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1. Introduction 
Patient-specific cardiac modelling is an area of research that has received much attention in the last 
years. This is mainly due to better imaging techniques, increasing computational power combined with 
more efficient numerical methods, but also to the fact that computational models allows us to compute 
features such as mechanical stress that otherwise are impossible to measure in-vivo. This can provide 
us with an increased understanding of the complex mechanical events occurring during a heartbeat.  
 
In this study we use left ventricular cavity volumes and regional strains obtained from speckle tracking 
echocardiography, along with invasive blood pressure measurements, to personalize the mechanics of 
a cardiac computational model. The patients considered suffer from dyssynchronous heart failure in 
which the timing of mechanical activation varies between the different regions of the heart. These 
variations are captured by the measured regional strains. However, in order to capture these regional 
differences in the model, it is essential to allow the contractility to vary in space as well as in time. We 
introduce the contractility as a high-resolution field and use adjoint optimization techniques to fit the 
model to the measured data at a cost the does not significantly depend upon the resolution of the 
contractility field. 
 
2. Materials and Methods 
The left ventricular reference geometry is derived from a segmented 4D echocardiographic image. To 
estimate the position of the myocardial walls throughout the cardiac cycle we employ a quasi-static 
formulation, which assumes that the cardiac walls are at equilibrium at each measurement point.  
 
The pressure measurements are used as a Neumann boundary condition at the endocardium, and the 
base is fixed in the longitudinal direction, but is allowed to move in the basal plane subject to a linear 
spring, which limits rotations.  
 
For the material model, we adapt a transversally isotropic version of the Holzapfel and Ogden strain 
energy function[1] with four material parameters (a, b, af, bf) as shown Eq. 1. These parameters can be 
tuned in order to obtain patient specificity: 
 

      (1) 
 
To model the active contraction of the muscle fibres, we apply the active strain framework[2], which 
assumes a multiplicative decomposition of the deformation gradient into an active and an elastic part. 
The active part represents the actual distortion of the microstructure and is in our case given by the 
simple relation in Eq. 2. 
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Here ef is the fibre orientation, which was assigned using a rule-based algorithm[3], and γ represents 
the relative shortening in the muscle fibre direction and will be referred to as the contraction field. 
 
Together, the four material parameters and the contraction field are used as control variables in the 
model-personalization process. The strain and volume measurements are fitted to the model by 
formulating the problem as a PDE-constrained optimization problem, where the objective functional 
represents the misfit between simulated and measured strains and volumes as shown in Eq. 3.  
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Here 𝑉! and 𝑉! represents the measured and simulated volume at measurement point i respectively, 
and 𝜀!,!!   and 𝜀!,!!  are the measured and simulated strain at measurement point i in the direction k 
averaged over segment number j. For each measurement point there are in total 51 strain 
measurements (3 components in the circumferential, radial and longitudinal direction, for each of the 
17 segments), and 1 volume measurement.  
 
The model personalization-process is divided into two phases: passive material parameter optimization 
during atrial systole and contraction field optimization during the remaining part of the cardiac cycle. 
The formulation of the problems is displayed in Eq. 4. 
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Here δW refers to the virtual work of all forces applied to the system, which vanishes in equillibrium, 
and λ is a regularization parameter.  
 
The method is fully parallelized and the underlying mechanics equations are solved using the finite 
element framework FEniCS[4]. To solve the optimization problems, we apply a gradient-based 
sequential quadratic programming algorithm were the gradient is computed by solving an 
automatically derived adjoint equation[5]. 
 
3. Results 
The method is verified using a synthetic data test with noise added to the strain and volume input. A 
prescribed sequence of contraction fields, together with a fixed set of material parameters are used to 
generate the synthetic strains and volumes which are used as input to the optimization. In both the 
noise and clean cases the displacement field is reproduced within a maximum error of less than 1.4 
mm.
 
We tested the method on multiple patients selected for cardiac resynchronization therapy(CRT), who 
suffer from dyssynchronous heart failure. The results of the data matching using clinical data show an 
excellent fit between measured and simulated data. Plots of a selection of strain curves and the 
pressure-volume loop for one of the patients are provided in Fig. 2. 
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We visualize the motion of the left ventricle throughout the cardiac cycle in Fig. 3 with mechanical 
stress along the muscle fibers as colormap. The simulation shows clear signs of dyssynchrony, which 
is also observed in the echocardiographic images.  

 

In Fig 4 we compare the motion of the model with the echocardiographic images used to calibrate the 
model at end-systole. The comparison shows that the model move in the same manner as what is 
observed in the image. Here we also visualize the contraction field.

 
4. Discussion and Conclusions 
We conducted parameter estimations on synthetic data in order to verify the method under ideal 
circumstances. Using synthetic strains and volumes with added noise, we were able to reproduce the 
synthetic displacement field within a maximum error of less than 1.4 mm.  
 
When applied to clinical data, results show an excellent fit with measured strains and volumes, and the 
model thereby incorporates the basic mechanical motion of a patient’s heart. Moreover, since the 
regional strains measure local mechanical motion, we are able to capture dyssynchrony. The need for 
validation of features computed from this computational model remains a challenge of their clinical 
use. One possible route is as mechanical stresses along the muscle fibres should be related to the 

Figure 2: Visualization of the motion of the left ventricle 
throughout the cardiac cycle with mechanical stress in along the 
muscle fibers as colormap. 
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Figure 1: Left figure shows the match between simulated and measured strain for 4 out 
of the 51 strain measurements. Right figure shows the simulated and measured 
pressure-volume loop.  
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metabolic processes in the heart, one could validate the computed mechanical stresses with the use of 
e.g PET imaging. Further work in this direction is needed. 
 

 
The adjoint optimization technique does not significantly depend on the number of control variables, 
and is therefore highly computational advantageous. Gradient-based optimization methods require 
derivative evaluation of the objective functional with respect to the control parameters. This evaluation 
typically increases in complexity with the number of control parameters. Using the adjoint method, we 
only have to solve the adjoint system, which is automatically derived using the symbolic 
representation inherited by FEniCS. 
 
Reducing the computational cost of personalizing the computational model is a key step towards 
translating modelling into clinical utility. Using models to compute mechanical features such as stress, 
which are currently not possible to measure, can provide us with more insight into all the mechanical 
signals that are likely to be important for remodelling. In terms of CRT this may lead to better patient 
selection and optimal lead placement. 
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Figure 3: Simulation of the contraction field overlaid on top of 
echocardiographic image at end-systole. 


