
Some Tools for Finding Deadlock-free Routings
in Computer Networks Based on Linear

Programming and Extensions

Ralph Lorentzen
ralphlo@simula.no

Tecnical Report 2016-03

May 23, 2016

Abstract

We consider an uncapacitated directed network where the nodes are
switches or CPU-s and the arcs are channels going from a port on one
switch/CPU to a port on another switch/CPU. The ports are assumed
to have sufficient bandwidth capacity to accommodate any traffic that
one may choose to route through them. There may be more than one
channel in each direction connecting two ports, and each physical chan-
nel may have subchannels called virtual channels. We describe several
approaches based on linear programming and some other approachesfor
finding deadlock-free short routes for a given set of required connections
between pairs of CPU-s. Some routes may have been specified before-
hand. We also consider extension of the models to reflect limits on the
maximal use of a single channel. Then we describe an approach to reroute
requirements when a single channel fails. Finally we look into the problem
of coupling together two or more networks where deadlock-free routings
exist for each subnetwork.

Keywords: directed networks, deadlocks, linear programming

1 Introduction
We consider an uncapacitated directed network where the nodes are switches
or CPU-s with many ports and the arcs are channels going from a port on one
switch/CPU to a port on another switch/CPU, see Figure 1. The ports are
assumed to have sufficient bandwidth capacity to accommodate any traffic that
one may choose to route through them. There may be more than one channel in
each direction connecting two ports, and each physical channel may have several
subchannels called virtual channels. Within a switch we are free to connect any
port to any other port.

A CPU may be connected to more than one switch, and more than one
CPU may be connected to one switch. In this network we have connection
requirements, each from an origin CPU to a destination CPU. We want to route

1



Switch/CPU Switch/CPUPort Port

Figure 1: Channels with two virtual channels connecting two ports

these requirements through a set of short directed routes so that the routing
is deadlock-free. The bandwidth of each requirement is specified to be one
bandwidth unit.

In order to conveniently model the connection requirements we augment the
network by artificial ports and artificial virtual channels. For each port in a
CPU we establish a corresponding artificial port. Between the (real) port and
its corresponding artificial port we establish an artificial channel with one virtual
channel in each direction, see Figure 2.

Port Art.
Port ...

Figure 2: Artificial port and corresponding artificial virtual channels in a CPU

In treating this problem it is useful to operate with a different network,
the virtual channel/dependency network. A pair of consecutive virtual channels
(ls, le) is called a dependency, see Figure 3. The virtual channel/dependency
network is the directed network (C,D) where the nodes are virtual channels
and the arcs are dependencies.

We have experimented with three different formulations of the problem where
we have had success with the last one only. Nevertheless, we shall for the sake
of completeness describe all three models.

For general networks the problem of finding the shortest deadlock-free paths
is NP-complete (see [1] where it is shown that deciding whether a deadlock-
free routing exists or not is NP-complete). For bidirectional networks we know,
however, that deadlock-free routings exist, but it is still difficult to find optimal
ones. Therefore we do not expect to find guaranteed optimal solutions for other
than very small (and uninteresting) problems, and we are currently satisfied
with solutions we can find using heuristics. We can, however, get an idea of the
quality of the solutions we find by comparing them with the solutions we get
when we just find shortest paths ignoring deadlock avoidance.

2



2 Model 1 – Notation
We introduce the following additional notation:

3



Mr set of artificial virtual channels where requirement r can originate
Nr set of artificial virtual channels where requirement r can terminate
Ds

h set of dependencies that start in switch h
De

h set of dependencies that end in switch h
lsd the start virtual channel node for dependence arc d
led the end virtual channel node for dependence arc d
t the number of requirements
c the number of requirements plus the number of channels in the network

ls le
Switch/CPU Switch/CPU

Switch

Figure 3: Dependency (ls, le)

3 Model 1 – Formulation
The deadlock-free routing problem is formulated as a mixed integer program-
ming problem. We introduce the following variables:

yd total flow in dependency d, unrestricted
xl deadlock avoidance number associated with virtual channel node l, unrestricted
fdr flow associated with requirement r in dependency d, ≥ 0
δd 0 if dependency d is used, 1 otherwise
z total use of dependencies

fdr is fixed for requirements r with preset routing. δd is not generated for
preset dependencies.

The variables xl are introduced in order to model deadlock avoidance. A depen-
dence cannot be used unless its end virtual channel node has an x-value larger
than the x-value of its start virtual channel node.

The problem becomes:

minimize z =
∑
d

yd (3.1)

subject to

−yd +
∑
r

fdr = 0 for all dependencies d (3.2)

yd + tδd ≤ t for all not preset dependencies d (3.3)

yd − cδd − xled + xlsd ≤ 0 for all dependencies d (3.4)∑
lsd∈Mr

fdr = 1 for all requirements that are not preset (3.5)

4



∑
led∈Nr

fdr = 1 for all requirements that are not preset (3.6)

∑
d∈D;lsd=l

fdr −
∑

d∈D;led=l

fdr = 0 for all l and all r without preset routing (3.7)

(3.2) defines the total use of a dependency. (3.3) and (3.4) secure that no
deadlock occur. (The x-s cannot increase around a cycle of dependencies.)
(3.5) and (3.6) secure that the requirements are satisfied. (3.7) secures that the
input is equal to the output for each virtual node (balance equations).

4 Model 1 – Solution method
We have used the open source linear programming package GLPK. Using
GLPK’s integer programming option is hopeless since we cannot take advantage
of the characteristics of the problem. Therefore we have written our own depth-
first search approach where we solve a sequence of linear programming (LP)
relaxations. The root node in the search tree corresponds to the solution of the
relaxed LP where all δd -s are allowed to be any number between 0 and 1. The
next node to be selected in the search tree is based on finding a maximum yd
(i.e. a most used dependence) with fractional δd. We round this δd to zero and
solve the corresponding relaxed problem. If the problem is feasible, we proceed
to a next maximal yd with fractional δd and round the δd to zero. We continue
with this until we arrive at a situation where rounding to zero gives an infeasible
problem. Then we round the most recently zero-rounded δd to one instead. If
this gives a feasible solution, we continue rounding a new δd to zero. If not, we
step up the search tree unfixing δd till we reach the most recent problem where
a δd was rounded to zero. We round this δd to one instead and continue from
there.

We cannot hope to find a solution which minimizes z, but by stopping at
the first feasible solution with integer δd-s the hope was to find a reasonably
good solution. For small toy problems (e.g. for a two-dimensional torus with 9
switches, 9 CPU-s and 72 connection requirements) this works fine. However,
for larger problems GLPK gets into numerical trouble after 700-800 roundings.
So we would need a more robust and powerful LP package if we want to explore
this approach further. We have also analyzed the branch-and-bound process
and found that the minimization of the sum of the y-s implies that the same
loops and infeasibilities are formed again and again. This gave us the motiva-
tion for searching for an alternative approach.

Assigning virtual channel numbers in acyclic networks Later we shall
need a quick way of assigning numbers to the virtual channels in an acyclic
virtual channel/dependency network such that the channel number of the end
virtual channel of a dependency has a higher number than the start virtual
channel of the dependency. We describe the approach here since it uses the
same notation that was used in Model 1. We easily achieve such numbers by
solving the following LP problem:

minimize z =
∑
l

xl (4.1)

5



subject to

xled − xlsd ≥ 1 for all dependencies d (4.2)

where xl ≥ 0.

5 Model 2 – Formulation, solution method and
results

The variables are the same as in Model 1 except that we exclude the x-variables.
The constraints are the same except that constraints (3.4) are replaced by

∑
d∈C

δd ≥ 1 where C is a cycle of dependencies. (5.1)

Here (5.1) secures that we get no cycles in the virtual channel/dependency
network.

We again use GLPK and use in principle the same search method that
we used for Model 1. The number of constraints (5.1) is, however, vast. We
therefore generate them on the fly as we need them during the solution process.
Whenever we have selected a δd to be rounded to zero we check whether
the dependence d together with other other dependencies with δ rounded to
zero forms cycles in the network. If it does, we augment the model with the
corresponding cycle avoidance constraints and round δd to one and proceed. If
not, we round δd to zero and proceed.

We have successfully found solutions for a 5x5 torus with one or two virtual
channels per physical channel and where there are one CPU attached to each
switch and a connection requirement for each ordered pair of CPU-s. It is worth
noting that the number of (5.1) constraints generated is fairly low, namely 164
in the one-virtual-channel case and 1122 in the two-virtual-channel case. In the
two-virtual-channel case it is known that there is a multi-shortest path solution
which is deadlock-free. The deadlock-free solution that we found turned out to
be a multi-shortest path solution.

We see from the model description that if we have D dependencies involving
switches only, R requirements, and L virtual channels per physical channel,
the number of constraints is (D + L + 2)R + D plus the number of generated
cycle avoidance constraints which cannot be determined beforehand, and the
number of variables is DR+2D. It is the terms DR and LR which blow up the
problem. This again motivated us to search for an alternative approach which
scales better.

6 Model 3 – Notation and formulation
We introduce the following additional notation:

M a large positive number

6



p path of dependencies along which a requirement may be routed

Variables in the problem:

vpr flow along path p covering requirement r, ≥ 0
δd 0 if dependency d is used, 1 otherwise
sr slack variables representing unsatisfied requirements, ≥ 0

The mixed integer linear programming problem becomes:

minimize
∑
p,r

lpvpr +M
∑
r

sr (6.1)

subject to:∑
p∈r

vpr + sr ≥ 1 for all requirements r (6.2)

∑
r,p∈d

vpr + tδd ≤ t for all not preset dependencies involving switches only

(6.3)∑
d∈C

δd ≥ 1 for all cycles C of dependencies (6.4)

7 Model 3 – Solution method
The problem as formulated above has a huge number of vpr-variables and cycle
avoidance constraints (6.4). In order to obtain an approach which scales we
generate on the fly during the solution process only vpr-variables which are of
current interest, and only cycle avoidance constraints which secure deadlock-free
routings.

We use the same depth-first search as we used in Model 2. In every node
in the search tree that we process we solve the LP with dynamic generation
of vpr-variables. We first solve the LP with the already generated vpr-s and
cycle avoidance constraints. As in the simplex algorithm we then try for each
requirement to introduce into the problem a path variable vp which does not use
dependencies d with δd = 1 and which has minimum relative cost. From linear
programming basics we know that the relative cost cp of path variable vpr is

cpr = (
∑

d∈p(r)

(1− πd))− πr (7.1)

where πr is the dual variable associated with constraint (6.2) and πd is the
dual variable associated with constraint (6.3). We know further from linear
programming basics that after the optimization πr ≥ 0 and that πd ≤ 0.

Finding a path variable covering requirement r with minimum relative
cost amounts to finding a shortest path from requirement r’s origin to its
destination where the length of dependence arc d is 1, and where we exclude
using dependency arcs d with δd fixed to one. If we find path variables vpr with

7



cpr < 0 we introduce them into the problem, run the optimization again and
recalculate the relative costs πr. We continue in this way until we cannot any
longer find path variables with negative relative costs.

The number of constraints is D + R plus the number of generated cycle
avoidance constraints. The number of δd-variables is D. The number of path
variables and cycle avoidance constraints is potentially enormous, but practice
shows that only a tiny subset of path variables and cycle avoidance constraints
will be generated during the solution process. So our experience is that Model
3 scales very well.

Using our algorithm we shall in principle either find a deadlock-free solution
or conclude that no deadlock-free solution exists after a finite number of
computations. Of course, if no solution exists, the running time will be
unacceptable because of NP-completeness, so we shall always set an upper bound
on the number of LP-s that will be run. In our experiments we have restricted
ourselves to symmetric problems where a deadlock-free solution is known to
exist. We have not been able to prove that in this case the problem of finding
the shortest deadlock-free solution is NP-hard, but our guess is that it is.

8 Model 3 – Results
In experimenting with the models we have used the open source linear program-
ming library GLPK installed on a Lenovo PC with an
Intelr Core TM i7-3520M CPU @ 2.90GHz4 processor. We have limited our-
selves to networks with one virtual channel per physical channel since these are
the most difficult networks to find deadlock-free routings in. We have focused
on two-dimensional and three-dimensional symmetric tori of switches with one
CPU attached to each switch and where there is a connection requirement in
both directions between all pairs of CPU-s.

Two-dimensional tori
To run the model with all the requirements included takes unacceptable long
time. Therefore we proceeded as follows:

(i) We first ran the model by only including requirements between pairs of
CPU-s attached to switches separated by two channels.

(ii) The dependencies used in (i) form an acyclic network. We assign numbers
to the virtual channels as described in Section 4 and augment the
subnetwork of dependencies used in (i) with all dependencies where the end
virtual channel has a higher number than the start virtual channel. Then
we ran the model with all requirements where we allowed dependencies in
this extended subnetwork only.

(iii) If we experienced unsatisfied requirements in (ii), we ran the model
with these unsatisfied requirements only where we fixed for use all the
dependencies used in (ii) but allowed for additional dependencies to be
used. If we still should get unsatisfied requirements (which we have
not experienced in practice), we would unfix a fixed dependency with
the smallest thruput and include all the requirements which use this
dependency into the set of unsatisfied requirements and run the model
again. We would continue in this way until we satisfy all the unsatisfied

8



10x10 torus 11x11 torus 12x12 torus
Run time (sec) 144 257 225

LP-s run 478 396 306
Cycle cuts 1703 1596 826

Sum of path lengths 44274 73861 114346
Relaxed solution 40100 65340 103824
Percent increase 10 13 10

13x13 torus 14x14 torus 15x15 torus
Run time (sec) 732 616 2045

LP-s run 558 412 752
Cycle cuts 2738 1148 4162

Sum of path lengths 176572 252456 370666
Relaxed solution 156156 230692 327713
Percent increase 13 9 13

Table 1: Results for two-dimensional tori

requirements.
(iv) Then we ran the model with all requirements where we allowed for use the

depencencies used in (ii) and (iii).
(v) Finally we ran the model ignoring the cycle avoidance constraints. This is

simply solving the multi-shortest-path problem. This was done in order to
be able to calculate the percentage increase in the sum of path lengths for
our solution compared to the sum of path lengths for the multi-shortest-
path solution. This gives a conservative estimate of the difference between
the minimal sum of path lengths with or without cycle avoidance since we
know that in general the minimal path length sum will increase when we
require deadlock avoidance.

The results are given in Table 1. Reported LP-s run and cycle cuts generated
are reported for (i) and (iii). (ii) and (iv) are just shortest path calculations in
acyclic networks.

9



5x5x5 torus 6x6x6 torus
Run time (sec) 805 4653

LP-s run 826 1590
Cycle cuts 3440 10501

Sum of path lengths 44575 177594
Relaxed solution 40750 177594
Percent increase 9 9

Table 2: Results for three-dimensional tori

Three-dimensional tori
For an nxnxn torus we proceeded as follows:

(i) We first ran the model by only including (n-1)x(n-1)x(n-1) requirements
between pairs of CPU-s attached to switches separated by two channels.

(ii) Then we ran the model with all requirements between pairs of CPU-s
attached to switches separated by two channels minus the requirements
used in (i) where we fixed for use all dependencies used in (i) but allowed
for additional dependencies to be used.

(iii) Then we ran the model with all requirements minus all requirements
between pairs of CPU-s attached to switches separated by two channels
where we allowed dependencies used in (i) and (ii) only.

(iv) If we experienced unsatisfied requirements in (iii), we ran the model
with these unsatisfied requirements only where we fixed for use all the
dependencies used in (i) and (ii) but allowed for additional dependencies
to be used.

(v) Finally we ran the model ignoring the cycle avoidance constraints.

The results are given in Table 2.

9 Putting a common limit on the virtual channel
thruputs

One problem with a deadlock-free routing is that some channels may be
overused. Therefore we have augmented Model 3 with constraints which put
a common upper bound on the traffic that can be channeled through a single
virtual channel. The revised model consists of the objective function and all the
constraints in Model 3 augmented with the following constraints:

∑
r,p∈l

vpr ≤ k for all virtual channels l (9.1)

As an example we have run this model for a 10x10 torus with one virtual
channel per physical channel. The results are given in Table 3 where we use
the procedure numbering used above for two-dimensional tori. Since we are
are solving the problem in steps we have incorporated an upper bound in the
relevant steps (i) and (ii). When we put an upper bound of 6 in step (i) the

10



Thruput Thruput Max thruput Max thruput in Sum of
bound in (i) bound in (ii) in (i) final solution path lengths

∞ ∞ 8 405 44274
7 350 7 395 44232
7 300 7 373 44282
7 250 7 356 44112
7 200 7 366 44110
6 - - - -

Table 3: Results with channel thruput bounds

model just runs and runs which indicates that the problem we try to solve in
this step probably has no feasible solution.

10 Recovery after link fault
We shall here look into the problem where one physical channel fails in a network
where we have a deadlock-free routing. We want to reroute the requirements
such that we deviate as little as possible from the original routing. We propose
the following algorithm:

(i) In the acylcic virtual channel/dependency network consisting of the
dependencies used in the error-free routing we assign channel numbers
as described in Section 4.

(ii) Remove from the topology and from the set of dependencies used in the
error-free routing all dependencies which involve the failed channel.

(iii) Augment the remaining set of used dependencies with all dependencies
which do not involve the failed channel and where the number of the end
channel is larger than the number of the start channel. Run Model 3 where
we allow the resulting set of dependencies only, and where we give a bonus
to the dependencies used in the error-free routing.

(iv) If we experience uncovered requirements in (iii), we run the Model 3 for
the set of uncovered requirements where we fix for use all requirements
used in (iii), but allow for use all other error-free dependencies.

(v) If we still experience uncovered requirements, we unfix one of the depen-
dencies fixed for use which has the lowest thruput, add those requirements
which used it to the set of uncovered requirements, and repeat (iv). Con-
tinue in this way until all requirements are covered.

We have used this approach on the 10x10 torus as an example where we have
removed as failed the most used channel in the existing deadlock-free routing
which had pathlength sum 44274. The rerouting around the failed channel gave
a solution with pathlength sum 45006.

11



11 Primal methods
What characterizes the heuristics we have described so far is that they are ’dual’
in the sense that we iterate through a series of infeasible solutions until we
hopefully arrive at a good feasible solution. The disadvantage is that available
processing time may not be sufficient to reach a feasible solution and we are
left with nothing. Therefore we should look for primal heuristics, i.e. heuristics
where we from an initial (low quality) feasible solution iterate through a series
of feasible solutions towards a ’local optimum’ that the heuristic cannot improve
upon.

One primal approach that comes to mind is to solve the problem for a sub-
network where it is easy to find a feasible solution and iteratively try to improve
on this solution. For e.g. tori (complete or amputated) candidate subnetworks
may be cylinders or grids. For general symmetric networks spanning trees may
form initial subnetworks. We shall describe how we can iterate from any span-
ning tree solution. It is shown in [2] that that the problem of finding an optimal
spanning tree solution is NP complete even if all the channels have equal length.
Whether the problem is pseudopolynomial or not is not known to the author.
We shall now describe the heuristic we propose. Since a spanning tree is in
general a rather meager subtopology we cannot expect that we get very good
solutions. Therefore we shall not treat this topic in detail. We shall focus on
symmetric networks where each channel has one layer only and where the re-
quirements are symmetric also. Here is the heuristic we have implemented.

1 Fix an initial spanning tree in the undirected switch/channel network, for
example an Up*/Down* spanning tree and calculate the objective function for
the tree.

2 Select an out-of-tree channel which has not been selected earlier and include
it tentatively in the spanning tree. This channel will form a circle together with
in-tree channels.

3 Remove tentatively one by one of the in-tree channels in the circle so that we
find a series of revised spanning trees. For each revised spanning tree calculate
the objective function. Save the best revised spanning tree.

4 Go to 2 and continue until we have examined all out-of-tree channels and save
the revised spanning tree with the best value of the objective function.

5 When we have exhausted all out-of-tree channels we go to 1 where we have
replaced the initial spanning tree with the best spanning tree we have found so
far. Continue in this way until we do not experience any improvement.

6 Replace the undirected channels in the final tree by two directed channels, es-
tablish the corresponding acyclic channel/dependency network and assign chan-
nel numbers as described earlier.

7 Finally augment the network found in 6 with all dependencies where the end
channel has a higher number than the start channel and route all requirements
along shortest paths in this acyclic network.

12



This heuristic is not guaranteed to give an optimal tree when we reach step 5.
A simple example that shows that the tree can be suboptimal is the network
with requirement 1 between all pairs of switches and with channel lengths equal
to 1 and where the switched are numbered 1, 2, 3, 4, 5, 6, and the channels
are (1,2), (2,3), (3,4), (4,5), (4,6), (2,5), (2,6). The initial tree is (1,2), (2,3),
(3,4), (4,5), (4,6) with value 29. Symmetry implies that we can limit ourselves
to consider (2,5) as the out-of-tree channel to be introduced to create the next
tree. The alternative in-tree channels to be removed in order to create the next
tree are (4,5), (2,3) and (3,4). This gives three new trees with values 32, 32, and
29 which means that the heuristic terminates with the initial tree. The optimal
tree, however is (1,2), (2,3), (3,4), (2,5), (2,6) with value 28.

12 Coupling together two or more symmetric
networks with known deadlock-free routings

We propose the following algorithm for the coupling together of n networks with
known deadlock-free routings:

(i) For the combined virtual swith/channel network make an undirected
network by identifying the channels (s, s′) and (s′, s).

(ii) Find the longest spanning tree in this undirected network where the length
of each symmetrized dependency is set equal to the sum of the utilizations
of the two components of the symmetrized channel.

(iii) Expand the undirected network back to the corresponding directed
network where the spanning tree will expand to a directed acyclic
subnetwork, create the corresponding acyclic channel/dependecy network,
assign channel numbers as described earlier, and augment the acyclic
subnetwork with all dependencies where the end channel has a higher
number than the start channel.

(iv) Route all requirements along shortest paths in this extended acyclic net-
work.

In (iv) it is of course possible to give a bonus to those dependencies used in the
deadlock-free routings in the component networks dependent on how much they
were used.

As a small experiment we coupled together two 5x5 two-dimensional tori with
one CPU associated with each switch and with one two-way bridge channel. We
had a requirement of 1 between every ordered pair of CPU-s. If we did not use
the expansion described in (iv), we obtained a total usage of dependencies equal
to 12904 and used 140 dependencies. When we used the expansion described
in (iv), we obtained a total usage of dependencies equal to 10512 and used 329
dependencies. Of course, this approach is polynomial, and can be run for a
high number of large component networks with any set of bridging channels in
reasonable time.

13



In lieu of going via the undirected network in (i), one could try to find a
maximum acyclic network directly. This problem is NP complete [3] and good
approximate algorithms are hard to find [4].

13 Final remarks
Our input format also allows for the registration of (geographical) areas together
with area restrictions on the paths for each individual requirement, a service level
for each individual requirement together with a specification of layers allowed
for each service level, bandwidth capacities for the individual ports, an upper
bound on the number of layers each individual port can accommodate, and
bandwidth specification for each individual requirement.

14 Acknowledgements
The author wants to thank O.Lysne, S.A.Reinemo, and T.Skeie for helpful
discussions and suggestions. The method used in Model 3 is well-known and
is called ’branch-and-cut-and-generate’. The challenge has been to write the
software needed for our problem. The author wants to thank Y.Halbwachs,
T.V.Stensby, Ø.Hjelle, and T.Dreibholz for all the time and energy they have
spent helping me master the intricacies of advanced C++ programming and
incorporating the use of the Boost library.

14



15 References
[1] S.Toueg and K.Steiglitz, Some complexity results in the design of deadlock-
free packet switching networks, SIAM Journal of Computing, Vol.10, No.4,
November 1981.

[2] D.S.Johnson, J.K.Lenstra and A.H.G. Rinnoy Kan, "The complexity of
the network design problem", Networks, Vol.8, 1981, pp 279-285.

[3] R.M.Karp, "Reducibility among combinatorial problems", pp. 85-
103 in Complexity of Computer Computations R.E.Miller and J.W.Thatcher,
Eds.Plenum, New York, 1972.

[4] V.Guruswami, R.Manokaran, P.Raghavendra, "Beating the Ran-
dom Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph",
https://www.cs.cmu.edu/ venkatg/pubs/papers/mas.pdf

15


