
Abstract
Replicating data and services at multiple networked com-
puters increases the service availability of distributed sys-
tems. This paper presents the design and implementation
architecture of a replication mechanism for a distributed
multimedia system medianode which is currently devel-
oped as an infrastructure to share multimedia-enhanced
teaching materials among lecture groups. With the replica-
tion mechanism, medianode provides enhanced access to
presentation materials in both connected and disconnected
operation modes. The main contribution of this paper is the
identification of new replication requirements in distrib-
uted media systems and a multicast-based update propaga-
tion mechanism by which not only the update events are
signaled, but also the updated data are exchanged between
replication managers.

1. Introduction

Replication is the maintenance of on-line copies of data
and other resources[2,5,6]. Replication of presentation
materials and meta-data is an important key to providing
high availability, fault tolerance and quality of service
(QoS) in distributed multimedia systems. For example,
when a user requires access (read/write) to a presentation
material which comprises audio/video data and some
resources which are not available in the local machine at
this point of time, a local replication manager copies the
required data from their original location and puts it into
either one of the machines located nearby or the local
machine without requiring any user interaction (user trans-
parent). This function enhances the total performance of
the distributed system, in this example, the presentation
service system, by reducing the response delay that is often
caused due to insufficient system resources at a given ser-
vice time. Furthermore, because of the available replica in
the local machine, the assurance that users can continue
their presentation in a situation of network disconnection,
is significantly higher than without replica. 

The main contributions of this paper are (1) to identify
the new replication requirements for distributed multime-
dia systems, and (2) to build a replication mechanism for
distributed multimedia systems. To achieve these targets,
we first study the characteristics of presentational media
types which are handled in medianode system[1], and
extract new replica units and granularities which have nei-
ther been considered nor supported in existing replication
mechanisms. Furthermore, we give a survey on existing
replication mechanisms and identify their features and lim-
itations. By prototyping our proposed replication mecha-
nism in medianode, we prove its principle feasibility and
identify further research issues such as how to combine the
concept of quality of service (QoS) with replication mecha-
nisms. 

The structure of the paper is as follows. In Section 2, we
present our replication system model. After giving a short
overview about medianode architecture, we define the
scope of our replication mechanism in medianode and
present the characteristics of presentational media types,
for which we identify a need for new replica units and
granularities. Section 3 presents the design and implemen-
tation implementation architecture of our replication
model. We describe the proposed replication maintenance
mechanism, e.g. how and when replicas are created and
how the updates are signalled and transported. In Section
4, we give an overview of related work. The merits and
limitations of existing replication mechanisms are dis-
cussed and a comparison of our approach with previous
work is given. We conclude the paper with a summary of
our work and an outlook towards possible future exten-
sions of our replication mechanism. 

2. Replication System Model

2.1. Architectural Overview of medianode

The medianode system architecture[1] is intended for
de-centralized operation of a widely distributed system.
Within this distributed system, each participating host is
called a medianode and conceptually equal to all other par-

Replication for a Distributed Multimedia System

Giwon On1, Michael Zink1, Michael Liepert1, Carsten Griwodz1, Jens B. Schmitt1, Ralf Steinmetz1,2

1KOM-Industrial Process and System Communications
Darmstadt University of Technology

Merckstrasse 25
64283 Darmstadt, Germany

0049-6151-166162

2IPSI, German National Research Center for 
Information Technology

Dolivostrasse 15
4293 Darmstadt, Germany

0049-6151-869869



ticipating nodes, i.e. a medianode is not considered a client
or a server. Client or server tasks are taken on by median-
odes in the system depending on the their resources and
software modules.

The central element of a medianode is called its core.
The core performs two primary tasks: (a) it dynamically
loads code which implements the medianode’s operations
and instantiates objects; (b) the core implements the rout-
ing of requests between medianode’s components (called
bows) that are instantiated in a medianode.

Each dynamically loaded module implements a child
class of medianode’s root class, the bow class. Some bows
implement basic operations that are necessary for the start
of a medianode; these are not loaded dynamically but stati-
cally linked to the medianode binary and well known to the
core. The bow class has three abstract subclasses which
structure the operations of medianode in general. These
subclasses are called Access Bow, Storage Bow and Veri-
fier Bow. 

Objects of the class Access Bow implement the visible
activity of a medianode: e.g. an HTTP access bow imple-
ments means of requesting content from the medianode via
the HTTP protocol, a Telnet access bow allows a user to
connect to a medianode using the telnet application for
basic information and management tasks. Storage Bows
implement the functionality of distributed file systems and
distributed databases. In medianode, such storage bows are
always capable of operating in disconnected operation
modes, i.e. they implement all functionality locally, keep
all relevant data locally, and are able to react to requests to
unreachable data. Verifier Bows are intended to check the
availability and accessibility of data and services that have
been requested by access bows or storage bows. 

2.2. Scope of our Replication System

By analysing the service requirements distributed multi-
media systems for the example of medianode, we identi-
fied a number of issues that the design of our replication
system need to address: 

• High availability: The replication system in median-
ode should enable data/service access in both con-
nected and disconnected operation modes. Users can
keep multiple copies of their files on different median-
odes that are distributed geographically accross several
universities in the state of Hessen.

• Consistency: Concurrent updates and system failures
can lead to replicas not being consistent any more, i.e.
stale state. The replication system should offer mecha-
nisms for both resolving conflicts and keeping consis-
tency between multiple replicas and their updates. 

• Location and access transparency: Users do not need
to know where presentation resources are physically
located and how these resources are accessed. 

• Cost efficient update transport: Due to the limitation
of system and network resources, the replication sys-
tem should use multicast-based transport mechanism
for exchanging updates to reduce resource utilization.

• QoS support: The specific characteristics of presenta-
tional data, especially of multimedia data should be
supported by the proposed replication mechanism. 

In medianode, we mainly focus on the replication ser-
vice for accessing data in terms of ‘inter-medianode’, i.e.
between medianodes, by providing replica maintenance in
each medianode. Consequently, a replication manager can
be implemented as one or a set of medianode’s bow
instances in each medianode. The replication managers
communicate among each other to exchange update infor-
mation through the whole medianodes. A replication ser-
vice within a medianode, i.e., ‘intra-medianode’, is not
considered for the first stage of our implementation. How-
ever, the replication concept in this paper is straightfor-
wardly applicable to the replication service for intra-
medianode scope. 

2.3. Concept of Logically Centralized Database

For a technical realization of our proposed replication
system, we use the concept of a so-called “logically cen-
tralized database (LCDB)” which especially enables the
transparent access to presentation materials. Similar to the
concept of location-independent identifiers in distributed
database system[3], LCDB enables a mapping between
logical and physical resources. So users do not need to
know where presentation resources are located physically
and how they are accessed. Requests from users, either for
reading or writing any presentation materials, are first sent
to the Access Bow of the local medianode that runs on the
user’s local machine. After successful check of the accessi-
bility of the user and the availability of the requested
resources, the corresponding storage bows send the target
data to the users. Figure 1 illustrates the interface point, the
bows building the LCDB and the interactions between the
bows. Some additional remarks on LCDB are in order:

• According to the data types, all of the presentation con-
tents and their meta-data are stored in corresponding
storage bows. 

• The ‘front-end’ of the storage bow API provides unique
interface functions, independent of the data types: this
is similar to the VFS (virtual file system) interface in
UNIX systems.



• Replication has to be supported for most storage bows,
although the number of replicas and the update fre-
quency may differ between the individual bows. 

• For the update propagation between replication manag-
ers, a multicast RPC (remote procedure call) communi-
cation mechanism is used.

2.4. Different Types of Presentation Data 

Data organization comprises the storage of content data
as well as meta information about this content data in a
structured way. The typical data types which can be identi-
fied in medianode are the following:
• Presentation contents: this type of data comprises text,

image, audio/video files and can be stored in file sys-
tems which should handle automatic data distribution
and access, and also support the multimedia character-
istics of this content type.

• Presentation description data, e.g. XML files.
• Meta-data of user, system, domain, and organization

information. User’s title, group, system platform, and
university are examples for this meta-data category.

• Meta-data of system resource usage information such
as memory usage, number of threads running within
medianode process, number of loaded bows. 

• Meta-data of user session and token information.

Table 1 shows an overview of these data types with their
characteristics. 

2.5. Classification of Target Replicas

As argued in subsection 2.2, the main goal of replication
is to increase the high availability of medianode’s services
and to decrease the response time for accesses to data
located on other medianodes. To meet this goal, data which

VSB

Distributed

Distributed FS Bow (DFSB)

Figure 1: medianode architecture with replication service

Storage API

Verifier API

Access API

medianode 1

CORE

VSB

DDBB

DFSB

Storage API

Verifier API

Access API

medianode 2

CORE

Volatile SB (VSB)

DDBBDFSB

Webserver

Storage API

Verifier API

Access API

medianode 3

CORE

DB/2

DB Bow (DDBB)

Backend

Webserver
Backend

Webserver
Backend LCDB’s single access point

single view of LCDB

multicast RPC



is characterized by a high availability requirement (see
Table 1) should be replicated among the running median-
odes. We classify different types of target replicas accord-
ing to their granularity (data size), requirement of QoS
support, update frequency and whether their data type is
‘persistent’ or not (‘volatile’). Indeed, there are three
classes of replicas in medianode:

• Metareplicas (replicated metadata objects) that are per-
sistent and of small size. An example would be a list
medianodes (sites) which currently contain an up-to-
date copy of a certain file. This list itself is replicated to
increase its availability and improve performance. A
metareplica is a replica of this list. 

• Softreplicas which are non-persistent and of small size.
This kind of replicas can be used for reducing the num-
ber of messages exchanged between the local and
remote medianodes, and thereby reducing the total ser-
vice response time. I.e., if a local medianode knows
about the available local system resources, then the
local replication manager can copy the desired data into
the local storage bow, and the service that is requested
from users which requires exactly the data can be pro-
cessed in a shorter response time. Information about the
available system resource, user session and the validity
of user tokens are replicas of this type. 

• Truereplicas which are persistent and of large size.
Content files of any media type, which also may be
parts of presentation files are Truereplicas. Truereplicas
are the only replica type from the three types, to which
the end users have access for direct manipulation
(updating). On the other side, these are also the only

replica type which requires the support of really high
availability and QoS provision. 

All replicas which are created and maintained by our
replication system are an identical copy of original media.
Replicas with errors (non-identical copy) are not allowed
to be created. Furthermore, we do not support any replica-
tion service for function calls, and elementary data types. 

3. Design and Implementation Architecture 

3.1. The Replication Mechanism

Basically, our replication system does not assume a cli-
ent-server replication model, because there are no fixed cli-
ents and servers in the medianode architecture; every
medianode may be client or server depending on its current
operations. Peer-to-peer model with the following features
is used for our replication system:

(a) Every replica manager keeps track of a local file table
including replica information.

(b) Information whether and how many replicas are created
is contained in the every file table. I.e. each local replica
manager keeps track of which remote replica managers
(medianode) are caching which replicas. 

(c) Any access to the local replica for reading is allowed,
and guaranteed that the local cached replica is valid until
notified otherwise. 

(d) If any update happens, the corresponding replica man-
ager sends a multicast-based update signal to the replica

TABLE 1 Data categories and their characteristics in medianode

target data
availability 
requirement

consistency 
requirement

persistency
update 

frequency
data size

QoS 
playback

global 
interest

presentation 
description

high middle yes low small
(middle)

not required yes

organizational 
data

high high yes low small not required yes

file/data 
description

high middle yes middle small not required yes

multimedia 
resources

high middle yes middle large required yes

system 
resources

middle
(low)

middle no high small not required not strong

user session/
token

high high no high small not required no



managers which have the replica of the updated replica and
therefore members of the multicast group. 

(e) To prevent excessive usage of multicast addresses, the
multicast IP addresses through which the replica managers
communicate can be organized in small replica sub-groups.
Examples for such sub-groups are file directories or a set
of presentations about a same lecture topic. 

3.2. Update Distribution & Transport Mechanism

The update distribution mechanisms in medianode dif-
fers between the three replica types and their managers.
This is due to the fact that the three replica types have dif-
ferent levels of requirements on and characteristics of high
availability, update frequency and consistency. Experience
from [4] and [5] also shows that differentiating update dis-
tribution strategies makes sense for web and other distrib-
uted documents. 

The medianode’s replication system offers unique inter-
face to the individual update signalling and transport proto-
cols which are selectively and dynamically loaded and
unloaded from the replica transport manager that is imple-
mented as an instance of medianode’s access bow. The
possible update transport and signalling protocols are: 
• RPC protocol [2] as a simple update distribution proto-

col. This mechanism is mainly used at the first step of
our simple and fast implementation.

• A multicast based RPC communication mechanism. In
this case, the updates are propagated via multicast other
replica managers which are members of the multicast
group. RPC2 [6,9] is used for the first implementation.
RPC2 offers the transmission of large files, such as the
updated AV content files or diff-files, by using the Side
Effect Descriptor. But, the RPC2 with Side Effect
Descriptor does not guarantee any reliable transport of
updates. 

• LC-RTP based reliable multicast protocol[10]: It is
originally developed as an extension of RTP protocol to
support the reliable video streaming within the median-
ode project. We adopt LC-RTP and check the usability
of the protocol, depending on the degree of reliability
required for the individual groups of replicas. 

3.3. Approaches for Resolving Update Conflicts 

The possible conflicts that could appear during the
shared use of presentational data and files are either (a)
update conflict when two or more replicas of an existing
file are concurrently updated, (b) naming conflict when
two (or more) different files are given concurrently the
same name, and (c) update/delete conflict that occur when
one replica of a file is updated while another is deleted. In
most existing replication systems, the conflict resolving

problem for update conflicts was treated as a minor prob-
lem. It was argued that most files do not get any conflicting
updates, with the reason that only one person tends to
update them[8]. Depending on the used replication model
and policy, there are different approaches to resolving
update conflicts, of which our replication system uses the
following strategies [2,6, 11, 13, 15]: 
• Swapping - to exchange the local peer’s update with

other peer’s updates;
• Dominating - to ignore the updates of other peers and to

keep the local tentative update as a final update;
• Merging - to integrate two or more updates and build

one new update table;

3.4. Implementation Status

We have implemented a prototype of the proposed repli-
cation system model for Linux platform (Suse 7.0, Redhat
6.2). Implemented are the media (file) and its replica man-
ager, update transport manager, replica service APIs which
are Unix-like file operation functions such as open, create,
read, write, close, and a Volatile storage bow which main-
tains user’s session and token information. [15] gives a
technically detailed description of our implementation. 

4. Related Works

Several approaches to replication have already been pro-
posed. The apporaches differ for distributed file systems
than those for Internet-based distributed web servers and
those for transaction-based distributed DBMS. Well-
known replication systems in distributed file systems are
Coda[6] and Roam[11] which keep the file service seman-
tics of Unix. Therefore, they make easy to develop applica-
tions based on them. They are based on either client-server
model or peer-to-peer model and use often optimistic repli-
cation which can hide the effects of network latencies.
Their replication unit are mostly file system volumn which
lead to a large size and relatively a low number of replicas. 

There are some optimization works for these examples
in terms of update protocol and replica unit. To keep the
delay small and therefore maintain the sense of real-time
interaction, it was desirable to use the unreliable transport
protocol such as UDP. In the earlier phases, many
approaches have used the unicast-based data exchanges by
which the replication managers communicated with each
other via ‘one-to-one’. This has caused large delays and
made the real-time interaction impossible. To overcome
this problem, the multicast-based communication is used in
some recent cases [8,9,12]. In the case Coda, the RPC2
protocol is used for multicast-based update exchange,
which offers with Side Effect Descriptor the transmission
of large files by using the Side Effect Descriptor. 



For limiting the amount of storage used by a particular
replica, Rumor and Roam developed the selective replica-
tion scheme[13]. A particular user who only needs a few of
the files in the volume, the user can control which files to
store in his local replica with selective replicaiton. A limi-
tation or disadvantage of selective replication is the ‘full
backstoring’ mechanism: if a particular replica stores a par-
ticular file in a volume, all directories in the path of that
file in the replicated volume must also be stored. 

JetFile[8] is a prototyped distributed file system which
uses multicast communication and optimistic strategies for
synchronization and distribution. The main merit of JetFile
is its multicast-based callback mechanism by which the
components of JetFile, such as file manager and versioning
manager interact to exchange update information. How-
ever, the multicast callbacks in JetFile do not guarantee
that they actually reach all of other replication peers, and
the centralized versioning server which is responsible for
serialization of all updates can lead to a overloaded system
state. Furthermore, none of the existing replication systems
does not support of the quality of service (QoS) character-
istics of (file) data which they handle and replicate. 

5. Summary and Future Work

In this paper, we presented a replication mechanism for
distributed multimedia system medianode, and described
the design and implementation architecture of the proto-
typed replication system. We first studied the characteris-
tics of presentational media types which are handled in
medianode, and extracted new replica units and granulari-
ties which have not been considered and not supported in
existing replication mecanisms. We then built a replication
mechanism for distributed multimedia systems based on
the new requirements and the result of feature surveys. 

We are currently in the process of implementing the ver-
sioning and storage/transport load leveling mechanisms,
which are integrated with the replication manager. With the
forthcoming implementation we will be able to build medi-
anode as a highly available, scalable and cooperative, dis-
tributed media server for multimedia-enhanced teaching.
The next working steps are to design other replication ser-
vices which provide service implementations such as:
• Predictive replication: To increase access availability

and to reduce latency. Similar approaches are Hoard-
ing[14,16] and prefetched caching.

• QoS-aware replication for distributed multimedia sys-
tems, in which the decision whether a replica should be
created from original file is made by checking the cur-
rent usages of available system resources. An approach
of combining replication, versioning and alternative
media support is an good example for this replication
model[17]. 

References
[1] The medianode project. (http://www.httc.de/medianode).
[2] G. Coulouris, J. Dollimore and T. Kindberg. Distributed

Systems, 3rd Ed., Addison-Wesley, 2001. 
[3] A. Eickler, A. Kemper and D. Kossman. Finding Data in the

Neighborhood. In Proc. of the 23rd VLDB Conference, Ath-
ens, Greece, 1997.

[4] P. Triantafillou and D.J. Taylor. Multiclass Replicated Data
Management: Exploiting Replication to Improve Effciency.
In IEEE Trans. on Parallel and Distributed Systems, pages
121-138, Vol.5, No.2, Feb.1994.

[5] G. Pierre, I. Kuz, M. van Steen and A.S. Tanenbaum. Dif-
ferentiated Strategies for Replicating Web documents, In
Proc. of 5th International Workshop on Web Caching and
Content Delivery, Lisbon, May 2000.

[6] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki,
E.H. Siegel, and D.C. Steer. Coda: A Highly Available File
System for a Distributed Workstation Environment. In
IEEE Transaction on Computers, 39(4), April 1990.

[7] J. Yin, L. Alvisi, M. Dahlin and C. Lin. Volume Leases for
Consistency in Large-Scale Systems. In IEEE Transaction
on Knowledge and Data Engineering, 11(4), July1999.

[8] B. Groenvall, A. Westerlund and S. Pink. The Design of a
Multicast-based Distributed File System. In Proceedings of
Third Symposium on Operating Systems Design and Imple-
mentation, (OSDI’99), New Orleans, Louisiana, pages 251-
264. February, 1999.

[9] M. Satyanarayanan and E.H. Siegel. Parallel Communica-
tion in a Large Distributed Environment. In IEEE Trans. on
Computers, pages 328-348, Vol.39, No.3, March 1990. 

[10] M. Zink, A. Jones, C. Girwodz and R. Steinmetz. LC-RTP
(Loss Collection RTP): Reliability for Video Caching in the
Internet. In Proceedings of ICPADS’00: Workshop, pages
281-286. IEEE, July 2000. 

[11] D. Ratner, P. Reiher, and G. Popek. Roam: A Scalable Rep-
lication System for Mobile Computing. In Workshop on
Mobile Databases and Distributed Systems (MDDS), Sep-
tember 1999. (web site http://lever.cs.ucla.edu/project-
members/reiher/available_papers.html)

[12] M. Mauve and V. Hilt. An Application Developer’s Per-
spective on Reliable Multicast for Distributed Interactive
Media. In Computer Communication Review, pages 28-38,
30(3), July 2000. 

[13] D.H. Ratner. Selective Replication: Fine grain control of
replicated files. Master’s thesis, UCLA, USA, 1995.

[14] G.H Kuenning. Seer: Predictive File Hoarding for Discon-
nected Mobile Operation. PhD. dissertation, UCLA-CSD-
970015. UCLA, USA, 1997. 

[15] G. On and M. Liepert. Replication in medianode. Technical
Report TR-2000-03, Darmstadt University of Technology,
Germany, September 2000.

[16] C. Griwodz. Wide-Area True Video-on-Demand by a De-
centralized Cache-based Distribution Infrastructure. PhD.
dissertation , Darmstadt University of Technology, Germa-
ny, April 2000.

[17] J. Chung-I and M.A. Sirbu. Distributed Network Storage
with Quality-of-Service Guarantees . web site http://
www.ini.cmu.edu/~sirbu/pubs/99251/chuang.htm


