Modeling intracranial pressure (ICP) during infusion test

Modeling intracranial pressure (ICP) during infusion test

...and what we can learn from back-of-the-envelope calculations

In the **classical** hypothesis, CSF flows from the choroid plexus to the arachnoid granulations

In the **glymphatic** theory, CSF enters the brain along penetrating arteries

In the microvessel theory, ISF/CSF is filtrated through

capillaries

In the microvessel theory, ISF/CSF is filtrated through

capillaries

The wall permeability of the BBB may be low, but CNS capillaries make up a massive surface area

 $A_{_{AG}}\!\approx 10^{\text{-4}}~m^{\text{2}}$

(Grzybowski et al. 2006)

 $A_{cap} \approx 10 \text{ m}^2$ (Uhlirova et al. 2006)

Our model is based on Multiple Poro-Elastic Theory (MPET) and Darcy's law

$$\mathbf{v} = -K\nabla p$$

Guo et al. 2017

Our model is based on Multiple Poro-Elastic Theory (MPET) and Darcy's law

Guo et al. 2017

The steady-state pressure equations are independent of tissue displacement

$$-K_a \nabla^2 p_a + \gamma_{ac}(p_a - p_c) = 0$$

$$-K_c \nabla^2 p_c + \gamma_{ac}(p_c - p_a) + \gamma_{ic}(p_c - p_i) = 0$$

$$-K_v \nabla^2 p_v + \gamma_{vc}(p_v - p_c) = 0$$

$$-K_i \nabla^2 p_i + \gamma_{ic}(p_i - p_c) = 0$$

$$\nabla \cdot \sigma(u) - \sum \alpha_x \nabla p_x = 0$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$-K_{a}\nabla^{2}p_{a} + \gamma_{ac}(p_{a} - p_{c}) = 0$$

$$-K_{c}\nabla^{2}p_{c} + \gamma_{ac}(p_{c} - p_{a}) + \gamma_{ic}(p_{c} - p_{i}) = 0$$

$$-K_{v}\nabla^{2}p_{v} + \gamma_{vc}(p_{v} - p_{c}) = 0$$

$$-K_{i}\nabla^{2}p_{i} + \gamma_{ic}(p_{i} - p_{c}) = 0$$

(1)

(2)

(3)

(4)

parenchymal tissue

venous blood
arterial
blood

(a)

$$S_{ac}$$

venous blood
capillary
blood
(blood
(c)

 S_{cv}
 S_{ev}

CSF/ISF
(e)

 CSF_{in}

 $\mathbf{v} = -K\nabla p$

$$-K_a \nabla^2 p_a + \gamma_{ac}(p_a - p_c) = 0$$

$$-K_c \nabla^2 p_c + \gamma_{ac}(p_c - p_a) + \gamma_{ic}(p_c - p_i) = 0$$

$$-K_v \nabla^2 p_v + \gamma_{vc}(p_v - p_c) = 0$$

$$-K_i \nabla^2 p_i + \gamma_{ic}(p_i - p_c) = 0$$

$$-K_i \nabla^2 p_i + \gamma_{ic}(p_i - p_c) = 0$$

$$-750 \text{ mL/min}$$

$$Q_{\text{in}}$$

$$Q_{\text{in}}$$

 $\mathbf{v} = -K\nabla p$

~ 1 mL/min

(1)

(2)

(3)

(4)

$$-K_{a}\nabla^{2}p_{a} + \gamma_{ac}(p_{a} - p_{c}) = 0$$

$$-K_{c}\nabla^{2}p_{c} + \gamma_{ac}(p_{c} - p_{a}) + \gamma_{ic}(p_{c} - p_{i}) = 0$$

$$-K_{v}\nabla^{2}p_{v} + \gamma_{vc}(p_{v} - p_{c}) = 0$$

$$-K_{v}\nabla^{2}p_{v} + \gamma_{ic}(p_{i} - p_{c}) = 0$$

$$(3)$$

$$-K_{i}\nabla^{2}p_{i} + \gamma_{ic}(p_{i} - p_{c}) = 0$$

parenchymal tissue

$$Q_{in}$$
 arterial blood

 S_{ac} (c)

 S_{cv} (v)

 S_{ev} (v)

 S_{ev} (v)

 S_{ev} (c)

 S_{ev} (c)

~ 750 mL/min

 $\mathbf{v} = -K\nabla p$ ~ 1.0 mL/min + (1.5 mL/min)

Time dependence is added for the infusion test

$$s_0 \frac{\partial p_a}{\partial t} - K_a \nabla^2 p_a + \gamma_{ac} (p_a - p_c) = 0$$

Time dependence is added for the infusion test

$$s_0 \frac{\partial p_a}{\partial t} - K_a \nabla^2 p_a + \gamma_{ac} (p_a - p_c) = 0$$

Fluid transfer between compartments can be assessed during the infusion test

Baseline values, before infusion

Fluid transfer between compartments can be assessed during the infusion test

Plateau-level during infusion test

$$S_{ce} = 0.01 \text{ mL/min}$$

We have access to more than 100 patient-specific meshes and boundary conditions

Pulsatility is not transmitted to the ISF compartment

Velocities up to 50 µm/sec observed in paravascular spaces

Brain waste removal by fluid flow in the glymphatic system

Rochester

Assume average net flow of 20 µm/sec in all PVS of a mouse

$$A_{PVS} = \pi (R_2^2 - R_1^2) = 10^{-4} \text{ cm}^2$$

Assume average net flow of 20 µm/sec in all PVS of a mouse

$$A_{PVS} = \pi (R_2^2 - R_1^2) = 10^{-4} \text{ cm}^2$$

 $V_{PVS} = 0.002 \text{ cm/sec}$

Assume average net flow of 20 µm/sec in all PVS of a mouse

$$A_{PVS} = \pi (R_2^2 - R_1^2) = 10^{-4} \text{ cm}^2$$

 $V_{PVS} = 0.002 \text{ cm/sec}$
 $Q_{PVS} = A_{PVS} V_{PVS} = 2*10^{-7} \text{ cm}^3/\text{sec} \approx 10^{-5} \text{ mL/min} = 0.01 \,\mu\text{L/min}$

Assume average net flow of 20 µm/sec in all PVS of a mouse

$$R_1 = 20 \ \mu m$$
 $R_2 = 60 \ \mu m$

$$Q_{PVS} = 0.01 \mu L/min$$

$$CSF_{prod} \approx 0.5 \, \mu L/min$$

Oshio et al. (2004)

Assume average net flow of 20 μ m/sec in all PVS of a mouse

CSF_{prod} ≈ 0.5 μL/min

 $A_{cross-seciton} \approx 0.5 \text{ cm}^2$

 $A_{cross-seciton} \approx 0.5 \text{ cm}^2$

 $Q = 0.5 \mu L/min \approx 8*10^{-6} cm^{3}/sec$

$$A_{cross-seciton} \approx 0.5 \text{ cm}^2$$

$$Q = 0.5 \mu L/min \approx 8*10^{-6} cm^{3}/sec$$

$$v = Q/A = 1.6*10^{-5} \text{ cm/sec} = 1.6*10^{-7} \text{ m/sec}$$

 $A_{cross-seciton} \approx 0.5 \text{ cm}^2$

 $Q = 0.5 \mu L/min \approx 8*10^{-6} cm^{3}/sec$

 $v \approx 100 \text{ nm/sec}$

$$A_{cross-seciton} \approx 0.5 \text{ cm}^2$$

$$Q = 0.5 \mu L/min \approx 8*10^{-6} cm^{3}/sec$$

 $v \approx 100 \text{ nm/sec}$

Holter et al. 2017: v ≈ 10 nm/sec

There is still a discrepancy between findings regarding convective flow in the parenchyma

Modeling infusion tests allows for investigation of theories regarding CSF production and absorption

Modeling infusion tests allows for investigation of theories regarding CSF production and absorption

Acknowledgements

Olivier Baledent Sylvie Lorthois Kent-Andre Mardal Pierre Payoux Marie Rognes Eric Schmidt Alexandra Vallet

thank you!