Model-driven
Information Flow Analysis
to Support Software Certification

Leon Moonen
joint work with Amir Reza Yazdanshenas

VSSE 2014

simula - by thinking constantly about it

simula - by thinking constantly about it

Safety monitoring and control systems

© 2014 Leon Moonen VSSE 2014, Grenoble, France

simula - by thinking constantly about it

Safety monitoring and control systems

© 2014 Leon Moonen VSSE 2014, Grenoble, France

simula - by thinking constantly about it

Safety monitoring and control systems

© 2014 Leon Moonen VSSE 2014, Grenoble, France

simula - by thinking constantly about it

Component-based architecture

L
ARARAARARA

= product family, mostly “one off’ products

= compose safety logic for particular installation
by configuring a network of standard modules

= clear separation of concerns, well-defined interfaces

= proprietary component composition framework
- runtime environment for communication/synchronization etc.
- ‘“statically” configured using XML files that describe
component instantiation, initialization and interconnections

= other characteristics:

- components: MISRA-compliant C code
- developed over 15-20 years

© 2014 Leon Moonen VSSE 2014, Grenoble, France 6

simula - by thinking constantly about it

Evolving requirements...

= customer specific options add crosscutting control logic

- inhibit, override, acknowledgements, manual operation via
screens ...

= additions to scale up the safety logic:

- cascading modules to handle more input %
or output ports than originally foreseen %
—5

Nl Ll

- cascading configurations to connect the safety

logic of related hazard areas :%]j_@_%:

VSSE 2014, Grenoble, France

© 2014 Leon Moonen

simula - by thinking constantly about it

Problem statement

increasingly complex configurations make it hard to
understand and reason about system behavior

Z
)
N\
- m @
LS

can we provide source based evidence that a given
actuator is triggered by the correct sensors?

© 2014 Leon Moonen VSSE 2014, Grenoble, France 8

simula - by thinking constantly about it

Tracking information flow

“find source based evidence that a given
actuator is triggered by the correct sensors?”

= IS there information flow from
the desired sensors to the selected actuator?

< are the desired sensors (input ports)

part of the backward program slice
for the selected actuator (output port)?

© 2014 Leon Moonen VSSE 2014, Grenoble, France 9

simula - by thinking constantly about it

Program slicing

= program slice: set of programs points (‘statements’) that
may affect values at point of interest (aka slicing criterion)

volid main () {
e ©O

i=1;
sum = add(sum, 1);
i = add(i, 1);
} —— um) (i O @
printf ("sum = %d\n", sum); ‘actuator’
printf ("i = %d\n", 1i); ’°°'t\~ — legend
) WD
entryaod) Cexitadd) actual-in

static int add(int a, int Db) { @

return a + b;

formal-in

11!

program dependence graph [src: CodeSurfer help]

© 2014 Leon Moonen VSSE 2014, Grenoble, France 10

simula - by thinking constantly about it

Overall approach
source —_— o
model — repositoni — presentation
| extraction 1
t)
Y ."feedback
feedback .., knowledge | «°
inference
create program track information flow visualize information flow
dependence model trough system at appropriate level
from artifacts using program slicing for users

© 2014 Leon Moonen VSSE 2014, Grenoble, France 11

simula - by thinking constantly about it

Challenge: heterogeneous systems %

Ceo

= systems are not just set of components 1\%/»

- actual behavior depends on composition & configuration
- literature focuses on analysis of homogeneous systems

= [ittle work that crosses language boundaries / incorporate information
from composition or coordination technology in analysis

% existing technology is programming language specific

é no support for “external” artifacts

© 2014 Leon Moonen VSSE 2014, Grenoble, France 12

simula - by thinking constantly about it

Challenge: heterogeneous systems

void main() {
int sum, I;

while (i<11){
sum = add (sum)

i = add(i, 1);

void main() {
int sum, I;

while (i<11){
sum = add (sum)

i = add(i, 1);

void main() {
int sum, I;

while) {
sum = a
i = add(4

void main() {
int sum, I;

while (i<11){
sum = add (sum)

i = add(i, 1);

input.c voter.c

© 2014 Leon Moonen VSSE 2014, Grenoble, France 13

simula - by thinking constantly about it

Challenge: heterogeneous systems

- actual behavior depends on composition & configuration

< %V“vcz
= system is not just set of components —\’%> |
- literature focuses on analysis of homogeneous systems

= |ittle work that crosses language boundaries / incorporate information
from composition or coordination technology in analysis

57 existing technology is programming language specific

i} no support for “external” artifacts

= our solution: reverse engineer one detailed system-wide
dependence model from all dependence models for the

various source and configuration artifacts
- Incremental approach, model merging to combine parts

© 2014 Leon Moonen VSSE 2014, Grenoble, France 14

simula - by thinking constantly about it

Model reconstruction approach

source code

C++
source code

Java
source code

Configuration
artifacts

Heterogeneous
Sources

© 2014 Leon Moonen

> ©
Analysis Tool %
Source Code
> Models
Ct (CDGs)
| >
Analysis Tool T
-
__________ |
[>; Java | Integrate
| Analysis Tool
-| Configuration Configuration
Analysis Tool Model

Model Recovery

Model Integration

VSSE 2014, Grenoble, France

System-wide

—1 Dependence

Graph (KDM)

Homogeneous
Model

15

simula - by thinking constantly about it

Model reconstruction approach

port-instance

|
|
|
) data dependency !

Q port instance - |
first use intercomponént

|

program point data dependency !

:

|

last may-kill port-type

ComponentC / program point date dependency

© 2014 Leon Moonen VSSE 2014, Grenoble, France 16

simula - by thinking constantly about it

System-wide information flow tracking

© 2014 Leon Moonen VSSE 2014, Grenoble, France 17

simula - by thinking constantly about it

Precision and scalability

= precision: identical results as CodeSurfer
- created identical component based and integrated versions
- random selection of slicing criteria, compared slices

= linear scaling w.r.t. LOC

System A B C D
Components 4 6 30 60
LOC 207 16181 54053 101393

> CodeSurfer CDG generation times (sec.) | 3.181 13.064 65.022 132.381

Model transformation time (sec.) 0.246 1.996 9.938 19.755
Nodes (KDM SDG) 2074 13787 61507 121197
Dependencies (KDM SDG) 3784 46276 216956 431042

© 2014 Leon Moonen VSSE 2014, Grenoble, France 18

simula - by thinking constantly about it

Precision and scalability

20 - SDG construction time (sec.) —+— 2 < 120000
Size of final SGD (#nodes) — x — ~D
-| 100000

15
S @
& - 80000 &
2 2
£ &
= a
S 0]
g 10 - 60000 2
o ©
17 k=
C et
S ©
2 I
o) -| 40000 ®

5

-| 20000
01 | | | | | 0
0 20000 40000 60000 80000 100000

System size (LOC)

© 2014 Leon Moonen VSSE 2014, Grenoble, France 19

simula - by thinking constantly about it

Using information flow for software
certification and comprehension

» nformation flow can be computed from dependence
graph using graph traversal (cf. program slicing)

= raw information flow is too detailed

= need to present at appropriate level of detail for users:

- safety domain experts: need system level and inter-component
views but treat components as black boxes

- developers: need inter- and intra-component abstractions that
allow them to drill down to relevant source code

© 2014 Leon Moonen VSSE 2014, Grenoble, France 20

simula - by thinking constantly about it

Interlude: capturing safety knowledge

= at highest lever, the desired overall safety behavior for
system is recorded as so called cause and effect matrix

S, S, ...|S,
A
%
a

- based on discussions between customer and safety expert
(variant on requirements elicitation)

© 2014 Leon Moonen VSSE 2014, Grenoble, France 21

simula - by thinking constantly about it

Show information flow to safety experts

= dependency matrices at system and component level
- provides survey info ’ = Immmmm
A: .. 6("1'1' [+ 1
- system level should correspond to p [EAEAEIEa K
cause and effect matrix used by |A,
safety expert to specify desired behavior

* inter-component information flow

- “slice through system” to = I F
show which sensor signals 1™ =37 -
trigger given actuator v ——|oIE
999 = = I
- detail for safety expert, 1"k e Ll SR =
survey info for developer) M E {0u2E
=: In3 | g S §

© 2014 Leon Moonen VSSE 2014, Grenoble, France 22

simula - by thinking constantly about it

Show information flow to developers

* intra-component information flow
- “slice through component”, shows conditional flow to output port

-
I Input !
| PUL oy
L _P_O_I't_ |
-0. Param >Prevlnh|b|tln| IOErr! = FALSE
ALType & 0x08
| on | |On e _) | AlarmVal |= ErrValue}———»| AlarmVal < + 0.0001 | IInhibitCntr < MAX IDLEI + /

I Clause ! ManualOverride EetChSum(AL) = CheckSum|
OprMode == MANUAL|

Chk(LVaIue) >0

|OErr != FALSE Param->AckALL

ChkSumIN == getCheckSum(pram->InputVal)
param->|OErr != FALSE

Param->LowSetFlag | AlarmVal <= Param->Limit| Param->InhibitOut

| ((AlarmStat != DisableALL) && (Measure == TRUE)) | Param->instance & DISPLAYOUT]|
[P

GlobalResetStat
PrevGlobalResetStat

revAlarmStat == AlarmStat|

Param->instance & DISPLAYOUT]

\

Param-> InhibitOut

© 2014 Leon Moonen VSSE 2014, Grenoble, France 23

simula - by thinking constantly about it

Five task-specific, interconnected,
layers of abstraction:

» system level inter-component
cause & effect network diagram -
#include <stdio.h> effect l
_ (actuator) component
#include “system_def.h”

inter-component

int main (void) { information flow
while (under(NDA)) {
printf(“nothing to see here\n”); component component |__
} cause & effect -
return(0);
} (effect)
eliilelein intra-component
info flow
main navigation \I,CO”di“O”
structure
source code

© 2014 Leon Moonen VSSE 2014, Grenoble, France 24

simula - by thinking constantly about it

Genericity

* reverse engineered system-wide dependence graph
can be used for all analyses based on PDG/SDG

= configuration analysis specific to Kongsberg Maritime
component framework configuration artifacts (XML)
- mostly parsing, also implemented Java / Spring version

= our slicer is specific to KDM-based SDGs, not application
- planned experiment with injecting our SDG back into CodeSurfer

= information flow visualization aimed at KM tasks

© 2012 Leon Moonen Model-driven Information Flow Analysis to Support Software Certification - Seminar at Chalmers (2012/06/19) 25

simula - by thinking constantly about it

N

= exploratory, qualitative study A
- 6 participants: developer / system integrator / safety expert

User evaluation

= sfructured interview with each participant (60-90min)
- 30 Likert-scale questions and 6 open questions
- researcher-administered, to stimulate discussion and Q&A
- transcribed & analyzed using open and axial coding

= overall feedback positive: intuitive, low learning curve
= various suggestions for refinement and extensions

» system integrator and safety experts: “what we actually
need is impact analysis on complete product family”
- retrofitting team: “backporting” changes to existing installations

© 2014 Leon Moonen VSSE 2014, Grenoble, France 26

.research laboratory |

System -wide product dependence graph (SPDG)

iy 4

: Prod,.Compp \ / Prod.Compg \ :
oi ,_—? i1 o1 /_:7
s | , 75 :

i2
k Component C /

© 2014 Leon Moonen VSSE 2014, Grenoble, France

Component B

Component N

simula - by thinking constantly about it
| (0]

Family
Dependence
Graph (FDG)

= combine SPDGs for all

products in family
- share components

= enrich with component
summary edges to
‘cache’ component level
information flow

= annotate with aftributes
(e.qg., slice size)

© 2014 Leon Moonen VSSE 2014, Grenoble, France 28

simula - by thinking constantly about it

What’s next? Guiding evolution!

= support evolution of the complete product family

= goal: evidence-based evolution recommendations
- reverse engineer dependence models for products and families
- Scalable and precise impact analysis of change scenarios
- develop method to quantify and compare impact
- use constraint programming to select evolution strategy that
minimizes impact (hence re-certification efforts)

» recommendation engine for evolution

v PhD started, PostDoc position available ©

© 2014 Leon Moonen VSSE 2014, Grenoble, France 29

simula

Questions &
Discussion

Leon Moonen
leon.moonen@computer.org
http://leonmoonen.com/

© 2014 Leon Moonen

- by thinking constantly about it

O
> XA

VSSE 2014, Grenoble, France

30

