based on 

the behavior specified in the user manual. The non-determinism of the smart device response was addressed by a 

result checker.  

In order to assert the correctness of CPS with respect to extra-functional properties, a conformance testing approach, 

Timed Testing of a physical Quantity (TTQ), was proposed in [133]. TTQ checked the conformance of a running 

CPS via the timed model checker Uppaal and the timed online testing tool TRON, with respect to a formal timed 

automata description utilizing measurements of physical quantities subject to uncertainties. The physical 

measurements obtained from a running CPS would be aggregated and translated into a linear observer trace model 

(TM). TM and the formal description of the system behaviors, i.e., timed automata, were then jointly executed to 

check the reachability of the terminal location of the trace model for inferring the conformance of the measurements 

with the expected behaviors of the system. In TTQ, the uncertainty was tackled in the sense that different intervals 

were employed for individual system modes of the hardware components. The proposed approach was evaluated 

for testing a wireless sensor node implementation with power measurements and the effectiveness of the approach 

was highlighted by the experiments. 

Conformance testing of CPS yielded to the state space explosion problem, as it depended on a reachability check 

that required a state space traversal based on the TM and timed automata. Therefore, Woehrle et al. proposed a 

segmented state space traversal approach for conformance testing of CPS in their later research [134]. This 

approach could improve the scalability of quantitative conformance testing of a CPS and it was demonstrated based 

on a case study of two communicating sensor nodes. 

A test environment was presented in [135] in order to achieve: 1) easy management of test cases and 2) automatic 

testing. A repository was devised to manage system functions to be tested and system configurations to be tested 

separately. The test environment could automatically generate test cases with a template engine from certain system 



 

 

functions in PROMELA (PROcess Meta LAnguage) and system configurations in XML for the device under test. 

A modified SPIN (Simple PROMELA Interpreter) model checker was applied to check certain properties of the 

PROMELA model where non-deterministic sequences were allowed. A prototype of an air conditioning system 

was developed for evaluating the proposed approach. 

In the context of testing CPS product lines, authors in [136] proposed a methodology with tool support 

(ASTERYSCO) to automatically generate simulation-based test system instances for testing individual 

configurations of CPSs. A test system to be generated was described in Simulink encapsulating several sources, 

e.g., test cases or test oracles. Feature model was applied to manage the variability of a CPS as well as the test 

system. The uncertainty was dealt by simulating the physical world with the context environment. Moreover, 

reactive test cases were supported so that they could monitor and react to the various states of the CPS. 

CPS is stochastic in nature due to actuator inaccuracies, sensor readings, the rate of arrivals, component failure 

rates, etc. which could affect the functional correctness of a CPS. In order to detect system operating conditions 

yielding the worst system robustness, Abbas et al. introduced a robustness-guided testing for verifying stochastic 

CPS in [137], which could quantify how robustly a stochastic CPS satisfied a specification in Metric Temporal 

Logic (MTL). The goal was achieved by transforming the testing problem to an expected robustness minimization 

problem that was solved with stochastic optimization algorithms, i.e., Markov chain Monte Carlo algorithms. 

In order to test embedded systems interacting with a continuous environment, i.e., hybrid systems, a model-based 

mutation testing approach was proposed in [138]. The discrete controller behaviors were modeled by classical 

action systems whereas the evolutions of the environment were captured with qualitative differential equations. 

Non-determinism was allowed in the action system model, such as internal actions and non-deterministic updates. 

The basic idea behind mutation testing was to mutate the system models and generate test cases capable of killing 

a set of mutated models. The generated test cases were then applied to execute the SUT and check the conformance 

between the mutations and SUT.  

In order to test the safety properties in a CPS, the authors in [139] provided a formal framework for conformance 

testing based on a formal conformance relation to guarantee transference of safety properties. The conformance 

relation was named as each set conformance, which was a weaker relation than the existing trace conformance. 

Hybrid automata were applied to formally model the system behaviors. The conformance testing was based on 

computations and over-approximations of the reachable set, which also took care of bounded errors of simulations 

or real measurements. Moreover, a model-based input selection algorithm based on a reach set coverage measure 

was presented in order to reduce the number of tests for a given set of test cases. The framework was evaluated in 

the domain of autonomous driving and the results showed that the conformance testing method could falsify more 

relations than the existing approaches.  



 

 

A formal framework was provided in [140] for conformance testing of hybrid systems, a widely accepted 

mathematical model for many applications in embedded systems and CPSs. The goal of the conformance testing 

was to assert the conformance relation between the SUT and a formal specification using hybrid automata where 

non-determinism was allowed in both continuous and discrete dynamics. Moreover, based on the notion of star 

discrepancy, a coverage measure was proposed for hybrid systems in order to: 1) quantify the validation 

completeness and 2) guide input stimulus generation. A test generation method (named as gRRT) with a prototype 

tool support was then proposed based on rapidly exploring random tree algorithm for robotic planning guided by 

the coverage measure. gRRT was applied to a number of analog circuits and control applications. This test 

generation algorithm was later refined in [141] guided by both the coverage measure and the property to verify. In 

addition, the partial observability problem in test execution was also addressed in [141] through an estimation of 

the current location and the continuous state of the SUT with a hybrid observer. 

Self-adaptation aims to address the challenges in CPSs capable of changing its behavior as well as structure in 

response to changes in the operating environment/context. Testing such self-adaptive behaviors is challenging due 

to the infinite reaction loop and uncertain interaction. A novel approach named as SIT (Sample-based Interactive 

Testing) was presented in [142] to test self-adaptive apps in an efficient and light-weight way. The input space of 

a self-adaptive app could be systematically split, adaptively explored and mapped to the testing of different 

behaviors by an interactive app model and a test generation technique. The impact of environmental constraints 

and uncertainty on an app’s input/output pairs was captured in the interactive app model, enabling a systematic and 

guided exploration of its space. The test generation techniques only sampled inputs required by the exploration. 

Moreover, external uncertainty due to the errors in measuring environmental conditions was also handled in the 

SIT approach. An uncertainty specification was defined based on a set of functions mapping a given environment’s 

output parameter to its corresponding app’s input parameters together with the associated error range. The 

effectiveness and efficiency of SIT were evaluated with real-world self-adaptive apps.  

Ramirez et al. proposed a search-based approach named as Loki to automatically explore environmental conditions 

capable of revealing requirements violations and latent behaviors in a dynamic adaptive system [143]. To be more 

specific, Loki first generated configurations specifying the type, duration, and severity of noise for each sensor in 

a dynamic adaptive system. Secondly, Loki simulated the system and environmental conditions according to the 

generated configurations. During simulation, a set of utility functions was applied to assess the satisfaction of the 

system requirement captured with goal based models and guide the search towards those environmental conditions 

producing the most distinct behaviors. Loki was applied to an autonomous vehicle system to illustrate several 

examples of requirement violations and latent behaviors. 

Operating contexts for dynamic adaptive systems constitute main uncertainty that may affect the system behaviors 

at a run time. An evolutionary computation-based approach (FENRIR) was proposed in [144]. FENRIR could 

automatically explore how the varying operational contexts affected a dynamic adaptive system with instrumented 



 

 

code by searching for the system and environmental parameters that could produce previously unexamined system 

execution traces. The resulting execution traces could facilitate the identification of potential bugs in the code. 

FENRIR was evaluated on an industry-provided problem, management of a remote data mirroring network. 

Experiment results showed that FENRIR could provide a significantly greater coverage of execution paths as 

compared with randomized testing. Moreover, in their following research, Fredericks et al. [145] further proposed 

an evolutionary computation-based approach (named Veritas) to adapt requirement-based test cases at runtime in 

response to different system and environmental conditions. Specifically, Veritas monitored the environment to 

collect evidence of changes in the environment and adapted individual test cases to ensure testing relevance that 

was assessed with utility functions. An online evolutionary algorithm (i.e., (1+1)-ONLINE EA) was then applied 

to facilitate run-time adaptation of test case parameters once required. Veritas was evaluated using an intelligent 

robotic vacuum, and the results showed that Veritas could largely reduce the mismatch between test cases and 

operational context caused by uncertainty within the system and the environment. 

4.2 Multi-objective Test Optimization 

Many software testing problems are multi-objective in nature (e.g., test set minimization problem [84, 111]) and 

the existing literature mainly studied the multi-objective test optimization from three perspectives, i.e., test case 

selection, test set minimization and test case prioritization [83, 108, 110, 146-148]. Test Case Selection aims at 

selecting a set of relevant test cases from the entire test set for cost-effectively testing the systems or programs 

under test. Test Set Minimization minimizes a given test set for eliminating redundant test cases with the aim to 

reduce the total cost of testing (e.g., execution time) while preserving high effectiveness (e.g., fault detection 

capability). Test Case Prioritization prioritizes a test set into an optimal order for detecting faults as early as 

possible while satisfying other pre-defined criteria, e.g., reducing the execution time of test cases. It is worth 

mentioning that it is practically infeasible to only take a single objective into account when studying the above-

mentioned three testing problems [146]. Thus, researchers usually focus on proposing, defining and formulating a 

set of cost-effective objectives based on specific contexts and domains (e.g., telecommunication [84, 111]), which 

are further taken as input for guiding the search towards obtaining trade-off solutions that can balance different 

criteria [72, 83, 105, 106, 108, 110, 146, 149, 150]. 

The principle foundation of Search-Based Software Testing (SBST) is to formulate and encode various multi-

objective software testing problems into multi-objective test optimization problems that can be efficiently solved 

using various multi-objective search algorithms (e.g., non-dominated sorting genetic algorithm II (NSGA-II) [73]). 

According to a publicly-available SBSE repository maintained by the CREST center [151], in total 821 research 

papers have been focusing on tackling a variety of testing challenges and out of these 821 works, a large number 

of multi-objective test problems have been increasingly researched, e.g., test case selection problem [105, 110] and 

test case prioritization [72, 106, 108]. Harman et al. have conducted a systematic literature review for SBSE [149] 

that described and sketched a variety of SE applications employing search algorithms to address multi-objective 



 

 

test optimization problems. In particular, a set of objectives have been listed in [146] (e.g., fault detection capability, 

code coverage), which can be used for multi-objective test optimization in the context of software testing and have 

been researched in the state-of-the-art [83].   

For instance, in terms of test case selection, two cost-effective objectives (i.e., code coverage, execution time) have 

been defined with the aim of selecting optimal test cases in [152]. The two-objective problem has been further 

converted into a single-objective problem by assigning weights to each objective followed by solving the problem 

using search algorithms [152]. Yoo and Harman [110] formally defined three cost-effectiveness measures (i.e., 

code coverage, fault detection history, and execution time) in the context of regression testing and employed a 

greedy algorithm and a multi-objective search algorithm NSGA-II for selecting optimal test cases from a given test 

set. Our previous work [105] proposed to consider the importance of test cases, the potential impact caused by test 

case failure and the likelihood of detecting faults by test cases into account when performing test case selection. 

We further empirically evaluated eight existing multi-objective search algorithms (e.g., NSGA-II) with two weight 

assignment strategies (i.e., fixed-weight strategy and randomly-assigned weight strategy) using one industrial case 

study and a large number of artificial problems. With respect to test set minimization, our previous work [84] 

attempted to deal with minimization problem by defining five cost-effectiveness measures (e.g., test minimization 

percentage, feature pairwise coverage and fault detection capability). We further empirically evaluated the 

performance of eight multi-objective search algorithms (including NSGA-II and RWGA) in conjunction with our 

defined fitness function using one industrial case study and 500 artificial problems. An improved search algorithm 

was proposed in [108] with the aim of incorporating predefined user preferences (based on different domains) 

when solving multi-objective test optimization problems (e.g., test set minimization problem). As for test case 

prioritization, a time-aware test case prioritization problem has been addressed in [153] by employing linear integer 

programming with the aim of prioritizing test cases into an optimal order with a given time budget. Our previous 

work [106] studied the test case prioritization problem by proposing four effectiveness measures (e.g., 

configuration coverage, test API coverage, fault detection capability) in the context of telecommunication domain. 

Two prioritization strategies were further defined and incorporated into the fitness function, which include: 1) 

Incremental Unique Coverage that only considers the incremental unique elements (e.g., test APIs) covered by the 

test case as compared with the ones covered by the prioritized test cases; and 2) Position Impact that gives more 

impact to a test case with a higher execution position (i.e., scheduled to be executed earlier).  

However, to the best of our knowledge, there are only a few works [33, 78] in the literature (as discussed in Section 

4.1) that addressed the uncertainty-wise multi-objective test optimization problem that explicitly takes uncertainty 

into account. Thus, there is still a large open research room that requires further investigation in terms of this angle. 

5 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 
Due to the fact that uncertainty is unavoidable in the behaviors of Cyber-Physical Systems (CPSs), it is important 

that uncertainty in CPSs both in its internal behavior and its physical environment must be considered explicitly 



 

 

during their verification and validation. In this direction, this chapter introduced uncertainty-wise testing in the 

context of Cyber-Physical Systems (CPSs). More specifically, we summarized our existing works from the angles 

of Uncertainty-wise Model-Based Testing, Uncertainty-wise Test Ready Model Evolution, and Uncertainty-wise 

Multi-Objective Test Optimization, in addition to providing potential future research directions. Moreover, we also 

provided a survey of the existing uncertainty-wise testing approaches to present where the current state-of-the-art 

stands in this area.  

Given the anticipated substantial rise in CPS applications in the future in both daily lives and critical domains, it 

will become even more critical for CPSs to handle uncertainty in a reliable way. This opens up a lot of new research 

directions for uncertainty-wise testing in the future. We summarize some research directions in the area of 

uncertainty-wise testing below: 

First, existing uncertainty-wise testing solutions support only testing functional behaviors in the presence of 

environment uncertainty with a limited extent as we discussed in the related work section. In this direction, new 

research is required to define novel testing methods for testing extra-functional behaviors of CPSs, e.g., related to 

security and safety, under various types of uncertainties. Such testing methods will ensure that extra-functional 

requirements (e.g., safety and security requirements) are not violated under various types of uncertainties. Note 

that if extra-functional requirements are not violated in nominal conditions, it doesn’t mean that such requirements 

will not be violated under uncertainty and thus it is important that future research in uncertainty-wise testing shall 

also focus on testing extra-functional requirements in the presence of uncertainty.     

Second, due to the fact that a large number of CPSs interact with humans, testing methods must take into 

consideration uncertainty introduced by humans into CPS operations. Given that understanding human behavior 

requires expertise from the domain of human psychology, such testing methods shall incorporate knowledge from 

the domain of human psychology to be considered explicitly in all the phases of testing. In addition to uncertainty 

related theories, such as Uncertainty and Probability theories, testing solutions shall also be grounded on theories 

related to study of human behaviors in uncertainty such as Prospect theory [154]. Needless to say, such testing 

solutions shall be interdisciplinary requiring expertise from the domains of ICT and Human Psychology with the 

eventual implementations as novel testing tool suites.    

Third, the future modeling solutions to support automated testing shall provide integrated solutions incorporating 

modeling expected behavior of software, hardware, and physical environment including humans. In addition, the 

modeling solutions must provide an implementation of relevant uncertainty related theories, e.g., Uncertainty 

Theory and Probability Theory, and theories from other domains such as Prospect Theory from human psychology.     

Fourth, the current modeling tools for system design and also for model-based testing only support checking the 

syntactic correctness of models; however, none of the existing modeling tools support automated validation of test 

models. This opens up a new research direction for devising new methods to validate test ready models of CPSs 



 

 

capturing uncertainty. In terms of testing, it is important that test ready models are semantically correct; otherwise, 

test cases generated from such test ready models will not be correct. In the presence of uncertainty, such validation 

methods become even more complicated because of lack of knowledge or missing information as compared to the 

situation where test ready models do not capture uncertainty.   

Fifth, novel test strategies for uncertainty-wise testing of CPSs are required to be developed in the future. Such test 

strategies shall not only focus on finding optimized test paths in test ready models but shall also focus on finding 

best test data including uncertainty test data, to find faults cost-effectively. Notice that with uncertainty-wise test 

strategies, we are looking for faults that could only be observed in the presence of uncertainty, thus requiring the 

development of a potentially new classification of uncertainty-wise faults for CPSs. Such a classification can 

further facilitate the development of new mutation operators that can be used to assess the cost-effectiveness of 

newly defined uncertainty-wise test generation strategies and support building the foundations of mutation testing 

for uncertainty-wise testing. Finally, in terms of test optimization, we forsee the need for the development of new 

search algorithms for both single objective and multi-objective optimization such as extensions to Genetic 

Algorithms (GAs) and Non-Dominated Sorting Genetic Algorithm II (NSGA-II). Such algorithms shall be 

extended to incorporate uncertainty in their inputs to provide optimized solutions even when faced with uncertain 

inputs.   

Sixth, as with any area of research, more empirical evaluations are required for uncertainty-wise testing. This 

includes not only the empirical evaluations in academic settings but also more applications in diverse domains to 

determine which uncertainty-wise techniques are better under which contexts.  

Finally, as we discussed that there is no existing standard for modeling uncertainty and recently a new Uncertainty 

Modeling [29] standard is initiated at the Object Management Group (OMG). This standard will be a generic 

uncertainty modeling standard and will probably require tailoring for specialized domains and applications. In 

addition, more standardization efforts are expected to integrate uncertainty related aspects into existing software 

and systems modeling languages such as SysML [55] and MARTE [56], in addition to testing standards, such as 

the UML Testing Profile [53].    
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Appendix A. LIST OF STANDARDIZATION BODIES AND STANDARDS WITH UNCERTAINTY 
Body Modeling/Testing/MBT/Other Standard Uncertainty 

OMG Modeling Unified Modeling Language (UML) [54]  No 
UML Profile for MARTE: Modeling and Analysis of Real-Time and 
Embedded Systems [56] 

 Yes (Probability) 

Systems Modeling Language (SysML) [55]  Yes (Probability) 
Object Constraint Language (OCL) [57]  No 
MetaObject Facility (MOF) [58]  No 



 

 

Structured Assurance Case Metamodel (SACM) [155] Yes (Evidence, 
Confidence, 
Confidence Level) 

MBT UML Testing Profile (UTP) [53]  No 
ISO, 
IEC 
and 
IEEE 

Modeling ISO/IEC 10746 series – Reference model of Open Distributed 
Processing (RM-ODP) [62] 

 No 

ISO/IEC 19505 series – OMG UML 2.4.1 [59]  No 
ISO/IEC 19507:2012 – OMG OCL 2.3.1 [60]  No 
ISO/IEC 19506:2012 – OMG Architecture-Driven Modernization 
(ADM) — Knowledge Discovery Meta-Model (KDM) [61] 

 No 

Testing ISO/IEC/IEEE 29119 series – Software Testing Standard [65]  No 
ISO/IEC 9646 series – Open Systems Interconnection (OSI) - 
Conformance testing methodology and framework [66] 

 No 

IEEE 1012-2012 – System and Software Verification and Validation 
[67] 

 No 

IEEE 829-2008 – Software and System Test Documentation [68]  No 
IEEE SA - 1008-1987 – IEEE Standard for Software Unit Testing [69]  No 
IEEE 1044-2009 – Classification for Software Anomalies [70]  No 

Other ISO/IEC/IEEE 24765:2010 – Systems and software Engineering – 
Vocabulary [156] 

 No 

ISO/IEC/IEEE 42010:2011 – Systems and software Engineering - 
Architecture description [157] 

 No 

ISO/IEC/IEEE 15288:2015 – Systems and software engineering- 
System life cycle processes [158] 

 No 

ISO/IEC 16085:2006 – Systems and software Engineering - Life cycle 
processes - Risk management [159] 

 No 

ISO/IEC 25010:2011 – Systems and software Quality Requirements 
and Evaluation (SQuaRE) — System and software quality models [160] 

 No 

ISO/IEC 15026 series – Systems and software assurance [161]  No 
ISO/IEC 12207:2008 – Systems and software engineering - Software 
life cycle processes [162] 

 No 

ISO/IEC Guide 98 series – Uncertainty of Measurement [163]  Yes 
ISO/IEC 10165-7:1996 – Open Systems Interconnection (OSI) - 
Structure of management information: General relationship model 
[164] 

 No 

IEC Guide 115:2007 – Application of uncertainty of measurement to 
conformity assessment activities in the electrotechnical sector [165] 

Yes 

IEC 61508:2010 – Functional safety of 
electrical/electronic/programmable electronic safety-related systems 
[71] 

Yes (Probability) 

IEC 31010:2009 – Risk Assessment Techniques [166]  No 
IEEE 730-2014 – Software Quality Assurance Processes [167]  No 
IEEE 1061-1998 – Software Quality Metrics Methodology [168]  No 
IEEE P2413 – Standard for an Architectural Framework for the Internet 
of Things (IoT) [169] 

 No 

ISO 9000 series – Quality Management [170]  No 
ISO 31000 – Risk Management [171]  Yes (Risk, 

Uncertainty, Effect, 
Likelihood) 

ISO 3534-1:2006 – General statistical terms and terms used in 
probability [172] 

 Yes 

ISO 21748:2010 – Guidance for the use of repeatability, reproducibility 
and trueness estimates in measurement uncertainty estimation [173] 

 Yes 

ISO/TR 13587:2012 – Three statistical approaches for the assessment 
and interpretation of measurement uncertainty [174] 

 Yes 

ISO/TS 17503:2015 – Guidance on evaluation of uncertainty using two-
factor crossed designs [175] 

 Yes 

ISO 9241 series  – Ergonomics of human-system interaction [176]  No 
JCGM Other JCGM 200:2012 – International vocabulary of metrology- Basic and 

general concepts and associated terms (VIM) [177] 
 Yes 

ETSI  Testing 
 

ETSI TR 102 422 V1.1.1 (2005-04) – IMS Network Integration Testing 
Infrastructure Testing Methodology [178] 

 No 

ETSI EG 203 130 V1.1.1 (2013-04) – Methodology for standardized 
test specification development [179] 

 No 



 

 

ETSI TR 101 583 V1.1.1 (2015-03) – Security Testing; Basic 
Terminology [180] 

 No 

ETSI ES 201 873 series on TTCN-3 [181]  No 
ETSI ES 203 119 series on Test Description Language (TDL) [182]  No 

Testing, MBT 
 

ETSI TR 102 840 V1.2.1 (2011-02) – Methods for Testing and 
Specifications (MTS); Model-based testing in standardization [183] 

 No 

ETSI ES 202 951 V1.1.1 (2011-07) – Methods for Testing and 
Specification (MTS); Model-Based Testing (MBT); Requirements for 
Modeling Notations [63] 

 No 

ETSI EG 201 015 V2.1.1 (2012-02) – Methods for Testing and 
Specification (MTS); Standards engineering process; A Handbook of 
validation methods [64] 

 No 

OASIS Other Open Services for Lifecycle Collaboration (OSLC) [184]  No 

 


