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A multimedia storage system plays a vital role for the performance and 
scalability of multimedia servers. To handle the server load imposed by 
increased user access to on-demand multimedia streaming applications, 
new storage system solutions are needed. 

Internet use and the amount of data that users download and stream from Internet servers are 
rapidly increasing. Analysts predict that by 2005, the World Wide Web and applications such as 
news- and video-on-demand (VoD) will constitute approximately 50 percent of the total 



available data stored.1 Although mid-priced PCs can handle the load that multimedia 
applications impose on the client system, the potentially high number of concurrent users 
downloading or streaming data from media-on-demand servers is a challenge for a multimedia 
server's storage system.

Multimedia storage systems store and retrieve data from storage devices and manage related 
issues including data placement, scheduling, file management, continuous data delivery, 
memory buffering, and prefetching. For high-data-rate multimedia systems, storage systems 
have long been viewed as a primary bottleneck for two reasons. First, multimedia applications 
have a much higher storage system load than previous applications. Second, storage devices 
have become only marginally faster compared to increased processor and network performance. 
This increasing speed mismatch has fueled a search for new storage structures and file system 
storage and retrieval mechanisms.

Developers who design and implement multimedia storage systems must consider several 
issues, including 

 What kind of storage device to use

 How to order the requests

 Where to put data

 How to manage memory

 How to deal with overload situations

 What kind of metadata (index) structures to use

The decisions they make for each subcomponent often depend on the expected access patterns, 
but to avoid conflicting designs, they must also consider the choices they make for other 
components.

Although researchers have explored multimedia storage techniques and research directions 
elsewhere,1,2 such discussions often address particular system components. Also, many recent 
technological developments have not yet been addressed. In this two-part series, we offer an 
overview of current multimedia storage system technologies, including a general classification 
of real-time and continuous-media storage technologies, as a starting point for further study (for 
a comprehensive reference list, see www.ifi.uio.no/~paalh/publications/dsonline2004). We also 
consider emerging trends in storage systems, proposed system properties, and how different 
mechanisms fit together. In this part, we address streaming-system requirements and single-disk 
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issues such as disk scheduling and data placement.

STORAGE AND RETRIEVAL OF MULTIMEDIA 
DATA

A multimedia storage system must account for both storage and bandwidth capacity for optimal 
device utilization, and developers have proposed different mechanisms to optimize the storage 
system in the multimedia context and achieve continuous media support. Compared to discrete 
data, continuous-media data entails new requirements related to timeliness, large file sizes, high 
data rates, and the need for low latency and (intra and inter) file synchronization. Researchers 
often characterize multimedia applications as soft real-time applications because they require 
timely behavior. In applications playing out continuous media streams, for example, each task 
requires periodic operations that give a certain data amount at each time interval. However, 
traditional periodic tasks have a fixed frequency and a constant time, whereas multimedia 
periodic behavior is more complex because period frequency and length can vary. Moreover, 
user interactions make future resource requirements hard to predict a trend that will likely 
continue as developers increasingly use multimedia data to present information in a user-
friendly way.

Continuous media: A brief overview 

Continuous media is characterized by a timely presentation, such as displaying a video frame 
every 40th millisecond for a 25 frame per second video playout. The requirements for storing 
continuous-media data on disk and retrieving it vary, however, according to the target 
application's data access pattern and the encoding and file formats. 

The motion-JPEG (MJPEG) encoding format, for example, separately compresses each video 
frame, while MPEG might replace portions of a frame with a reference to a similar portion of 
another frame elsewhere in the sequence. So, MPEG provides better compression ratios. 
However, its frames must be processed in groups, so the server should therefore handle them in 
groups. More recent encoding formats include capabilities such as layering, as in scalable 
MPEG (SPEG), and fine-grained scalability, as in MPEG-4, which make it possible to adapt to 
available network bandwidth, client capabilities, and server resources. However, applications 
that apply these encoding formats can use only part of the frames stored on disk. Thus, although 
these formats maintain the frame rate, they decrease quality. However, using scalable encoding 
formats also creates a new storage system research challenge: how to manage internally 
structured media data.
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The file format itself contains encoded media data and other information. With simple file 
formats such as MPEG-1 system streams, this additional information provides only basic facts, 
such as how many separate streams the file contains. More recent file formats, such as MPEG-
4, QuickTime, or audio video interleave (AVI) contain information about how the contained 
streams relate to each other, such as that two particular streams must be played together. So, 
media files form external and internal structures in relation to each other. Recent file formats 
also support conditions that require the delivery of different encoded data based on interaction 
with client applications. Such file formats can also refer to other files' encoded data in a similar 
way as it refers to encoded data included in the file itself. Handling these additional demands 
also creates challenges for future research.

System requirements 

In today's multimedia applications, such as the on-demand class of applications, data is 
typically written once and read many times. Such applications are also more complicated than 
traditional applications and entail new properties:

 The application data structure is moving away from linear data, such as that in 
traditional movies, to branched, nonlinear data that lets users choose different 
paths through the presentation.

 As applications move from unidirectional to bidirectional, they will have an 
increased amount of interaction. 

The current trend is that applications are basically moving away from analog distribution of 
linear data (such as TV broadcasts) through digital, personalized retrieval of linear data (true 
VoD, for example) and retrieval of branched data (as in interactive VoD), toward interaction 
with variable data (games, virtual words, and so on).3 The result is several application types 
with slightly different requirements. In general, however, multimedia applications have several 
common characteristics.

Timeliness. Retrieving, computing, and presenting continuous media are time-dependent 
activities, and their timeliness requirements are often expressed by quality-of-service (QoS) 
parameters. Some applications, such as interactive action games, require low latency: data must 
be read before a given deadline or as soon as possible, often at the cost of storage device 
bandwidth utilization. In a VoD application that streams continuous media over the network, 
however, it might be more important to focus on data rates over deadlines and serve requests in 
rounds. This is because, in such applications, other subsystems might introduce much larger 
delays and jitter than the storage system itself, and focusing on data rates enables a more 
efficient request schedule. So, algorithms for storing and retrieving such data must consider the 
application's periodic or time constraints and provide additional buffers to smooth the data 
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stream.

Large file sizes and high data rates. Compared to text and graphics, video and audio have 
very large storage space and playout-rate requirements. Because the file system must store a 
range of information from small, discrete data units such as text files to large, continuous data 
units such as video and associated audio it must manage the disk data to efficiently use 
limited device capacity. For example, uncompressed CD-quality stereo audio requires storage 
and delivery of 44,100 16-bit samples per second per stereo channel approximately 1.4 Mbits 
per second (Mbps). Compressed video with low but acceptable quality requires at least 
approximately 1 Mbps using MPEG-1, for example, while an MPEG-2 DVD-quality video 
stream requires approximately 3.5 Mbps on average.

Multiple data streams. A multimedia system often supports different media simultaneously, 
such as intrastream and interstream synchronization. Not only must the system ensure that each 
media gets a sufficient resource share, it also must consider tight relations between different 
streams arriving from different sources or files. Movie retrieval, for example, requires 
processing and synchronizing of audio and video.

So, in addition to traditional requirements such as availability, efficiency and performance, and 
fairness, a multimedia system introduces several new, possibly contradicting requirements.4 For 
early multimedia applications that play back a linear data object sequentially, requirements such 
as high throughput and no synchronization skew are important. Here, users can typically 
tolerate a short startup delay, but, as we move to more interactive applications, requirements 
such as low latency become increasingly important. We must therefore tune multimedia storage 
systems for high performance to support

 An optimal (maximum) number of clients

 The required data rates to support continuous playout of time-dependent data

 Highly responsive, interactive applications

Researchers have proposed several approaches and mechanisms to meet these demands. We 
now address these developments in some key areas of multimedia storage system research.

DISK SCHEDULING

A disk is an exclusive, nonpreemptable device: it serves one request at a time. So, to achieve 
maximum performance, the disk scheduler must sort and multiplex requests in the temporal 
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domain on the basis of system characteristics. Originally, applications relied on disk scheduling 
to reduce latency or increase throughput or efficiency,5 but real-time and multimedia 
applications include additional requirements that existing disk-scheduling algorithms cannot 
meet.6 For instance, playing back continuous multimedia such as audio and video from disk 
requires periodic data retrieval, and the system must deliver each requested piece of data within 
a certain deadline to ensure continuous presentation. In a multiuser system, distributing the 
storage subsystem's bandwidth is also important.

With the introduction of interactive, mixed-media applications such as learning-on-demand, 
which integrates video, audio, and slides, the disk scheduler requirements are even more 
complex. Thus, QoS is a central issue in disk scheduling.5 Performance goals are nevertheless 
still important continuous multimedia data often imposes considerable requirements on disk 
throughput. So, the disk scheduler must now help ensure high throughput, QoS support, and low 
latency in a multiuser environment characterized by variable, heterogeneous workloads. In 
addition, these requirements partially conflict, and trade-offs are necessary. For example, the 
need for low latency generally conflicts with the need for efficient disk reads. While ordering 
requests minimizes disk head movement and thus achieves higher request throughput, low 
latency is achieved by serving requests immediately, without considering data placement and 
optimal request sorting. The result can thus be long seek operations and reduced throughput.

Algorithm classification 

We can classify existing disk-scheduling algorithms in different ways, but we have chosen to 
classify them according to their designated purpose.

Performance-oriented algorithms focus only on optimizing performance. By sorting requests to 
minimize disk arm movement, for example, these algorithms can increase throughput, reduce 
latency, or do both. Well-known examples here include first-come, first-served (FCFS); shortest 
seek time first (SSTF); Scan (elevator); LOOK; VScan; and shortest access time first (SATF).

Real-time algorithms are intended for real-time environments, servicing disk requests on 
deadline. Examples here include earliest deadline first (EDF), Scan-EDF, and priority Scan 
(PScan).

Stream-oriented algorithms handle continuous-data-stream retrieval and often rely on periodic 
behavior, load control, and fair sharing of I/O bandwidth. Several proposed algorithms exist, 
including the continuous media file system (CMFS) scheduler, grouped sweep scheduling 
(GSS), BubbleUp, T-Scan, batched Scan (BScan), buffer-inventory-based dynamic scheduling 
(BIDS), and greedy-but-safe EDF (GS_EDF).

Mixed-media algorithms recognize that different disk requests might have different service-
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level requirements. These algorithms usually have two scheduling levels that manage different 
services and disk efficiency, respectively. Examples here include Cello, the massively parallel 
and real-time storage (MARS) scheduler, fair mixed-media scheduling (FAMISH), deadline-
sensitive Scan, Fellini's disk scheduler, delta L, and the adaptive disk scheduler for mixed-
media workloads (APEX).

Additionally, priority-based disk-scheduling algorithms also exist. However, support for 
priorities is orthogonal to our classification, so we have presented these algorithms within the 
existing four classes. 

Analysis 

With continuous media such as audio and video, pure performance-oriented algorithms such as 
Scan and real-time, deadline-driven algorithms such as EDF fail during high workloads. To 
overcome these algorithms' shortcomings, developers have designed several stream-oriented 
disk-scheduling algorithms that are primarily optimized for handling continuous-data-stream 
retrieval. Compared to real-time scheduling algorithms, these algorithms often focus less on 
deadlines and more on request periodicity (requests are typically served in fixed-length rounds) 
and fair allocation of disk bandwidth. Stream-oriented algorithms typically consider 
performance, and, to a certain extent, work conservation. Furthermore, they often offer a 
statistical real-time or throughput-only guarantee, based on periodic requests, but do not support 
request dropping, priorities, or deadlines. Given that the algorithms target delay-sensitive data, 
the lack of deadline support is compensated for by careful load control, typically through 
admission control and load uniformity (all requests are for video data, for example). Finally, 
because stream-oriented algorithms mainly address periodic access, they usually neglect low-
latency support.

In recent years, developers have introduced applications that present both discrete and 
continuous media and thus provide different service classes. Disk scheduling for mixed-
media workloads has therefore become an active research area. Most of these algorithms have a 
two-level hierarchical design, with the lower level ensuring efficient disk usage and the higher 
handling QoS and service-class differentiation. (The number of service classes increases from 
the traditional, best-effort class to two classes discrete and continuous or even to an 
arbitrary number of service classes.) Some algorithms rely on the proportional-share-allocation 
paradigm, while still offering QoS guarantees. This is possible because they use a fixed set of 
service classes, or queues, and carefully control each queue's weight. The relative share of a 
queue's bandwidth thereby equals the absolute share, and QoS guarantees are possible if system 
efficiency remains constant. Some of these schedulers are also priority based and minimize 
device idle time using work conservation. To avoid overload situations, some include admission 
control. Finally, to support low latency in stream-oriented schedulers, some mixed-media 
algorithms use separate queues and give low-latency requests priority in the low-level queue.
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Although much work has been done on disk scheduling support for multimedia applications, 
some areas for disk scheduling research are still open or unfinished. Some schedulers, for 
example, address mechanisms for admission control and service-class resource assignment that 
automatically adapt to varying conditions and workload mixes.7 However, this topic remains an 
important research issue. Also, new disk devices are "intelligent," and the system does not 
necessarily know exactly where a block is stored. The devices therefore often contain a built-in 
hardware version of a Scan-like scheduling algorithm to optimize performance. Future disk-
scheduling research should exploit these new capabilities; fine-grained request sorting, for 
example, might not be necessary.

DATA PLACEMENT

Data placement policies are related to disk scheduling in that disk request sorting is typically 
based on block placement in the storage device. Such policies aim to improve the storage 
system's efficiency by properly placing data elements according to device mechanics and the 
often-predictable (sequential) retrieval patterns of multimedia applications. 

Placement policies 

Optimizing block placement to minimize average data retrieval time has long been an active 
research area, and researchers have proposed several placement policies.

Scattered (random) placement places data elements on arbitrary disk blocks regardless of disk 
characteristics and access patterns.

Contiguous placement aims to store all file blocks contiguously. It might, for example, store 
blocks on a disk's adjacent sectors first, then on another track in the same cylinder, and finally 
on adjacent cylinders. So, assuming no other interleaved I/O operations to the disk exist, track-
to-track seeks are the only intrafile seeks required to read data sequentially.

Extent-based placement refines the contiguous policy to better support interleaved I/O 
operations. An extent is a physically linear series of blocks that can be read without head 
repositioning, but each extent is smaller than a whole file, decreasing the length of seeks for 
data in other files. Additionally, each metadata structure (inode) field usually points to a series 
of blocks (start offset and number of adjacent blocks) reducing the number of indirect pointers 
to follow to find the block address. Several file systems use this policy, including the XFS, 
journaled file system (JFS), new technology file system (NTFS), and Minorca file system.
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Cylinder-based placement allocates blocks close to each other to avoid long intrafile seeks 
(similar to extents). This policy organizes the blocks in cylinder groups, which consist of 
several adjacent cylinders. A global policy then decides which cylinder group to place a file in, 
and a local policy tries to put all data blocks in the same cylinder group at rotational optimal 
positions (when possible). To avoid fragmentation and different-loaded cylinder groups, the 
data block allocation shifts to a different cylinder group every few megabytes. The fast file 
system, for example, uses this policy.

Log-structured placement stores all file system data in a sequential, append-only log, which is 
the only on-disk structure. The idea is that newer, larger buffer caches will usually hold the 
required data blocks in memory when requested. The policy also assumes that the disk 
subsystem predominantly sees write operations; that is, allocating new blocks is a bottleneck. 
So, to optimize writes, this policy allocates the next available block with a minimum seek time 
when writing. The log-structured file system (LFS), for example, uses this policy.

Zone-based placement uses disk characteristics and average disk-arm position to find a suitable 
block. For example, the organ-pipe placement policy tries to put the most frequently accessed 
block regardless of which file it belongs to close to the disk's center. The reason is that 
with scheduling algorithms such as Scan, the disk head is, on average, at the center and its seek 
times to the platter's center are thus shorter. This means placing and periodically rearranging 
popular video clips in the disk's center cylinders.8,9 To compensate for the zoned disks having 
better capacity and bandwidth on the outer zones, the skewed organ-pipe policy moves the most 
frequently accessed blocks slightly outward from the disk platters' center according to the zones' 
different capacities.10 Other zoned placement policy examples include near-constant transfer 
time (NCTT) and track-pairing.

Constrained placement policies attempt to exploit sequential access patterns to reduce seek 
overhead. They do this by restricting the average distance between consecutive blocks in 
several cylinders.11 For example, region-based block allocation (REBECA) partitions the disk 
in regions and places consecutive multimedia objects in adjacent regions to minimize seek time 
(at the cost of start-up latency). The strand-based model derives storage granularity and 
scattering parameters using device characteristics and playback rate. This model tries to store 
data so it can be retrieved contiguously as a strand in a single operation, placing each strand on 
disk according to a maximum calculated seek time (the maximum scatter value) between 
consecutive strands to guarantee continuous retrieval and data playout. 

Analysis 

Block allocation research primarily addresses disk efficiency rather than latency. Which one is 
best depends on access patterns, but there are some important general considerations. In a 
server, multiple streams will play out concurrently, and the I/O operation order both with 
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respect to current playout position and media object might vary slightly (servers can probably 
control this variation to a certain degree). Schemes with strict access-pattern assumptions can 
therefore be optimized for a certain I/O operations sequence, but they might fail due to small 
differences between the actual, varying order of I/O operation and the assumptions. So, even 
though a single process might access data sequentially, the probability of reading an entire large 
file continuously (as one long I/O operation) is minute owing to multiple concurrent file 
accesses (clients). Thus, a pure contiguous block allocation which seems initially reasonable 
for multimedia gives large seek times over whole files for each access to a different file. 
However, seeks should be as small as possible for each I/O operation (disk access). That is, data 
retrieved as one operation should be stored contiguously or at least close on the platter to 
minimize intra-operation seeks.

Techniques such as extent- or cylinder-based placement, which provide smaller contiguous file 
fragments, better support interleaved I/O operations with no intraoperation seeks compared to 
pure contiguous policies. However, several contiguous policy extensions also exist. For 
example, with multimedia files, some mechanisms can attempt to store blocks contiguously, 
whereas other file types make no attempt to optimize placement.12,13 As in Symphony's data-
type-dependent modules, a placement policy can also add an abstraction to assist multimedia 
applications. Finally, having small, contiguously stored page-sized blocks permits efficient 
mapping and unmapping of disk space into main memory, allows for finely grained buffering 
decisions, and this makes mapping complex access patterns easier.14,15 

Because on-demand multimedia servers are often dominated by read-only, sequential file 
accesses, write-optimized policies (such as log-structured) and no-optimized policies (such as 
random) are often regarded as inappropriate. This is because they allow numerous intrafile 
seeks in multimedia streaming scenarios that have I/O requests spanning several blocks. 
However, when systems use replication and wide striping in a disk array to handle bottlenecks, 
even a random placement with many blocks might be sufficient.16 Random placement has also 
been successfully used for a mixed-media scenario combined with a (heterogeneous) multidisk 
storage system in which data blocks are allocated randomly on a disk and replicated on random 
disks.17,18 

Because the key issue is to reduce intraoperation seek time, we must determine how large each 
contiguous region, or extent, should be. For example, in a variable-bit-rate scenario, 
conventional fixed-sized clusters correspond to varying amounts of time, depending on the 
achieved compression.19 Alternatively, the system can store data in variably sized clusters 
corresponding to fixed time periods to better support round-based retrieval. Constant retrieval 
time for each segment can be achieved using the different disk zones, for example, as in the 
NCTT policy. Additionally, when compressed data does not correspond to an even number of 
disk sectors, we must contend with the data-packing problem.2 Nevertheless, each extent's size 
should be equal to or exceed the average I/O operation request size such that at most one 
(possibly track-to-track) seek is performed between two extents (assuming that one extent is 
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stored in a track or cylinder).

When a multimedia scenario streams out various continuous-media objects, combining policies 
might be appropriate. For example, we might minimize intraoperation seeks using I/O request-
sized extents, then place the most popular files using a popularity-based (zone-based) scheme to 
best utilize a modern disk's different. We could also use a constrained-based policy to achieve a 
worst-case interextent seek time if the popularity-based placement did not implicitly provide 
one. 

CONCLUSION

With this data placement discussion, we conclude our look at existing solutions for handling 
multimedia data on a single disk. As our survey of different mechanisms shows, multimedia 
applications' timeliness demand requires different strategies compared to classical workloads. 
As for future research, in addition to multimedia disk scheduling interactions with intelligent 
disks, some next steps in research might include integrating existing data placement schemes, 
and placement of media data fragments with internal and external structural dependencies.

Part Two of our survey will cover solutions for multimedia data management for multiple disks, 
including techniques for striping, interleaving, replication, and load balancing. We will also 
discuss main memory's role in storage systems, and metadata structures' relevance for efficient 
multimedia data handling. We will conclude this survey by outlining existing approaches for 
combining all these building blocks into a complete multimedia storage system, and offer a 
view toward future research.
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