URL: http://www.elsevier.nl/loca{:e/entcs/volume44.htrﬁl G/pa,ges

The Asf+Sdf Meta-Environment: a
Component-Based Language Development
Environment

M.G.J. van den Brand! A. van Deursen! J. Heering!
H.A. de Jong! M. de Jonge! T. Kuipers? P. Klint ! L. Moonen !
P.A. Olivier ! J. Scheerder?® J.J. Vinju! E. Visser* J. Visser!

Abstract

The Asr+Spr Meta-Environment is an interactive development environment for
the automatic generation of interactive systems for constructing language definitions
and generating tools for them. Over the years, this system has been used in a variety
of academic and commercial projects ranging from formal program manipulation
to conversion of COBOL systems. Since the existing implementation of the Meta-
Environment started exhibiting more and more characteristics of a legacy system,
we decided to build a completely new, component-based, version. We demonstrate
this new system and stress its open architecture.

1 Introduction

The Asr+Spr Meta-Environment [12] is an interactive development environ-
ment for the automatic generation of interactive systems for constructing lan-
guage definitions and generating tools for them. A language definition typi-
cally includes such features as syntax, prettyprinting, typechecking, and exe-
cution of programs in the target language. The Asr+Spr Meta-Environment
can help in the following cases:

* You have to write a formal specification for some problem and you need
interactive support for this.

1" Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands

2 Software Improvement Group (SIG), Kruislaan 419, 1098 VA Amsterdam, The Nether-
lands

3 Faculty of Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The
Netherlands

4 Faculty of Mathematics and Computer Science, Utrecht University, Padualaan 14, 2584
CH Utrecht, The Netherlands

(©2001 Published by Elsevier Science B. V.

* You are developing your own (application) language and want to create an
interactive environment for it.

* You have programs in some existing programming language and you want
to analyze or transform them.

The Asr+Spr formalism [1] [10] allows the definition of syntactic as well
as semantic aspects. It can be used for the definition of languages (for pro-
gramming, writing specifications, querying databases, text processing, or other
applications). In addition it can be used for the formal specification of a wide
variety of problems. Asr+Spr provides:

» A general-purpose algebraic specification formalism based on (conditional)
term rewriting.

* Modular structuring of specifications.

* Integrated definition of lexical, context-free, and abstract syntax.

* User-defined syntax, allowing you to write specifications using your own
notation.

* Complete integration of the definition of syntax, and semantics.

* Traversal functions (for writing very concise program transformations), memo
functions (for caching repeated computations), and more.

The Asr+Spr Meta-Environment offers:
* Syntax-directed editing of Asr+Spr specifications.
* Incremental compilation and testing of specifications.

* Compilation of Asr+Spr specifications into dedicated interactive stand-
alone environments containing various tools such as a parser, prettyprinter,
syntax-directed editor, debugger, and interpreter or compiler.

¢ User-defined extensions of the default user-interface.

The design goals of the new implementation to be demonstrated include:
openness, reuse, extensibility, and in particular the possibility to generate
complete stand-alone environments for user-defined languages.

2 Technological background

ToolBus

A hallmark of legacy systems in general and the old Asr+Spr Meta-Envir-
onment in particular is the entangling of control flow and actual computation.
To separate coordination from computation we use the ToolBus coordination
architecture [2], a programmable software bus based on process algebra. Co-
ordination is expressed by a formal description of the cooperation protocol
between components while computation is expressed in components that may
be written in any language. We thus obtain interoperability of heterogeneous
components in a (possibly) distributed system.

Text Structure Parser Parsetable

Editor Editor Generator

Graph Tree
— TOOLBUS 1)
Browser Repository

ASF+SDF Interoreter Unparser
Compiler P Generator

Fig. 1. Architecture of the Asr+Spr Meta-Environment

ATerms
Coordination protocol and components have to share data. We use ATerms [4]

for this purpose. These are trees with optional annotations on each node. The
annotations are used to store tool-specific information like text coordinates
or color attributes. The implementation of ATerms has two essential prop-
erties: terms are stored using maximal subterm sharing (reducing memory
requirements and making deep equality tests very efficient) and they can be
exchanged using a very dense binary encoding that preserves sharing. As a
result very large terms (with over 1,000,000 nodes) can be processed.

SGLR

In our language-centric approach the parser is an essential tool. We use
scannerless, generalized-LR parsing [13]. In this way we can parse arbitrary
context-free grammars, an essential property when combining and parsing
large grammars for (dialects of) real-world languages.

Term rewriting

Asr+SpF specifications are executed as (conditional) rewrite rules. Both
interpretation and compilation (using the ASF2C compiler [5]) of these rewrite
rules are supported. The compiler generates very efficient C code that imple-
ments pattern matching and term traversal. The generated code uses ATerms
as its main data representation, and ensures a minimal use of memory during
normalization of terms.

3 Architecture

The architecture of the Asr+Spr Meta-Environment is shown in Figure 1. It
consists of a ToolBus that interconnects the following components:

* User interface: the top level user-interface of the system. It consists pri-
marily of a graph browser for the import graph of the current specification.

* Text Editor: a customized version of XEmacs for text editing.

— =44 Meta-Environment - [X

Fle Edit Graph Debug Help
T Las [T .
. yout Edit Syntax
Pico—eval Pico-Bool
Fico- Identifiers Edit Equations |
Pico- Integers -
Fico- Strings —IE'm Term
Value—environments Fico-eval Save |
Pico-syntax
Types Revert |
:::uefenvimnmenl Delete |
Values Pico—symtax ues ;
Compile... |
Info |
Pico—Identiﬁers’r Pico—Strings Pico-Integers Types
Pico—Booleans
Layout i
1] 1= | T

Status: [ldle

Fig. 2. The main user-interface of the Meta-Environment is a module browser that
provides a graphical and a textual view of the modules in a specification. A number
of operations can be initiated for each module. Here it is shown with the modules
from a small specification of a typechecker for the toy language Pico.

e Structure Editor: a syntax-directed editor that closely cooperates with
the Text Editor.

» Parser: scannerless, generalized-LR parser (SGLR) that is parametrized
with a parse table.

* Parsetable generator: takes an SDF syntax definition as input and gen-
erates a parse table for SGLR.

* Tree Repository: stores all terms corresponding to specification modules,
parse tables, user-defined terms, etc.

e Compiler: the ASF2C compiler.
* Interpreter: executes specifiations by direct interpretation.

* Unparser generator: generates prettyprinters.

4 Applications of Asr+spor and the Meta-Environment

There are a number of academic and industrial projects that use either Asr+Spr
directly or components of the Meta-Environment in one way or another. ¢ The
applications of Asr+Spr can be split into three groups:

(i) In the field of language prototyping Asr+Spr has been used to describe
the syntax and semantics of domain specific languages, e.g., the language
Risla for describing financial products [3]. As another example, the syn-
tax of the algebraic specification language Cast has been prototyped using
Asr+Spr [7]. Box [9] [11] is a small domain specific language developed
for prettyprinting within the Meta-Environment.

(ii) In the field of reverse engineering and system renovation, Asr+Sor is used
to analyze and transform COBOL legacy code [8].

(iii) As an algebraic specification formalism for specifying language processing
tools. In fact, a number of components of the Meta-Environment itself
have been specified using Asr+Spr:

e the ASF2C compiler,
* the unparser generator, and
» parts of the parsetable generator.

For other components, such as the ToolBus and the syntax-directed ed-
itor, an Asr+Spr specification was made for prototyping use only. That
specification formed the basis for an optimized, handcrafted implemen-
tation.

Components of the Meta-Environment are used as stand-alone tools in a
variety of applications. Examples are the Stratego compiler [14], the Risla
compiler, the Elan environment [6], and a commercial tool for designing and
implementing information systems.

5 Demonstration

We will show a number of applications of the Meta-Environment ranging from
a simple typechecking problem (Figure 2) to syntax-directed editing and trans-
formation of COBOL systems.

6 Obtaining the Asr+sor Meta-Environment

The Asr+Spr Meta-Environment can be downloaded from:
http://www.cwi.nl/projects/MetaEnv/completa/

The Asr+Spr Meta-Environment depends on a number of (third-party) pro-
grams, Graphviz (open source graph drawing software) and XEmacs among
others.
Individual components, such as the ATerm library, ToolBus, parser gener-
ator, and parser (SGLR) can be obtained from:
http://www.cwi.nl/projects/MetaEnv/

All components of the Asr+Spr Meta-Environment are available as open
source software.

References
[1] J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM
Press/Addison-Wesley, 1989.

[2] J.A. Bergstra and P. Klint. The discrete time ToolBus — a software coordination
architecture. Science of Computer Programming, 31(2-3):205-229, July 1998.

[3] M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E.A, van den
Meulen. Industrial applications of ASF+SDF. In M. Wirsing and M. Nivat,
editors, Algebraic Methodology and Software Technology (AMAST ’96), volume
1101 of LNCS. Springer-Verlag, 1996.

[4] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. Olivier. Efficient
Annotated Terms. Software, Practice & Experience, 30:259-291, 2000.

[5] M.G.J. van den Brand, P. Klint, and P. A. Olivier. Compilation and memory
management for ASF4+SDF. In S. Jahnichen, editor, Compiler Construction
(CC ’99), volume 1575 of Lecture Notes in Computer Science, pages 198-213.
Springer-Verlag, 1999.

[6] M.G.J. van den Brand and C. Ringeissen. ASF+SDF parsing tools applied to
ELAN. In Third International Workshop on Rewriting Logic and Applications,
ENTCS, 2000.

[7] M.G.J. van den Brand and J. Scheerder. Development of Parsing Tools
for CASL using Generic Language Technology. In D. Bert, C. Choppy,
and P. Mosses, editors, Workshop on Algebraic Development Techniques
(WADT’99), volume 1827 of LNCS. Springer-Verlag, 2000.

[8] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation of
components for software renovation factories from context-free grammars.
Science of Computer Programming, 36:209-266, 2000.

[9] M.G.J. van den Brand and E. Visser. Generation of formatters for context-
free languages. ACM Transactions on Software Engineering and Methodology,
5:1-41, 1996.

[10] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing.
World Scientific, 1996.

[11] M. de Jonge. A pretty-printer for every occasion. In I. Ferguson, J. Gray,
and L. Scott, editors, Proceedings of the 2nd International Symposium
on Constructing Software Engineering Tools (CoSET2000). University of
Wollongong, Australia, 2000.

[12] P. Klint. A meta-environment for generating programming environments. A CM
Transactions on Software Engineering and Methodology, 2:176-201, 1993.

[13] E. Visser. Syntaz Definition for Language Prototyping. PhD thesis, University
of Amsterdam, 1997.

[14] E. Visser, Z. Benaissa, and A. Tolmach. Building Program Optimizers with
Rewriting Strategies. In International Conference on Functional Programming

(ICFP’98), pages 13-26, 1998.

