Dynamic Data Bth Reconfiguration
Carsten Griwdz', Michael Zink

griff@ifi.uio.no
University of Oslo - Department of Informatics
Gaustadalléen 23 - 0371 Oslo, Nagw

michael.zink@km.tu-darmstadt.de
Darmstadt Uniersity of Technology - Industrial Process and System CommunicaticdBMjK
Merckstr 25 - 64283 Darmstadt, Germyan

I. INTRODUCTION AND MOTIVATION

Whentrying to build an audio/video(AV) streaminginfra-
structureonerealizesthatsomefunctionality is neededn sev-
eral partsof the application.E.g., in caseof video sener and
client, protocolslike RTP/RTCR, RTSPandSDPareneededn
bothparts.Thereforeit is appropriatdo implementthesefunc-
tions in a reusablemannerand to createa well-definedand
documentedhPI for eachmodule.To usethe infrastructurein
projectswith non-researclgroups,it is necessaryto support
several decodersand several video seners for the diverse
encodingformats (e.g. H.263, MPEG-1, QuickTime). These
comewith differentAPls,leadingto anadaptatioreffort when-
ever a ng library is intgyrated.

While such abstractionsare typical for streamingapplica-
tions,agenericstructurdik e thatof the IMF [1] is rarelyfound
in free, opensourcesystemsExisting approachesmplement
eitherhard-codedequencesyr they considerframevorksthat
allow the specificationof an end-to-endoehaior for comple
multimediasystemsin thelatterkind of systemsfunctionality
is describedat the level of cooperatinglistributedcomponents
[2, 3]. It is typical for suchframewvorksto considemetworking
asacomponenthatis alsounderthe control of the frameawork.

In anervironmentthatensuresnteroperabilityby specifying
protocols(suchasthe RTSPstreamingervironment),we prefer
a local approach.The control of our frameavork extendsonly
over asinglemachineandRTSPis usedexplicitly for commu-
nication.

Dueto theinteractionof RTP andRTCR andthe possibility
of receving data from several sourcesat a single port, a
directed hon-gsclic graphof moduleds anappropriatestream-
ing model.In caseof RTPR, aninfrastructurds appropriateonly
if dynamicreconfiguratiorof the datapathis supportedby the
modulesas well asthe controlling framewvork. A paclet that
arrivesat aninterfacefrom an unexpectedsendemustbe han-
dled in an application-definedvay: it may be appropriateto
discardthe paclet, to assignit to a default path,or to createan
additional stream for special processing.

Dynamic reconfigurationmust also be supportedin the
implementatiorof a proxy cachesener: it is necessaryo han-
dle userinteractionif that cacheimplementsa write-through
mode.The client recevesdatafrom the origin sener through
the proxy cache which writes the datato disk andforwardsit
to the client aswell. If the client pausesand the application
decidesto continuethe caching operation,the trunk of the
graphthat forwardsdatato the client mustbe cut, while the

trunk that storesdataon disk mustbe maintainedlf the client
resumesviewing, the application must createa new graph,
which retrieves the data from the cache.

We explain our designdecisionsthat arederived from these
requirements.

II. DESIGN

Currentlywe implementcomponentsgalledstreamhandlers
(SHs),thatwork at a granularitysimilar to the component®of
the IMF and do not provide an abstractiorfrom the network.
The SHsare modularmediaprocessingunits that canbe con-
necteddynamicallyby a controlling entity, the graphmanager
to form a setof moduleswhich processlataunitssequentially
Thesequencef dataunitsis calledthe streamthemodulesare
the SHs.As streaminggraphwe definea graphbuilt from sev-
eral SHsthroughwhich datais “flowing” while it is processed
as necessary

Our experiencewith the implementatiorof streamingappli-
cationsshaved usthe needfor a genericarchitecturdo handle
continousmediastreamsThis becamespecificallyclearduring
the developmentof our experimentalKOM-Player platform.
The platformis usedfor investigationson AV distribution sys-
tems. Thereforeis shouldnot only offer supportfor different
encodingformats, transportprotocols, but it must supporta
variety of distribution mechanismghat we investigate. Such
distribution mechanismsnay combine unicastand multicast
distribution or may apply segmentatiorandreorderingfor effi-
cientdelivery. Thisledto our decisionto build anervironment
thatis basedon a streamhandlerarchitecturelt wasour inten-
tion to createan SH architecturethat meetsthe following
goals:

< Easy to extend:First of all the architectureshouldbe a

basis for deelopers to bild their avn SHs.

< Well defined interfaces:The interfaces for each single

SH mustbe well definedto allow aneasyinteractionwith
exising ones.

« Reuseability: It shouldbe easyto reusealreadyexisting

functionality.

A. Concurrency

Advanced, open middlevare approachesthat implement
functionsby concatenatindgunctional modulesinto arbitrary
graphsof independentomponentsre ableto attachschedul-
ing mechanismsto arbitrary subgraphs[4]. While this
approachs highly flexible, it requireseitheran operatingsys-

tem abstraction layer to allow arbitrary grouping, or informa-
tion about the potential grouping capabilities of modules. For
example, it is not straight-forward to support in the same thread
amodule that listens to a BSD socket with a module that waits
for a POSIX semaphore to fire without wasting resources. Our
implementation restricts the flexibility of the graph manager
for combining stream handlersinto processing units.

B. Stream and Streaming Graph

With our focus on delivery systems, we have not addressed
issues in determining the functionality of stream handlers that
may enable a graph manager to create an appropriate streaming
graph. Rather, at this time we use well-known sub-sequences
of SHs that are required for a specific task, such as data for-
warding, writing to and playout from disk, buffering, or
sequencing. The graph managers are responsible for the setup
and destruction of the SHs, determine the interaction beween
the individual SHs and represent the interface towards the
application.

Specifically, a graph manager is required to deal with data
packets from unexpected sources, and it must split a graph or
merge graphs on behalf of the application. To handle opera-
tions such as user join or leave operations on multicast streams,
the graph manager must be able to dynamically split and merge
the streaming graph by setting up or removing SHs without
disrupting the active data forwarding of a stream.

C. Stream handlersin Gleaning capable proxy-cache

In multimedia middleware research, dynamic reconfigurai-
ton of stream graphs is currently investigated from the aspect
of the replacement of functions and of adaptation to changing
resource availability [5].

Our requirements are orthogonal to these abilities and
smaller in scale: in an RTP/RTSP delivery system our proxies
must be able to handle gracefully within the data forwarding
path unexpected new streams from the uplink side, pause and
continue requests from the client side.

Il1. IMPLEMENTATION

The implementation consists of three applications that are
sufficient for building an experimental streaming media distri-
bution system: client, server and proxy-cache. All three of
them exclusively use the SH architecture described in Section
Il to implement their streaming functionality. As a starting
point the classes shown in Figure 1 were implemented.

A. Overview

The implementation of the KOM-Player platform aims at the
development of a research prototype in the area of wide-area
distribution systems for streaming media in the Internet. The
initial code base considered mainly the distribution of CBR
MPEG-1 system and MP3 streams, which were our initial tar-
get formats because they combine hardware- and OS-indepen-
dent playback capability with an appropriate quality. Since
these encoding formats do not support the scalability of encod-
ing formats that can now and in the conceivable future be

SHStatus SHENdpoint
SH I | SHSourceEndpoint
N ~
~
A spsinkendpoint

Figure 1: Parent classes

deployed in the Internet on a wide scale, more flexible encod-
ings are considered as well in our research. More recently, we
have added H.261 and VBR MPEG audio, video and system.
The SH architecture will be a major basis for ongoing imple-
mentation work that is concerned with scalable encoding for-
mats.

B. Middleware

To make SHs aso usable for third party developers we
decided to create alayer that provides basic classes (see Figure
1), templates and interface definitions for the creation of new
SHs. Parent classes with a set of virtua functions ensure the
interoperability between SHs. Certainly this can only be
assured in case that newly created SHs inherit from those
classes.

* SH and SHStatus: SH isthe basis classfor al SHswhich
must be inherited by all new SH classes. This class pro-
vides an attribute template that allows individual attributes
for each SH. The SHStatus class provides functionality
that allows to collect status information about a specific
instance of an SH (e.g. if the SH is currently part of an
active graph).

« Endpoints: The Endpoint classes provide standard inter-
faces between the SHs. Each new SH must also include a
class that implements its endpoints and inherits from
SHENdpoint. SHs can provide both sink and source end-
points, which must than inherits SHSIinkEndpoint or
SHSourceEndpoint, respectively.

« Attributes: Attributes of an SH are modified by the graph
manager to specialize an SH before it is connected into a
graph. Attributes are implemented as set/get operations on
generic data types. At this time, the knowledge required
for specialization is identica to the knowledge required
for chosing among different SHs.

e Reports: It is untypical for architectures that implement
uni-directional streaming of data to provide direct feed-
back in the opposite direction of the data path. We have
decided to do this. It allows, for example, to provide RTCP
feedback to an RTP packetizer without involvement of the
graph manager. Each SH must implement the report inter-
faces (up- and downstream), and reports must be accepted
in a non-blocking manner. SHs may communicate via spe-
cialized reports even if intermediate SHs can not interpret
them - such reports must be forwarded.

C. Stream Handler Types

To deal with the concurreng issue, our implementation
requiresSHsto specifywhetherthey implementan own clock
or not,andwhetherthey requireit or not. As aresult,we define
threeoperationrmodesfor our SHs,to be orderedappropriately
by the graphmanageractive, passve andthrough.Their com-
bination and ordering dependson the task that a specific
streaming graph should fulfil.

» Active: Active SHsimplementtheir own timer. If the SH
actsasasource|t will pushdatadownstreamactively (by
callinga pushfunctionof thedownstreanSH). If it actsas
a sink, it will pull datafrom an upstreamSH actiely. It
mayactassourceandsink atthesametime. Thetimerthat
is implementedy the active SH my bealocal timer, or it
may be implementedby observingexternal conditions,
like userinput or network paclets. It is not possibleto
connectwo active SHsdirectly to eachotherbecauseach
onetriesto control synchronity Yet, morethatoneactive
SH in a streaminggraph can exist if a passve SH is
inserted between those.

e Passive: A passve SH doesnot implementa clock. If it
actsasasink,anupstreanSH maypushdatato it, if it acts
asa sourcea dowvnstreamSH may pull datafrom it. If it
implementsboth sourceand sink, it must also provide
buffering capacitieghat suitethe needsof the graphsthat
it is likely to be includedin. Sucha buffering SH should
definethresholdghatallow it to notify the graphmanager
of over- andunderrunsof the buffer. Passive SHscannot
be connectedlirectly becausao datawould be exchanged
between them.

e Through: Through SHs are meantfor taskssuchas on-
the-flytranscodingpacletduplication,or filtering. SHsdo
not implementtimers and should not introduce buffers
beyond those necessaryfor their operation. They must
alwaysimplementa sourceaswell asa sink. An arbitrary
numberof themcanbe concatenatedAn active SH thatis
locatedupstreanmwill pushdatathroughthis kind of SH,
potentiallythroughseveral morethroughSHsuntil a pas-
sive SH is encounteredThe pull operationis usedin the
sameway by anactive SH locateddownstreamA through
SH shouldwork in both directions,but its endpointcapa-
bilities may restrict this.

D. Client-Server Application

An examplefor thesestreamhandlertypes’interactionis the
delivery of anMPEG-1(systemstream)movie to a client. Fig-
ure 2 shws the SHs that are used in this simple scenario.

The movie is storedon the sener’s disk. Thusthe starting
point of the streamingpathis an SH that readsthe datafrom
the disk. The datareaderin our casedescribedasFile Souce
SHL, must be partially aware of the encodingformat of the

. RTSP -

RTSP serer

Gon
Figure 2: CIient-serR\;gr configation overview

In the exampledatais requestedrom the File Source SHby

the EncoderSH which is an RTP EncoderSH in this specific
case.The encoderdeterminesthe timing in this stream.It

understandghe actual encodingformat of the data and the

transportprotocol thatis usedfor datatransmissionlt deter-
minestime andamountof datato pull from the File Souceand
pushest to the RTP Sink SH to meetthe existing constraints
for datarateanddelay andto createareasonablstreamln the

caseof an MPEG-1 systemstreamthis meansthat the RTP
Encoder SH requestsdata chunks of equal size and pushes
thoseto the RTP Sink SH RTCP recever reportsare inter-

pretedby the RTP Sink SH and statisticsare forwardedto the

RTP Encoder Shsing the report intesite.

The actual streamingpath is determinedby the existing
streaminggraphwhich representshe layout of the streaming
architectureln Figure2 the streaminggraphconsistsof Graph
Manager, File Souce SH,RTPEncoderSHandRTPSinkSH
The Graph Manager is responsiblégor the setupand destruc-
tion of the SHs,determineghe interactionbeveentheindivid-
ual SHs and represents the irded tovards the application.

To handlespecialtasksin cacheshe Graph Manager must
be ableto dynamicallyreconfigurethe streaminggraphby set-
ting up or remwing SHs.

RTSP client

' Window
\ Handle

E. Gleaning Proxy

Reconfiguratiorplays no role in the exampleof SectionD
but it is a basicrequirementor a proxy sener thatimplements
gleaning Roughly a gleaningproxy works by delivering a
movie linearly to a client via unicast,which the proxy itself
recevesin two pieces:a short start sequencevia unicastand
the remainingportion via multicast.For a detaileddescription
of Gleaning we refer to [6].

Sinceone of our researchopicsis on cachingfor multime-
dia streamsawe designedandimplementeda gleaningcapable
proxy-cachéor thosestreamsA detaileddesigncanbefound
in [7]. The proxy is not an RTSP proxy as understoodn the
RFC,which cachesandredirectsonly controlinformation[8].
Rather it is an RTSP/RIP proxy cachethat storescontentin
additionto handlingRTSPrequestsRTSPmessagefom dif-
ferent RTSP sessionsare multiplexed onto one connection
betweeranorigin seneranda proxy. RTSPSessionIDsarethe
keys to de-multiplex sessionsA proxy installsan RTSP con-

stored mwie to schedule its read-ahead operations reasonalfgctionto an origin sener on-demandvhena requestfor the

L Thisis describechsasourcebecausit is thesourceof the
streaming path.

particularorigin sener is receved from a client. The connec-
tion is torn down whenno moreactive RTSPsessiondbetween
the proxy and the origin seweist.

Figure 3 shavs a streaminggraph for the gleaningproxy

Patch stream

RTPSourceSH

RTPSourceSH

F—- == =

| RTPDecoderSH

- = = ="

-
| RTPDecoderSH |

-
|

L____id LV____J
[pushpuish | [pushpuish |
i_P_ushPuIIS}-I_I I_F'_ushPuIIS-I-I_I

L

ConcatenizerSH

I RTPEncoderSH |

L _—e— = = d

Active SH _v
P oo oo
I FileSinkSH | i RTPSIinkSH
L — - — a - — == Through SH L. .|

— - — Passive SH

Figure 3: Poxy catie steaming gaph

with a single client. In a typical caseof gleaningthe proxy-
cachejoins an alreadyexisting multicastsessiorand requests
the missingpart of the movie via a unicaststream.Whenthe
missingpart arrivesas a unicast,this datais immediatelyfor-
wardedto the client while the multicast streamis buffered
cyclically andstreamedo the client afterthe unicaststreamis
finished.If the proxy cachealsodecidesto cachethis movie,
bothstreamsarestorediinearly onits local disc. Thereforetwo
streamingpathson the receving part of the cacheareneeded:
one for the unicaststreamand one for the multicast stream.
This pathsconsistof an actve RTPSouteSH a passie RTP-
DecoderSHand PushPullSH The latter is neededbecausehe
ConcatenizerSHs active. This is the casebecauset deter-
mines both the order and the timing with which datais for-
warded to the client or to the local disc.

Onthedataforwardingpathto theclient,anRTPEncoderSH

canbeseenin throughmode.If active modewereusedinstead
as in the previous example, the ConcatenizerSHand the
RTPEnNcoderSHvould have to be seperatedy anotherPush-
PullSH, and both would re-createthe requiredtiming of the
RTP stream independently
Two situationsrequire dynamicreconfigurationof the data
path:
 join without caching: If the proxy cachedoesnot keep
the entiremovie, a secondclient mustbe sened from the

same multicast stream and an additional unicast stream.

» pausewith caching: If the proxy cachekeepsthe entire
movie, the client may decideto pause.In this case,the
delivery path to the client must be suspended.

F. Ropes

Sinceour implementatiorresidesin the userspacedatais
copiedbetweenkernel and userspaceat leasttwice in a for-
warding operation. Further replication and processingis
requiredin the streamingpath. To reducethe amountof copy-
ing operationson the streamingpath, we usethe conceptof

ropes,a buffer abstractiorthat providesrandomaccessimilar
to a flat buffer, but that allows copy-by-referencecombined
with independentodificationsof eachcopy by concatenation,
cutting and editing operationg9]. Ropesallow the non-copy-
ing modification,removal or additionof protocolheadersand
the parallel processing of interlesl channels in a streams.

I'V. CONCLUSIONS

We usethis SH implemenationwhich is basedon the archi-
tecturepresentedn Sectionll in our proxy-cacheprototype.
We considerthe SHsare an appropriateabstractiorfor devel-
opingstreamingapplicationsThis is supportedy thefactthat
mostof the implementatiorwork wasdoneby oneof our stu-
dents who \as not irolved in the SH design.

For investigatelayeredvideo andotheradaptve capabilities,
we will integrate an MPEG-4 encoderand -decoderinto the
system. This happensin conjunction with an experimental
TCP-friendly protocol TFRC that indicateslimits to the per-
mitted transmission rate to the sender

Although the applicability and extensibility of the approach
hasbeenshonvn, we expect a betterhandlingwhen we have
integrated the SH approachconsequentlyinto our client as
well, andwhenwe supporta plugin architecturghatallows the
dynamic loading of stream handlers.

V. REFERENCES

L. DeCarmo.Core Java Media Framework Prentice
Hall, Upper Saddle River, New Jersey, USA, 1999.
T. Kaeppner.Entwicklung verteilter Multimedia-App-
likationen Vieweg Verlag, 1997.

F. Eliassenand J. Nicol. SupportingInteroperationof
ContinuousMedia Objects.Theoryand Practice of Ob-
ject SystemsSpeciallssueon Distributed ObjectMan-
agement2(2):95-117, 1996.

E. Walthinsen GStreamer GNOME GoesMultimedia.
Technical report, GUADEC 2001, April 2001.
F.Kon, M. Rom:-n, P.Liu, J.Mao, T. Yamane,L. C.
Magalh,es,andR. H. Campbell.Monitoring, Security,
andDynamicConfigurationwith the dynamicTAORe-
flective ORB. In IFIP/ACM International Conference
on DistributedSystem#®latformsand OpenDistributed
ProcessingMiddleware’2000),New York, USA,200Q
IFIP/ACM, April 2000.

C. Griwodz. Wide-areaTrue Video-on-Demandy a
DecentralizedCache-baseistribution Infrastructure
PhDthesis DarmstadtJniversityof TechnologypDarm-
stadt, Germany, April 2000.

R. Becker.Designund Implementierungzon Patching
in die KOM VoD Umgebung StudienarbeitFachbere-
ich Elektrotechnikund InformationstechnikParmstadt
University of Technology, September 2001.

H. Schulzrinne,A. Rao, and R. Lanphier.RFC 2326 -
RealTime Streamingrotocol(RTSP).StandardJ rack
RFC, April 1998.

H.-J.Boehm,R. Atkinson,andM. PlassRopesAn Al-
ternativeto Strings.SoftwarePractice and Experience
25(12):1315-1330, 1995.

(1]
(2]
(3]

[4]

(5]

(6]

[7]

(8]

9]

	I. Introduction and Motivation
	II. Design
	• Easy to extend
	• Well defined interfaces:
	• Reuseability:
	A. Concurrency
	B. Stream and Streaming Graph
	C. Stream handlers in Gleaning capable proxy-cache

	III. Implementation
	A. Overview
	B. Middleware
	Figure 1: Parent classes
	• SH and SHStatus:
	• Endpoints:
	• Attributes:
	• Reports:

	C. Stream Handler Types
	• Active:
	• Passive:
	• Through:

	D. Client-Server Application
	Figure 2: Client-server configuration overview

	E. Gleaning Proxy
	Figure 3: Proxy cache streaming graph
	• join without caching
	• pause with caching

	F. Ropes

	IV. Conclusions
	V. References
	Dynamic Data Path Reconfiguration
	Carsten Griwodz1, Michael Zink2
	1griff@ifi.uio.no
	University of Oslo - Department of Informatics Gaustadalléen 23 - 0371 Oslo, Norway
	2michael.zink@kom.tu-darmstadt.de
	Darmstadt University of Technology - Industrial Process and System Communications (KOM)
	Merckstr. 25 - 64283 Darmstadt, Germany

