
Perceived Consistency

Carsten Griwodz2, Michael Liepert’, Abdulmotaleb El Saddik’, Giwon On’,
Michael Zink’ and Ralf Steinmetzl

1 2
Industrial Process and System Communications

Dept. of Electrical Eng. & Information Technology
Darmstudt University of Technology

Mei-chtr. 25 0-64283 Darmstadt Germany

University of Oslo
Department of Informatics

Postbox 1080 Blindem N-0316
Oslo Norway

{gr@ lipi, abed, giwon, zink) @KOM. tu-damstadt.de

Abstract

Quality of service guarantees for multimedia communication
systems have been considered on several abstraction levels. In the
multimedia networkingfield it is typical to identi3 the minimal QoS
requirements of an application to save resources by guaranteeing
its functionality. Many of these applications can operate in spite of
an imperfect delivery of media data, while other applications such
as distributed databases or distributedjlesystems consider perfect
QoS necessary but accept delay. The basic problems of the latter is
the consistency of their data, while the former require a consistent
perception of the content. More generically, both QoS requirements
can be interpreted as a problem of maintaining a consistent system
state. Consequently we assume that many distributed applications,
including most distributed multimedia applications, can fu@l their
tasks in spite of imperfect consistency, Since the application
requirements differ widely, the elements that make up
“consistency” must be separated and classified. This paper
introduces Consistency QoS and proposes a classification of
elements that determine an application’s consistency requirements.
The low level QoS requirements that these separate parameters rely
on are shown, and example parameter sets for application classes
are given.

1. Introduction
The number of multimedia communication systems has

increased rapidly in recent years. These systems have to
handle data types that are different from traditional data
types like text or HTML files and therefore require a
different behaviour of the network and the applications.
Limited bandwidth, for example, is annoying but rarely
critical for file transfer. However real-time playback of
video and audio streams becomes usually impossible if it
falls short of a lower bandwidth limit. In order to solve this
problem, quality of service (QoS) mechanisms for
multimedia communication systems have been considered
on several abstraction levels. The use of these mechanisms
allows distributed applications to handle multimedia
contents.

In the beginning, the focus of QoS-related research in
multimedia communication systems was on network level
QoS. Its goal is to identify and negotiate the minimal QoS

requirements of an application instead of over-provisioning
the network resources. Since negotiations do not always
result in guaranteeing the best service to the application, two
different application categories can be identified

Applications that can operate in spite of an imperfect
delivery of data. A limited number of errors in such data
does not harm the application but may reduce the quality that
is delivered to the user.

Applications that do not allow any errors in the
transmitted data but accept other performance disadvantages
including unpredictable delay and jitter.

The basic requirement for the second category is the
consistency of their data, while the first category requires a
consistent perception of the data. More generically, both
kinds of application require maintenance of a consistent
system state. On the one hand, the focus is mostly on an error
free transmission of the data, on the other hand it is on a
small or no delay. In both cases this consistency is
increasingly hard to achieve when the scale of a distributed
system grows.

In this paper we express the hypothesis that several kinds
of distributed applications do not fall into the two clearly cut
categories. We assume that many distributed applications,
including most distributed multimedia applications, can
fulfil their tasks in spite of imperfect consistency. Section 2.
will motivate this hypothesis with some specific applications
that are already in use.

We realize that the requirements of distinct applications
differ widely and therefore, that the elements which make up
“consistency” must be separated and classified. This
separation and classification will make it easier to exploit the
limits to a distributed application’s consistency requirements
in generic ways and potentially, to increase its scalability.
Once a classification exist, it will become easier to specify
conditions of inconsistency that still allow correct operation
of an application. The availability of a classification can also
be taken into account during the development of an
application in order to gain scalability.

We propose a classification of elements that will allow
the specification of an application’s consistency
requirements and thus define the maximum state of

260 0-7695-1165-1101 $10.00 0 2001 IEEE

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

http://tu-damstadt.de

imperfectness that still allows an application to work
correctly. We show low level QoS requirements that each
parameter relies on.

2. Related Work
After the introduction of lower layer QoS support like

the Tenet group’s [6] higher level QoS architectures
appeared soon. XRM [9] was one of the first that
implemented a generic QoS architecture. The highest
practically relevant abstraction level to date is the
integration of QoS handling into CORBA, which was
investigated by [3], [l l] and [14]. Many other QoS
enhanced applications like [2] and [16] have followed the
approach of direct mappings and simplifications without
any generalized abstraction. In other application areas, the
term QoS is not applied, although service guarantees are
their central concern.

To have a limited set of examples available later in the
text, we start with five real-world examples of distributed
applications that have a distributed system state but do not
rely entirely on a hard synchronity between the copies of
the data. These examples can not cover the entire range of
aspects that need investigation, but our initial
investigations are limited to the covered set of aspects.

2.1 Computer Games

A distributed, interactive computer game has a single
environment that is concurrently manipulated by all
participants. However, there are rules. Some things need
not be kept consistent because they do never change (Walls
in MiMaze [7], the race track in a car racing game [12]).
Some things can be changed by only one present person,
not by others (target car speed). Some thngs are always
accepted (a turn of the steering wheel is always accepted,
since user input is never rewindable). [12] has
demonstrated that a highest permissible delay in system
feedback exists for applications such as the his racing
game, and that processing variations can reduce the effects
of such delays on the user perception. Investigations
showed that with a delay of 50 ms a player is still able to
steer the car without a perceptible reduction of his control.

2.2 Vehicle Remote Control

In this example we assume the rather extreme situation
of a single vehicle like the Pathfinder for the Mars mission
or other remotely controlled vehicles that are needed to
hlfil special tasks. This application differs from e.g. the
games scenario in several ways. An important one is that
the’ possible activity of the environment is not limited to
preprogrammed actions. The system can be consistent for a
very long time, but it can suddenly become inconsistent by
an unforseeable event. In normal operation, for the

Pathfinder specifically it was predictable that there were no
other remotely controlled vehicles or moving objects, $us
hture situations could be predicted on the basis of the
vehicle’s movement alone. As this example shows, it can
be valuable for distributed applications to consider which
data in the physical environment are subject to change and
which are not.

2.3 Distributed multimedia filesystems with dis-
connected operations

A distributed file system like the CODA file system [101
will usually refer to a reference copy when it operates in
connected mode, not allowing the system to become
inconsistent. In disconnected mode, the occurrence of
inconsistencies is expected, and notifications and user-
controlled mechanisms are provided to resolve such
inconsistencies.

This type of filesysytem supports disconnected
operation mainly for mobile clients. Unlike other
distributed file systems like DFS [SI and AFS [4], CODA
supports the continued operation during partial network
failures as well. This feature automatically introduces a
certain level of inconsistency in distributed file systems.
Update speed and frequency are small in this system since
changes to the stored data would not occur in intervals of
milliseconds. Versioning of the files allows to rearrange
consistency when a mobile system that has been
disconnected reconnects.

2.4 Lip Synchronization

Loosing lip synchronization is a problem that appears in
the playback of separately transported audio and video
streams that belong together. This problem can be
interpreted as an issue of inconsistent clocks. Although
several synchronization mechanisms exist to eliminate this
problem altogether, it may be possible to save resources by
synchronizing such streams sufficiently well rather than
perfectly. The definition of sufficiency is difficult, but
Steinmetz [15] showed that the skew between audio and
video belonging to the same presentation can be up to 80
milliseconds without being noticed by the casual viewer.

2.5 MobileIP

Mobile IP addresses issues of lossy connections and, in
general, unreliable and dynamic networks [131. Services,
applications and work practices that were designed for
stationary, non-moving users linked to fixed networks have
to be adapted to accomodate requirements imposed,
constraints introduced, and possibilities opened by the
mobility of users. Mobile IP extends and introduces
protocols to allow for e.g. messaging, localization, security
in such dynamic environments.

261

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

3. Introducing Consistency QoS
lhring our work on distributed systems we learned that

some of these can deal quite well with a certain lack of
consistency. Dealing with the problem of distributing
changes of the system state sufficiently fast between the
separate nodes in a distributed system, we call this flavor of
QoS "Consistency QoS". It expresses all QoS issues in
terms of constrained errors in a distributed system state.
The examples of Section 2. indicate that many problems
can be formulated in these terms. It is important to note that
we do not address the problems of real-time applications
alone, but try to guarantee QoS for applications that are not
considered real-time as well. In a middleware architecture
that is based on the replication of state, we assume that the
various copies of state (data) are not perfectly consistent at
all times. Next, we introduce the required concepts of
perceived consistency (Section 3.1) and perception
(Section 3.2). Based on this, we define the term
Consistency QoS in Section 3.3, and then we present the
list of Consistency QoS parameters that we have identified
so far (Section 3.4).

3.1 Perceived Consistency

We assume that QoS requirements are often both
application-dependent and exist inherently within
applications. Finally, these requirements are driven by the
conscious perception required of the user [8], respectively
the required physical output. The examples in Section 2.1
and Section 2.4 provide an intuition of the term 'perceived
consistency': if the end user believes that the video and
audio streams are lip-synchronous, or if the user believes
that the feedback to his controls are instant, perceived
consistency is achieved. We define
Perceived Consistency for distributed systems means that the
perceived physical output is interpreted equally by all users

An application can support perceived consistency only,
but obviously never guarantee correct interpretation by the
users. Still, support of perceived consistency puts demands
onto applications.

For most areas that require consistent system states, the
user involvement is less direct than in the given cases of
Section 2.. The implementation examples present special
investigations or developments that are concerned with
various scales of modifications to a system state. They
seem to have few things in common. However, when the
elements of a consistent system state are separated into
measurable aspects, we can identify for each of the
indicated applications a set of consistency requirements.

Starting with a reduced application space, we consider
only distributed applications with a logical system model
that can be reduced to a predictable and manageable set of
atomic data. We simplify fwzher by considering only

Physical Local Application Node

(e.g. User)
Environment (e.g. a Client, Process) -

Perceptable Consistency
Consistency Constraints

Effectively per- on local application data in-
ceived model state stances (output and source val-
with limited tempo- ues) with constraints derived
ral and spatial exact- ffom constraints for perceptable

. ness. consistency.

Figure 1 : Perceptable Consistency and
local Consistency Constraints

simple, fur-sized data elements in a first step. Although we
are not sure whether a generalization is possible starting
with this approach, there are applications fidfiiling these
assumptions (Section 2.1 to Section 2.4), i.e. such
applications that gain from an appropriate Consistency
QoS infkastructure.

In a typical distributed application, some changes to the
system state are not necessarily perceived immediately by
each user. Actually, the same is true for some applications
as well, so we can more generically talk about the physical
environment of the distributed application. To reduce the
effort for maintaining consistency, we try to find the
implementation constraints at each edge to the physical
environment, that still provide perceived consistency. To
stay within these constraints, we map them onto constraints
for their associated local instances of distributed
application data (Figure 1). Having this, we want to benefit
from loosened constraints on the respective application
model values by cutting communication cost, preferably to
the level that the physical and human environment of the
application demands. This requires the notion of two
concepts:

perception of data at a node of a distributed application,
presented in Section 3.2
consistency constraints on perceived data, presented as
Consistency QoS parameters in Section 3.4

3.2 Perception

Applications can exploit the fact that data need not be
more up-to-date or exact than the perceived consistency.
Of course, the permissible deviation from an actually
consistent behaviour differs from one user to another, and
an ideal perceived consistency can not be measured. Just as
in lossy multimedia codecs, the permissible loss of perfect
replication of the system state competes with the resources

262

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

that are required to achieve it, and the limits are chosen
subjectively, e.g. based on case studies.

The concept of perception implies that availability of
manipulated yet unperceived data is not relevant. The local
node needs no consistent information about anything out of
its current scope of operation. In other words the local node
works consistently within its scope even if it does not have
perfectly correct information about data outside its scope,
granted that its copies are invalidated before they are
perceived again. - If data is

perceive

realize

manipulated by
a user, or
referred to for
the first time,
the result of the
operation can
not be known
immediately. Figure 2: state graph for datum visibility

Figure2 shows
the states for a datum at a local node that enters (perceive)
respectively leaves (fiorget) the perception of the local copy
of the application. The state real indicates a reliable, non-
rewindable value of the datum. This can obviously not be
achieved immediately since the current state must be
transferred from another node initially.

The perception state model is in so far oblivious of the
communication delay between the nodes of the distributed
system and problems of interactions with the physical
environment. It only specifies, whether conflicts have to be
resolved. Assume that a user A inputs a value for datum D,
this datum is in the focus of user A and A’s datum instance
has therefore to be real. Any uncertain instance of D can
be informed with a one-way message, nodes where D is
unknown do not maintain instances of D. But if a user B at
another node of the distributed application tries to
manipulate datum D, the two respective instances of D are
real. The expected results of these inputs may differ for
users A and B, but the user input has been accepted by the
respective nodes. Being physical input, the input is not
rewindable and must be consumed, but the effect of the
user inputs on D is not necessarily the respectively
expected effect. Two situations can potentially occur:

The conflict between the two nodes can be resolved
within a delay acceptable for the distributed applica-
tion. A model-dependent merging of the two user
inputs is performed and the new state of datum D is
consistently shown to users A and B.
The communication delay between the two nodes is not
acceptable. An application-defined exception handling
must be performed.

3.3 Consistency QoS

Consistency QoS is intended to formalize the ability of
an application to execute correctly in spite of data being
inconsistent in some ways. With Consistency QoS, we try
no more to maintain absolute consistency (i.e., the logical
axioms of the respective application), but try to identify
and maintain the perceptable consistency (i.e., perceptable
aspects of these axioms). We define:

Consistency QoS is a contract between an edge of a
distributed application and an underlying application layer
that quantifies guaranteed contraints on request to and
provision of change to a distributed system state

An edge of an application here is a layer that connects
the application with the physical environment, e.g. GUIs or
device adapters. The constraint quantification needs a
scheme which is developed in Section 3.4. This scheme
may be communicated to the physical environment
including users in a potentially simplified presentation
(like a slider to control smear effects).

Specifically, this scheme provides a means to specify
acceptability for the conflict resolution mentioned for the
perception state model in Section 3.2.

3.4 Consistency QoS Parameters

We aim at the identification of a set of constraints
suitable to describe the requirements which a perceived
consistency may put on an application node. We try to
formulate these constraints as application level QoS
parameters, to be negotiated with a middleware.

Section 2. shows that datum consistency problems can
not be specified by a single parameter. Similarly, it is rele-
vant to understand whether intermediate steps of a series of
consecutive state changes in an instance can be ignored
when the state in another instance is updated. Consistency
QoS can apply other QoS definitions as a basis for its guar-
antees (e.g. weakly consistent state can only be guaranteed
when the end-to-end delay is known).

In fact the consistency problem can be split into several
parameters and applications have different requirements in
each of these parameters. Being an abstraction from lower
system levels, the values for several of the parameters can
only be achieved if the system is supported by QoS guaran-
tees on lower levels: the enforcement of parameters for con-
sistency must be supported by network level QoS and local
system QoS (CPU, memory, disk access). This can be im-
plemented by the use of e.g. an Integrated Services infra-
structure [1] and an operating system and application able
to provide QoS guarantees. Up to now we have identified
the parameters of Consistency QoS that are presented in
Table 1. In case of applications that rely on network level
QoS guarantees, Consistency QoS can reduce the amount of
resources that need to be reserved to guarantee the correct

263

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

parameter name

synchronization fre-
quency

replicability

rewindability

acceptability

local transitivity

meaning

The largest interval that is needed to deploy a change of state in a datum to all instances of that datum.
Guarantees of update speed require guarantees on end-to-end delays at the network level.

The highest frequency of state changes in a datum that can be handled by the service provider without affecting
other guarantees. Guarantees on update frequency require guarantees on throughput and loss at the network
level, and depend heavily on multicast features.

The lowest frequency of communication between any two instances of a datum that still allows to recreate a
common synchronized state. Guarentees of synchronization frequency require network level guarantees on
throughput, loss and delay.

The number and distribution of replica that may exist of a datum (replicability=l makes most other Consist-
ency QoS parameter irrelevant but may reduce system availability). Guarantees on replicability are based on
application-defined constraints.

The past states, in terms of granularity and past time, to which a datum can return. Guarantees on rewindability
require local guarantees on available memory.

The acceptable level of divergence of the current content on the display from the actual state of the system (e.g.
due to human perception). Guarantees on acceptability are based on application-defmed constraints.

The number of steps that can be reversed in modification of related local data when a datum is informed about
a remote state change that occurred (legally w.r.t. update speed) before operations were performed based on
incorrect information. Guarantees on local transitivity require local guarantees on available memory and com-
puting speed.

Table 1. Consistency QoS Parameters

functionality.
Without limits to the parameters of Table 1, an

unacceptable number of rewind operations and re-
calculations may become necessary. The resource usage of
all approaches that allow re-integration of the system state
is growing too quickly for most applications. Only if
limitations apply, Consistency QoS is applicable at all.
Table2 shows that the requirement range of a single
parameter can be very wide (see update speed or
frequency).

We are investigating whether these QoS parameters are
sufficient, independent, and atomic. With the given
parameters, we can already demonstrate connections
between low level QoS parameters and application-level
parameters. We believe that the consideration of these
parameters will in some cases allow applications to decide
their QoS requirements without bothering with user
interaction at all, in some cases allow the indication to a
user that perceived quality will be severely disturbed and
can not be increased, and fmally provide users with means
of setting QoS parameters in terms that are far more
intuitive than, e.g. the packet loss ratio.

4. Implementations
The ongoing implementation is focused on early

application. Thus, we implement a variety of consistency

strategies (interpolation, voting, rewind, prediction, output
delay) for some basic data types (numbers, boolean and
character values), references and aggregations. As a proof
of concept, we design and implement a simple middleware
for a system that can provide Consistency QoS to
applications on the basis of lower level QoS provision.
Only after successful evaluation, it will be reasonable to
integrate Consistency QoS into more complex and
common frameworks, e.g. as a CORBA object adapter or
CORBA 3.0 QoS policies.

We start by considering a distributed application that is
implemented by separately running copies or entities.
Being distributed, that application tries to maintain a
consistent system state in spite of temporal delays in the
distribution of changes to the system state from one node to
another. As stated above, we have reduced the data types
for initial examination. We do not consider more complex
constructs such as classes and methods, we consider only
precompiled, static application code at this time. It is
currently uncertain in which way our results need to be
adapted to apply to more dynamic setups.

Consequently, we consider a middleware that consists
of an abstract distribution system that can guarantee
network level QoS such as end-to-end delay and reliability,
and that provides multicast facilities. Figure 3 shows a
design of an infrastructure that considers simple data types
and operations on these data types. At the application level,

.

264

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

vehicle remote control (Pathfinder) distributed multimedia filesystems with
disconnected operations (CODA-like) parameter

update speed

update frequency

slow fast

rare frequent

I synchronization frequency I I days I seconds

rewindability

acceptability

I replicability 1 1 high 1 limited

manual very limited

none - update speed

versioned files II local transitivity built-in (parameter interdependance is part of the
system); very limited

Table 2. Consistency QoS para'meters for extreme applications

variables of the supported data types can be used
independently of their distribution state. The data types are
provided by the middleware: rather than using a standard
integer data type int of the programming language,
interfaces of data types such as Rewindablelnteger or
Mergablelnteger with a limited set of operations are used
at the application level. At the middleware level, each
variable of a supported type is implemented with a specific
conflict resolver. Three kinds of implementation are shown
in Figure 3 . The simple data type implementation has a
locally available state, and all operations are timestamped
and performed on the local copy as well as broadcast to all
remote copies. Because of limits to the number of replica, a
node in a distributed application may sometimes not hold a
local instance of a specific datum. In that case, and if
network resources are sufficient for that, a remote simple
data type stub is made locally available. It redirects
operations to the remote instances and retrieves the state
synchronously when it is requested by the application.
References are a means for sharing dynamically created
data among nodes. The resolved reference implementation
allows data that is replicated to the local node without an
interface at the application level, if they can be referred to
by a reference. Such a reference datum, which may be
distributed itself, is used like a pointer by the application.

The raised grey box in Figure 3 provides a look into the
main element of a local implementation, the conflict
resolver. Conflict resolvers implement a specific strategy
such a rewinding or merging to provide the guaranteed
consistency. The box shows a conflict resolver that is based
on a verified state that can not be manipulated any more. It
maintains a queue of unverified operations that will be
applied to the verified state when the time for a re-ordering
insertion of operations from a remote node has expired. All
retrieval operations of the application refer to a visible state
that does not necessarily consider all operations that have

already been performed on the datum instance; the
visibility of the operations at the application level is
delayed. Further important components of the middleware
layer are the garbage collection for dynamical data and the
namespace administration which is responsible for globally
valid references.

We circumvent a central object naming service by
identifying names with references. When an instance first
refers to a datum, a reference is created at the given node
and its reference is registered. Since a reference itself is a
datum, each datum is either connected to globally known
data of the well-known binary code of the distributed
application through a chain of references, or it is not. In the
second case, this datum is an intermediate datum for the
processing in a piece of code of one instance of the
application. In the other case, this datum may become
interesting to other instances of the application, but only if
the datum is referred to. This reference by a remote
instance can be achieved when the reference chain that
allows location of the datum is distributed to the remote
instance. When the remote instance de-references the
datum that refers to the newly created datum, it acquires
access to the original datum and perceives it. The means of
such access are defined by the modes of the datum.

The modes may forbid replication, which increases
delay but guarantees consistency, or they may limit the
overall number of replica in the distributed application. If
replication is possible in spite of such conditions,
requirements on the network level QoS must be checked to
determine whether the temporal limits to the update speed
of the datum's replica can be guaranteed. If this is
impossible, the replication is not performed but each access
to the datum by the remote node is executed by a remote
call.

265

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

Figure 3: distribution infrastructure

5. Futurework

M e r the ongoing implementation of Consistency QoS, we
will try to dissect applications and implant our shared par-
tially consistent data types to get a first proof of concept and
applicability.

Then, we want to implement an extensible framework to
allow implementation of new “plug-in strategies” and also
of new value types by means of aggregation (records, arrays
and classes). Also, we want to have a look at the possibili-
ties to integrate Consistency QoS implementation and con-
cepts into CORBA.

Having a development framework at hand, the benefits
of Consistency QoS have to be evaluated. This will certain-
ly demand further refinement of Consistency QoS classifi-
cation, application analysis and middleware
implementation.

6. References

[13 Bob Braden, David Clark, and Scott Shenker. Integrated Ser-
vices in the Internet Architecture. Intemet RFC 1633, June
1994.

121 T. Braun and S. Giorcelli. Quality of Service Support for IP
Flows over ATM. In Pr0c.s of Kommunikation in Verteilten
Systemen:GI/ITK Fachtagung. Springer-Verlag, Feb. 1997.

[3] Christian Becker and Kurt Geihs. Generic QoS Specifica-
tions for CORBA. In Proceedings of KiVS’99, Kommunika-
tion in Verteilten Systemen, pages 1841 95. Springer Verlag,
March 1999.

[4] Richard Campbell. Managing AFS - The Andrew File Sys-
tem. Prentice-Hall, 1998.

[5] DFS Administration Guide. Transarc DCE Documentation,

1995.
[6] Domenico Ferrari, Anindo Banerjea, and Hui Zhang. Net-

work Support for Multimedia. Computer Networks and ISDN
Systems, 26(10), 1994.

[7] Lament Gautier and Christophe Diot. Design and Evaluation
of MiMaze, a Multi-player Game on the Intemet. In Proc. of
IEEE Multimedia Systems Conference, June 1998.

[8] William James. The Principles of Psychology - CHAPTER
X: The Consciousness of Self. online library, 1890.

[9] Amel Lazar, Shailendra Bhonsle, and Koon Seng Lim. Bind-
ing Architecture for Multimedia Networks. In Proc. of the
International COST 237 Workshop, pages 103-123.
Springer-Verlag, Nov. 1994.

[lo] Y.W. Lee, K.S. Leung, and M. Satyanarayanan. Operation-
based Update Propagation in a Mobile File System. In Proc.
of the USENIXAnnual Technical Conference, June 1999.

[1 11 Klara Nahrstedt and Jonathan Smith. The QoS Broker. IEEE
Multimedia, 2(1):53-67, May 1995.

[121 Lothar Pantel. Moglichkeiten zur Behandlung der Ende-zu-
Ende Verzogerung in Mehrparteienspielen. Thesis, Jan. 2000.

[131 C. Perkins. RFC 2002 - IP Mobility Support. RFC, Oct. 1996.
[14] T. Plagmann, A. Saethre, and V. Goebel. Application

Requirements and QoS Negotiation in Multimedia Systems.
In Proc. of Second Worlrshop on Protocols for Multimedia
Systems, October 1995.

[151 Ralf Steinmetz. Human Perception of Jitter and Media Syn-
chronization. IEEE J. Selected Areas on Communications,

[16] Jens Schmitt, Michael Zink, Lars Wolf, and Ralf Steinmetz.
Qualtiy of Service Support for recording and playback of
MBone session in heterogeneous IP/ATM networks. In Proc.
of SYBEN98, volume 3408, pages 374-383, May 1998.

14(1):61-72, January 1996.

266

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 06:01 from IEEE Xplore. Restrictions apply.

