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Abstract 

Quality of service guarantees for multimedia communication 
systems have been considered on several abstraction levels. In the 
multimedia networkingfield it is typical to identi3 the minimal QoS 
requirements of an application to save resources by guaranteeing 
its functionality. Many of these applications can operate in spite of 
an imperfect delivery of media data, while other applications such 
as distributed databases or distributedjlesystems consider perfect 
QoS necessary but accept delay. The basic problems of the latter is 
the consistency of their data, while the former require a consistent 
perception of the content. More generically, both QoS requirements 
can be interpreted as a problem of maintaining a consistent system 
state. Consequently we assume that many distributed applications, 
including most distributed multimedia applications, can fu@l their 
tasks in spite of imperfect consistency, Since the application 
requirements differ widely, the elements that make up 
“consistency” must be separated and classified. This paper 
introduces Consistency QoS and proposes a classification of 
elements that determine an application’s consistency requirements. 
The low level QoS requirements that these separate parameters rely 
on are shown, and example parameter sets for application classes 
are given. 

1. Introduction 
The number of multimedia communication systems has 

increased rapidly in recent years. These systems have to 
handle data types that are different from traditional data 
types like text or HTML files and therefore require a 
different behaviour of the network and the applications. 
Limited bandwidth, for example, is annoying but rarely 
critical for file transfer. However real-time playback of 
video and audio streams becomes usually impossible if it 
falls short of a lower bandwidth limit. In order to solve this 
problem, quality of service (QoS) mechanisms for 
multimedia communication systems have been considered 
on several abstraction levels. The use of these mechanisms 
allows distributed applications to handle multimedia 
contents. 

In the beginning, the focus of QoS-related research in 
multimedia communication systems was on network level 
QoS. Its goal is to identify and negotiate the minimal QoS 

requirements of an application instead of over-provisioning 
the network resources. Since negotiations do not always 
result in guaranteeing the best service to the application, two 
different application categories can be identified 

Applications that can operate in spite of an imperfect 
delivery of data. A limited number of errors in such data 
does not harm the application but may reduce the quality that 
is delivered to the user. 

Applications that do not allow any errors in the 
transmitted data but accept other performance disadvantages 
including unpredictable delay and jitter. 

The basic requirement for the second category is the 
consistency of their data, while the first category requires a 
consistent perception of the data. More generically, both 
kinds of application require maintenance of a consistent 
system state. On the one hand, the focus is mostly on an error 
free transmission of the data, on the other hand it is on a 
small or no delay. In both cases this consistency is 
increasingly hard to achieve when the scale of a distributed 
system grows. 

In this paper we express the hypothesis that several kinds 
of distributed applications do not fall into the two clearly cut 
categories. We assume that many distributed applications, 
including most distributed multimedia applications, can 
fulfil their tasks in spite of imperfect consistency. Section 2. 
will motivate this hypothesis with some specific applications 
that are already in use. 

We realize that the requirements of distinct applications 
differ widely and therefore, that the elements which make up 
“consistency” must be separated and classified. This 
separation and classification will make it easier to exploit the 
limits to a distributed application’s consistency requirements 
in generic ways and potentially, to increase its scalability. 
Once a classification exist, it will become easier to specify 
conditions of inconsistency that still allow correct operation 
of an application. The availability of a classification can also 
be taken into account during the development of an 
application in order to gain scalability. 

We propose a classification of elements that will allow 
the specification of an application’s consistency 
requirements and thus define the maximum state of 
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imperfectness that still allows an application to work 
correctly. We show low level QoS requirements that each 
parameter relies on. 

2. Related Work 
After the introduction of lower layer QoS support like 

the Tenet group’s [6] higher level QoS architectures 
appeared soon. XRM [9] was one of the first that 
implemented a generic QoS architecture. The highest 
practically relevant abstraction level to date is the 
integration of QoS handling into CORBA, which was 
investigated by [3], [ l l ]  and [14]. Many other QoS 
enhanced applications like [2] and [16] have followed the 
approach of direct mappings and simplifications without 
any generalized abstraction. In other application areas, the 
term QoS is not applied, although service guarantees are 
their central concern. 

To have a limited set of examples available later in the 
text, we start with five real-world examples of distributed 
applications that have a distributed system state but do not 
rely entirely on a hard synchronity between the copies of 
the data. These examples can not cover the entire range of 
aspects that need investigation, but our initial 
investigations are limited to the covered set of aspects. 

2.1 Computer Games 

A distributed, interactive computer game has a single 
environment that is concurrently manipulated by all 
participants. However, there are rules. Some things need 
not be kept consistent because they do never change (Walls 
in MiMaze [7], the race track in a car racing game [12]). 
Some things can be changed by only one present person, 
not by others (target car speed). Some thngs are always 
accepted (a turn of the steering wheel is always accepted, 
since user input is never rewindable). [12] has 
demonstrated that a highest permissible delay in system 
feedback exists for applications such as the his racing 
game, and that processing variations can reduce the effects 
of such delays on the user perception. Investigations 
showed that with a delay of 50 ms a player is still able to 
steer the car without a perceptible reduction of his control. 

2.2 Vehicle Remote Control 

In this example we assume the rather extreme situation 
of a single vehicle like the Pathfinder for the Mars mission 
or other remotely controlled vehicles that are needed to 
hlfil special tasks. This application differs from e.g. the 
games scenario in several ways. An important one is that 
the’ possible activity of the environment is not limited to 
preprogrammed actions. The system can be consistent for a 
very long time, but it can suddenly become inconsistent by 
an unforseeable event. In normal operation, for the 

Pathfinder specifically it was predictable that there were no 
other remotely controlled vehicles or moving objects, $us 
hture situations could be predicted on the basis of the 
vehicle’s movement alone. As this example shows, it can 
be valuable for distributed applications to consider which 
data in the physical environment are subject to change and 
which are not. 

2.3 Distributed multimedia filesystems with dis- 
connected operations 

A distributed file system like the CODA file system [ 101 
will usually refer to a reference copy when it operates in 
connected mode, not allowing the system to become 
inconsistent. In disconnected mode, the occurrence of 
inconsistencies is expected, and notifications and user- 
controlled mechanisms are provided to resolve such 
inconsistencies. 

This type of filesysytem supports disconnected 
operation mainly for mobile clients. Unlike other 
distributed file systems like DFS [SI and AFS [4], CODA 
supports the continued operation during partial network 
failures as well. This feature automatically introduces a 
certain level of inconsistency in distributed file systems. 
Update speed and frequency are small in this system since 
changes to the stored data would not occur in intervals of 
milliseconds. Versioning of the files allows to rearrange 
consistency when a mobile system that has been 
disconnected reconnects. 

2.4 Lip Synchronization 

Loosing lip synchronization is a problem that appears in 
the playback of separately transported audio and video 
streams that belong together. This problem can be 
interpreted as an issue of inconsistent clocks. Although 
several synchronization mechanisms exist to eliminate this 
problem altogether, it may be possible to save resources by 
synchronizing such streams sufficiently well rather than 
perfectly. The definition of sufficiency is difficult, but 
Steinmetz [15] showed that the skew between audio and 
video belonging to the same presentation can be up to 80 
milliseconds without being noticed by the casual viewer. 

2.5 MobileIP 

Mobile IP addresses issues of lossy connections and, in 
general, unreliable and dynamic networks [ 131. Services, 
applications and work practices that were designed for 
stationary, non-moving users linked to fixed networks have 
to be adapted to accomodate requirements imposed, 
constraints introduced, and possibilities opened by the 
mobility of users. Mobile IP extends and introduces 
protocols to allow for e.g. messaging, localization, security 
in such dynamic environments. 
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3. Introducing Consistency QoS 
lhring our work on distributed systems we learned that 

some of these can deal quite well with a certain lack of 
consistency. Dealing with the problem of distributing 
changes of the system state sufficiently fast between the 
separate nodes in a distributed system, we call this flavor of 
QoS "Consistency QoS". It expresses all QoS issues in 
terms of constrained errors in a distributed system state. 
The examples of Section 2. indicate that many problems 
can be formulated in these terms. It is important to note that 
we do not address the problems of real-time applications 
alone, but try to guarantee QoS for applications that are not 
considered real-time as well. In a middleware architecture 
that is based on the replication of state, we assume that the 
various copies of state (data) are not perfectly consistent at 
all times. Next, we introduce the required concepts of 
perceived consistency (Section 3.1) and perception 
(Section 3.2). Based on this, we define the term 
Consistency QoS in Section 3.3, and then we present the 
list of Consistency QoS parameters that we have identified 
so far (Section 3.4). 

3.1 Perceived Consistency 

We assume that QoS requirements are often both 
application-dependent and exist inherently within 
applications. Finally, these requirements are driven by the 
conscious perception required of the user [8], respectively 
the required physical output. The examples in Section 2.1 
and Section 2.4 provide an intuition of the term 'perceived 
consistency': if the end user believes that the video and 
audio streams are lip-synchronous, or if the user believes 
that the feedback to his controls are instant, perceived 
consistency is achieved. We define 
Perceived Consistency for distributed systems means that the 
perceived physical output is interpreted equally by all users 

An application can support perceived consistency only, 
but obviously never guarantee correct interpretation by the 
users. Still, support of perceived consistency puts demands 
onto applications. 

For most areas that require consistent system states, the 
user involvement is less direct than in the given cases of 
Section 2.. The implementation examples present special 
investigations or developments that are concerned with 
various scales of modifications to a system state. They 
seem to have few things in common. However, when the 
elements of a consistent system state are separated into 
measurable aspects, we can identify for each of the 
indicated applications a set of consistency requirements. 

Starting with a reduced application space, we consider 
only distributed applications with a logical system model 
that can be reduced to a predictable and manageable set of 
atomic data. We simplify fwzher by considering only 

Physical Local Application Node 

(e.g. User) 
Environment (e.g. a Client, Process) - 

Perceptable Consistency 
Consistency Constraints 

Effectively per- on local application data in- 
ceived model state stances (output and source val- 
with limited tempo- ues) with constraints derived 
ral and spatial exact- ffom constraints for perceptable 

. ness. consistency. 

Figure 1 : Perceptable Consistency and 
local Consistency Constraints 

simple, fur-sized data elements in a first step. Although we 
are not sure whether a generalization is possible starting 
with this approach, there are applications fidfiiling these 
assumptions (Section 2.1 to Section 2.4), i.e. such 
applications that gain from an appropriate Consistency 
QoS infkastructure. 

In a typical distributed application, some changes to the 
system state are not necessarily perceived immediately by 
each user. Actually, the same is true for some applications 
as well, so we can more generically talk about the physical 
environment of the distributed application. To reduce the 
effort for maintaining consistency, we try to find the 
implementation constraints at each edge to the physical 
environment, that still provide perceived consistency. To 
stay within these constraints, we map them onto constraints 
for their associated local instances of distributed 
application data (Figure 1). Having this, we want to benefit 
from loosened constraints on the respective application 
model values by cutting communication cost, preferably to 
the level that the physical and human environment of the 
application demands. This requires the notion of two 
concepts: 

perception of data at a node of a distributed application, 
presented in Section 3.2 
consistency constraints on perceived data, presented as 
Consistency QoS parameters in Section 3.4 

3.2 Perception 

Applications can exploit the fact that data need not be 
more up-to-date or exact than the perceived consistency. 
Of course, the permissible deviation from an actually 
consistent behaviour differs from one user to another, and 
an ideal perceived consistency can not be measured. Just as 
in lossy multimedia codecs, the permissible loss of perfect 
replication of the system state competes with the resources 
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that are required to achieve it, and the limits are chosen 
subjectively, e.g. based on case studies. 

The concept of perception implies that availability of 
manipulated yet unperceived data is not relevant. The local 
node needs no consistent information about anything out of 
its current scope of operation. In other words the local node 
works consistently within its scope even if it does not have 
perfectly correct information about data outside its scope, 
granted that its copies are invalidated before they are 
perceived again. - If data is 

perceive 

realize 

manipulated by 
a user, or 
referred to for 
the first time, 
the result of the 
operation can 
not be known 
immediately. Figure 2: state graph for datum visibility 

Figure2 shows 
the states for a datum at a local node that enters (perceive) 
respectively leaves (fiorget) the perception of the local copy 
of the application. The state real indicates a reliable, non- 
rewindable value of the datum. This can obviously not be 
achieved immediately since the current state must be 
transferred from another node initially. 

The perception state model is in so far oblivious of the 
communication delay between the nodes of the distributed 
system and problems of interactions with the physical 
environment. It only specifies, whether conflicts have to be 
resolved. Assume that a user A inputs a value for datum D, 
this datum is in the focus of user A and A’s  datum instance 
has therefore to be real. Any uncertain instance of D can 
be informed with a one-way message, nodes where D is 
unknown do not maintain instances of D. But if a user B at 
another node of the distributed application tries to 
manipulate datum D, the two respective instances of D are 
real. The expected results of these inputs may differ for 
users A and B, but the user input has been accepted by the 
respective nodes. Being physical input, the input is not 
rewindable and must be consumed, but the effect of the 
user inputs on D is not necessarily the respectively 
expected effect. Two situations can potentially occur: 

The conflict between the two nodes can be resolved 
within a delay acceptable for the distributed applica- 
tion. A model-dependent merging of the two user 
inputs is performed and the new state of datum D is 
consistently shown to users A and B. 
The communication delay between the two nodes is not 
acceptable. An application-defined exception handling 
must be performed. 

3.3 Consistency QoS 

Consistency QoS is intended to formalize the ability of 
an application to execute correctly in spite of data being 
inconsistent in some ways. With Consistency QoS, we try 
no more to maintain absolute consistency (i.e., the logical 
axioms of the respective application), but try to identify 
and maintain the perceptable consistency (i.e., perceptable 
aspects of these axioms). We define: 

Consistency QoS is a contract between an edge of a 
distributed application and an underlying application layer 
that quantifies guaranteed contraints on request to and 
provision of change to a distributed system state 

An edge of an application here is a layer that connects 
the application with the physical environment, e.g. GUIs or 
device adapters. The constraint quantification needs a 
scheme which is developed in Section 3.4. This scheme 
may be communicated to the physical environment 
including users in a potentially simplified presentation 
(like a slider to control smear effects). 

Specifically, this scheme provides a means to specify 
acceptability for the conflict resolution mentioned for the 
perception state model in Section 3.2. 

3.4 Consistency QoS Parameters 

We aim at the identification of a set of constraints 
suitable to describe the requirements which a perceived 
consistency may put on an application node. We try to 
formulate these constraints as application level QoS 
parameters, to be negotiated with a middleware. 

Section 2. shows that datum consistency problems can 
not be specified by a single parameter. Similarly, it is rele- 
vant to understand whether intermediate steps of a series of 
consecutive state changes in an instance can be ignored 
when the state in another instance is updated. Consistency 
QoS can apply other QoS definitions as a basis for its guar- 
antees (e.g. weakly consistent state can only be guaranteed 
when the end-to-end delay is known). 

In fact the consistency problem can be split into several 
parameters and applications have different requirements in 
each of these parameters. Being an abstraction from lower 
system levels, the values for several of the parameters can 
only be achieved if the system is supported by QoS guaran- 
tees on lower levels: the enforcement of parameters for con- 
sistency must be supported by network level QoS and local 
system QoS (CPU, memory, disk access). This can be im- 
plemented by the use of e.g. an Integrated Services infra- 
structure [ 1 ] and an operating system and application able 
to provide QoS guarantees. Up to now we have identified 
the parameters of Consistency QoS that are presented in 
Table 1. In case of applications that rely on network level 
QoS guarantees, Consistency QoS can reduce the amount of 
resources that need to be reserved to guarantee the correct 
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parameter name 

synchronization fre- 
quency 

replicability 

rewindability 

acceptability 

local transitivity 

meaning 

The largest interval that is needed to deploy a change of state in a datum to all instances of that datum. 
Guarantees of update speed require guarantees on end-to-end delays at the network level. 

The highest frequency of state changes in a datum that can be handled by the service provider without affecting 
other guarantees. Guarantees on update frequency require guarantees on throughput and loss at the network 
level, and depend heavily on multicast features. 

The lowest frequency of communication between any two instances of a datum that still allows to recreate a 
common synchronized state. Guarentees of synchronization frequency require network level guarantees on 
throughput, loss and delay. 

The number and distribution of replica that may exist of a datum (replicability=l makes most other Consist- 
ency QoS parameter irrelevant but may reduce system availability). Guarantees on replicability are based on 
application-defined constraints. 

The past states, in terms of granularity and past time, to which a datum can return. Guarantees on rewindability 
require local guarantees on available memory. 

The acceptable level of divergence of the current content on the display from the actual state of the system (e.g. 
due to human perception). Guarantees on acceptability are based on application-defmed constraints. 

The number of steps that can be reversed in modification of related local data when a datum is informed about 
a remote state change that occurred (legally w.r.t. update speed) before operations were performed based on 
incorrect information. Guarantees on local transitivity require local guarantees on available memory and com- 
puting speed. 

Table 1. Consistency QoS Parameters 

functionality. 
Without limits to the parameters of Table 1, an 

unacceptable number of rewind operations and re- 
calculations may become necessary. The resource usage of 
all approaches that allow re-integration of the system state 
is growing too quickly for most applications. Only if 
limitations apply, Consistency QoS is applicable at all. 
Table2 shows that the requirement range of a single 
parameter can be very wide (see update speed or 
frequency). 

We are investigating whether these QoS parameters are 
sufficient, independent, and atomic. With the given 
parameters, we can already demonstrate connections 
between low level QoS parameters and application-level 
parameters. We believe that the consideration of these 
parameters will in some cases allow applications to decide 
their QoS requirements without bothering with user 
interaction at all, in some cases allow the indication to a 
user that perceived quality will be severely disturbed and 
can not be increased, and fmally provide users with means 
of setting QoS parameters in terms that are far more 
intuitive than, e.g. the packet loss ratio. 

4. Implementations 
The ongoing implementation is focused on early 

application. Thus, we implement a variety of consistency 

strategies (interpolation, voting, rewind, prediction, output 
delay) for some basic data types (numbers, boolean and 
character values), references and aggregations. As a proof 
of concept, we design and implement a simple middleware 
for a system that can provide Consistency QoS to 
applications on the basis of lower level QoS provision. 
Only after successful evaluation, it will be reasonable to 
integrate Consistency QoS into more complex and 
common frameworks, e.g. as a CORBA object adapter or 
CORBA 3.0 QoS policies. 

We start by considering a distributed application that is 
implemented by separately running copies or entities. 
Being distributed, that application tries to maintain a 
consistent system state in spite of temporal delays in the 
distribution of changes to the system state from one node to 
another. As stated above, we have reduced the data types 
for initial examination. We do not consider more complex 
constructs such as classes and methods, we consider only 
precompiled, static application code at this time. It is 
currently uncertain in which way our results need to be 
adapted to apply to more dynamic setups. 

Consequently, we consider a middleware that consists 
of an abstract distribution system that can guarantee 
network level QoS such as end-to-end delay and reliability, 
and that provides multicast facilities. Figure 3 shows a 
design of an infrastructure that considers simple data types 
and operations on these data types. At the application level, 

. 
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vehicle remote control (Pathfinder) distributed multimedia filesystems with 
disconnected operations (CODA-like) parameter 

update speed 

update frequency 

slow fast 

rare frequent 

I synchronization frequency I I days I seconds 

rewindability 

acceptability 

I replicability 1 1  high 1 limited 

manual very limited 

none - update speed 

versioned files II local transitivity built-in (parameter interdependance is part of the 
system); very limited 

Table 2. Consistency QoS para'meters for extreme applications 

variables of the supported data types can be used 
independently of their distribution state. The data types are 
provided by the middleware: rather than using a standard 
integer data type int of the programming language, 
interfaces of data types such as Rewindablelnteger or 
Mergablelnteger with a limited set of operations are used 
at the application level. At the middleware level, each 
variable of a supported type is implemented with a specific 
conflict resolver. Three kinds of implementation are shown 
in Figure 3 .  The simple data type implementation has a 
locally available state, and all operations are timestamped 
and performed on the local copy as well as broadcast to all 
remote copies. Because of limits to the number of replica, a 
node in a distributed application may sometimes not hold a 
local instance of a specific datum. In that case, and if 
network resources are sufficient for that, a remote simple 
data type stub is made locally available. It redirects 
operations to the remote instances and retrieves the state 
synchronously when it is requested by the application. 
References are a means for sharing dynamically created 
data among nodes. The resolved reference implementation 
allows data that is replicated to the local node without an 
interface at the application level, if they can be referred to 
by a reference. Such a reference datum, which may be 
distributed itself, is used like a pointer by the application. 

The raised grey box in Figure 3 provides a look into the 
main element of a local implementation, the conflict 
resolver. Conflict resolvers implement a specific strategy 
such a rewinding or merging to provide the guaranteed 
consistency. The box shows a conflict resolver that is based 
on a verified state that can not be manipulated any more. It 
maintains a queue of unverified operations that will be 
applied to the verified state when the time for a re-ordering 
insertion of operations from a remote node has expired. All 
retrieval operations of the application refer to a visible state 
that does not necessarily consider all operations that have 

already been performed on the datum instance; the 
visibility of the operations at the application level is 
delayed. Further important components of the middleware 
layer are the garbage collection for dynamical data and the 
namespace administration which is responsible for globally 
valid references. 

We circumvent a central object naming service by 
identifying names with references. When an instance first 
refers to a datum, a reference is created at the given node 
and its reference is registered. Since a reference itself is a 
datum, each datum is either connected to globally known 
data of the well-known binary code of the distributed 
application through a chain of references, or it is not. In the 
second case, this datum is an intermediate datum for the 
processing in a piece of code of one instance of the 
application. In the other case, this datum may become 
interesting to other instances of the application, but only if 
the datum is referred to. This reference by a remote 
instance can be achieved when the reference chain that 
allows location of the datum is distributed to the remote 
instance. When the remote instance de-references the 
datum that refers to the newly created datum, it acquires 
access to the original datum and perceives it. The means of 
such access are defined by the modes of the datum. 

The modes may forbid replication, which increases 
delay but guarantees consistency, or they may limit the 
overall number of replica in the distributed application. If 
replication is possible in spite of such conditions, 
requirements on the network level QoS must be checked to 
determine whether the temporal limits to the update speed 
of the datum's replica can be guaranteed. If this is 
impossible, the replication is not performed but each access 
to the datum by the remote node is executed by a remote 
call. 
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Figure 3: distribution infrastructure 

5. Futurework 

M e r  the ongoing implementation of Consistency QoS, we 
will try to dissect applications and implant our shared par- 
tially consistent data types to get a first proof of concept and 
applicability. 

Then, we want to implement an extensible framework to 
allow implementation of new “plug-in strategies” and also 
of new value types by means of aggregation (records, arrays 
and classes). Also, we want to have a look at the possibili- 
ties to integrate Consistency QoS implementation and con- 
cepts into CORBA. 

Having a development framework at hand, the benefits 
of Consistency QoS have to be evaluated. This will certain- 
ly demand further refinement of Consistency QoS classifi- 
cation, application analysis and middleware 
implementation. 
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