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Abstract— Content distribution networks (CDNSs) are a popu-
lar service for the dissemination of multimedia content over wide
areas. The existance of a centralized administrative structure
makes them attractive for the commercial distribution of high
quality content. By sharing resources, service providers can
implement their services more efficiently than a single content
provider could establish a distribution structure itself. An ef-
ficient operation requires cost estimations that allow service
providers to determine the dimensioning of their infrastruc-
ture and the placement of content in the system. In case of
video streaming, distribution mechanisms that exploit multicast,
segmented and out-of-order delivery can be applied to merge
streams and reduce resource consumption. Several applicable
stream merging mechanisms exist in the literature and can be
used.

We examine three such mechanisms, namely patching, gleaning
and prefix caching in a hierarchically organized CDN, and show
that a co-optimization of movie placement and stream merging
mechanism has an undesirable effect on quality by delivering
highly popular movies over longer distances than less popular
ones. We explore and compare two approaches for overcoming
this problem by qualifying the placement optimization with
additional conditions, and find that in this case, straight-forward
sorting is a good solution.

I. INTRODUCTION

The controversy over peer-to-peer systems has shown that
a demand for world-wide, borderless access to audiovisual
content exists. It has shown as well that a rudimentary distribu-
tion infrastructure can be established over the current Internet.
The problem is, of course, that this distribution is frequently
infringing the copyrights of media companies. Since central
control in peer-to-peer systems is somewhere between difficult
to establish and undesired, it is unlikely that media companies
will follow this approach to satisfy users’ demands.

But the popularity of peer-to-peer applications can not be
ignored as a demonstration of user demands. They provide
world-wide access to an indiscriminate choice of content.
Previous video-on-demand systems have not provided this but
were restricted to a small subset of the existing titles. VoD
trials were also proof that the replication of all accessible
content to each regional content provider is not feasible, and
an appropriate distribution system is required. Through content
distribution networks (CDNs), a similar accessibility may be
achieved. They allow a bigger amount of control than peer-
to-peer networks because digital rights management issues are
more easily addressable in CDNs. The issue of cost-effective
deployment of such large-scale CDNs remains. To reduce the

cost of deploying and operating a system that holds copies
of the content and delivers it to a large number of users,
the resource utilization in such a system must be high and
predictable.

For fully replicated movies, we have investigated the cost-
optimal placement of movies on servers in a distribution
system analytically, the so-called root servers of the movies.
As expected, the placement combined with a video-on-demand
(VoD) approach that is implemented by unicast delivery from
the root server chosen for each movie becomes optimal when
popular movies have root servers closer to the clients, and less
popular titles are assigned servers as root servers that are lo-
cated further away from the clients. This is also the case when
very simple streaming merging schemes, such as batching,
are combined with optimized placement. Similarly, patching
without restart of a multicast stream before completion of the
previous one are examples of such simple mechanisms. If,
however, the use of multicast and out-of-order transmission is
optimized together with the placement, it is not necessarily the
case that more popular movies are stored closer to the client
than less popular ones.

As a result, more popular titles may be delivered to the
clients with higher startup latency, jitter and loss rate than less
popular ones if no means for guaranteeing QoS are applied.
This reduces the average satisfaction of users with the services
and should be prevented.

Besides optimal patching, we show that the problem appears
also in gleaning (patching with caching) and optimized prefix
caching. We then examine two means of enforcing that more
popular titles are located closer to the user. One approach
introduces an artificial cost penalty for QoS reduction into the
cost computation. The other simply enforces that distances
from the clients are sorted by popularity. In section II, we
present stream merging mechanisms from the literature that
can be applied in addition to the replication of content. This is
followed by an introduction to the analytical model that we use
for cost estimation of combined placement and stream merging
in section I11. Our optimization approach is explained as well.
We present the cost computation for three stream merging
mechanisms in the appendix V. For each of the mechanisms,
the result of combined optimization of stream merging and
placement for an overall minimal cost if shown in an example.
In section 1V, we show the placement results and the changes
in overall cost when QoS is taken into account. Section V
concludes the paper.
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Il. RELATED WORK

Existing research can be applied to reduce the consumption
of resources such as the number of concurrent streams that
must be supported by a server and the bandwidth that is
required for streaming to end users. This existing work can
be divided into single server approaches and approaches that
apply server hierarchies in a distribution system.

Research that considers single server systems has frequently
focussed on the efficient use of streaming capacity. The
near VoD (NVoD) approaches apply scheduling of movie
transmissions without user interaction based on statistics about
the popularity of movies. These approaches are collectively
called periodic broadcasting schemes and many are derived
from pyramid broadcasting [1]. True VoD (TVoD) approaches
take user interaction into account in their resource allocation.
They reduce the load of servers by answering to several
user requests at once using multicast. Examples are batching
[2], dynamic batching [3], piggybacking [4], content insertion
[5,6], chaining [7] and patching [8]. Bradshaw et al. [9] refer
to several original periodic broadcasting works and present
an implementation as well as measurement results for these
techniques, including patching.

Research that considers hierarchical systems did not attract
much attention until recently, in spite of some early papers,
especially by Nussbaumer et al. [10]. Stand-alone video-on-
demand development had little influence [11] but integration
of streaming into web services has attracted attention [12].
To increase the efficiency of the distribution system and
to overcome the varying network quality of the Internet,
partial caching approaches have been developed. There are
two general approaches: caching a part of the entire movie’s
length, or caching only a part of the quality.

A look at a distribution system with several layers of
caches is taken by Chan and Tobagi, who investigate several
related approaches for the optimized delivery of movies in a
hierarchical distribution system, where each server may hold
part of the length of a movie [13].

The partial caching approach called proxy prefix caching
[14] stores the first part of the movie in a proxy called a prefix
cache and delivers the rest of the movie from a root server
for that movie. Zhang et al. introduce video staging [15], a
partial caching approach aimed at smoothing and reduction
of resource requirements. Both approaches are vulnerable to
changes in network quality for the uncached part of the movie.
Layered caching [16,17] tries to overcome this problem by
caching the entire length of the movie but reducing its quality
if the movies popularity does not warrant its complete storage.
This assumes the availability of layer encoded video to work.
Since such codecs are not available at this time, we have
investigated the combination of caching and stream merging
mechanisms only for full movie caching in gleaning [18].
Eager et al. provide an optimization of a distribution system
with one intermediate level of proxy caches [19]. A variety
of the mentioned optimization options can be applied for the
given hierarchical distribution system on the basis of existing
research results or common practice.

In this paper, we take a closer look at optimized patching,
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gleaning and prefix caching in conjunction with the assignment
of movies to servers. In the following, these approaches are
described in more detail. [13] is not considered because its free
use of servers makes a direct application unlikely for stability
reasons. The smoothing achieved by video staging could be
combined with any of the approaches. Layering is not desirable
for a commercial system if quality changes are large. For small
changes, the approach could be combined with any of the
presented approaches as well.

A. \-patching

Patching works by creating a multicast group for the de-
livery of a video stream to a requesting client. If another
client requests the same movie shortly after the start of this
transmission, this client starts storing the multicast transmis-
sion in a local cache immediately. The server sends a unicast
stream to this client containing the missing initial portion of
the movie, until the cached portion is reached. Then, the client
uses its cache as a cyclic buffer. Figure 1 illustrates patching.
The period in which the use of unicast patch streams is more
resource efficient than the transmission of a new multicast is
limited, and can be optimized based on the request interarrival
time. The computation for this optimum has been found for \-
patching [20], controlled multicast [21] and optimal patching
[22].

B. Gleaning

Patching requires buffers at clients and the bandwidth to
receive two streams in parallel at playout rate. Gleaning is the
idea of exploiting patching efficiency with standard clients as
shown in figure 2. At the cost of proxy installations close to
clients, it enables the use of patching techniques without client
support. The proxy close to the client buffer and re-order the
multicast and patch streams of patching and deliver them to
clients at playout speed and in playout order. The gleaning
proxies are always present in this approach. After delivery to
the client, the data is usually discarded from a proxy’s buffer.
To simplify the investigation, we assume that buffers are kept
until the entire stream has been delivered. This implies that
additional clients receive data from the buffer. Secondly, the
caching algorithm of the system can determine caching of a
movie at level 1. The buffer is never discarded and an entire
movie’s length of disk space is allocated.
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C. Prefix Caching

Prefix caching is a practically oriented scheme that caches
the beginning of movies (the prefix) on proxies (called prefix
caches) that are located close to the clients [14] and reduces
problems of congestion and jitter in long-distance delivery.
When the prefix cache receives a request for a movie, it starts
the transmission of the prefix immediately and requests the rest
of the movie (the suffix) from the root server for forwarding.
The original does neither use multicast nor optimize the
selection of the prefix length. Several variations have been
introduced to reduce costs predictably. UCast, SBatch, UPatch
and MPatch are presented in [23]. Very similar approaches
have been introduced independently as mcache [24].

In this paper, we consider MPatch, which uses multicast
between the prefix cache and the clients but not between root
server and prefix caches. When a first client requests a movie,
the prefix of length v is sent immediately by multicast, and
the suffix is scheduled for transmission from the root server
to arrive exactly at the end of the prefix. This suffix is sent by
unicast from the root server to the proxy, and redistributed by
multicast from the proxy to the clients. When another request
for the movie arrives after an independently defined threshold
time 7', it is handled in the same manner. If it arrives before T,
it joins the original multicast, and receives the missing start by
unicast. MPatch allows values of 7' that are smaller or larger
than v. If they are larger, part of the suffix that must be sent
by unicast from the root server as well. [23] does not restrict
the choice of v or T In figure 3, we can see the situation
when T' > v. A section of length 7" — v must be sent from

the root server to the proxy by unicast, and is re-distributed
by multicast from the proxy.

I1l. MODELING DEPLOYMENT AND OPERATION COST

In this section, we will first present the topology model
that we use in our cost estimation. This is followed by an
introduction of the costs that we consider and a description of
our optimization approach.

A. Topology model

In our approach to model the cost of deployment and
operation of a distribution system we take into account that
the network is already in place, topologies can not be changed
easily, but servers can be deployed and dimensioned within
the existing distribution system. Considering that a wide-area
distribution system will involve networks of several network
providers, an overlay network of servers is a likely choice. In
such an overlay network, our model of a distribution system
that is organized as a homogeneous tree is an appropriate
model for planning, although it does not reflect a physical
topology. Deployment of the service on an overlay network
is consistent with the assumption of linear cost development
and planning in terms of average costs. Our model aims at
the computation of the cost for deployment and operation.
Such a model must combine one-time installation costs with
maintenance costs and resource consumption. Because of the
different time-scales of these models, from a depreciation
period for installations to the bandwidth needed for the transfer
of a video frame, our entire model is timeless. This implies
that we assume a constant average number of active clients,
a constant average number of streams that are supported by
a server, and a one-time cost for the installation of a server
or network link. We assume that an average number of users
accesses the system and do not model idle users at all. This
number is constant but not necessarily a natural number. We
use the Zipf-distribution to model popularity of movies which
is usually proposed in the literature [13,25]. Its problems of
temporal development [26,27] can be ignored here because
we consider only average relevance. Without time in our
model, the number of concurrent retrievals of a movie within
a fraction of its length is determined directly by its popularity
and the number of users, i.e., hit probability takes the place
of interarrival times in the computations.

Since we investigate large systems with central control, we
assume that a good prediction of hit probabilities is realistic.
This allows to move movies to optimal positions within the
system. Since we do not take temporal development into
account in our cost estimation, we can ignore also the changes
in the relative popularity of movies over time. The cost of
movement due to popularity changes is currently ignored in
our model. While this may be a considerable amount of
traffic if system dimensions are faulty, it will be negligible
in the optimized case. Even for approaches using autonomous
caching, this traffic was shown to be negligible [28], and
centralized systems can make better decisions.

Figure 4 shows our model of a distribution system anno-
tated with costs. To discuss the model, we borrow from the
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terminology of CPU caches, and call the servers closest to the
end-users first-level servers, the next closer to the origin server
a second-level server, and so on. Clients are located at level
0, the origin server at level d, i.e., including the levels of the
clients and the origin server, the model has d + 1 levels. The
root servers for a movie may be placed anywhere between
levels 1 and d. The tree is homogenous, meaning that the
number of subtrees k; of each node at a level [ 4-1 is constant.
The cost for storing one movie on a server is denoted D,
the cost for the support of one stream over a link that connects
levels [ and [ — 1 is denoted NV;, and each supported stream
has a fixed cost S at the server from which it originates. The
main reason for layer-dependent values N; is that we want
to be able to distinguish Ny, the consumer’s access link and
the consumer’s storage from other levels. We add a fixed cost
K for each installation of a server that is necessary, i.e., we
assume that a server is installed at level [ of the hierarchy
if and only if movies are placed into the servers at level .
It may be unclear why the cost K is not integrated into D
or S at first, but the cost of deploying and operating a set of
servers at a whole level in a distribution system is not marginal,
starting with the required floor space and operators. In the case
of a multicast stream that traverses a node at level [ + 1 to
two directly connected nodes at level [, the link costs between
levels [ and [+ 1 remains fixed in our model. This definition is
consistent with overlay approaches to content distribution that
use application-specific or application-level multicast [29].

B. Cost model and computation

We want to minimize the cost of deployment and operation,
which implies that several timescales have to be optimized

Cy.p | storage costs at level [

Cp total storage costs

Cl' | unicast network costs at level
C™ | multicast network costs at level [
Cy .~ | network costs at level |

Cn total network costs

Cl’fs unicast interface costs at level [
Cl, 5 multicast interface costs at level [
Cls interface costs at level [

Cs total interface costs
server installation costs at level [
Ck total server installation costs

TABLE |
OVERVIEW OF PARTIAL COSTS

together. The deployment must be considered in a reasonable
time for an amortization of investments that is measured
in years. The length of a movie is measured in minutes,
and stream segments may be measured in seconds. For the
combination we consider only average cost, which is timeless.
The model presented in Section Il1-A provides us with the
means to describe a homogeneous, hierarchical distribution
system. To use it for the optimization of placement, we must
use it to compute costs. We consider four cost factors: the
storage space, the bandwidth that must be allocated to the
system, the networking equipment necessary to support the
bandwidth, and the cost of a server installation. We use to C'
denote the sum of the various partial costs the we compute.
An overview of the partial costs is given in Table I. We model
the popularity of movies according to the Zipf distribution.
To choose a resource assignment that achieves the minimal
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deployment and operational costs for a given topology, we use
an optimization program. The program takes as arguments one
of the cost functions that are presented in the appendix V,
the number of movies M, the number of levels [, the arity
of the homogeneous tree at each level k;, the storage and
interface cost per movie, the bandwidth cost per movie at
each level and the cost for the installation of a server. We
assume that each leaf of the tree is an active user so the
number of users is computed from the arity of the tree. We
have chosen the parameter ¢ of the Zipf distribution as ¢ = 1,
which determines the popularity for each movie. For each set
of parameters, the optimization program yields the assignment
of movies to hierarchy levels that achieves the minimal cost,
and the cost itself.

We use branch-and-bound for the optimization because the
number of valid assignments is relatively small. The cost for
server installations, C; g, is not introduced into the computa-
tion of cost for an individual assignment decision. Rather, we
check all possible subsets of levels, add C; x and compare
those results. By checking the subsets separately we can find
a global cost minimum through branch-and-bound. For the
experiments that we use in this paper to demonstrate the effects
of combined optimization in placement and stream merging
mechanism, we assume fixed values: M = 500, ko = 5000
and k; = 10,¥vl > 0. All movies are supposed to have
identical length and throughput requirements. We optimize the
placement for various link costs, and keep the storage cost
fixed (D; = 1).

C. Discussion

We have used the equations developed in the appendix V as
the basis of our placement optimization algorithm. We have
not used current or projected link and storage costs. Since
these change frequently and CDN providers receive massive
discounts anyway, we concentrate on qualitative observations
instead.

The figures in this section show series of experiments
in optimizing the levels at which movies in a distribution
hierarchy should be kept. On the X-axis it shows movies
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sorted according to their popularity, where m has the highest
popularity and mj; the lowest. Each experiment that we
perform results in a cost-optimal assignment of all movies to
caching levels, i.e., one line in the X-Y plane shows the result
of one experiment. The Figures 5, 6 and 7 show only the subset
of highly popular movies that behave unexpectedly. Only a
subset of movies is shown. The reason is that the placement
for less popular titles holds no surprises. The experiments are
performed with several link costs to observe the development
depending on the relation of storage and link costs. We do not
show the result for link cost 0, which places all content at the
origin server.

1) A-patching: For A-patching, we observe optimal place-
ments like in figure 5. More movies are stored closer to the
client with an increasing link cost, but less relevant movies
remain on higher levels of the distribution hierarchy. The
reason is that the average network bandwidth that is consumed
by accesses to these movies incurs less cost than storing more
copies of these movies at the lower levels, i.e., closer to the
client.

Figure 5 shows clearly that due to the cost reduction
by efficiently using multicast, the optimal placement for \-
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patching is not always achieved by placing the most popular
movies closer to the clients. Since the number of client
requests is growing exponentially when the movie is stored
at a higher level, but savings are achieved on the multicast
links, the chosen patching windows is considerably smaller in
comparison to the one chosen under server load optimization.
The load generated by unicast streams, and thus the overall
cost is smaller, and the incentive for storing the content close
to the client is reduced. However, if a movie is extremely
popular, the top of the distribution tree is reached and the
exponential growth of requests that is associated with moving
the movie towards the origin server stops, and the optimal
position is found closer to the clients again.

2) Gleaning: The presence of the proxies at level 1 of the
distribution hierarchy that uses gleaning (Figure 6) intensifies
the effects that have we observe for A-patching (Figure 5).
The link cost in gleaning must be much higher to counteract
the efficiency of multicast delivery, and find a cost-optimal
placement of the movies at level 1. Since a large server
installation cost is always present at level 1, fast changes in
the placement decisions are more likely. In figure 6, the effect
describes for [-patching is even repeated twice. Our model
does not reflect that batching is the appropriate technique for
very small inter-arrival times. This would result in a zero
unicast cost and incentive to distribute the movie from a higher
level of the distribution tree. The optimal placement would
trade multicast link costs against storage costs.

3) MPatch: In mpatch (Figure 7), the possibility of storing
movies partially at the prefix caches at level 1, which are
always present, could be expected to have similar effects as
gleaning. With this expectation, the low link costs that are
required to force an optimal placement of complete movies
at level 1 needs an explanation. The reason for this is that
gleaning exploits multicast between the root server and the
proxy at level 1, but mpatch uses multicast only between the
prefix cache at level 1 and the clients, but not between root
server and prefix proxies. Thus, the increasing link cost forces
a placement closer to the client.

It is particularly noteworthy that the mpatch placement is
more erratic that that of A-patching and gleaning. The reasons
is that in mpatch, not only multicast and placement can be
adapted to reduce costs. Additionally, the length of a multicast
section 7; and the length of the prefix at level 1, v;, can
be chosen per movie. With four competing optimizations and
small margins, the placement changes frequently.

4) Interpretation: Storing highly popular movies further
away from clients than less popular ones has consequences.
Users will experience an increase in start-up latency, whether
the system can rely on quality-of-service (QoS) guarantees in
the network or not. Without QoS guarantees in the network,
viewers will also experience more jitter and more loss than
for a closer placement. In a commercial system, this may
be considered acceptable if the movies that are moved away
from the clients have only few viewers. We have shown in
3 examples that the co-optimization of placement and stream
merging mechanism results in a situation where highly popular
movies are placed further away from clients than less popular
ones. As a result, the average user satisfaction with the service

will be reduced.

While all of the presented approaches could address the
problem by applying prefetching, retransmission or forward
error correction approaches, this would increase the latency
of the system in many cases. We consider an integration of
user satisfaction into the placement mechanism a more general
solution to the problem. In the following section, we examines
this approach.

IV. QOS MAINTENANCE

In this section, we consider two possibilities to increase the
average user satisfaction in a system that optimizes placement
and stream merging mechanism together. The parameter that
determines user satisfaction in case of placement is the dis-
tance of a client from the root server of a requested movie.
Because of the dominance of requests to popular movies, we
consider it appropriate to identify this goal with the condition
that popular movies should not be stored further away from
the clients than less popular ones.

To achieve this, we compare two approaches. In the first,
we introduce a penalty for distance into the cost formulas
developed in the appendix V. In the second, we enforce a
placement order in such a way that more popular movie are
never placed further away from clients than less popular ones.

While the enforced order approach will always result in
the expected order of placements, the penalty approach can
not prevent non-intuitive ordering of movies with medium
popularity. The penalty approach would be an appropriate
way to go if such a penalty could actually be defined in
terms of cost that customers are not willing to pay in case
of quality degradation. In that case, this approach would be
appropriate because revenue reductions can be considered in
the cost function. In our case the penalty remains virtual. It is
not included in the computation of the overall cost but only
in the assignment of movies to layers.

We do not present graphs of the placement that results from
the use of the placement modifiers. The placement results
mostly in the expected strict order to placements, where more
popular movies are closer to the clients than less popular ones.
Spuriously, the penalty approach shows a minor deviations by
one level. The effect of the placement modifiers on the overall
cost is more important for planning, so we present the increase
of total costs between an unmodified system and one that is
modified with either of the two approaches.

To put the cost differences into perspective, we show the
development of total cost with increasing link cost vs constant
storage cost for the three unmodified techniques in Figure 8.
When compared with the deviation of the cost modifiers, it
becomes clear that it is small in all cases that are shown in
figures 9, 10 and 11. A common point of all three stream
merging mechanisms is that the penalty approach does not
work very well for small link costs and becomes more efficient
when the link cost grows. This is due to the way in which the
penalty is introduced: as an additional, virtual cost for each
link that a requested movie has to cross for delivery to the
client. Although this distance must be covered only for part of
the movie in prefix caching, we consider the complete viewing
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experience penalized by a quality reduction of the suffix. Since
the penalty is fixed, it is obvious that it has a higher influence
on the placement optimization when the link cost (and thus the
total cost) of a placement is low. Enforced order, on the other
hand, does not influence the cost directly but by preventing
some placement evaluations entirely.

The inconsistent cost development in A-patching in figure 9
coincides with the necessity to remove undesirable placements
that we can see in figure 5. When the enforced order modifier
exceeds the cost deviation of the penalty modifier, we have a
situation where the penalty modifier does not achieve perfect
order. The high double peak relates to the optimal placement
that stores all but a few popular titles at level 1. The big
deviations can be explained by the lack of flexibility of
A-patching: the only parameter that can be chosen is the
placement itself.

Figure 10 shows the cost development in gleaning. The
penalty modifier performs badly compared to the enforced
order modifier. Enforced order can ignore optimal placements
at higher levels because the installation cost of the proxies at
level 1 is so high that movies can either be stored at level 1 or
6. The margin for placement at all other levels is so small that
the cost deviation remains low. The penalty approach, on the
other hand, acts like an additional unicast cost and cancels the
savings of multicast delivery from level 6. Movies are placed
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inefficiently at level 1, resulting in the last deviation.

Mpatch is highly adaptive to all kinds of cost development,
as shown in Figure 11. Since 3 parameters can be manipu-
lated separately (placement, v; and 7T3), a restriction of the
placement options penalizes the total cost only slightly. The
penalty approach, on the other hand, leads the optimizer to
choose these parameters in efficiently. The cost deviation for
enforced order is smaller than for gleaning because mpatch
does not use multicast between root server and prefix cache,
so the penalty does not affect the optimizer as badly as in the
gleaning case.

In general we can conclude that the simplest approach for
providing the most cost-efficient placement while maintain-
ing the highest average user satisfaction is an appropriate
choice. A penalty should only be introduced into placement
optimization if users actually pay for quality. But in both
cases, the cost computation functions that we developed in the
appendix V allow a combined optimization of placement and
stream merging mechanism. We have furthermore seen that
stream merging mechanisms with several free parameters such
as mpatch are flexible in adapting to additional conditions.
Although they could not be used for optimization in real-time,
their use for capacity planning can keep cost low especially if
further conditions must be met.
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V. CONCLUSION

We have presented our approach for estimating the cost of
deployment and operation of a CDN with several hierarchical
levels. Our investigation was made under the assumption that
overlay networks will increase in relevance, and that centrally
controlled, hierarchical distribution systems will be a popular
approach to their deployment. The approach determines the
minimal cost and the placement of movies that achieves the
minimal cost. Such an approach allows to determine whether
an optimal placement is feasible in reality and whether the
cost development is stable. We have applied this approach
to three stream merging mechanisms that apply multicast,
partial delivery, and out-or-order delivery of movie segments to
reduce the resource use of the distribution system. Examining
the results of optimizing these mechanisms together with the
placement of movies on servers in a CDN, we found that the
cost-optimal placement decision places popular movies further
away from clients than less popular ones. This would result
in a reduced average quality of service for the clients.

To modify this decision, we introduce placement modifiers
into the cost computation. One modifier enforces the desired
placement by preventing the evaluation of other orders. The
other modifier adds a penalty for distance to the cost compu-
tation. We have found that the simple ‘enforcement’ approach
provides the better results if quality if not actually paid for by
the client. If quality influences the revenue that is generated
with the CDN, the ‘penalty’ approach can be implemented
intuitively and would then provide the best, although not nec-
essarily an ordered placement. We have furthermore observed
that stream merging mechanisms with several variables that
can be chosen freely can adapt more easily to modified cost
computation conditions. By reconfiguration they achieve costs
that are similar to the optimal cost. On the other hand, the
optimal placement becomes less predictable and less stable
when more variables can be chosen freely. Near optimal
solutions may be achieved by making major changes to the
placement decision.

In our future work, we will extend the combination of
caching and delivery to layered video approaches which we
consider necessary to cope with heterogeneous end systems
and unpredictable congestion problems in real-world imple-
mentations. Furthermore, we intend to integrate the optimiza-
tion of internal server resources with stream stream merging
mechanisms.
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APPENDIX

A. Numbers of nodes

This number of nodes in the distribution hierarchy shown
in figure 4 can differ from one level to another. For simpler
handling in the cost computations, we introduce the total
number of clients in the system k in equation 1 and, more
generally, the number of nodes ¢; ; at level ¢ that have a
common parent node at level j in eqg. 2, which in turn allows
us to express k as in eq. 3.

k=koxky*..xkg 1)
Jj—1
Gij = H Ky )
1=
k=qo1*q.a 3

B. The Zipf distribution

The Zipf distribution is shown in eq. 4, where 7, is the
probability of choosing movie m; from a set my, mo, ..., mpy,
of M movies that are sorted by their popularity (of course,
this implies Zfﬁl n; = 1). We call this probability also the
popularity of m,. The parameter ¢ is a skew factor for the
distribution.

M

nizl.%,c:l/(Z}C) @

i=1

C. Specific cost equations

In the following sections we develop the cost computation
equations for several distribution techniques. Each of the
approaches applies a combination of unicast and multicast
delivery of sections of movies to reduce the server and net-
work resource consumption. This reduction can be exploited
in dimensioning network links and servers in a distribution
system, which is reflected in the cost computations.

D. \-patching

A-patching has been briefly introduced in Section 1l. Here
we provide a cost computation for A-patching in combination
with placement of the movie on a root server that is specific
to each movie m;. To calculate the multicast link cost that is
generated at each level for each movie, we assume a random
distribution of the clients that share a stream of movie m;
in the overall set of clients. With this we determine the
probability that a multicast stream uses a network link *.

The expected number of links that receive m; at level [ is
shown in eg. 5.

E(number of links at level [ that serve m;)
(1 — P(link at level 1 does not serve m;)) * qi—1,4

(1= (1 —=mn)0 1) % q_14
)

All clients in such a session except the first one are late and
allocate the link only part of the time. The probability that the
link is required is reduced linearly for each individual client,
which is taken into account in eq. 6.

1
Qi—1,d * Ni */ L— (1 —txn;)®t-tdt (6)
0

As in [20], we assume for simplicity that the multicast
transmission is cyclic, i.e., that it operates like an NVoD
system rather than a true Patching system. We call the time
interval after the start of one multicast stream and before the
start of the next the patching window. Unicast streams that
are started between these two multicast streams are said to
be started in the window. In [20], we have specified the cost
of patching for a movie of length L and with an interarrival
time 1/ in terms of server resources. It is shown in eq. 7 and
consists of one multicast stream setup cost Sy, per patching
window w, the unicast setup cost Sy for requests that arrive
according to the frequency A, the multicast stream cost I'y;
for the entire length of the movie, and the unicast stream cost
T'y for the patch streams that are started per patching window.

22w

In this paper, we can not assume that I'j; and T'y are
constant, since we examine the network costs, but we assume
that S); = 0, Sy =0 and L = 1. To optimize w, we have to
solve eg. 8.

S L
Costa-patching = TM + Sy x A+ Ta * ” + Ty *

d 1 F]u FU*A
=(—r - - — 8
0 <dw M> oW T ®
I'y is shown in eq. 9.
Ty =mn*Y j=1N, ©)

It expresses the unshared cost of the link that connects
a client with a server at level {, qualified with the request
probability. The definition of Iy, in eqg. 10 is based on eq. 6.

IThis is independent of A. Whenever a client requests a movie, it will
become part of a multicast. It depends on A\ how long this multicast is.
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l -1
FM = Z (qjl,l * Nj */ 1-— (1 — 1% ’I’}i)qo’jldt) (10)
0

j=1

Since the derivation of I'; in w depends recursively on w,
we replace the definition with a slightly overestimated value
T'pz, which is given in eq. 11.

l

Ty = D (gjx Njx (1= (1 —m;)™91))

j=1

(11)

The estimation considers the number of links that are
involved in the multicast at the end of the interval w instead
of the average during the interval. The definition L = 1
determines time, so we can define the request rate according
to eq. 12.

A= *qoi-1 (12)

With the w-independent definition of fIE we can use eg. 8
to compute w depending on a level [ and a movie m;. The
result, which is limited by the movie length L = 1, is shown
in eq. 13.

2%y
)\*FU,

(13)

w=min

For further use, it is convenient to use a fraction r; ; of the
movie length as defined in eq. 14 instead of the window size.

L AxT'y
Tl = — =max —, 1
w 2*1—‘]\/1

Note that r; ; can be interpreted as the number of patching
windows that fit into one movie length. We define the proba-
bility p; ; of a request in a window in eq. 15.

(14)

1
Pig = —— *1; (15)

1
These definitions allow cost computations. Unicast patches
must be distributed to the clients. They require a direct
transmission from the root server to the end-user, which is
on average 1/2 of the maximum patch length w. For m;, this
results in unicast stream costs at level [ and unicast interface
costs at the root server as shown in eq. 16 and 17, respectively.

%(Ni,lkNl) (16)
1
5(#1‘,1]435) 17)

For all movies and levels, this adds up to eq. 18 and 19,
respectively.

M

l;
C}{‘[:Z g*ui’li*Z;Nj
j=

i=1

(18)

k M
Cg=5*5x* Z;m,zi (19)
=

The interface that supports the multicast sessions at the root
server of m; is needed for the entire duration of the multicast.
We have to consider that the join probability is lower than »;
for r;; < 1 but more multicast streams are started. Thus, the
usage probability of the interface depends only on the access
probability of each m;, as given in eg. 5, the number of restarts
and the window size w, which is a function of r; ;. This results
in the multicast interface cost given in eq. 20.

M
CE =" lana*rig + (1 — (1= pig)®) 8]
1=1
The computation of the multicast link cost is less straight-
forward because the number of links that are involved in a
multicast transmission increases the first 1/r;; fraction of the
movie, and remains stable for the remaining 1 —1/r; ;. This is
the case for all concurrently active multicast streams, yielding
eq. 21 for each level j and movie m; with a root server at
level ;.

N, [t |
il " Qj—1,1; ° ( J / 1— (1 —t- Mi’li)qf),]—ldt
Til; 0

# (8= 2 - o)

Using this, the overall multicast link cost can be computed
according to eq. 22.

(20)

(21)

M

B3

F (rig, — 1) - (1= (1= pg,)™51))])

1
q] 1,d " N / 17(17t,ui7li)%,j—1dt
0

(22)

For the storage cost, we have to take the storage cost on
the root server of m; as well as at the clients into account,
yielding eq. 23.

(23)

M
Cp = <k+qui7d> x D

i=1

E. Gleaning

For gleaning with placement, the proxy installations at level
1 of the hierarchy are always present as explained in Section
I. The root server that holds the full copy of a movie m; is
determined separately for each movie. All calculations must
distinguish whether the root server of a movie is a first level
server or a higher level server. If the movie is stored in the
first level server, there is no additional cost for the serialization
of the movie for the customer. Since unicast is used over
the last link, it is delivered directly from the stored copy.
To reduce the complexity, we discard the buffer holding the
unicast patch stream for a movie only when a new multicast
stream is started.
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One portion of the unicast cost is always introduced at the
level 1 proxy for delivering a unicast stream to each client.
This is independent of whether the movie is stored at [ = 1
or at a different level. For I > 1, another unicast interface
cost must be taken into account for the patch streams. Since
we are holding the buffer after the first additional request, the
average patch stream length is only 1 — (1 — ;)" * w for each
patching window. The multicast interface costs are identical to
eg. 20, except that the cost for the last link is not calculated.
See eq. 24 for the unicast interface costs and eq. 25 for the
multicast costs.

M

Chi=kxS+Y qax(1—(1—m))«S (24
=2
M
CE = qrarris*(L—(1—p,)0%)«S  (25)
=2

The multicast link cost for I; > 1 is derived from eq. 21,
but it is 0 for level 1. The result is shown in eq. 26.

Yy = wal Ci,. N Where
Ciow :Zg 2[95- 1d*N*f0 — (1 =t g, ) 9091 dt
+(T1,l7, 1) (1 — (1 — /’L/L7ll)qo'] 1))]
(26)

The unicast link cost is similar to the unicast interface cost
in eq. 24, except that the movie-dependent length of the path
between root server and proxy must be considered rather than
the root server’s interface. The result is shown in eq. 27.

M l7
CN—]C*N1+Z qld*(lf 17 >|<

=2 j=2

(27)

In case /; > 1, storage must be allocated both in the root
server of m; and in the proxy. In the root server of m;, the
entire movie must be stored, while the length of the longest
requested patch stream must be allocated at the proxy if at
least one client requests the movie. Rather than assuming the
worst case situation that always the entire patch must be kept,
only the patch length for the average latest patch request in
an interval must be considered, expressed by eq. 28.

1
qz,d-D+/ L— (1=t pi)®rdt-— -qa (28)

il

The storage cost is not affected by whether the full patch
is transmitted from the root server to the proxy or only the
missing patch; the decision to overwrite the previous patch is
independent of it. With this approach, the storage cost is as in
eg. 29.

Cp ="M, C, p where

for; > 1 Cli,D = (Qli,d + fol 1—(1—tx ,ui,li)qo’ldt
*ﬁ *q1q)* D
Cl,D = k*D

(29)

F. MPatch

As with gleaning, the presence of prefix caches at level
1 is mandatory for mpatch. The root server, which holds the
suffix, is chosen independently for each movie m;. For m;, the
portion that is stored at level 1, v;, and the patching window
size T3, can be chosen as well. When a request arrives, it is
served from the proxy using multicast. After time v;, the root
server sends a unicast stream to the prefix cache, which reflects
it to its clients as multicast. Furthermore, a restart-threshold
window of length 7; is defined. If a new client arrives less
than T; after the start of a transmission, it receives a unicast
patch stream. If it arrives later, a new multicast is initiated. In
case that the patch stream is used, and T; > v;, the portion of
the patch that is not stored on the prefix cache is transmitted
from the root server of m,. The costs are computed in several
steps.

If we assume I; = 1, v; = 1 is implied and the costs can
be computed according to eq. 30, 31, 32, 33 and 34.

in(@) =Fk/2-T;-mi - N1 (30)

Cls(i) =k/2-T;-m;- S 31)

Clls(t) =qra-Ti- (1= (A =T -n)™") -5 (32)
ClN()—k: Ny T T - m; (33)
Cip(1) =qra- D (34)

If we assume [ > 1, we know v; < 1. Since we know
that the patching window size is T}, we can use the patching
equations. For this we define r; ; and f; ; as shown in eq. 35
and eq. 36, respectively.

rig = L/T; (35)

pig =Ti/L-n; =T - n;

Two probabilities are needed in several cost computations.
The probability that a movie is requested from a prefix proxy
at level 1 during a single window length T; is computed in
eq. 37.

(36)

The probability that part of a patch stream that is requested
for the case T; > v; requires part of its unicast from the root
server of m; which serves the tail is computed for one window
length 7; in eq. 38.

Gi=1—(1-T;-n + v -n)%t (38)

The storage space required depends only on v; and is
computed as in eq. 39.
Ci.p(i) =

(qr;a- (1 —vi) +qua*vi)- D (39)
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The length of the multicast streams depends only on T;
but interface costs for multicast occur only at the proxy since
unicast is used for delivery from the root server of m;. Thus,
eq. 40 can be derived from eq. 20.

Cl%s(i) = qua-1/T;- Hi - S (40)

Since we use multicast only between the proxy and the
clients, the multicast cost can be computed as in eq. 21, with
a window size T; and simplified as shown in eq. 41.

(i) = k- (g - m) N, @)

In all cases we know the storage cost. The movie is partially
stored at level 1 and partially at level I. We know also that the
multicast cost is identical to that in the [ = 1 case, because
multicast is only performed from the proxy to the clients.

With T; < v;, the unicast link cost consists of the cost for
transmitting the suffix to the proxy that has to be repeated
every T; interval at every server at level [, and the patches
that are delivered from the proxy and have an average length
T;/2. 1t is shown in eq. 42.

1—Ui
T;

l
Cl,N(@):qLd'Hi' 'Z;Nj—i—k:-m-?-Nl (42)
=
The interface cost is similar, see eq. 43. The multicast costs
are identical to those in patching from level 1.

1-— V;
T;
For T; > v;, we have to add unicast cost between the proxy

and the server at level [, that occurs for each client. This results
in the costs shown in eq. 44 and 45, respectively.

Cis(i) = qa- Hi-

T;
Stkem- S (43)



