
Future Network and MobileSummit 2013 Conference Proceedings
Paul Cunningham and Miriam Cunningham (Eds)
IIMC International Information Management Corporation, 2013
ISBN: 978-1-905824-36-6

Poster Paper

Reducing Internet Transport Latency for
Thin Streams and Short Flows

Abstract: The present Internet limits the performance of applications that need real-
time interaction. This is in part because the design of the network has been optimised
to boost throughput, maximising efficiency for bulk applications. However, changes
in use have resulted in that an increasing number of applications now depend on timely
delivery. One of the targets of the RITE project is to reduce internet transport latency
in support of such applications. Initial results from the project on how end nodes can
be optimized for more timely error recovery are presented in this poster.

Keywords: Latency, TCP, thin streams, short flows, loss recovery

1. Introduction
Historically the Internet community has worked to improve throughput and resource
utilisation. We believe that the time is now ripe for research to focus instead on latency,
because there are more and more applications and scenarios where low latency is critical:
In financial trading, a millisecond less latency is worth up to tens of millions of Euros
per year to a major brokerage firm; in multiplayer online games, increased end-to-end
delays severely harm the perceived service quality; in interactive multimedia services,
like immersive video conferencing, quality and understanding is reduced if latency is
high; in general interactive use of the Internet (e.g. Web 2.0 applications), which
typically involves sequences of numerous small objects, each one can get held up in
buffers occupied by other traffic, resulting in cumulative delays of seconds rather than
milliseconds. The common feature of all the above is that latency matters. The focus
on throughput at all costs is no longer appropriate partly because the extra capacity
being deployed means that increased utilisation is no longer the most critical research
topic, and partly because delay-sensitive applications often need to send less than the
network allows.

To meet the needs of an increasing share of flows that require low latency transfer
the RITE FP7 project aims to develop, deploy and evaluate novel mechanisms that can
reduce end-to-end transmission latency experienced by interactive applications in every
leg of the network. This poster introduces initial results on some of the mechanisms that
are currently under study within RITE, focusing on mechanisms that can be deployed
at the end nodes in support of thin streams and short flows. In particular, two ongoing
works to optimize error recovery are introduced and initial performance results are
presented.

2. Loss Recovery Optimizations
TCP (and SCTP) uses two mechanisms to detect segment loss. First, if a segment is
not acknowledged within a certain amount of time, a retransmission timeout (RTO)
occurs, and the segment is retransmitted. The RTO is based on measured round-trip
times (RTTs) between the sender and receiver. Second, when a sender receives dupli-
cate acknowledgments, the fast retransmit algorithm infers segment loss and triggers a

Copyright c© The authors www.FutureNetworkSummit.eu/2013 1 of 4

retransmission. Duplicate acknowledgments are generated by a receiver when out-of-
order segments arrive. As both segment loss and segment reordering cause out-of-order
arrival, fast retransmit waits for three duplicate acknowledgments before considering
the segment as lost.

Application-limited streams will in many cases not probe for bandwidth and expand
the congestion window when using congestion-controlled transport. The effect is that
mechanisms that were built in for speedy recovery of lost segments, like fast retransmit,
will not be triggered for such streams, leaving all losses to be recovered by slow timeouts.
For time-dependent applications, this is not good [1]. Below, we describe two ongoing
works for improving this situation.

2.1 RTO restart
The current RTO management algorithm in TCP (RFC6298 [2]) recommends that
the retransmission timer is restarted when an ACK that acknowledges new data is
received and there is still outstanding data. The restart is conducted to guarantee that
unacknowledged segments will be retransmitted after approximately RTO seconds.

This approach causes retransmissions to occur RTO seconds after the last ACK has
been received, not RTO seconds after the transmission of the lost segment(s). In most
cases, this adds approximately one round-trip time (RTT) to the loss recovery time. If
the ACK that triggers the restart also is a delayed ACK, then the total loss recovery
time can become RTO + RTT + delACK, where delACK corresponds to the receiver’s
delayed ACK setting. This delay can be significant for time-sensitive applications.

To enable faster loss recovery for thin streams and short flows we have proposed an
alternative restart algorithm (RTO restart) for situations where fast retransmit does
not apply (less than four packets are outstanding). By resetting the timer to ”RTO -
T earliest”, where T earliest is the time elapsed since the earliest outstanding segment
was transmitted, retransmissions will always occur after exactly RTO seconds. Further
details on the RTO restart algorithm can be found in [3].

The RTO restart algorithm has been implemented in the Linux 3.7 kernel. Figure 1
illustrates the effect of the algorithm. The experiment was conducted in a setup with
three machines, where the traffic between the sender and the receiver passed through
the third machine where the KauNet1 network emulator introduced 1% random packet
loss and a varying path propagation delay with a mean of 200ms. The figure compares
the results with and without RTO restart in runs where a loss occured for at least one
of the last three packets of the flow (i.e. flows where RTO restart can have an effect).
As can be seen in the figure, RTO restart reduces the recovery time by roughly one
RTT.

2.2 Live game server evaluation of thin-stream retransmission mechanisms
Below we describe two mechanisms to optimize thin-stream retransmissions and eval-
uate them on a ”live” game server for Funcom’s Massively Multiplayer Online Game
(MMORPG) ”Age of Conan”2. In our implementation of the two evaluated mecha-
nisms, the sender performs a check for how many packets the stream has ”on the wire”.
If the number of outstanding packets is less than or equal to 4, the stream is considered

1http://www.kau.se/KauNet
2http://www.ageofconan.com

Copyright c© The authors www.FutureNetworkSummit.eu/2013 2 of 4

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

0	 10	 20	 30	 40	 50	

Fl
ow

	 C
om

pl
e*

on
e	
Ti
m
e	
[m

s]
	

Flow	 Size	

w/o	 RTO	 restart	

RTO	 restart	

Figure 1: Flow completion time as a function of flow length, with and without RTO restart.

90 / JULY 2012 / WWW.LINUXJOURNAL.COM

FEATURE TCP Thin-Stream Modifications: Reduced Latency for Interactive Applications

The Mechanisms Applied in the
Age of Conan MMORPG
We’ve successfully tested the thin-
stream modifications for many scenarios
like games, remote terminals and audio
conferencing (for more information, see
the thin-stream Web page l isted under
Resources) . The example I use here to
show the effect of the modif icat ions

is f rom a game server, a typical
th in-stream appl icat ion.

Funcom enabled the modifications
on some of its servers running Age of
Conan, one of its latest MMORPG games.
The network traffic was captured using
tcpdump. The difference in retransmission
latency between the modified and the
traditional TCP is shown in Figure 4.

Figure 4. Modified vs. Traditional TCP in Age of Conan. The box shows the upper and lower quartiles
and the average values. Maximum and minimum values (excluding outliers) are shown by the drawn
line. The plot shows statistics for the first, second and third retransmissions.

LJ219-July2012.indd 90 6/21/12 1:55 PM

Figure 2: Modified vs. Traditional TCP in Age of Conan. The box shows the upper and
lower quartiles and the average values. Maximum and minimum values (excluding outliers)
are shown by the drawn line. The plot shows statistics for the first, second and third retrans-
missions.

as unable to trigger fast retransmit, and will enable the thin-stream retransmission
mechanisms. The two evaluated mechanisms are as follows:

1. Perform a ”fast retransmit” on the first dupACK, thus reacting on the first indi-
cation that loss has happened.

2. Do not exponentially increase the RTO until 6 retransmissons using the base RTO
has been performed, thus increasing the chance of recovering the segment without
extreme delays.

For a detailed description and lab evaluations of the mechanisms, see [4].
For the evaluation presented below, the mechanisms were deployed in a ”live” game

server. Two traces were captured on the server side by Norwegian game company
Funcom3. One of the traces used the regular TCP settings, in the other, the thin-
stream modifications were enabled.

From the captured one-hour trace from the Funcom server, we saw more than 700
players (746 for the traditional and 722 for the modified TCP tests), where about 300

3http://www.funcom.com

Copyright c© The authors www.FutureNetworkSummit.eu/2013 3 of 4

streams in each experiment experienced loss rates between 0.001% and 10%. Figure 2
shows the results from an analysis of the three first retransmissions. When the data
segment is recovered after only one retransmission, the mechanisms have no effect. In
this case, the average and worst-case latencies are still within the bounds of a playable
game. However, as the users start to experience second and third retransmissions,
severe latencies are observed in the traditional TCP scenario, whereas the latencies in
the modified TCP test are significantly lower. The effect for the end-user is that the
effect of application layer stalls caused by subsequent losses of the same data segment
is drastically reduced.

3. Conclusions
We have provided a short introduction to the importance of reducing latency for in-
teractive Internet applications, which is the foundation for the RITE FP7 project. To
exemplify the project’s work, we have presented two examples of preliminary work that
focuses on reducing latency from an end-system perspective. Our results show that the
traffic patterns generated by interactive applications need special consideration in the
transport protocols, and that significant latency reduction can be achieved by consid-
ering such needs in the protocol design.

4. Acknowledgements
This work was funded by the European Community under its Seventh Framework
Programme through the Reducing Internet Transport Latency (RITE) project (ICT-
317700). The views expressed are solely those of the author.

References
[1] C. Griwodz and P. l. Halvorsen, “The fun of using TCP for an MMORPG,” in Pro-

ceedings of the 2006 international workshop on Network and operating systems support
for digital audio and video NOSSD AV 06, p. 1, ACM Press, 2006.

[2] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s retransmission
timer.” IETF RFC 6298, june 2011.

[3] P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl, “TCP and SCTP RTO restart.”
Internet Draft draft-ietf-tcpm-rtorestart, work in progress, Feb. 2013.

[4] A. Petlund, Improving latency for interactive, thin-stream applications over reliable
transport. PhD thesis, Simula Research Laboratory / University of Oslo, Unipub,
Kristian Ottosens hus, Pb. 33 Blindern, 0313 Oslo, December 2009.

Copyright c© The authors www.FutureNetworkSummit.eu/2013 4 of 4

