
An evaluation of debayering algorithms on GPU for
real-time panoramic video recording

Ragnar Langseth, Vamsidhar Reddy Gaddam, Håkon Kvale Stensland,
Carsten Griwodz, Pål Halvorsen

University of Oslo / Simula Research Laboratory

Abstract—Modern video cameras normally only capture
a single color per pixel, commonly arranged in a Bayer
pattern. This means that we must restore the missing color
channels in the image or the video frame in post-processing, a
process referred to as debayering. In a live video scenario, this
operation must be performed efficiently in order to output each
frame in real-time, while also yielding acceptable visual quality.
Here, we evaluate debayering algorithms implemented on a
GPU for real-time panoramic video recordings using multiple
2K-resolution cameras.

Keywords-Debayering, demosaicking, panorama, real-time,
GPU, CUDA

I. INTRODUCTION

Most modern video cameras sample only a single color
per pixel. The photosensors used for capturing the image
only record the lights intensity, and color is determined by
first passing the light through a wavelength filter. Instead of
capturing multiple colors in every pixel, a color filter array
is used to create a consistent pattern of colored pixels.

The most common color filter array used today is the
Bayer filter [2], where each pixel is either red, green or
blue. To obtain a multi-color image from this pattern, we
must interpolate the missing values, a process referred to as
debayering. Cameras can perform a hardware conversion in
the device, limited to a simple non-adaptive algorithm. In
our real-time panorama video system [5], we use multiple
industrial cameras with a gigabit ethernet interface. With 2K
resolution, a full rate data stream in the RGB color model
is limited by bandwidth to about 18 fps. We deem this too
low, which means that we need an efficient algorithm for
debayering several high resolution video streams, while also
providing a good visual result. In a moving scene, artifacts
as a result of the debayering process will rarely persist across
enough frames to be visible. As a result, most video systems
can make due with a simple algorithm. However, the scene in
our target application is primarily static background, where
artifacts remain consistent over time.

Our panorama video processing pipeline is installed in a
Norwegian elite soccer club stadium and is intended for live
streaming and immediate video access, thus requiring real-
time performance. In this paper, we therefore evaluate dif-
ferent debayering algorithms for real-time panoramic video
recording using a statically placed camera array. To offload

the main CPU and improve performance, we have used
GPUs to accelerate the processing, and we here evaluate both
processing overhead and visual quality. Our experimental
results show that there is a trade-off between quality and
execution time.

The rest of the paper is organized as follows: Next,
in section II, we briefly describe our system. Then, we
present our selected algorithms in section III and detail
their implementations in section IV. Section V shows our
experimental results, which we discuss further in section VI
before we conclude the paper in section VII.

II. SYSTEM OVERVIEW

In [5], we described our panorama pipeline. Here, we
record raw 2040× 1080 video frames in bayer format from
five cameras at 50 fps, and each of these camera streams
must be debayered in real-time.

Modern GPU’s can provide significantly better perfor-
mance than a CPU for certain tasks. They are optimized
for applying small transformations to every single pixel
or texture element, with hundreds or thousands of threads
performing the same task in parallel, with minimal inter-
thread communication. Debayering is an inherently parallel
operation, as each pixel, or block of pixels, can typically be
calculated locally. Hence, with our high data rate and real-
time requirements, we found the GPU to be better suited to
perform this task. However, more complex algorithms that
require a greater level of contextual information about the
entire image will not achieve the same performance increase.

In this system, we utilize the Nvidia CUDA framework
and have focused on the Kepler architecture [13]. CUDA was
selected, as opposed to for instance OpenCL, for achieving
the best performance on a target architecture. Given that
our system is intended as a server and content provider,
efficiency is prioritized over portability. In our implementa-
tions, we have also prioritized execution speed over memory
requirements.

III. DEBAYERING ALGORITHMS

There exist several debayering algorithms in literature,
e.g., [7], [1], [6], [3], [10], [11], [12], [9]. However, not
every algorithm is well suited to the GPU architecture or
real-time processing. The GPU is most efficient when each

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 1: An example bayer pattern

pixel is computed the same way, without depending on the
values or result of other pixels. More complex algorithms
will adapt based on neighbouring pixels to reduce visual
artifacts, which usually creates inter-pixel dependencies.

Below, we have selected algorithms that we deemed most
promising, considering our high data rate and real-time
requirements. When explaining the different algorithms, we
will be referring to figure 1 in example equations, identifying
each pixel with a number and each color value with R(ed),
G(reen) or B(lue).

A. Bilinear interpolation

Bilinear interpolation uses the average value of the two
or four nearest neighbour pixels of the specific color, e.g.,
the blue values for pixel 8 and pixel 13 are found by

B8 =
B7 + B9

2
B13 =

B7 + B9 + B17 + B19

4

It is generally considered the cheapest of the acceptable
algorithms, often used in real-time video systems due to
its low complexity. Therefore, we have included this as our
baseline algorithm.

B. Smooth hue transition

Smooth hue transition is a two pass algorithm [4] that first
uses the bilinear interpolation described above to reconstruct
the green channel. Then, a second pass uses the relation
between the green channel and the red/blue channel within
a pixel to reconstruct the remaining channels. For example,
the blue value in pixel 13 is calculated thus

B13 =
G13

4

(
B7

G7
+
B9

G9
+
B17

G17
+
B19

G19

)
This utilizes the principle that the difference between two
channels within a pixel only changes gradually and rapid
transitions will cause visual artifacts.

C. High-quality linear interpolation

High-quality linear interpolation is a single pass algo-
rithm [11] that performs bilinear interpolation, but uses the
color information already present in the pixel to correct the
result, e.g.,

∆r = R13−
R3 + R11 + R15 + R23

4

G13 =
G8 +G12 +G14 +G18

4
+

∆r

2

If the interpolated red value differs significantly from the real
red value, there is likely a significant change in luminosity
in this pixel.

D. Edge directed interpolation

Edge directed interpolation is a two pass algorithm [1]
that tries to avoid interpolating across edges, averaging
two widely different values. It uses the laplacian, i.e., the
divergence of the gradient between enclosing pixels, of the
green channel and the gradient of the red or blue channel to
determine the presence of an edge when reconstructing the
green channel. The horizontal gradient is determined by

Grad13H = |G12−G14|+ |2R13− R11− R15|

and the vertical gradient is calculated similarly. The algo-
rithm performs linear interpolation of either the two enclos-
ing vertical samples, or horizontal, depending on the smallest
gradient. When interpolating the red and blue channel, it
performs linear interpolation of the pixel hue in the nearby
samples. We mentioned that hue, i.e., the difference between
two color channels, changes gradually, but luminosity may
transition rapidly from one pixel to the next. Since the
green channel carries most of the luminosity information,
we use the difference between the, already interpolated,
green channel and the missing red/blue channel for a better
estimation, as such

R13 = G13 +
(G7− B7) + (G9− B9) + (G17− B17) + (G19− B19)

4

Here, it is implied that we trust the correctness of the initial
green interpolation. This approach is also used by the next
algorithm.

E. Homogeneous edge directed interpolation

Homogeneous edge directed interpolation is a three pass
algorithm, designed as a simplification of the adaptive
homogeneity directed demosaicking algorithm [6]. When
interpolating in only one direction, it may be visually ap-
parent if single pixels choose a different direction compared
to neighbouring pixels. This algorithm therefore computes
the directional gradients in the first pass, before selecting
the direction based on the local directional preference in a
second pass. The final pass for interpolating the red and blue
channels is equal to that of the edge directed.

F. Weighted directional gradients

Weighted directional gradients is a two pass algo-
rithm [10] that uses a weighted average of pixels in four
directions in the initial green interpolation, weighted based
on the inverse gradient in its direction. The algorithm deter-
mines the value contribution G of each direction right/left-
/up/down, and its weight α. For example, the right direction
of pixel 7 is determined by

Gr = G8 +
B7− B9

2

αr =
1

|G6−G8|+ |G8−G10|+ |B7− B9|+ |G2−G4|+|G12−G14|
2

similar for each direction. The final green value can be
computed by

G7 =
αlGl + αrGr + αuGu + αdGd

αl + αr + αu + αd

This is performed similarly when interpolating the red and
blue channel, while then also taking advantage of having the
full green channel. It performs a similar directional weighted
average independently for each channel.

IV. IMPLEMENTATIONS

We have implemented the algorithms described in the pre-
vious section, optimizing for execution speed, not memory
requirements. This section assumes a basic knowledge of the
CUDA architecture and terminology.

The algorithms are all implemented using the same base
principles, as they are primarily differentiated by the number
of required passes and the number of pixel lookups per pass.
Every kernel is executed with 128 threads per CUDA block,
the minimum required to allow for maximum occupancy on
the Kepler architecture. Every active kernel is also able to
achieve more than 95% occupancy since debayering is a
highly parallelizable workload. The initial bayer image is
bound to a two dimensional texture, giving us the benefit of
two dimensional caching when performing multiple texture
lookups per pixel. The use of textures is essential, as many
of the algorithms would be difficult to implement with good
memory coalescing using the GPU’s global memory.

This could also have been accomplished using shared
memory, but it would be harder to coordinate and more
device specific. In order to accommodate the ideal 128
threads per block for maximum occupancy, using a 5 × 5
pixel lookup grid, we would need to load a total of
5× (128× 2 + 4) = 1284 bytes per block. This becomes
problematic when crossing image row boundaries, and may
prove difficult to optimize for most horizontal resolutions.
We believe that the quality of caching from using a single
texture is more beneficial, and produces a better result than
shared memory. By opting to not use shared memory, we
could also have utilized a larger general cache, as this
typically uses the same memory pool, though in our pipeline
we need shared memory available for other modules.

Many of the algorithms require multiple passes, most
commonly an initial green pass followed by one red and
blue pass. The initial green pass is implemented similarly
across algorithms, using a temporary texture with two bytes
per pixel, for saving the green value and either a red, blue or
empty value. Using a single texture for this provides better
data locality and cache efficiency, increasing performance
over using two separate textures. In order to write the

temporary values, we use surface memory, which utilizes
the same 2D caching as textures.

The homogeneous edge directed algorithm uses two
passes to interpolate the green channel. In the first pass, the
green value is computed both based on the horizontal and the
vertical interpolation method. Additionally, we calculate the
directional preference. These values, along with the original
red/blue value are written to surface memory with 4 bytes
per pixel. It proved faster to keep this data localized in one
array, despite having to perform nine texture lookups when
we determine the localized directional homogeneity.

The original weighted directional gradients uses two
passes to interpolate the red and blue channels. The second
pass fully interpolates the red and blue pixels, leaving the
green pixels untouched. This data is then used in the third
pass to complete the remaining red and blue values. This
implementation uses a full four bytes per pixel to ensure
data locality for the final pass, but this may not be ideal.
It is generally considered more efficient to use four bytes
per pixel instead of three, due to memory alignment, but in
our case, we have only half the pixels carrying three values
and the other half (green pixels) carrying a single value.
We opted to implement two variations of this algorithm, the
original and a modified version that borrows the constant hue
correction-based approach of the edge directed algorithms.

When implementing the kernels it was essential to avoid
branching code, based on the color of each pixel. A naive
approach would run the kernel on each pixel and perform
one of four branches, depending on the color of that pixel.
Because each branching operation within a single thread
warp must be executed by all threads in that warp, it would
be guaranteed that at least half of the executing threads
would idle due to branching. Instead, our kernels process
2×2 pixels in each iteration. This introduces zero branching
as a result of selecting pixels. These four pixels will also
need to access a lot of the same pixels, so we load these at
once for local computations.

We tried two different implementations for the final pass
of every algorithm. Initially, each pixel was calculated sep-
arately, performing all pixel lookups required. However, we
ensured that we always processed two pixels consecutively.
The kernel would first determine if the two pixels are
of a green/red row, or a blue/green row. This evaluation
would always yield the same branch within a warp, except
for warps that crossed row boundaries. With our target
horizontal resolution of 2040, this meant that only one warp
out of 2040pixels

32×2pixels = 31.86 would encounter branching. Most
common image resolutions are divisible by 32, meaning that
this would yield zero branching in these situations.

However, we saw that the previous kernel usually covered
a lot of overlapping pixels. Figure 2 shows an example of
overlapping pixel lookups, highlighting a four-pixel region
and the required lookups for each individual pixel. In the
edge directed final pass, each pixel must perform five

1 2

3 4

(a) 4-pixel region

1 2

3 4

(b) Pixel lookups required

1

(c)

2

(d)

3

(e)

4

(f)
Figure 2: Visualization of 4-pixel kernel implementation, using
edge directed as an example. The four pixels to calculate are
numbered in (a), while (b) shows which of the surrounding pixels
must be read. Figures (c, d, e, f) show the individual lookups
required. Note that all red/blue pixels also contain a green value,
previously calculated.

lookups. However, we can see that if we interpolate these
four pixels together and use temporary storage, we only
need a total of ten lookups. For other algorithms that require
more pixel lookups, this overlap is even greater. Performing
a texture lookup requires multiple cycles, depending on
cache efficiency and access pattern, while accessing local
registers is only a single cycle. Therefore, we interpolate four
pixels at the same time, covering the four possible branches,
and perform as few texture lookups as possible, relying on
temporary storage. The exception is the original weighted
directions, where this increased the local register require-
ments for each thread too much, reducing the number of
concurrent threads that could execute. Instead, we observed
better results when performing duplicate texture lookups.

V. EXPERIMENTAL RESULTS

To compare the different algorithms and implementations,
we have performed a number of experiments that we will
present in this section.

A. Visual quality

We performed a simple evaluation on the visual quality
of each algorithm by subsampling existing images, imposing
the bayer pattern, to see how accurately the image can be
reconstructed. When reconstructing the images, we typically
see interpolation artifacts, primarily in the form of false
colors and zippering along edges. Figure 3 shows how each
algorithm handles a region prone to false colors. We see that
all algorithms produce interpolation artifacts, though with
varying frequency and intensity.

Peak signal-to-noise ratio (PSNR) is a simple metric for
evaluating image reconstruction. We computed the PSNR
of each of the reconstructed images, filtering away homo-
geneous areas that rarely produce visible errors with an
edge detection filter. The result can be found in table I.
Although PSNR can yield inconsistent results with many
image transformations, we observed a very strong correlation

Algorithm PSNR
Green Red/blue

Bilinear 28.43 23.51
Smooth hue transition 28.43 27.07
High-quality linear 34.44 29.67
Edge directed 35.61 34.62
Homogeneous edge directed 36.22 34.89
Weighted directions original 37.97 31.02
Weighted directions modified 37.97 36.25

Table I: Measured PSNR for the Lighthouse image [8].

Algorithm Execution time (ms)
Mean Std-div

Bilinear 40.71 0.39
High-quality linear 137.59 0.92
Edge directed 110.76 0.72

Table II: CPU execution time for three algorithms (run 1000 times)
on a 2040× 5400 pixel image, simulating our panorama system.

between the PSNR and the visual result of figure 3. High
PSNR in the green channel was common in those algorithms
that avoided zippering artifacts and maintained the greatest
level of detail. Low PSNR in the red and blue channel
normally meant a great level of false colors. We could see
that the best performing algorithms all use the same, simple
final pass for interpolating the blue and red channels. This
shows that if the green channel is accurately reconstructed,
we can use the concept of constant hue to reconstruct the
more sparsely sampled channels.

B. Execution performance

The primary requirement in our real-time panorama sys-
tem is the overall execution time of the algorithm. The
algorithms presented have a varying degree of computational
complexity, but this is not necessarily the only requirement
for performance efficiency. In order to determine a baseline,
table II shows the execution time of a few of the algorithms
implemented on CPU. Note that general optimizations were
applied, but no threads or SIMD instructions were utilized.
We see that these implementations are far below the real-
time limit of 20ms per frame of our system. Multiple threads
could be used, but this still takes away valuable resources
from the rest of our system, primarily the video encoding.

Table III shows the mean execution time of each algorithm
on both a high-end and a mid-range GPU, along with some
simple complexity metrics unique to our implementations.
If we compare to the CPU implementations in table II, we
see that every algorithm is significantly faster. However,
the high quality linear is now a lot faster than the edge
directed, which shows that the GPU is a very different
architecture. Only mean execution times have been included
since the GPU provides extremely consistent numbers, with
a negligible standard deviation. It is worth noting that these
numbers include a conversion into the YUV colorspace in
their final pass, required by the rest of our system.

We see that most algorithms are nearly equally fast,
and within the 20 ms real-time limit of 50 fps, on a
GeForce GTX 680. The original weighted directions proved
extremely inefficient, due to its slow red and blue channel
interpolation. However, we observed that we could achieve

(a) Original (b) Bilinear (c) Smooth hue tran-
sition

(d) High-quality lin-
ear

(e) Edge directed (f) Homogeneous
edge directed

(g) Weighted direc-
tions original

(h) Weighted direc-
tions modified

Figure 3: Visual assessment of zippering and false colors in an error prone region

a better visual result by exchanging these two passes with
the final pass of the edge directed algorithm, at a lower
processing cost. Overall, the execution time seems most
affected by the number of texture lookups, with an added
penalty for each pass. An exception appears to be the second
pass of the smooth hue transition, which is slowed down
by having to perform four division operations per pixel.
Here, we also utilize CUDAs native division approximation
function, which uses only half the cycles of a full division.
This reduced the execution of this pass by 20%, and because
we are working with 8-bit color values the loss of precision
never affected the final result.

We described two different kernel implementations for the
final pass of each algorithm, a 2-pixel variant where each
pixel was calculated separately and a 4-pixel variant where
we reduced the number of texture lookups. In table III, it
is quite apparent that the original weighted directions was
not using this optimization, based on its disproportionate
number of texture lookups. In figure 4, we compare the
implementations of these two approaches. Here, we see
that the 4-pixel variant is superior for all implementations.
The smooth hue transition performed exceptionally better
with the 2-pixel variant, primarily because it’s alternative
implementation required too many registers and was limited
to 67% occupancy. Additionally, we see a correlation with
the number of bytes to look up and the benefit of the 2-
pixel kernel. We believe this is why the high-quality linear
and smooth hue transition algorithms achieved the highest
performance gain.

We also experimented with how many threads to launch.
We have mentioned that each kernel will compute 2 or 4
pixels sequentially, but each thread can also iterate through
multiple pixel-blocks in its lifetime. One can either launch
very many threads, with short lifetimes, or fewer threads
that compute more pixels. Note that “few” threads in this
context is still several thousand. For the 2-pixel kernels we
consistently saw best results when each thread computed 32
pixels, i.e. iterate 16 times. The 4-pixel kernels performed
best when computing only 8 pixels each, iterating twice.
These numbers may be very device specific, and should
be determined dynamically based on the architecture and
resolution of the images.

0 400 800 1,200 1,600 2,000

Bilinear

Smooth hue transition

High-quality linear

Edge directed

852

870

993

881

1,084

1,991

1,539

1,170

Time (µs)4-pixel 2-pixel

Figure 4: Performance evaluation of the final pass kernels, using
the 4-pixel variant and the 2-pixel variant. Note that the modified
weighted directional gradients and homogeneous edge directed
algorithm also use the edge directed kernel for their final pass.

VI. DISCUSSION

In the previous section, we saw that most algorithms
were well below our real-time threshold on a GeForce GTX
680. The original weighted directions proved extremely
inefficient, due to its slow red and blue channel interpolation.
However, we saw that by changing the final pass of the
algorithm we could achieve better visual results at only a
third of the execution time. This shows that if the green
channel is accurately reconstructed, we can use the concept
of constant hue to reconstruct the more sparsely sampled
channels. The algorithms that utilized this method, differing
only by the initial green interpolation, performed best visu-
ally. The execution time seems to be primarily determined
by the number of texture lookups required, with an added
penalty for each pass. The exception to this is the smooth
hue transition algorithm, which has a very quick green pass
compared to the others.

When performing debayering on the five images, we treat
them as a single image. The edges of the images are never
visible in the final panorama. This allows us to launch fewer
kernels, with less time spent on synchronization and kernel
scheduling. We also perform no edge handling, as CUDA
textures clamp reference lookups outside image boundaries.
This causes odd colors around image borders, but these are
removed when we stitch the images into a panorama.

In our panorama pipeline, the debayering of all images is
performed on a single GPU, despite using multiple recording

Algorithm Execution time (µs) µs / pass (GTX680) Lookups / 2× 2 Temporary
Quadro K2000 GTX680 1st 2nd 3rd 1st 2nd 3rd memory

Bilinear 5516 929 852 14× 1
Smooth hue transition 10183 1979 747 1102 12× 1 14× 2 2× x× y
High-quality linear 6370 1073 993 24× 1
Edge directed 10941 2025 987 881 20× 1 10× 2 2× x× y
Homogeneous edge directed 20029 3184 1106 1032 905 18× 1 18× 4 10× 2 4× x× y
Weighted directions original 49212 9061 2112 2087 4696 76× 1 92× 2 124× 4 6× x× y
Weighted directions modified 19052 3094 2050 894 76× 1 10× 2 2× x× y

Table III: Summary of each algorithms resource requirements. Execution was measured with a 2040× 5400 resolution image. Note that,
in addition to each pass, some CPU overhead is required for preparing buffers and launching kernels. For each pass, we show the number
of texture lookups per 2× 2 pixels, i.e., 2 green, 1 blue & 1 red, of either 1, 2 or 4 bytes each.

machines. This could be offloaded to the recording machines
to free up resources. However, this would mean having to
transfer all the color channels between machines. This would
require three times the bandwidth, and the following module
would be slowed down by not having 4-byte aligned pixel
addressing. Our current setup deals with only 5 cameras,
but if the system is extended to include more cameras
such offloading would enable use of distributed resources
more efficiently. The debayering module does take away
resources from the remaining panorama pipeline. Therefore,
even though all algorithms run far below real-time limits, we
may opt to use a faster algorithm if the system is extended.

VII. CONCLUSION

In this paper, we have looked at debayering algorithms for
real-time recording of panorama videos. We have modified
and implemented several algorithms from the literature onto
GPUs and evaluated both the real-time capabilities and the
visual quality. Many of the algorithms are viable, yielding
a tradeoff between quality and run-time. Every algorithm
was capable of maintaining real-time constraints, but some
proved inefficient compared to the resulting visual quality,
such as the original weighted directions and the smooth
hue transition. However, many of the visual artifacts were
significantly reduced by the video encoding step in our
panorama pipeline, or made invisible by the high framerate.
This means that, in our system, the intensity of the false
colors were often more important than the frequency. This
made the weighted directions a very good choice, as it
had the least intensive false colors. We also found that the
mazing artifacts created by the edge directed algorithm were
rarely as visually apparent after the encoding process. These
two algorithms both perform very well in homogeneous
areas, and provide only minor false colors around white
lines. Therefore, we saw the best tradeoff between quality
and runtime with the edge directed algorithm, the faster
alternative of the two.

ACKNOWLEDGEMENTS

This work has been performed in the context of the iAD cen-
tre for Research-based Innovation (project number 174867)
funded by the Norwegian Research Council.

REFERENCES

[1] J. Adams. Design of practical color filter array interpolation
algorithms for digital cameras .2. In Proc. of IEEE ICIP,
volume 1, pages 488–492, Oct 1998.

[2] B. Bayer. Color imaging array, July 1976. US Patent
3,971,065.

[3] E. Chang, S. Cheung, and D. Y. Pan. Color filter array re-
covery using a threshold-based variable number of gradients.
volume 3650, pages 36–43, 1999.

[4] D. Cok. Signal processing method and apparatus for produc-
ing interpolated chrominance values in a sampled color image
signal, Feb. 1987. US Patent 4,642,678.

[5] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvil-
lat, C. Griwodz, and P. Halvorsen. Interactive zoom and
panning from live panoramic video. In Proc. of ACM
NOSSDAV, pages 19:19–19:24, 2014.

[6] K. Hirakawa and T. W. Parks. Adaptive homogeneity-
directed demosaicing algorithm. IEEE Transactions on Image
Processing, 14(3):360–369, 2005.

[7] R. Kimmel. Demosaicing: image reconstruction from color
ccd samples. IEEE Transactions on Image Processing,
8(9):1221 – 1228, 1999.

[8] Kodak. Kodak lossless true color suite. http://r0k.us/graphics/
kodak/.

[9] B. Leung, G. Jeon, and E. Dubois. Least-squares luma-
chroma demultiplexing algorithm for bayer demosaicking.
IEEE Transactions on Image Processing, 20(7):1885–1894,
July 2011.

[10] W. Lu and Y.-P. Tan. Color filter array demosaicking: new
method and performance measures. IEEE Transactions on
Image Processing, 12(10):1194–1210, Oct 2003.

[11] H. S. Malvar, L. wei He, and R. Cutler. High-quality
linear interpolation for demosaicing of bayer-patterned color
images. In Proc. of IEEE ICASSIP, 2004.

[12] D. Menon, S. Andriani, and G. Calvagno. Demosaicing
with directional filtering and a posteriori decision. IEEE
Transactions on Image Processing, 16(1):132–141, 2007.

[13] Nvidia. Kepler tuning guide. http://docs.nvidia.com/cuda/
kepler-tuning-guide/, 2013.

