The Unified Form
Language - UFL

A domain specific language
for finite element methods

Martin Sandve Alnaes

Center for Biomedical Computing,
Simula Research Laboratory,
Oslo, Norway

June 5th, 2012
FEniCS’12

J = (U-d)=2*dx & algaate= e,
a = dot(gradiu), grasiuiras.
L=]+a

Lw = derivatively,w\
Lwu = derivativelw, &\

o)

Overview of talk

vV v v v Y

Equation complexity (what kind of scalability)
Expression architecture

Automatic simplifications

Profiling (techniques and optimizations applied recently)

Scalable compilation (of complex tensor algebra
expressions)

Outlook

o)

Topics

Equation complexity

UFL is a DSL, a symbolic framework, and a

compiler frontend for FEniCS (and other libs)

Example UFL expressions:

inner(dot(grad(u), M), grad(v))
M[i,j] * u[k].dx(i) = v[k].dx(j)

1 |a
2 |b

» By expression complexity | mean roughly the number of
values and operators in an expression, denoted n.

v

Goal: Want both time and memory usage in UFL and
overall form compilation process to be O(n), i.e. linear in
the expression complexity.

o)

Example: Hyperelasticity equations(1/2), taken
from DOLFIN demo directory

1 | cell = tetrahedron

2 |V = VectorElement("Lagrange", cell, 1)

3

4 |du = TrialFunction(V) # Incremental displacement

5 |v = TestFunction(V) # Test function

6

7 |u = Coefficient (V) # Displacement from previous iteration
8 |B = Coefficient(V) # Body force per unit volume

9 |T = Coefficient(V) # Traction force on the boundary
10 |# Elasticity parameters

1 | mu = Constant(cell)

12 | lmbda = Constant(cell)

o)

Example: Hyperelasticity equations(2/2), taken
from DOLFIN demo directory

Kinematics

I = Identity(cell.d) # Identity tensor

F =14+ grad(u) # Deformation gradient

C = F.T*F # Right Cauchy-Green tensor
Invariants of deformation tensors

Ic = tr(C); J = det(F)

Stored strain energy density (compressible neo-Hookean model)
psi = (mu/2)*(Ic - 3) - muxln(J) + (lmbda/2)+*(ln(J))**2

Total potential energy

Pi = psixdx - inner(B, u)xdx - inner(T, u)x*ds

© O N O U A W N -

e
~ o

First variation of Pi (directional derivative
about u in the direction of v)

F = derivative(Pi, u, v)

J = derivative(F, u, du)

L
A woN

-
&

o)

Topics

Expression architecture

Expression architecture overview

Class hierarchy basics, typical symbolic expression tree.
Immutable objects are important!

Arbitrary nesting of tensor algebra and index notation.
Running id count of indices and functions.

Form signatures to avoid regenerating code.

vV v vV v vY

Fast O(1) hash and eq operators for use as keys in dict
and set.

o)

Topics

Automatic simplifications

Automatic simplifications overview

>

Basic simplifications at expression node construction
time reduce expression growth during algorithms: any
scalar operator(scalar literals) -> scalar literal 1*a -> a
0*b -> 0 a + 0 -> a as_tensor(A[i,jl, (i,j)) -> A
Simplifications central to keep differentiation algorithm
output from growing: d/dx (x *g(y)) =1*g+x*0->g
Basic canonical term ordering at expression node
construction time a*b -> a*b, b*a -> a*b, a+b -> a+b,
b+a-> a+b,

Not doing simplifications requiring deeper inspection of
operands, e.g. 2*a + -2*a -> 0 2*a + 3*a -> 5*a
as_tensor(Ali,j1, (j,i)Ik,11-> A[l,k]

Definitely not doing unsafe polynomial rewriting (a + b)
(c) '=a + (b + ¢) in floating point (u-v)**2 -> (u**2 -

L S 2 N . 1) W R S |f PRSI HO N ISR U AN N VNN

+

o)

Topics

Profiling

Profiling overview

» Time profiling with simple Identify heavy algorithms. Get
rid of renumber_indices. See that expand_indices is the
main bottleneck.

» Memory usage of python objects. Use slots! Found a bug.

» Memory profiling with heapy. Identify which classes to
remove member variables from.

» UFL expr node counting. Identify need for caching literal
value objects. Identify which classes to optimize Identify
explosion of certain types of expression objects in certain
algorithms (expand_indices). Identify that v.dx(i) !=
v.dx(j), but grad(v) == grad(v). Fix in AD.

o)

Profiling time usage from ipython to identify
heavy algorithms

%run -p myscript.py

» See that expand_indices is the main bottleneck in current
quadrature loop based form compilers. This algorithm
rewrites outer(u,v) -> [u[0]*v[0], u[1]*v[O], ...] etc.

o)

Memory usage of python objects

» sys.getsizeof(obj) gives bytesize of obj

» Use slots feature to drop dict , whichis 280 b
alone when empty!

» Still, a single object is 48 b + 8 per member!

» Rough profiling of heap usage: from guppy import hpy;
hp=hpy(); print hp.heap()

» Counting objects of each Expr subtype in Expr
con-/destructor

» Introduced e.g. reuse of literal value objects.

For one complex case, reduced memory usage in UFL with
10x!

o)

Topics

Scalable compilation

Scalable compilation (1/3)

» Value numbering crossing boundaries of tensor and
indexing operations. Sees right through any number of
levels of indirection. Backside is that this makes the
expression less regular.

» Reconstructing scalar subexpressions, triggering UFL
simplifications at the scalar level and thus constant
propagation and dead code elimination at the symbolic
level.

o)

Scalable compilation (2/3)

» ldentifying dependency counts on resulting flat scalar
DAG representation.

» ldentifying candidates for subexpressions to store in
intermediate variables in generated code. Tunable
heuristics, consider dependency count and operation
cost.

o)

Scalable compilation (3/3)

» Partitioning DAG by loop level required for each
subexpression (inside quadrature or test/trial function
loops)

» For each scalar subexpression, generate C++ expression,
emit assignment statement if candidate for intermediate
storing.

o)

Topics

Outlook

Questions?

» Compilation algorithms available in the experimental
UFLACS project: http://www.launchpad.net/uflacs

» First proof of concept: soon possible to use with DOLFIN
through SFC.

» Should probably integrate into FFC. Need some help with
that.

» Can use to generate element tensor kernels for other FEM
libraries!

» martinal@simula.no

o)

	Equation complexity
	Expression architecture
	Automatic simplifications
	Profiling
	Scalable compilation
	Outlook

