
Structured Partially Caching Proxies for Mixed
Media

Frank T. Johnsen, Carsten Griwodz, and P̊al Halvorsen

Department of Informatics,
University of Oslo,

{frankjo,griff,paalh}@ifi.uio.no

Abstract. News on demand features user interaction, interdependent
media and is used by different client types. These requirements are not
yet accommodated by a single solution. We address this issue by utilizing
a priori knowledge about news articles’ structure encoded in a presen-
tation plan. Using this, we investigate the gains that knowledge about
structure can have for a caching proxy. Our simulations show that struc-
tured partial caching of media object segments achieves a higher byte hit
ratio compared to a non-structured caching scheme when access patterns
follow a Multi-Selection Zipf distribution.

1 Introduction

In recent years, we have seen an increase in services available on the Inter-
net. More people peruse the Internet for information than ever before, and re-
place their modems with more capable ADSL lines. Service providers respond
to this trend by providing even richer media for their customers. Some broad-
band providers now offer their customers true video on demand (VoD), a service
one earlier could only dream of when using a modem. The next trend, which
we anticipate will be even more popular than VoD, is news on demand (NoD).
VoD requires a certain amount of bandwidth for a single stream, but is quite
predictable in behavior. A user may perform simple VCR-like operations on a
movie, such as playing, stopping or skipping. NoD, on the other hand, has inter-
related files of different kind, including continuous and discrete media, and can
offer more advanced interactivity to the clients. The clients themselves can have
varying capabilities, and range from powerful PCs to PDAs and mobile phones.
Also, the flexibility introduced by utilizing mixed media for NoD brings new re-
quirements to proxies in distribution networks. We explore the concept of mixed
media below when describing our NoD scenario.

A lot of research has been committed to VoD, and there exist several tech-
niques which can be applied by the providers in order to make effective use of
the resources in the network, such as caching proxies. Caching is a means to
lower traffic at the origin server and save bandwidth between server and proxy,
and it is our belief that efficient caching is a key to any content distribution
scheme as it can lower the overall costs. In order to accommodate the special

C.-H. Chi, M. van Steen, and C. Wills (Eds.): WCW 2004, LNCS 3293, pp. 144–153, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Structured Partially Caching Proxies for Mixed Media 145

needs of NoD, we have devised our own variant of partial caching [1], which we
call structured partial caching. Our scheme is specially tailored to make use of
the structure inherent in mixed media, which probably will be utilized in the
future for NoD. Our goal is to make a partial caching scheme that is specialized
for mixed media content in a NoD scenario. To investigate possible gains we have
written a simulator.1 The results are promising, showing that using knowledge
of structure can significantly increase byte hit ratio under certain conditions.

The rest of this paper is organized as follows: In section 2 we present the
NoD scenario in detail. The differences between NoD and VoD are discussed.
Further, important issues like structure and mixed media are defined. Some of
the research done on VoD can be applied in a NoD scenario as well. We point
out some of these important ideas in section 3 on related work. Our structured
partial caching scheme is described in section 4, where we explain how knowledge
of structure can be utilized in order to perform efficient caching of mixed media
data in our NoD scenario. Details concerning the simulations are discussed in
section 5. Our conclusion and summarized results are given in section 6 together
with an outline of future work to be performed.

2 NoD Scenario

In recent years, much research has been performed in the area of VoD. Usage
patterns have been investigated [2], streaming issues have been addressed [3] and
servers optimized [4]. Also, distribution schemes have been devised and multi-
media proxies [1,5,6] added to further enhance performance. However, there are
other areas utilizing different media types that are similar to, but less explored
than VoD. One such area is NoD. Important aspects of NoD is user interaction,
a concept of structure through the use of mixed media content, and a vast array
of different clients with different capabilities – ranging from powerful PCs to
mobile phones – wanting to use the content. Since the characteristics of NoD
differ significantly from those of VoD, old VoD distribution schemes cannot be
used directly [7]. We need a system which heeds the needs of NoD.

VoD and NoD differ in a number of ways: VoD access follows the Zipf distri-
bution, and popularity will often remain stable for a long period of time. Further,
a video is one linear file, and the access pattern is totally independent of the
other videos. NoD, on the other hand, is accessed as described by the Multi-
Selection Zipf distribution [7]: Client requests tend to be for groups of articles
rather than single items as in VoD. Rather than following a Zipf-distribution
for all articles, the news items will be requested in groups, and these groups
contain several articles. The popularity span is also much shorter, as an article
is usually most popular during its first three days after publication [7]. When
speaking of NoD, we assume that the structure of the media objects of news
stories are described by some sort of meta data, in the following referred to as

1 This work is part of the INSTANCE II project (147426/431) funded by the Norwe-
gian Research Council.

146 F.T. Johnsen, C. Griwodz, and P. Halvorsen

a presentation plan. Such a plan or news item encompasses mixed media, for
example text, video and audio objects.

We define two types of structure; internal structure and external structure.
The presentation plan gives external structure to the media objects. This struc-
ture imposes certain restrictions on the objects, for example saying that two
objects should always be retrieved together, after one another, or as an alter-
native to one another. There are other possibilities as well; a total of 13 were
identified in [8]. Knowledge of external structure is important when servers and
proxies perform rough synchronization between objects, as irregularities here will
affect the user’s perception [9] of the media. In addition to an external structure,
media objects can also have an internal structure. This is the structure that is
inherent in the media object’s format, for example through the layering of video.

Mixed media has many similarities to hypermedia [8]; both have different
media objects and presentation plans. However, the two differ on some key is-
sues: Hypermedia is strongly focused on navigation issues, whereas mixed media
focuses more on streaming and concurrent presentation of different media. Differ-
ent objects have different spatial and temporal requirements, and objects with a
temporal dimension (audio and video) can be streamed, while objects with only
spatial requirements must be retrieved all at once. Further, we have some general
knowledge about client interactivity and access patterns, as client requests tend
to be for groups of articles [7] rather than single items as in VoD. Rather than
following a Zipf-distribution for all articles, the news items will be requested in
groups, and these groups contain several articles and are accessed following the
Multi-Selection Zipf distribution.

In online newspapers, news presentations are usually constructed both from
brand new material and from archives. We envision a scenario where news can be
made using new media objects, whole or parts of old objects and presentations.
This differs from HyNoDe [10], where one would not have reused the presenta-
tion plan, only a lot of raw material. In particular, HyNoDe would reuse only
subsequences of audio or video clips. We assume a fair amount of content reuse
in NoD, including connections between presentations. Using a presentation plan
format that supports inclusion, like MHEG [11], might lead to the utilization
of sub-presentations, while another presentation plan encoding like SMIL [12]
would allow the use of files that are only logically related.

3 Related Work

Existing caching schemes such as prefix caching [6] for streaming media and the
full object caching performed by many web proxies such as SQUID [13], though
effective for their purposes, can be improved on to better suit a NoD scenario.
This is due to the fact that rather than always requesting an entire object, or an
object from start to finish, we may also have subset access. The most important
issue here is that partial caching [1] should be employed, of which there are
currently two main types: You can have partial caching in the time domain, an

Structured Partially Caching Proxies for Mixed Media 147

Meta data
describing
media objects
and the
relations
between
them.

News item
(presentation plan)

not in cache
�
�
�
� in cache

��
��
��
��

���
���
���
���

���
���
���
���

����
����
����
����

caption:

Media objects described by the presentation plan

Fig. 1. An example showing a news item and its media objects.

example would be prefix caching [6], and in the quality domain; examples here
are the layering of video [5] and the rescaling of video [1].

Our idea is different from existing work in that we are considering the needs of
mixed media for NoD. To make even better caching decisions we believe that one
should also look at the dependencies between media objects, i.e., the structure
of a news story. This is what we call structured partial caching.

4 Structured Partial Caching

Figure 1 illustrates a news item and the three media objects it contains. The
media objects and the presentation plan itself are all located at the origin server.
When a user requests a certain plan, its client software will parse the plan
and offer the options it enables to the user. Based on the user’s interactions
the news item may be downloaded and watched, either in part or in full. The
figure shows a case where the plan uses only a few parts of existing media
objects, so although the entire objects are present at the origin server, there
is no need to cache more than is actually used. The figure illustrates how the
proxy performs structured partial caching. Knowledge of internal structure is
utilized here. However, the fact that the three media objects are part of the
same presentation also imposes external structure on them, which implies that
they will likely be retrieved together. This is important when performing rough
synchronization between objects, and can be of use to the caching scheme. A
caching scheme may guess that such a relation exists, but the synchronization
mechanics must know.

We want to investigate if a proxy utilizing knowledge about structure will be
more efficient than a proxy that does not, as the more information a proxy has
about its cache elements, the more likely it is to make a good decision regarding

148 F.T. Johnsen, C. Griwodz, and P. Halvorsen

cache replacement. There are several different ways to measure the efficiency of
caching algorithms, but when speaking of efficiency here we mean the byte hit
ratio. The byte hit ratio is the percentage of requested bytes that are served
from the cache [14]. A high byte hit ratio means that there is an increase in
saved bandwidth between server and proxy, an important issue when wanting to
keep overall transmission costs low. However, making use of as much knowledge
as possible about the objects eligible for caching will naturally be more CPU
intensive than simpler existing caching schemes. The initial costs of deployment
will therefore be higher, as we need more powerful machines for proxy servers.
On the other hand, we save bandwidth.

When performing structured partial caching in the NoD scenario we have
some extra knowledge about the media objects we are caching that can be used:
The structure is known a priori, i.e., we have the presentation plan. Also, there
may be a certain reuse of old elements, when old news items are linked and
related to current events.

We propose that different media objects should be treated differently by the
proxy, and that the meta data neccessary for this should be available in the
presentation plans. More precisely, both the external and the internal structure
should be described by the meta data. This enables the proxy to handle all
content based on meta data, and does not render it useless in the case of a
new media format becoming popular. Also, it saves processing power, since the
proxy does not have to analyze the bulk of data passing through it, only the
corresponding meta data.

If an object can be partially cached and the part that is stored at the proxy
is usable in its own right, then the object has internal structure. An example
here is layered video [5], where one can choose to cache only lower layers (at the
expense of quality). Another example of internal structure is a progressive JPEG
picture; here prefix caching of such a picture would render the prefix usable in
its own right, rather than if one had the prefix of a picture without internal
structure (gif, for example) where the prefix would be useless without the rest.

Our scheme differentiates between objects with and without internal struc-
ture in the following manner: Regular prefix caching is used if there is no internal
structure. Structured partial caching is used in the cases where there is internal
structure. For scalable, linear monomedia formats, this is the same as quality
partial caching. In the case where one presentation plan uses the whole object,
and clients request this, then the whole object is cached. But, if at some later
point another presentation plan reuses only part of previous said object, then it
has gained internal structure which the proxy has become aware of, and struc-
tured partial caching will be employed henceforth. This is our novel concept, and
different from all other caching schemes. The proxy can “learn” about structure
based on this new usage of the old material.

Mixed media consists of several different media objects that are structured by
meta data in a presentation plan, which describes the relationships between the
objects. For our work on structured partial caching, we do not choose a specific
encoding format. Rather, we use our own, generic scheme in the simulations so

Structured Partially Caching Proxies for Mixed Media 149

investigate performance and gains of
a structured partial caching scheme

SERVER

PROXY

CLIENT

− has infinite disk space

− perfect network

− perfect network

− news on demand request pattern

Fig. 2. The simulator setup.

that the results will be applicable to whichever encoding format one may choose.
Because of this, we limit the extent of external structure to a level that can be
expressed by all the previously mentioned formats, i.e., we omit the concept of
sub-presentations.

5 Simulations

To test our assumption that structured partial caching is indeed beneficial, we
have simulated a proxy utilizing this technique. The simulator was implemented
in C++ using the lagged fibonacci random generator from the boost library
from “http://www.boost.org”. The main parts are as Figure 2 illustrates. Client
requests follow the Multi-Selection Zipf distribution [7]. The network is assumed
to exhibit perfect behaviour, that is having zero delay, no packet loss and un-
limited bandwidth. We want to investigate proxy internals only as we seek to
determine if structured partial caching is beneficial or not. Thus, we do not need
the added complexity of network simulations. The proxy gathers statistics about
media object use and performs caching. We let the various modules communi-
cate with each other through function calls, and collect statistics regarding cache
replacement and algorithm bookkeeping only.

The news items, which are situated at the server, have been generated using
very simple meta data. The data contains information about the number of
media objects in the presentation and their attributes, such as size and internal
structure. The news items may contain text, audio, video and pictures, and these
objects may or may not have internal structure.

The algorithms tested were LRU over entire objects and LRU over parts of
objects. The first of these was implemented as a reference only to see how well
a scheme without special measures compares to our enhanced scheme. Caching

http://www.boost.org

150 F.T. Johnsen, C. Griwodz, and P. Halvorsen

Fig. 3. Large cache, differing quality
requests.

Fig. 4. Varying cache size, low quality
requests only.

over parts of objects is partial caching in the quality domain using knowledge of
structure.

For all algorithms, we ran tests both with and without an admission policy.
The policy used in those cases was that presentation plans should be no older
than three days for their objects to be eligible for caching. This was done to
incorporate the knowledge that an article usually is most popular in the first
three days after its release [7], so that if an older article is referenced it should
not displace some of the newer ones in the cache. Old objects that are used in
part or in full in new plans will be eligible for caching. Since all or part of an
old object can become popular in this way, it is important to perform admission
based on the presentation plan’s age rather than object age.

We ran simulations using a total of 100000 presentation plans and 270000
media objects, for an average of 2.7 objects per plan. Simulations were performed
with three different cache sizes. The small cache has room for an average of
200 whole objects, the medium cache 2000 and the large cache has room for
20000 objects. We distinguish clients that retrieve low quality from those that
retrieve high quality objects. By low quality we mean a request for 10% of the
media object’s data, since progressive quality compression requires the client to
retrieve 5–10% to recognize most of the features [15]. Figure 3 shows simulations
for the largest cache size and clients exhibiting different quality requests. Clients
browsing content have different capabilities. To reflect on this we ran several
request combinations, namely such that all of the requests were for low quality
content, 90% of the requests were low quality content, 50% of the requests were
for low quality content, and all full quality. This is indicated in the figure by the
numbers 100, 90–10, 50–50, and 0, respectively.

If only low quality is requested, we see significant gains as cache size increases.
This is illustrated in Figure 4. We see that the scheme performs best when all
clients request the lowest quality possible from the cache. This is due to the fact
that the segments stored in the cache will be quite small, thus enabling many

Structured Partially Caching Proxies for Mixed Media 151

Fig. 5. Varying cache size, low quality requests and use of no vs 3 day admission policy.

of them to be stored compared to a non-partial caching scheme. A mixture of
clients requiring various quality levels causes the scheme to perform worse, as
is the case for our 90–10 and 50–50 low/high quality requests. Few high quality
requests have a big impact on byte hit ratio. When all requests are for high
quality, i.e., entire objects, the performance exhibited is slightly better than a
non-structured scheme. This arises from the reuse of subsets of objects (we have
a reuse probability of 10% in our simulations), where the structured scheme will
save only the parts in use, as we saw in figure 1.

The different algorithms have varying CPU demands, and naturally an in-
crease in complexity requires more processing power. The structured partial
caching requires 5 times the processing power of whole object LRU when the
requests are for low quality only, i.e., many segments in cache leading to much
bookkeeping. When requests are for high quality only the processing power re-
quired diminishes to 3.5 times that of whole object LRU. We also tried a variant
where we pinned all objects belonging to the same presentation plan as the ob-
ject that was being requested. That variant requires 16 times the processing
power for low quality requests and 5 times the processing power for high quality
requests when compared to full object LRU. In our simulations there were no
additional gains from performing this pinning, as results were identical to those
of the structured partial caching which did not perform pinning.

Figure 5 illustrates the difference in byte hit ratio exhibited by the algorithms
with no admission policy and our three day admission policy respectively. An
interesting aspect to note is that for the smallest cache size the admission policy
enhances performance by increasing the byte hit ratio. For the bigger caches,
though, it can significantly lower performance by not allowing the cache to store
older news as well.

Our results show that for our algorithm of choice, LRU, knowledge of struc-
ture has an impact on byte hit ratio. The scheme performs best when there are
many requests for parts of objects, i.e., not full object requests. If we assume

152 F.T. Johnsen, C. Griwodz, and P. Halvorsen

that the news service will be available for a large variety of clients such as PCs,
PDAs and mobile phones, then there is obviously a need for different quality
levels for the different clients, and structured partial caching will be particularly
useful. For our mixed media NoD scenario the structured partial caching scheme
will at all times exhibit a byte hit ratio equal to or better than the scheme not
considering structure.

6 Conclusion

In this paper, we have investigated the usefulness of structured partial caching
of mixed media content in a NoD scenario. We conclude that the proxies should
utilize knowledge about structure provided that there is a mixture of client
types. Structure expresses both relationships between media objects (external
structure) as well as structure within objects (internal structure). Knowledge
of structure can be extracted from the presentation plan, i.e., the meta data
which describes each news item. We have investigated the benefits of utilizing
knowledge of structure, and our results show that it will enhance a proxy’s
treatment of mixed media data.

What we have now is an extension of quality partial caching [1], in the future
we want to look at extending this to incorporate a means of temporal partial
caching [1] as well. Additionally, we want to investigate the additional gains
possible by introducing cooperative caching [14]. It should be possible to save
further on bandwidth costs when proxies cooperate by exchanging content rather
than going all the way to the origin server.

Another important aspect of our simulations is the clients’ interactions with
the presentations. We want to investigate client patterns in order to refine that
part of our simulations. The patterns described in [7] are not particularly fine
grained. They are, however, the most detailed ones available at the time of
writing, and we did use the knowledge therein for the evaluation of the structured
partial caching scheme. At present we are in contact with various newscasters
in order to try and obtain logs or other means of statistics that would enable us
to pinpoint more realistic NoD client access patterns.

References

1. Peter Schojer, Laszlo Bözörmenyi, Hermann Hellwagner, Bernhard Penz, and Ste-
fan Podlipnig. Architecture of a quality based intelligent proxy (QBIX) for MPEG-
4 videos. In The Twelfth International World Wide Web Conference., pages 394–
402. ACM, 2003.

2. Carsten Griwodz, Michael Bär, and Lars C. Wolf. Long-term movie popularity in
video-on-demand systems. In Proceedings of the ACM International Multimedia
Conference (ACM MM), pages 340–357, Seattle, WA, USA, November 1997.

3. Michael Zink, Carsten Griwodz, and Ralf Steinmetz. KOM player - a platform for
experimental vod research. In IEEE Symposium on Computers and Communica-
tions (ISCC), pages 370–375, July 2001.

Structured Partially Caching Proxies for Mixed Media 153

4. P̊al Halvorsen. Improving I/O Performance of Multimedia Servers. PhD thesis,
Department of Informatics, University of Oslo, Norway, September 2001. Published
by Unipub forlag, ISSN 1501-7710 (No. 161).

5. Reza Rejaie, Haobo Yu, Mark Handley, and Deborah Estrin. Multimedia proxy
caching for quality adaptive streaming applications in the Internet. In Proceedings
of the Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pages 980–989, Tel-Aviv, Israel, March 2000.

6. Subhabrata Sen, Jennifer Rexford, and Don Towsley. Proxy Prefix Caching for
Multimedia Streams. In Proceedings of the Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 1310–1319, New York, NY,
USA, March 1999. IEEE Press.

7. Y.-J. Kim, T. U. Choi, K. O. Jung, Y. K. Kang, S. H. Park, and Ki-Dong Chung.
Clustered multi-media NOD: Popularity-based article prefetching and placement.
In IEEE Symposium on Mass Storage Systems, pages 194–202, 1999.

8. Lynda Hardman, Dick C. A. Bulterman, and Guido van Rossum. The amsterdam
hypermedia model: adding time and context to the Dexter model. Commun. ACM,
37(2):50–62, 1994.

9. Carsten Griwodz, Michael Liepert, Abdulmotaleb El Saddik, Giwon On, Michael
Zink, and Ralf Steinmetz. Perceived Consistency. In Proceedings of the ACS/IEEE
International Conference on Computer Systems and Applications, June 2001.

10. Carsten Griwodz, Michael Liepert, and The Hynode Consortium. Personalised
News on Demand: The HyNoDe Server. In Proc. of the 4th International Workshop
on Interactive Distributed Multimedia Systems and Telecommunication Services
(IDMS’97), volume 1309, pages 241–250. Springer-Verlag, Berlin, Heidelberg, New
York, September 1997.

11. L. Rutledge, J. van Ossenbruggen, L. Hardman, and D. Bulterman. Cooperative
use of MHEG and HyTime in hypermedia environments, 1997.

12. Lloyd Rutledge, Lynda Hardman, and Jacco van Ossenbruggen. Evaluating SMIL:
three user case studies. In Proceedings of the seventh ACM international conference
on Multimedia (Part 2), pages 171–174. ACM Press, 1999.

13. Squid web proxy cache. http://www.squid-cache.org/.
14. Michael Rabinovich and Oliver Spatscheck. Web caching and replication. Addison

Wesley, 2002.
15. David Salomon. Data Compression - The complete reference. Springer-Verlag, 2

edition, 2000.

http://www.squid-cache.org/

	Introduction
	NoD Scenario
	Related Work
	Structured Partial Caching
	Simulations
	Conclusion

