
I. INTRODUCTION AND MOTIVATION

When trying to build an audio/video(AV) streaminginfra-
structureonerealizesthatsomefunctionality is neededin sev-
eral partsof the application.E.g., in caseof video server and
client,protocolslike RTP/RTCP, RTSPandSDPareneededin
bothparts.Thereforeit is appropriateto implementthesefunc-
tions in a reusablemannerand to createa well-definedand
documentedAPI for eachmodule.To usethe infrastructurein
projectswith non-researchgroups,it is necessaryto support
several decodersand several video servers for the diverse
encodingformats (e.g. H.263, MPEG-1, QuickTime). These
comewith differentAPIs,leadingto anadaptationeffort when-
ever a new library is integrated.

While such abstractionsare typical for streamingapplica-
tions,agenericstructurelike thatof theJMF[1] is rarelyfound
in free, opensourcesystems.Existing approachesimplement
eitherhard-codedsequences,or they considerframeworksthat
allow the specificationof an end-to-endbehavior for complex
multimediasystems.In thelatterkind of systems,functionality
is describedat thelevel of cooperatingdistributedcomponents
[2, 3]. It is typical for suchframeworksto considernetworking
asacomponentthatis alsounderthecontrolof theframework.

In anenvironmentthatensuresinteroperabilityby specifying
protocols(suchastheRTSPstreamingenvironment),weprefer
a local approach.The control of our framework extendsonly
over a singlemachineandRTSPis usedexplicitly for commu-
nication.

Dueto the interactionof RTP andRTCP, andthepossibility
of receiving data from several sourcesat a single port, a
directed,non-cyclic graphof modulesis anappropriatestream-
ing model.In caseof RTP, aninfrastructureis appropriateonly
if dynamicreconfigurationof thedatapathis supportedby the
modulesas well as the controlling framework. A packet that
arrivesat aninterfacefrom anunexpectedsendermustbehan-
dled in an application-definedway: it may be appropriateto
discardthepacket, to assignit to a default path,or to createan
additional stream for special processing.

Dynamic reconfigurationmust also be supportedin the
implementationof a proxy cacheserver: it is necessaryto han-
dle user interactionif that cacheimplementsa write-through
mode.The client receivesdatafrom the origin server through
theproxy cache,which writes thedatato disk andforwardsit
to the client as well. If the client pausesand the application
decidesto continue the cachingoperation,the trunk of the
graphthat forwardsdatato the client must be cut, while the

trunk thatstoresdataon disk mustbemaintained.If theclient
resumesviewing, the application must createa new graph,
which retrieves the data from the cache.

We explain our designdecisionsthatarederived from these
requirements.

II. DESIGN

Currentlywe implementcomponents,calledstreamhandlers
(SHs),that work at a granularitysimilar to thecomponentsof
the JMF anddo not provide an abstractionfrom the network.
The SHsaremodularmediaprocessingunits that canbe con-
necteddynamicallyby a controllingentity, thegraphmanager,
to form asetof modules,whichprocessdataunitssequentially.
Thesequenceof dataunitsis calledthestream,themodulesare
theSHs.As streaminggraphwe definea graphbuilt from sev-
eralSHsthroughwhich datais “flowing” while it is processed
as necessary.

Our experiencewith the implementationof streamingappli-
cationsshowedustheneedfor a genericarchitectureto handle
continousmediastreams.Thisbecamespecificallyclearduring
the developmentof our experimentalKOM-Player platform.
Theplatformis usedfor investigationson AV distribution sys-
tems.Thereforeis shouldnot only offer supportfor different
encodingformats, transportprotocols,but it must supporta
variety of distribution mechanismsthat we investigate. Such
distribution mechanismsmay combineunicastand multicast
distribution or mayapplysegmentationandreorderingfor effi-
cientdelivery. This led to our decisionto build anenvironment
thatis basedon a streamhandlerarchitecture.It wasour inten-
tion to createan SH architecturethat meets the following
goals:

• Easy to extend:First of all the architectureshould be a
basis for developers to build their own SHs.

• Well defined interfaces:The interfaces for each single
SH mustbewell definedto allow aneasyinteractionwith
exising ones.

• Reuseability: It shouldbe easyto reusealreadyexisting
functionality.

A. Concurrency

Advanced, open middleware approachesthat implement
functionsby concatenatingfunctional modulesinto arbitrary
graphsof independentcomponentsareableto attachschedul-
ing mechanismsto arbitrary subgraphs [4]. While this
approachis highly flexible, it requireseitheranoperatingsys-

Dynamic Data Path Reconfiguration
Carsten Griwodz1, Michael Zink2

1griff@ifi.uio.no
University of Oslo - Department of Informatics

Gaustadalléen 23 - 0371 Oslo, Norway

2michael.zink@kom.tu-darmstadt.de
Darmstadt University of Technology - Industrial Process and System Communications (KOM)

Merckstr. 25 - 64283 Darmstadt, Germany

tem abstraction layer to allow arbitrary grouping, or informa-
tion about the potential grouping capabilities of modules. For
example, it is not straight-forward to support in the same thread
a module that listens to a BSD socket with a module that waits
for a POSIX semaphore to fire without wasting resources. Our
implementation restricts the flexibility of the graph manager
for combining stream handlers into processing units.

B. Stream and Streaming Graph

With our focus on delivery systems, we have not addressed
issues in determining the functionality of stream handlers that
may enable a graph manager to create an appropriate streaming
graph. Rather, at this time we use well-known sub-sequences
of SHs that are required for a specific task, such as data for-
warding, writing to and playout from disk, buffering, or
sequencing. The graph managers are responsible for the setup
and destruction of the SHs, determine the interaction beween
the individual SHs and represent the interface towards the
application.

Specifically, a graph manager is required to deal with data
packets from unexpected sources, and it must split a graph or
merge graphs on behalf of the application. To handle opera-
tions such as user join or leave operations on multicast streams,
the graph manager must be able to dynamically split and merge
the streaming graph by setting up or removing SHs without
disrupting the active data forwarding of a stream.

C. Stream handlers in Gleaning capable proxy-cache

In multimedia middleware research, dynamic reconfigurai-
ton of stream graphs is currently investigated from the aspect
of the replacement of functions and of adaptation to changing
resource availability [5].

Our requirements are orthogonal to these abilities and
smaller in scale: in an RTP/RTSP delivery system our proxies
must be able to handle gracefully within the data forwarding
path unexpected new streams from the uplink side, pause and
continue requests from the client side.

III. IMPLEMENTATION

The implementation consists of three applications that are
sufficient for building an experimental streaming media distri-
bution system: client, server and proxy-cache. All three of
them exclusively use the SH architecture described in Section
II to implement their streaming functionality. As a starting
point the classes shown in Figure 1 were implemented.

A. Overview

The implementation of the KOM-Player platform aims at the
development of a research prototype in the area of wide-area
distribution systems for streaming media in the Internet. The
initial code base considered mainly the distribution of CBR
MPEG-1 system and MP3 streams, which were our initial tar-
get formats because they combine hardware- and OS-indepen-
dent playback capability with an appropriate quality. Since
these encoding formats do not support the scalability of encod-
ing formats that can now and in the conceivable future be

deployed in the Internet on a wide scale, more flexible encod-
ings are considered as well in our research. More recently, we
have added H.261 and VBR MPEG audio, video and system.
The SH architecture will be a major basis for ongoing imple-
mentation work that is concerned with scalable encoding for-
mats.

B. Middleware

To make SHs also usable for third party developers we
decided to create a layer that provides basic classes (see Figure
1), templates and interface definitions for the creation of new
SHs. Parent classes with a set of virtual functions ensure the
interoperability between SHs. Certainly this can only be
assured in case that newly created SHs inherit from those
classes.

• SH and SHStatus: SH is the basis class for all SHs which
must be inherited by all new SH classes. This class pro-
vides an attribute template that allows individual attributes
for each SH. The SHStatus class provides functionality
that allows to collect status information about a specific
instance of an SH (e.g. if the SH is currently part of an
active graph).

• Endpoints: The Endpoint classes provide standard inter-
faces between the SHs. Each new SH must also include a
class that implements its endpoints and inherits from
SHEndpoint. SHs can provide both sink and source end-
points, which must than inherits SHSinkEndpoint or
SHSourceEndpoint, respectively.

• Attributes: Attributes of an SH are modified by the graph
manager to specialize an SH before it is connected into a
graph. Attributes are implemented as set/get operations on
generic data types. At this time, the knowledge required
for specialization is identical to the knowledge required
for chosing among different SHs.

• Reports: It is untypical for architectures that implement
uni-directional streaming of data to provide direct feed-
back in the opposite direction of the data path. We have
decided to do this. It allows, for example, to provide RTCP
feedback to an RTP packetizer without involvement of the
graph manager. Each SH must implement the report inter-
faces (up- and downstream), and reports must be accepted
in a non-blocking manner. SHs may communicate via spe-
cialized reports even if intermediate SHs can not interpret
them - such reports must be forwarded.

Figure 1: Parent classes

SHEndpoint

SHSourceEndpoint

SHSinkEndpoint

SHStatus

SH

C. Stream Handler Types

To deal with the concurrency issue, our implementation
requiresSHsto specifywhetherthey implementanown clock
or not,andwhetherthey requireit or not.As aresult,wedefine
threeoperationmodesfor our SHs,to beorderedappropriately
by thegraphmanager:active,passive andthrough.Their com-
bination and ordering dependson the task that a specific
streaming graph should fulfil.

• Active: Active SHsimplementtheir own timer. If the SH
actsasa source,it will pushdatadownstreamactively (by
callingapushfunctionof thedownstreamSH).If it actsas
a sink, it will pull datafrom an upstreamSH actively. It
mayactassourceandsinkat thesametime.Thetimer that
is implementedby theactive SH my bea local timer, or it
may be implementedby observingexternal conditions,
like user input or network packets. It is not possibleto
connecttwo activeSHsdirectly to eachotherbecauseeach
onetries to control synchronity. Yet, morethat oneactive
SH in a streaminggraph can exist if a passive SH is
inserted between those.

• Passive: A passive SH doesnot implementa clock. If it
actsasasink,anupstreamSHmaypushdatato it, if it acts
asa source,a downstreamSH may pull datafrom it. If it
implementsboth sourceand sink, it must also provide
buffering capacitiesthatsuitetheneedsof thegraphsthat
it is likely to be includedin. Sucha buffering SH should
definethresholdsthatallow it to notify thegraphmanager
of over- andunderrunsof the buffer. Passive SHscannot
beconnecteddirectlybecausenodatawouldbeexchanged
between them.

• Through: ThroughSHs are meantfor taskssuchas on-
the-fly transcoding,packetduplication,or filtering. SHsdo
not implement timers and should not introduce buffers
beyond those necessaryfor their operation.They must
alwaysimplementa sourceaswell asa sink. An arbitrary
numberof themcanbeconcatenated.An active SH that is
locatedupstreamwill pushdatathroughthis kind of SH,
potentiallythroughseveralmorethroughSHsuntil a pas-
sive SH is encountered.The pull operationis usedin the
sameway by anactive SH locateddownstream.A through
SH shouldwork in both directions,but its endpointcapa-
bilities may restrict this.

D. Client-Server Application

An examplefor thesestreamhandlertypes’interactionis the
delivery of anMPEG-1(systemstream)movie to a client.Fig-
ure 2 shows the SHs that are used in this simple scenario.

The movie is storedon the server’s disk. Thus the starting
point of the streamingpath is an SH that readsthe datafrom
thedisk. Thedatareader, in our casedescribedasFile Source
SH1, must be partially aware of the encodingformat of the
stored movie to schedule its read-ahead operations reasonably.

In theexampledatais requestedfrom theFile SourceSHby
the EncoderSH which is an RTPEncoderSH in this specific
case.The encoderdeterminesthe timing in this stream.It
understandsthe actual encodingformat of the data and the
transportprotocol that is usedfor datatransmission.It deter-
minestimeandamountof datato pull from theFile Sourceand
pushesit to the RTPSinkSH to meetthe existing constraints
for datarateanddelay, andto createareasonablestream.In the
caseof an MPEG-1 systemstreamthis meansthat the RTP
EncoderSH requestsdata chunksof equal size and pushes
thoseto the RTP Sink SH. RTCP receiver reportsare inter-
pretedby the RTPSinkSH andstatisticsareforwardedto the
RTP Encoder SH using the report interface.

The actual streamingpath is determinedby the existing
streaminggraphwhich representsthe layout of the streaming
architecture.In Figure2 thestreaminggraphconsistsof Graph
Manager, File SourceSH,RTPEncoderSHandRTPSinkSH.
The Graph Manager is responsiblefor the setupanddestruc-
tion of theSHs,determinestheinteractionbeweentheindivid-
ual SHs and represents the interface towards the application.

To handlespecialtasksin cachesthe Graph Manager must
beableto dynamicallyreconfigurethestreaminggraphby set-
ting up or removing SHs.

E. Gleaning Proxy

Reconfigurationplays no role in the exampleof SectionD
but it is a basicrequirementfor a proxy server thatimplements
gleaning. Roughly, a gleaningproxy works by delivering a
movie linearly to a client via unicast,which the proxy itself
receives in two pieces:a short start sequencevia unicastand
the remainingportion via multicast.For a detaileddescription
of Gleaning we refer to [6].

Sinceoneof our researchtopicsis on cachingfor multime-
dia streamswe designedandimplementeda gleaningcapable
proxy-cachefor thosestreams.A detaileddesigncanbefound
in [7]. The proxy is not an RTSPproxy asunderstoodin the
RFC,which cachesandredirectsonly control information[8].
Rather, it is an RTSP/RTP proxy cachethat storescontentin
additionto handlingRTSPrequests.RTSPmessagesfrom dif-
ferent RTSP sessionsare multiplexed onto one connection
betweenanorigin serverandaproxy. RTSPSessionIDsarethe
keys to de-multiplex sessions.A proxy installsan RTSPcon-
nectionto an origin server on-demandwhena requestfor the
particularorigin server is received from a client. The connec-
tion is torn down whenno moreactive RTSPsessionsbetween
the proxy and the origin server exist.

Figure 3 shows a streaminggraph for the gleaningproxy

1.This is describedasasourcebecauseit is thesourceof the
streaming path.

RTSP server RTSP client

Automaton

File RTP RTP
Source

SH
Encode

SH
Sink
SH

RTP RTP Renderer
Source

SH
Decode

SH
Capsule

SH

Graph Mgr Graph Mgr

RTSP

RTCP

RTP

Automaton

GUI

Window
Handle

Figure 2: Client-server configuration overview

with a single client. In a typical caseof gleaningthe proxy-
cachejoins an alreadyexisting multicastsessionandrequests
the missingpart of the movie via a unicaststream.Whenthe
missingpart arrivesasa unicast,this datais immediatelyfor-
warded to the client while the multicast streamis buffered
cyclically andstreamedto theclient after theunicaststreamis
finished.If the proxy cachealsodecidesto cachethis movie,
bothstreamsarestoredlinearlyon its localdisc.Thereforetwo
streamingpathson the receiving partof thecacheareneeded:
one for the unicaststreamand one for the multicaststream.
This pathsconsistof an active RTPSourceSH, a passive RTP-
DecoderSHandPushPullSH. The latter is neededbecausethe
ConcatenizerSHis active. This is the casebecauseit deter-
minesboth the order and the timing with which data is for-
warded to the client or to the local disc.

On thedataforwardingpathto theclient,anRTPEncoderSH
canbeseenin throughmode.If active modewereusedinstead
as in the previous example, the ConcatenizerSHand the
RTPEncoderSHwould have to be seperatedby anotherPush-
PullSH, and both would re-createthe requiredtiming of the
RTP stream independently.

Two situationsrequiredynamicreconfigurationof the data
path:

• join without caching: If the proxy cachedoesnot keep
the entiremovie, a secondclient mustbeserved from the
same multicast stream and an additional unicast stream.

• pause with caching: If the proxy cachekeepsthe entire
movie, the client may decideto pause.In this case,the
delivery path to the client must be suspended.

F. Ropes

Sinceour implementationresidesin the userspace,datais
copiedbetweenkernelanduserspaceat leasttwice in a for-
warding operation. Further replication and processing is
requiredin thestreamingpath.To reducetheamountof copy-
ing operationson the streamingpath, we usethe conceptof

ropes,a buffer abstractionthatprovidesrandomaccesssimilar
to a flat buffer, but that allows copy-by-referencecombined
with independentmodificationsof eachcopy by concatenation,
cutting andediting operations[9]. Ropesallow the non-copy-
ing modification,removal or additionof protocolheaders,and
the parallel processing of interleaved channels in a streams.

IV. CONCLUSIONS

We usethis SH implemenationwhich is basedon thearchi-
tecturepresentedin SectionII in our proxy-cacheprototype.
We considerthe SHsarean appropriateabstractionfor devel-
opingstreamingapplications.This is supportedby thefactthat
mostof the implementationwork wasdoneby oneof our stu-
dents who was not involved in the SH design.

For investigatelayeredvideoandotheradaptive capabilities,
we will integratean MPEG-4 encoderand -decoderinto the
system.This happensin conjunction with an experimental
TCP-friendly protocol TFRC that indicateslimits to the per-
mitted transmission rate to the sender.

Although the applicability andextensibility of the approach
hasbeenshown, we expect a betterhandlingwhen we have
integrated the SH approachconsequentlyinto our client as
well, andwhenwesupportapluginarchitecturethatallows the
dynamic loading of stream handlers.

V. REFERENCES

[1] L. DeCarmo.Core Java Media Framework. Prentice
Hall, Upper Saddle River, New Jersey, USA, 1999.

[2] T. Kaeppner.Entwicklung verteilter Multimedia-App-
likationen. Vieweg Verlag, 1997.

[3] F. Eliassenand J.Nicol. SupportingInteroperationof
ContinuousMediaObjects.TheoryandPracticeof Ob-
ject Systems:SpecialIssueon DistributedObjectMan-
agement, 2(2):95–117, 1996.

[4] E. Walthinsen.GStreamer- GNOMEGoesMultimedia.
Technical report, GUADEC 2001, April 2001.

[5] F. Kon, M. Rom·n, P.Liu, J.Mao, T. Yamane,L. C.
Magalh„es,andR. H. Campbell.Monitoring, Security,
andDynamicConfigurationwith thedynamicTAORe-
flective ORB. In IFIP/ACM International Conference
onDistributedSystemsPlatformsandOpenDistributed
Processing(Middleware’2000),NewYork,USA,2000.
IFIP/ACM, April 2000.

[6] C. Griwodz. Wide-areaTrue Video-on-Demandby a
DecentralizedCache-basedDistribution Infrastructure.
PhDthesis,DarmstadtUniversityof Technology,Darm-
stadt, Germany, April 2000.

[7] R. Becker.Designund Implementierungvon Patching
in die KOM VoD Umgebung.Studienarbeit.Fachbere-
ich Elektrotechnikund Informationstechnik,Darmstadt
University of Technology, September 2001.

[8] H. Schulzrinne,A. Rao,and R. Lanphier.RFC 2326 -
RealTimeStreamingProtocol(RTSP).StandardsTrack
RFC, April 1998.

[9] H.-J.Boehm,R. Atkinson,andM. Plass.Ropes:An Al-
ternativeto Strings.SoftwarePracticeandExperience,
25(12):1315–1330, 1995.

Figure 3: Proxy cache streaming graph

Patch stream MC stream

RTPSourceSH RTPSourceSH

RTPDecoderSH RTPDecoderSH

PushPullSH PushPullSH

Active SH

Passive SH

Through SH

ConcatenizerSH

FileSinkSH

RTPEncoderSH

RTPSinkSH

Unicast steam

	I. Introduction and Motivation
	II. Design
	• Easy to extend
	• Well defined interfaces:
	• Reuseability:
	A. Concurrency
	B. Stream and Streaming Graph
	C. Stream handlers in Gleaning capable proxy-cache

	III. Implementation
	A. Overview
	B. Middleware
	Figure 1: Parent classes
	• SH and SHStatus:
	• Endpoints:
	• Attributes:
	• Reports:

	C. Stream Handler Types
	• Active:
	• Passive:
	• Through:

	D. Client-Server Application
	Figure 2: Client-server configuration overview

	E. Gleaning Proxy
	Figure 3: Proxy cache streaming graph
	• join without caching
	• pause with caching

	F. Ropes

	IV. Conclusions
	V. References
	Dynamic Data Path Reconfiguration
	Carsten Griwodz1, Michael Zink2
	1griff@ifi.uio.no
	University of Oslo - Department of Informatics Gaustadalléen 23 - 0371 Oslo, Norway
	2michael.zink@kom.tu-darmstadt.de
	Darmstadt University of Technology - Industrial Process and System Communications (KOM)
	Merckstr. 25 - 64283 Darmstadt, Germany

