
Do Developers Care About Code Smells? – An
Exploratory Survey

Aiko Yamashita
Mesan AS & Simula Research Laboratory

Oslo, Norway
Email: aiko@simula.no

Leon Moonen
Simula Research Laboratory

Oslo, Norway
Email: leon.moonen@computer.org

Abstract—Code smells are a well-known metaphor to describe
symptoms of code decay or other issues with code quality which
can lead to a variety of maintenance problems. Even though
code smell detection and removal has been well-researched over
the last decade, it remains open to debate whether or not code
smells should be considered meaningful conceptualizations of
code quality issues from the developer’s perspective. To some
extend, this question applies as well to the results provided
by current code smell detection tools. Are code smells really
important for developers? If they are not, is this due to the
lack of relevance of the underlying concepts, due to the lack of
awareness about code smells on the developers’ side, or due to
the lack of appropriate tools for code smell analysis or removal?
In order to align and direct research efforts to address actual
needs and problems of professional developers, we need to better
understand the knowledge about, and interest in code smells,
together with their perceived criticality. This paper reports on
the results obtained from an exploratory survey involving 85
professional software developers.

Index Terms—maintainability; code smells; survey; code smell
detection; code analysis tools; usability; refactoring

I. INTRODUCTION

The presence of code smells indicates that there are issues
with code quality, such as understandability and changeabil-
ity, which can lead to a variety of maintenance problems,
including the introduction of faults [1]. In the last decade,
code smells have become an established concept for patterns
or aspects of software design that may cause problems for
further development and maintenance of these systems [2].
Because code smells are motivated from situations familiar to
developers, design critique based on these metaphors is likely
to be easier to interpret by developers than the traditional
numeric OO software metrics. Moreover, since code smells are
associated to specific set of refactoring strategies to eliminate
them, they allow for integration of maintainability assessment
and improvement in the software evolution process.

Since the first formalization of code smells in an automated
code smell detection tool [3], numerous approaches for code
smell detection have been described in academic literature [4–
13]. Moreover, automated code smell detection has been
implemented in a variety of commercial, and free/open source
tools that are readily available to potential users.

However, even though code smell detection and removal has
been well-researched over the last decade, the evaluation of the
extend to which such approaches actually improve software

maintainability has been limited. More importantly, it remains
open to debate if code smells are useful conceptualizations
of code quality issues from the developer’s perspective. For
example, the authors of a recent study on the lifespan of code
smells in seven open source systems found that developers
almost never intentionally refactor code to remove bad code
smells from their software [14]. Similarly, in our empirical
study on the relation between code smells and maintainabil-
ity [15, 16], we found that code smells covered some, but
not all of the maintainability aspects that were considered
important by professional developers. We also observed that
the developers in our study did not refer to the presence
of code smells while discussing the maintainability problems
they experienced, nor did they take any conscious action to
alleviate the bad smells that were present in the code.

So, we can ask ourselves the question if code smells are
really important to developers? If they are not, is this due
to the lack of relevance of the underlying concepts (e.g., as
investigated in [15]), is it due to a lack of awareness about
code smells on the developer’s side, or due to the lack of ap-
propriate tools for code smell analysis and/or removal? Finally
if support for detection and analysis is lacking, which are the
features that would best support the needs of developers? To
direct research efforts so it can address the needs and problems
of professional developers, we need to better understand their
level of knowledge of, and interest in, code smells.

To investigate these questions, this paper presents an ex-
ploratory, descriptive survey involving a 85 software profes-
sionals. The respondents were attracted by outsourcing the
task of completing our survey via an online freelance market-
place for software engineers. This proved to be a successful
method for ensuring both sample size and covering diverse
aspects of the software profession demography. The paper
analyzes and discusses the trends in the responses to assess
the level of knowledge about code smells, their perceived
criticality and the usefulness of code smell related tooling.
Based on our findings, we provide advise on how to improve
the impact of the reverse engineering & code smell detection
scientific community on the state of the practice.

The remainder of this paper is as follows: Section 2 briefly
discusses the theoretical background and related work. In sec-
tion 3, we present our research methodology. In section 4, we
present and discuss the results from the study, analyze trends

Simula Research Laboratory, Technical Report (2013-01) 1

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

in the responses, and discuss limitations. Finally, we conclude
in Section 5 and discuss directions for future research.

II. BACKGROUND AND RELATED WORK

Code smells are characteristics or patterns that serve as indica-
tors of degraded code quality, which could hinder comprehen-
sibility and modifiability. Code that exhibits code smells can
be more difficult to maintain, and this can lead to the intro-
duction of faults. Beck and Fowler [1] informally describe 22
smells and associate them with different refactoring strategies
that can be applied to improve the design. Martin extended
the work of Beck and Fowler with an elaboration on a set of
design principles and “new smells” that were advocated by
the Agile community [17].

Over the last decade, code smells have become an es-
tablished metaphor for aspects of software design that may
cause problems for further development and maintenance of
the system [1, 2]. Code smells identify locations in the code
that violate OO design principles and heuristics, such as the
ones described in the work by Riel [18] and by Coad and
Yourdon [19]. As such they are also closely related to the work
on design patterns [20, 21] and anti-patterns [22], although
code smells manifest themselves generally at a more local
scale than (anti-)patterns.

Because code smells are linked to to challenges in compre-
hensibility and modifiability, the (automated) analysis of code
smells allows us to integrate both maintainability assessment
and maintainability improvement into the software evolution
process. Moreover, considering that many of the descriptions
of code smells in [1] are motivated by situations familiar
to developers, it can be expected that code smells lead
to software design critiques that are easier to interpret by
developers than the traditional numeric OO software metrics.

Van Emden and Moonen [3] provided the first formalization
of code smell detection and developed an automated code
smell detection tool for Java. Since then, numerous approaches
for code smell detection have been described in literature [4–
13]. Moreover, automated code smell detection has been
implemented in commercial tools such as Together, Analyst4J,
Stan4J, InCode, NDepend, and CppDepend, and in free/open
source tools like JDeodorant, and OClint.

Mäntylä investigated how developers identify and interpret
code smells, and how this compares to results from automatic
detection tools [23]. Other studies have empirically investi-
gated the effects of individual code smells on specific aspects
related to maintainability, such as defects [24–26], effort [27–
29] and changes [11, 30].

Recently, two studies were published that investigated the
lifespan of code smells during the evolution of software sys-
tems [14, 31]. Both studies found that code smells accumulate
in systems over time; smells are usually introduced when the
method in which they reside was initially added; smells are
almost never removed; and most smell removals were not due
to targeted refactoring but as a side effect of other changes.
Peters and Zaidman [14] conclude that developers may be
aware, but are not concerned by the presence of code smells.

In our earlier longitudinal maintenance case study on six
professional developers, we investigated how code smells
relate to the maintainability characteristics considered impor-
tant by professional developers [15], and how code smells
related to maintenance problems experienced by professional
developers [16]. We found that although code smells covered
some of the maintainability properties that were considered
important by developers, a considerable percentage of those
maintainability properties were unrelated to code smells. In
addition, we observed that the developers in our study did not
refer to the presence of code smells in relation to the problems
they experienced, they did not look for tools to analyze code
smells, nor did they take any conscious action to remove the
bad smells that were present in the code.

We conclude that, despite the significant amount of code
smell related research that has conducted in our community,
and despite the increasing number of code smell detection
tools that are available, it remains debatable how useful
these notions and tools are in practice, from the professional
developer’s perspective, and what would need to change.

We are aware of only one other study that investigated
the awareness, concern or perceived criticality of code smells
from the developer’s perspective (albeit in a specific context):
Arcoverde et al. [32] report on the preliminary results from
an exploratory survey amongst 33 developers of reusable
assets in a framework or product line context, investigating
why certain code smells are not refactored. They found that
developers in this context often skip or postpone refactoring
code smells to avoid changing the API or breaking the
contract, because this could introduce faults in client code or
derived applications. They conclude that better visualizations
of the impact of refactorings are needed, especially in the
context of maintaining frameworks or product lines.

Similarly, we have only been able to locate one study
that focused on developer’s needs and wishes for code smell
related tools: The Stench Blossom work by Murphy-Hill
and Black first explores the requirements for code smell
detectors to support refactoring [33], and then implements and
evaluates an unobtrusive ambient code smell visualization on
a mix of students and professional developers [34]. The main
conclusion from their study is that code smell detection tools
should not get in the way of development activities.

III. METHODOLOGY

In order to investigate the developers’ level of knowledge
and concern on code smells, we chose to use the survey
method. According to Fink [35], a survey is a: “system
for collecting information from or about people to describe,
compare, or explain their knowledge, attitudes, and behavior”.
As such, we consider this the most suitable research method
to investigate these questions on a relatively large sample of
software professionals. We use Fink’s guidelines for setting
up and conducting a survey, which involves the following
steps and activities: (a) setting objectives for information
collection, (b) designing the study, (c) preparing a reliable
and valid survey instrument, (d) administering the survey, and

Simula Research Laboratory, Technical Report (2013-01) 2

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

(e) managing/analyzing the data. The reminder of this section
discusses in more detail what we did for each of these steps.

A. Setting Objectives for Information Collection

As the first step, a brainstorming session was organized to
define goals and scope of the survey. The main goal was set
to explore the level of insight (i.e., awareness, knowledge)
professional developers have with respect to code smells, and
to determine if, and why they are interested in code smell-
related concepts and tools. A secondary goal is to explore
how code smells (concept or tools) are currently used within
industry, how they could potentially be used within industry,
and what would be needed to address a potential gap.

B. Designing the Survey

Considering that our goal is to collect initial information that
will help to better characterize and study the phenomenon
of interest, we decided that the best format for the survey
would be an exploratory, descriptive survey that consists of
a combination of closed and open questions. Open questions
are an important component of such qualitative (exploratory)
surveys, since they are especially suited for cases where
previous experiences or literature are insufficient to guide the
design of closed questions [35].

We use non-probability sampling, more specifically conve-
nience sampling [35], by using freelance marketplaces [36,
37]. The marketplace that was selected to conduct the survey
was Freelancer.com,1 via which a total of 85 professional
developers where hired to complete the survey. We chose Free-
lancer.com because this marketplace offers the “Pay for Time”
option, which we consider ideal for rewarding tasks such
as completing a questionnaire comprising a relatively short
period of time. Although an ideal population sample should
be drawn randomly, the costs of hiring many developers and
only using the data of a few made this rather prohibitive.
Instead, we sampled participants based on their bidding on
our task (which meant that their profile had to fit with the
requirements that were specified in the task description).

For a detailed discussion of the rationale for, and potential
of, using freelance marketplaces for conducting Software
Engineering studies, we refer to [37].

C. Preparing the Survey Instrument

We defined a set of background information to collect to
characterize developer profiles. This information includes:
age, country, gender, predominant roles, programming lan-
guage expertise, familiarity with programming paradigms, and
working experience (in months and in kLOC).

A 5-point ordered response scale (“Likert-scale”) is used for
asking the developers to describe: (a) their level of knowledge
on code smells, (b) their perception on the degree of criticality
of code smells, and (c) their perception on the degree of
usefulness of code smells for conducting different activities.

We also asked the developers to identify one or more from
a collection of information sources that helped them to get to

1 Formerly active under the names RentACoder and VWorker.

know about code smells. We include an option “other sources”
to allow the respondents to mention any additional sources of
information on code smells.

A set of open-ended questions is used to investigate: (a)
the reasons behind the perceived criticality of code smells,
(b) which code smells are considered as the most critical,
(c) which code-smell related tools have been used previously
(and their experience using them), and (d) what are the desired
features in a code smell detection tool.

We follow the general code smell questions with a three-
option question about the respondent’s refactoring habits, to
investigate the level of planning involved with refactoring
activities (i.e., if they refactor as the project progresses, if they
plan ahead to perform refactoring, or if they do a combination
of both). This is followed by a few detailed questions to
characterize if, how often, and with what kind of support,
code smells are removed in practice.

Before conducting the survey we cross-examined and clar-
ified the questions and options for answering with help of
a third researcher not involved in our study. Due to time
constrains, we did not perform a pilot study on the target
audience, although this could have exposed a question on code
size that was open to misinterpretation (as we see later).

The list of survey questions is presented in Appendix A.

D. Administering the Survey and Analyzing the Data

The survey was conducted as part of a larger survey on
estimation of software tasks conducted at Simula Research
Laboratory. It was registered and administered via Qualtrics
Research Suite,2 an online platform for conducting surveys.

The responses on questions that used an ordered response
scale based questions were analyzed and summarized via
percentage graphs. The response to the open question about
justifying the criticality of code smells, was analyzed via
open and axial coding [38]. Codes where extracted from the
statements given by the respondents. In relation to which
smells were considered most critical, the responses were inter-
preted and grouped into several discernible code smells and
anti-patterns. For analyzing the features desirable in a code
smell tool, we also interpreted the text and extracted concrete
features from each response and grouped them according to
our perceived level of similarity in each of the responses.

Although no formal inter-rater agreement tests were con-
ducted, each of the authors conducted the qualitative data
analysis individually, and both analyses were discussed and
integrated in a subsequent stage.

IV. RESULTS AND DISCUSSION

A. Background and Skills of Respondents

In total, 73 out of 85 developers fully completed the survey,
yielding a response rate of 86%. The respondents originate
from 29 countries, indicating good international coverage (see
Table I). A few countries stood out in terms of number of
participants, such as India, USA, Pakistan and Romania.

2 http://www.qualtrics.com

Simula Research Laboratory, Technical Report (2013-01) 3

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

TABLE I
COUNTRIES OF THE RESPONDENTS

Country No. Country No. Country No.
Australia 1 Bangladesh 3 Brazil 1
Chile 1 China 2 Croatia 1
Egypt 1 El Salvador 1 Finland 1
France 1 Germany 1 Hungary 1
India 12 Israel 1 Italy 2
Latvia 2 Lithuania 1 New Zealand 1
Nigeria 1 Pakistan 8 Poland 1
Portugal 1 Romania 8 Russia 1
Serbia 1 Thailand 1 UK 4
USA 10 Vietnam 3

The age of the respondents ranged from 19 to 53 (average
30.9, median 30), and their industrial experience ranged from
1 to 30 years (average 8.7, median 7, Figure 1 shows the
distribution). Most of the participants were male, with a total
of 69 (95%) male developers and 4 (5%) female developers.
In terms of roles in their daily projects, the majority of re-
spondents indicated that they worked as a developer, followed
by the role of team lead. Table II shows an overview of all
roles, ordered by frequency.

Figure 2 presents an overview of the self-assessed skills in
terms of familiarity with different programming languages and
programming paradigms. With respect to their proficiency in
programming paradigms, the majority of the respondents re-
ported to be confident with OO-programming paradigm (58%
chose “Extremely familiar”). For imperative programming,
the groups were evenly distributed, and, perhaps somewhat
surprising, a larger group reported to feel quite confident
in functional programming than in imperative programming
(29% for “Moderately” and 22% for “Extremely” familiar).

When analyzing the self-assessment of programming lan-
guage skills, we saw that the majority of the respondents were
not confident in Python (70% responded “Not at all familiar”)
and Visual Basic (44% in the same group). Javascript consti-
tutes the programming language for which the majority (34%
of the respondents) responded “Somewhat familiar”. The C,
C++, C# and Java programming languages showed a relatively
even distribution (with Java having a quite dominant group of
nearly 50% of the developers responding that they had no to
slight Java skills). Based on these results, we can assume that
the respondents have a fair (but not a strong) understanding
of OO programming principles. This consideration is of rel-

TABLE II
PREDOMINANT ROLE OF THE RESPONDENTS

Category No. (%) Category No. (%)
Developer 48 (66%) Self-employed 3 (4%)
Team Lead 13 (18%) Tester 0 (0%)
Architect 5 (7%) QA Manager 0 (0%)
Project Manager 4 (5%)

evance because many code smell definitions are intertwined
with OO design principles.

Other programming languages reported by the respondents
were Perl, PHP and Ruby. Although we did not ask for the
primary working domain, the survey data suggests that the
respondents are rather well-acquainted with web-applications,
based on their skill-assessment of Javascript and the fact that
many of them mentioned PHP (20) and Ruby (6). Initially, we
had intended to triangulate the skill self-assessment with the
size of the code (in kLOC) that respondents had produced
in these languages or paradigms. However, we ended up
discarding these responses when analyzing the data because
many participants seem to have been confused by kLOC vs.
(NC)LOC, and reported very unrealistic values.

B. Level of Insight in Code Smells

From the total set of respondents, up to 23 (32%) replied
that they have never heard of code smells nor anti-patterns
(Figure 3). From the remaining 50, the great majority (37,
50%) belonged to either group 2 (i.e., “I have heard about
them in blogs or discussions but I am not so sure what they
are.”) or group 3 (i.e., “I have a general understanding, but do
not use these concepts.”). Thus only 18% of the respondents
indicated that they had a good or strong understanding about
code smells and applied these concepts in their daily activities.

The analysis on information sources will include only the
respondents that belong to this last group. When asked about
the most common source of information for code smells
or design-patterns, Blogs and developer forums were the
most answered amongst the respondents (see Figure 4). The

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Java

C

C++

C#

Python

Js

VB

Functional

Imperative

Object Oriented

Not at all Slightly Somewhat Moderately Extremely

Fig. 2. Familiarity with Programming Languages & Paradigms

0% 5% 10% 15% 20% 25% 30% 35%

1 - 5 years

5 - 10 years

10 - 15 years

15 - 20 years

> 20 years

Fig. 1. Experience of the respondents

Simula Research Laboratory, Technical Report (2013-01) 4

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

23	
 19	
 18	
 10	
 3	

0%	
 10%	
 20%	
 30%	
 40%	
 50%	
 60%	
 70%	
 80%	
 90%	
 100%	

Never heard of them
Heard about them but not sure what they are
General understanding but don't apply the concepts
Good understanding and apply the concepts
Strong understanding and apply concepts frequently

Fig. 3. Knowledge about code smells and anti-patterns

least mentioned sources are Tool vendor sites and scientific
papers, which constituted, each 4% of the options chosen by
the respondents. It is interesting to note that amongst other
sources than the predefined ones that were mentioned by the
respondents, colleagues, and seminars were a frequent source
of information (20%).

These findings suggest that, to increase research impact on
industry, the code smell analysis communities’ findings and
tools should be easily accessible via resources such as Internet
forums, technical blogs and industry seminars because that is
where professional developers collect their information.

C. Perceived Criticality of Code Smells and Anti-Patterns

With respect to the level of concern that respondents expressed
about the presence of code smells, the majority of the devel-
opers (19 respondents) mentioned that they were moderately
concerned about the presence of code smells in their source
code. A very small selection of 6% (3 respondents) were not
concerned at all, whereas 14% (7) responded that they were
extremely concerned (see Figure 5).

In order to better understand the rationale behind the
perceived criticality of code smells on software evolution,
we analyzed the answers to the open questions using coding
techniques, following grounded theory [38].

Table III shows some examples of the statements, and the
codes assigned to each. The complete list of statements with
the coding can be found in Appendix B. In total, we extracted
32 codes during open coding which were grouped using axial
coding into in 10 higher abstraction categories. These 10

0% 10% 20% 30% 40% 50% 60% 70% 80%

Blogs (38)

Internet Forums (32)

Gurus' websites (9)

Books (18)

Scientific Papers (5)

Tool Vendors' webistes (5)

Forums and wikipedia (6)

Colleagues, seminars (10)

Fig. 4. Sources of information on code smells/anti-patterns

3 10 11 19 7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Not at all Slightly Somewhat Moderately Extremely

Fig. 5. Concern about the presence of code smells and anti-patterns

categories can be thought of as rationales and they can be
characterized as follows:

1) Developer productivity: This category captures rationale
in connection to productivity and efficiency in a project,
at individual and at group levels (e.g., the amount of
desired outcome per unit of time). Codes that belong to
this category are: ‘Effectiveness’, ‘Efficiency in teams’,
‘Efficiency’, and ‘Productivity’.

2) Product evolvability: This category relates to potential
risks, and issues that occur during the product evolution.
The codes that belong to this category are: ‘Impact
on software evolution’, ‘Risk’, ‘Ripple effect’, ‘Time-
consuming debugging’, and ‘Testability’.

3) Quality of end-product: This category is mainly con-
cerned with product quality from the end-user’s or cus-
tomer’s perspective. The codes in this group are: ‘Product
quality’, ‘Product reliability’, ‘Error probability’, and
‘Product performance’.

4) Self-improvement: This category covers the rationale of
respondents wishing to increase/improve their skills and
knowledge (i.e., respondent: “I am very concerned be-
cause existences of code smells shows does not show
professionalism in coding. It makes me feel like a novice
or amateur”). Codes that belong to this group are: ‘Im-
prove own skills’, and ‘Programmer skills/status’.

5) (Lack of) Developer’s skills: This category groups codes
indicating that the respondents did not know enough
about the subject, and therefore were not concerned with
the presence of code smells (e.g., respondent: “Because
I have no such clear idea about it”). The codes in
this category are: ‘Intuition’, ‘Lack of knowledge’, and
‘Programmers skills’.

6) (Lack of) Organizational support: This category en-
compasses cases where respondents explained that they
lacked of support from the organization (i.e., their project
managers) or the members of their team. Codes in
this category are: ‘Lack of support by management’,
‘Difficult to promote’, and ‘Lack of time’.

7) (Lack of) Tool support: This category represents respon-
dents stating that they are not concerned with smells
because of the lack of tools that can help to detect them.

8) Cost/benefit considerations: This category is composed
by rationale related to trade-offs between the costs (e.g.,
time available in relation to deadlines) and the quality
(intrinsic and extrinsic) of the product. Codes comprising

Simula Research Laboratory, Technical Report (2013-01) 5

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

TABLE III
STATEMENTS FROM THE RESPONDENTS WITH THEIR CORRESPONDING CODING

ID Statement Codes

2 I want to be reliable as a developer, and adhere to universal conventions on software development, so
that the code I produce is reliable, performant and adheres to established standards used for software
development.

Standard compliance, Improve own
skills, Product Quality, Product relia-
bility

30 Code smells - It seems like a pretty small bug to start off and if left ignored could be hugely destructive.
We have seen a similar case in one of our projects and this lead to a delay in project when we could
have finished way before the timelines.

Product quality, Ripple effect, Impact
on evolution

34 There are some code smells/anti-patterns that I don’t like and fight/educate against them. / Then there
are others like long identifiers, use of literals, premature optimizations, etc. where I’m concerned but
choose to ignore most of the time because it’s not worth my time to try to convince the developer.

Case-by-case basis, Difficult to pro-
mote

40 I’m concerned about code smells because if there will be many of them the programming process and
estimate work-hours of my projects can be multiplied because needs of more refactoring.

Efficiency, Productivity

44 I am very concerned because existences of code smells shows does not show professionalism in coding.
It makes me feel like a NOVICE or AMATEUR

Programmer skills/status

this category are: ‘Trade-offs’, ‘Case-by-case basis’, and
‘Within project constraints’.

9) Availability of alternative approaches: This category
represents statements where respondents argued that al-
ternatives approaches or concepts can be used instead of
code smells and anti-patterns.

10) Understandability: This category relates to concerns on
readability and comprehensibility of the source code, and
approaches to improve these aspects. Codes included in
this category are: ‘Code aesthetics’, ‘Code understand-
ability’, ‘Compliance to standards/known practices’, and
‘Software inspection/code review’.

Figure 6 presents an overview of the number of times (codes
for) these rationales were mentioned by respondents, grouping
them on perceived criticality of smells, as stated by the re-
spondent. By analyzing all rationales matching one criticality
group (i.e., one single color), we get more insight into the
reasons why those respondents were, or were not, concerned
about the presence of code smells or anti-patterns.

For example, the rationales Quality of end-product, Prod-
uct evolvability, and Developer productivity were the most
frequent for developers who responded that they were either

moderately or extremely concerned about code smells/anti-
patterns. Amongst the respondents belonging to the group
that was somewhat concerned with smells, the rationale for
their concern was diverse, covering all categories except for
Self-improvement. The rationale for the respondents slightly
concerned was also quite varied, quoting concern due to code
Understandability, but also arguing that they were not so con-
cerned with smells because there were alternative approaches.

To investigate if the respondent’s background (i.e., role, ex-
perience, familiarity with programming languages/paradigms,
and familiarity with code smells) could explain their per-
ception of criticality, we conducted a Categorical Regression
Analysis [39, 40] using SPSS.3 Categorical regressions enable
the quantification of categorical data by assigning numerical
values to the categories, resulting in an optimal linear regres-
sion equation for the transformed variables [39]. This type
of analysis supports the development of predictive and ex-
planatory models where both the dependent and independent
variables can be of continuous, ordinal, or nominal scale.

The result of the analysis was that none of the background
variables except for a respondent’s familiarity with code

3 http://www.ibm.com/software/analytics/spss

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	

Developer	
 produc2vity	

Product	
 evolvability	

Quality	
 of	
 end-­‐product	

Self-­‐improvement	

(Lack	
 of)	
 Developer's	
 skills	

(Lack	
 of)	
 Organiza2onal	
 support	

(Lack	
 of)	
 Tool	
 support	

Cost/benefit	
 considera2ons	

Availability	
 of	
 alterna2ve	
 approaches	

Understandability	

Not	
 at	
 all	
 concerned	

Slightly	
 concerned	

Somewhat	
 concerned	

Moderately	
 concerned	

Extremely	
 concerned	
 	

Fig. 6. Frequency of concern categories across respondent groups

Simula Research Laboratory, Technical Report (2013-01) 6

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

0%	
 20%	
 40%	
 60%	
 80%	
 100%	

Architect	

Developer	

Project	
 Manager	

Self-­‐employed	

Team	
 Lead	

Not	
 at	
 all	
 concerned	

Slightly	
 concerned	

Somewhat	
 concerned	

Moderately	
 concerned	

Extremely	
 concerned	

Fig. 7. Role vs. Perceived Criticality

smells had a significant contribution to the perceived level
of criticality of code smells for that respondent (B = .388,
p < .05). This is in accordance to our observations from
Figure 6 and signifies that, in general, the more details people
actually know about code smells, the more concerned they are
by the presence of smells in their code.

Although we could not find a significant effect of the
respondent’s role on the level of criticality, we did notice that
respondents who had the role of Project Manager tended to
be less concerned. In contrast, respondents who defined their
role as Self-employed were much more concerned (Figure 7).

D. Ranking of Code Smells and Anti-Patterns

In total, 34 code smells/anti-patterns were mentioned by the
respondents. To summarize this data into a ranked list, we
used the Borda count [41]. This is a rank-order aggregation
technique where, if there are n candidates, the first ranked can-
didate will get n points, n−1 points for a second preference,
n − 2 for a third, etc. By weighing a series of “votes” for
each respondent, the Borda count yields a consensus-based
ranking instead of a majority-based one. We used a small
variation where the first-ranked candidate receive one point,
the second-ranked candidate receives half of a point, the third-
ranked candidate receives one-third of a point, etc. We chose
this variation to keep the aggregated points at a manageable
level, due to the large set of candidates. Table IV shows the
results from the aggregation, where smells that “scored” 1
point or less where excluded for brevity. This table shows
that Duplicated code was by far the most mentioned smell,
followed by smells/anti-patterns related to size and complex-
ity: Long Method, Large Class and Accidental Complexity.4

E. Use of Analysis Tools in Practice

We asked the participants to indicate which tools they had
used for analysis of code smells or anti-patterns and to
comment on the usefulness of these tools. Not all participants
answered this question, and the ones that did in general
interpreted the question wider than just tools aimed at code
smells. Instead they reflected on all tools and plug-ins that
they used to assure software quality. We received 50 of 73
responses, of which 15 (30%) answered that they used one or
more tools and 35 (70%) of them did not use additional tools.

4 Accidental complexity signals a mismatch between the degree of complex-
ity in the solution and the complexity of the problem to be solved.

TABLE IV
RANKING OF MOST POPULAR CODE SMELLS/ANTI-PATTERNS

Smell/Anti-Pattern Points
1. Duplicated code 19.53

2. Long method 9.78

3. Accidental complexity 8.32

4. Large class 7.09

5. Excessive use of literals 3.04

6. Suboptimal information hiding 2.70

7. Lazy class 2.33

8. Feature Envy 2.33

9. Long parameter list 2.31

10. Dead code 2.25

11. Bad (or lack of good) comments 1.50

12. Use deprecated components 1.50

13. Single Responsibility 1.20

14. Complex conditionals 1.12

15. Bad naming 1.12

With respect to code smell related tools that were used, only
two of the respondents (4%) used specific code smell detection
tools and they also used refactoring tools in connection with
these to remove the smells. The tools were JetBrains Re-
sharper which combines smell detection and refactoring, and
the combination of DevExpress CodeRush and Refactor!Pro.

We learned that the most popular tools were automated soft-
ware inspection tools that help to adhere to coding standards
and detect potentially problematic code patterns as a means
to ensure software quality. These were used by 9 respondents
and included tools such as CheckStyle, FindBugs, FxCop,
and PMD. The next largest group of tools were used by
6 respondents and were dedicated to analyzing performance
of web applications. This included tools such as FireBugs,
Pagespeed, Yslow and Pingdom. Five of the respondents
mentioned that they made use of the exploration and code
organization features in their IDEs (either Visual Studio or
Eclipse) to do manual code reviews. Three respondents used
tools to detect duplicated code (clone detection). Other tools
mentioned included a pretty-printer/beautifier to ensure read-
ability of the code and a tool to identify potentially difficult
code by means of computing the cyclomatic complexity.5

Unfortunately, the respondent’s answers on tool usefulness
were too divergent to detect consistent patterns. Where one
developer found a given tool very useful in their context,
another developer would respond that they did not feel the
tool contributed much. Overall, most developers were positive
about the benefits of the automated software inspection tools,
there were complaints about the number of false positives
reported, and the respondents reflected positively on how some
of the tools did not intrude on their development work-flow.

5 Note the total number of tools used is larger than the number of respondents
because some people used more than one tool.

Simula Research Laboratory, Technical Report (2013-01) 7

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

TABLE V
MOST DESIRED FEATURES FOR CODE SMELL ANALYSIS TOOLS

Feature Points
1. Detection of duplicated and near duplicated code 10.00

2. Dynamic analysis (number of calls, etc) 4.08

3. Define and customize detection strategies 3.50

4. Support code inspection 2.67

5. Suggest refactorings 2.50

6. Good usability 2.50

7. Detect potentially problematic areas 2.33

8. Real-time update 2.33

9. Detect memory leaks 2.25

10. Detect dead code 2.03

11. Integrate with versioning & deployment infrastructure 2.00

12. Report generation 1.33

13. Integration with IDE 1.33

F. Desired Features for Code Smell Related Tools

We extracted 29 desired features or characteristics for tools
supporting detection or analysis of code smells and anti-
patterns. To summarize the results, we again applied the
variation on the Borda count aggregation technique that was
described above. Table V shows those features or character-
istics that scored higher than 1 point. Not surprisingly in the
light of the most mentioned smell, the most desired feature
by the respondents was the detection of duplicated and near
duplicated code. In addition, respondents would like to see
support for dynamic analysis, closely followed by desire to
define and customize detection strategies (e.g., detection rule
templates) based on their project context.

One of the respondents answered that they would like a
better version of their current tool, requiring readily usable
but customizable rules for detecting problematic code. This
corresponds with the fact that developers ranked “support code
inspection” and “suggest refactorings” as the most desirable
features after the “customizable detection strategies”.

G. Usefulness of Code Smells, and Refactoring Habits

Based on the answers of the 50 respondents that had previ-
ously used code smell related tools tool usage, we analyzed
their responses with respect to the usefulness of code smells.
Approximately half of the developers expressed that code
smells/anti-patterns can be either moderately or extremely use-
ful for conducting different activities in a project (Figure 8).
The overall distribution was quite balanced with two activities
scoring a bit better: 29 (60%) of the developers responded that
code smells and anti-patterns can be moderately or extremely
useful for Code Inspection, and 33 (66%) responded that they
can be moderately or extremely useful for Error Prediction.

Finally, with respect to the refactoring habits of the re-
spondents, 17 (34%) answered that they refactor on the fly, 8
respondents (16%) answered that they plan for refactoring in
their projects, and 25 (50%) of the respondents replied that
they follow a combination of these strategies.

2	

2	

1	

3	

4	

11	

5	

3	

10	

4	

12	

16	

13	

13	

13	

13	

18	

24	

13	

18	

12	

9	

9	

11	

11	

0% 20% 40% 60% 80% 100%

Refactoring guidance

Quality Assurance

Error prediction

Effort prediction

Code inspection

Not at all Slightly Somewhat Moderately Extremely

Fig. 8. Usefulness of code smells/anti-patterns for various activities

H. Limitations of the Work

The main limitations of this work come from its exploratory
nature. One example is that we did not collect further in-
formation on the expertise and “business domain” of the
respondents. In addition, we had to dismiss responses to one
of the questions because it was open to interpretation. More
information on their background might have explained better
why many of them were not better acquainted with code
smells, and what were the reasons for the (dis)interest.

Another limitation is that is hard to control for completeness
and clarity in open responses within a survey. This means
answers may be incomplete, or may require interpretation by
the researcher. As a result, the background of the researchers
that interpreted the answers can become a source of bias.

Nevertheless, considering there was little prior knowledge
on the topics of this survey, we believe it was a good decision
to use open questions as a first exploratory step. The analysis
of responses presented in this paper can now act as a basis
for developing further concrete research questions.

V. CONCLUSION AND FUTURE WORK

This paper reports on the findings from a survey conducted
on 85 software professionals, in order to better understand
the level of knowledge about code smells, their perceived
criticality and the usefulness of code smell related tooling.

We found that a considerably large proportion (32%) of
respondents stated that they did not know about code smells.
Respondents indicated that they use technical blogs, pro-
grammer forums, colleagues and industry seminars as their
main sources of information. Our advise is that the research
community should target these channels to make findings and
tools easier to access, and increase the impact on practice.

With respect to the perceived criticality of code smells and
anti-patterns, the responses where divided, but the majority
of respondents were moderately concerned. Deeper analysis
of the responses to open questions showed that respondents
who did not care at all about code smells also indicated
that they did not know much about smells and anti-patterns.
Respondents who were extremely or moderately concerned
gave as rationale reasons like product evolvability, end-product
quality, and developer productivity. Respondents who were

Simula Research Laboratory, Technical Report (2013-01) 8

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

somewhat concerned about code smells indicated that often
is difficult to obtain organizational support, that they lacked
adequate tools and that they often need to make trade-offs
between code quality and delivering a product on time.

Looking at individual smells and anti-patterns, Duplicated
Code was mentioned most by the respondents, followed by
smells and anti-patterns related to code size and complexity,
such as Large Class, Long Method, and the anti-pattern
Accidental Complexity. Identification of the latter could be
an interesting problem for the research community to work
on, but will be far from trivial to assess automatically.

Finally, with respect to tool support, the majority of respon-
dents expressed the need for better tools to detect duplicated
code/duplicated logic (another sign that the research commu-
nity’s result are not easily accessible for practitioners), and for
customizable detection strategies that would enable context-
sensitive (or domain specific) detection of code smells.

In general, we found that software professionals who are
interested on code smells and anti-patterns expressed a need
for better support during the software evolution cycle. More
specifically they expressed the need for a user-friendly, real-
time tool support for conducting code inspections, which
could ultimately help them to identify problematic areas (e.g.,
using error prediction). Refactoring tools should provide better
support for understanding which choices developers have for
refactoring/restructuring their code to improve the quality.

As future work, we intend to contact some of the respon-
dents of the survey and conduct a semi-structured interview in
order to investigate in detail the motivation and challenges for
using code smells during software evolution, and to investigate
specific features that should be supported in a tool. We also
plan to conduct a more extensive, structured survey, based on
the answers obtained from this exploratory study, involving a
larger sample of software professionals.

Acknowledgments: The authors thank Magne Jørgensen for
helping us collect the data for this study.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer, 2005.

[3] E. Van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Working Conf. Reverse Eng. (WCRE), 2001, pp. 97–
106.

[4] R. Marinescu and D. Ratiu, “Quantifying the quality of object-oriented
design: the factor-strategy model,” in Working Conf. Reverse Eng.
(WCRE). IEEE, 2004, pp. 192–201.

[5] R. Marinescu, “Measurement and quality in object-oriented design,” in
IEEE Int’l Conf. Softw. Maintenance (ICSM), 2005, pp. 701–704.

[6] N. Moha, Y.-g. Gueheneuc, and P. Leduc, “Automatic Generation of
Detection Algorithms for Design Defects,” in 21st IEEE/ACM Int’l
Conf. Automated Softw. Eng. (ASE). IEEE, 2006, pp. 297–300.

[7] N. Moha, “Detection and correction of design defects in object-oriented
designs,” in ACM SIGPLAN Conf. Object-oriented programming, sys-
tems, languages, and applications (OOPSLA), 2007, pp. 949–950.

[8] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and L. Duchien, “A domain
analysis to specify design defects and generate detection algorithms,”
in Fundamental Approaches to Softw. Eng. (FASE), 2008, pp. 276–291.

[9] A. A. Rao and K. N. Reddy, “Detecting bad smells in object oriented
design using design change propagation probability matrix,” in Int’l
MultiConf. Engineers and Computer Scientists, 2008, pp. 1001–1007.

[10] E. H. Alikacem and H. A. Sahraoui, “A Metric Extraction Framework
Based on a High-Level Description Language,” in IEEE Int’l Conf.
Source Code Analysis and Manipulation (SCAM), 2009, pp. 159–167.

[11] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An Exploratory Study
of the Impact of Code Smells on Software Change-proneness,” in
Working Conf. Reverse Eng. (WCRE). IEEE, 2009, pp. 75–84.

[12] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A Method for the Specification and Detection of Code and Design
Smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,
pp. 20–36, 2010.

[13] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, and
A. Tiberghien, “From a domain analysis to the specification and
detection of code and design smells,” Formal Aspects of Computing,
vol. 22, no. 3, pp. 345–361, 2010.

[14] R. Peters and A. Zaidman, “Evaluating the Lifespan of Code Smells
using Software Repository Mining,” in European Conf. Softw. Mainte-
nance and ReEng. IEEE, 2012, pp. 411–416.

[15] A. Yamashita and L. Moonen, “Do code smells reflect important main-
tainability aspects?” in IEEE Int’l Conf. Softw. Maintenance (ICSM),
2012, pp. 306–315.

[16] A. Yamashita and L. Moonen, “Exploring the Impact of Inter-Smell
Relations on Software Maintainability: An Empirical Study,” in Int’l
Conf. Softw. Eng. (ICSE), 2013, pp. 682–691.

[17] R. C. Martin, Agile Software Development, Principles, Patterns and
Practice. Prentice Hall, 2002.

[18] A. J. Riel, Object-Oriented Design Heuristics, 1st ed. Boston, MA,
USA: Addison-Wesley, 1996.

[19] P. Coad and E. Yourdon, Object-Oriented Design. Prentice Hall, 1991.
[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[21] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development, 3rd ed.
Prentice Hall, 2004.

[22] W. Brown, R. Malveau, S. McCormick, and Tom Mowbray, AntiPat-
terns: refactoring software, architectures, and projects in crisis. John
Wiley & Sons, Inc., 1998.

[23] M. V. Mäntylä, “Software Evolvability - Empirically Discovered Evolv-
ability Issues and Human Evaluations,” PhD Thesis, Helsinki University
of Technology, 2009.

[24] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
Journal of Systems and Software, vol. 80, no. 7, pp. 1120–1128, 2007.

[25] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the Impact of Design
Flaws on Software Defects,” in Int’l Conf. Quality Softw. (QSIC), 2010,
pp. 23–31.

[26] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
Working Conf. Mining Softw. Repositories (MSR), 2010, pp. 72–81.

[27] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shep-
perd, “A controlled experiment investigation of an object-oriented
design heuristic for maintainability,” Journal of Systems and Software,
vol. 72, no. 2, pp. 129–143, 2004.

[28] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in IEEE Int’l Conf. Softw. Maintenance (ICSM), 2008,
pp. 227–236.

[29] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An Empirical
Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, on
Program Comprehension,” in 15th European Conf. Softw. Maintenance
and ReEng. (CSMR). IEEE, 2011, pp. 181–190.

[30] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg, “Are all code smells
harmful? A study of God Classes and Brain Classes in the evolution
of three open source systems,” in IEEE Int’l Conf. Softw. Maintenance
(ICSM), 2010, pp. 1–10.

[31] A. Chatzigeorgiou and A. Manakos, “Investigating the Evolution of Bad
Smells in Object-Oriented Code,” in Int’l Conf. Quality of Information
and Communications Technology. IEEE, 2010, pp. 106–115.

[32] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells,” in Ws. Refactoring tools (WRT). New York,
New York, USA: ACM Press, 2011, pp. 33–36.

[33] E. Murphy-Hill and A. P. Black, “Seven habits of a highly effective
smell detector,” in Int’l Ws. Recommendation Systems for Softw. Eng.
(RSSE). New York, New York, USA: ACM Press, 2008, pp. 36–40.

Simula Research Laboratory, Technical Report (2013-01) 9

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

[34] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization
for code smells,” in Int’l Symposium on Softw. Visualization (SOFTVIS).
New York, New York, USA: ACM Press, 2010, pp. 5–14.

[35] A. Fink, The Survey Handbook, 2nd ed. Thousand Oaks, California:
SAGE, 2003.

[36] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao, “A market-based approach
to software evolution,” in Conf. Object-oriented programming, systems,
languages, and applications (OOPSLA). ACM, 2009, p. 973.

[37] A. Yamashita and L. Moonen, “Surveying Developer Knowledge and
Interest in Code Smells through Online Freelance Marketplaces,” in
User Evaluations for Softw. Eng. Researchers (USER), 2013.

[38] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. SAGE, 1998.

[39] J. J. Meulman, “Optimal scaling methods for multivariate categorical
data analysis.” SPSS, Inc., Tech. Rep., 1998.

[40] J. P. Van Der Geer, Multivariate analysis of categorical data: Applica-
tions, advanced q ed. SAGE, 1993.

[41] B. Reilly, “Social Choice in the South Seas: Electoral Innovation and
the Borda Count in the Pacific Island Countries,” International Political
Science Review, vol. 23, no. 4, pp. 355–372, 2002.

APPENDIX A
SURVEY QUESTIONS

[NB: the layout below was somewhat adapted to meet space limitations]

Section I: Background
1. What is your predominant role within your organization?

[] Developer
[] Team Lead
[] Tester
[] Architect

[] QA Manager
[] Project Manager
[] Self-employed

2. What is your level of skill in the following languages?
(1=novice, 5=expert, please specify which other languages if relevant):

Language Level Language Level
Java Python
C Javascript
C++ VisualBasic
C# other:

3. What is your level of experience (in kLOC and months) in
the following languages?

Language LOC time Language size time
Java Python
C Javascript
C++ VisualBasic
C# other:

4. Rank the following programming paradigms according to how
familiar you are with each? (1=least familiar, 5=most familiar)

Paradigm Functional Imperative Object Oriented
Familiarity

Section II: Code Smells

5. How familiar are you with code smells or design anti-patterns?
(please choose one)
[] I have never heard of them
[] I have heard about them, but I am not so sure what they are
[] I have a general understanding, but do not use these concepts
[] I have a good understanding, and use these concepts sometimes
[] I have a strong understanding, and use these concepts frequently

6. What are the sources from which you learn on code smells?
(multiple choices possible)
[] Blogs
[] Discussion Forums
[] Guru’s websites

[] Books
[] Research Papers
[] Tool vendors’ websites

7. How concerned are you with the presence of code smells or anti-patterns
in your code? (1=not concerned, 5=very concerned) Please motivate why?

8. Are there specific code smells / anti-patterns that you are concerned
about? Please list them in order of their perceived importance.

9. Rank the situations where do you think code smell analysis/tools
can be helpful (1=not helpful, 5=essential)

Situation Level
Refactoring guidance (find out where to refactor)
Quality assessment (e.g., certification processes)
Bug prediction (identify code likely to have more defects)
Effort prediction (identify code that takes time to change)
Code inspection (prioritize areas of the code to improve)
Others (mention):

10. Have you used tools for detecting/analyzing code smells?
Which ones?

11. Did you find the tools useful? Why/why not?

12. What features would you like in a tool for supporting detection
or analysis of code smells? (list the most important ones first).

No. Feature

13. Do you remove code smells “on the fly” or you plan and allocate
time to “cleanup your code”? (please choose one)
[] On the fly
[] Plan
[] Combination

Section III: Removal of code-smells

14. How often do you refactor to remove code smells? (choose one)
[] Never
[] Almost never
[] Sometimes, when it is absolutely essential
[] On a regular basis
[] Refactoring is included as a formal activity within the project

15. Can you characterize how much (seldom/regularly/often) of the
refactoring is manual, tool assisted or combined?

Method Frequency
Manual
Tool assisted
Combined

16. Can you estimate how much (seldom/regularly/often) of the refactoring
done is of low (renaming methods), of medium (relocating classes, extracting
methods) or high (modify large segments of the code, replace solutions with
the usage of patterns, etc.) complexity?

Refactoring complexity Frequency
Low
Medium
High

17. Would you like to know more about code smells / anti-patterns
or refactoring? Why?

Simula Research Laboratory, Technical Report (2013-01) 10

Yamashita & Moonen Do Developers Care About Code Smells? – An Exploratory Survey

APPENDIX B
REPLICATION MATERIAL

We include the tables describing the survey data as attach-
ments to this document to improve the replicability of our
work (no need to re-type, and easier to read and process).
The tables are attached as plain-text CSV files.

Please note that Acrobat Reader may be required to cor-
rectly extract the attachments from the document. If you do
not see icons in the attachment column, your PDF reader does
not support attachments.

Table description Attachment

Smell criticality ranking

Desired tool features

Grouping of codes according to rationale

Simula Research Laboratory, Technical Report (2013-01) 11

		ID		Textual description		Data class		Coding by exception		Complex conditionals		Accidental complexity		Call super		Duplicated code		Long parameter list		Large class		Long method		Bad naming		Dead code		Bad (or lack of good) comments		Use deprecated components		Suboptimal information hiding		Lazy class		Speculative generality		Primitive obsession		Data clumps		Divergent change		Shotgun surgery		Pararell inheritance hierarchy		Circular dependency		Excesive use of literals		Error hiding		Action at a distance		Softcode		Variable used for several purposes		Goto		Single Responsibility		Feature Envy		Innapropriate intimacy		Global variable		ISP Violation

		2		n/a																																																																		

		3		The issues I try to keep at the forefront to avoid (as they are often easily fallen into) / / coding by exception / long method / vendor lock-in / complex conditionals / blind faith / accidental complexity / call super				1		3		4		5								2																																																

		4		Duplicated code / Too many parameters / Copy and paste programming / Tester Driven Development												1		2																																																				

		5		Duplicated codes and long classes/function or procedure..												1				2		3																																																

		6		not used.																																																																		

		7		Duplication and Singleton are considered anti pattern ... but I don't very concern about them... / / Most of the anti-pattern concerns I had were minimal. / 												1																2																																						

		8		non DRY / arbitrary/illogical naming scheme (this concerns naming o just about anything) / unused code left overs / dity tricks, dirty hacks whicjh are bound to break soon / silly comments, no comments in tricky places / 												1								2		3		4																																										

		9		Duplicated code, long queries.												1						2																																																

		10		A good example is the Singleton pattern it is so easy that it is the first pattern most beginning software engineers understand and henceforth, since presumably it is a good guy, they will use it at every possible occasion. However, the problem with the Singleton is that it violates information hiding. Now information hiding is one of the holy cows of modern software engineering, and it should be violated only when there is a really good reason for it. And just having learned about the Singleton pattern is not!																												1																																						

		11		DuplicatedCode / Methods too big / Code not actually ever used												1						2				3																																												

		12		Code duplication / Usage of methods that are declared as deprecated / Large classes or methods / Inaccurate methods' privacy declaration / Unreadable code / / 												1				3		4								2		5																																						

		14		having a lot of contributors to design / - bad decision maker / - vendor lock-in / - over engineering / / +++ / / - duplicated code (not reuse or not clear) / - lazy class / - class does a lot of works / - class/functions have too many parameters / - too complicated / - unused variables or condition check / 								1				2		5		4						6								3																																				

		15		Long method / Too many parameters / Large class / Complex conditionals / Duplicated code						4						5		2		3		1																																																

		16		No.																																																																		

		17		The one that concerns me the most are huge classes. These can become VERY hard to deal with in the future, and not every programmer is able to deal with them since they have quite a large learning curve. / / Also, I do not like some programmers' need to use complicated design patterns for everything. Sometimes is easier to stick to the basic and don't "create a cannon to kill mosquitoes" -- that is, create complex and large solutions to solve small problems.								2								1																																																		

		20		The Dispensables / The Bloaters / The Change Preventers		2										3		9		7		6				4								1		5		8		10		11		12		13																								

		22		Spaghetti code / Input Kludge / Circular dependency / Copy and paste programming / Duplicated code / Accidental complexity / Large class / excessive use of literals / complex conditionals						8		5				4		2		6		1																										3		7																				

		23		I look for big classes, big methods and methods which are needlessly complex.								3								1		2																																																

		27		Design of software																																																																		

		28		poor performance / -capture invalid/wrong/incomplete data / -use of deprecated techniques / tools / etcetera / -coding of unnecessary functionality / -hard coding / -use of wrong controls to display data / -wrong use of synchronous/asynchronous processes / / 								2																		1																				3																				

		29		Generally, all of these have equal (or almost equal) importance, thus I try to avoid them as much as possible / Spaghetti code / Error hiding / Blind faith / Action at a distance / Repeating yourself / Accidental complexity / Soft code / Lava flow / Hard-coding / Magic numbers/strings / 								5				4						1																												7		2		3		6		8												

		30		No																																																																		

		31		1. Long method/Large class / 2. Excessive use of literals / 3. Complex conditionals						4										2		1																												3																				

		34		programming by permutation - sign of programmer not knowing what he's doing / duplicate code, large functions, classes - common source of problems / NIH												1				3		2																																																

		35		Duplicated data. / Duplicated code / Dead code.												1										2																																												

		36		Over-complication, making the app so complicated that it is impossible to debug or figure out what it is doing within a short space of time / Duplicating Work/Code/Controls / Spaghetti Code / No Comments / Long Functions / GoTo's / Excessively long variables or variables that don't indicate their meaning								1				2						3		6				4																																5										

		38		1) unnecessary code / 2) duplicate code / 3) unused variables, unused parameters, default parameters / 4) unused methods or callbacks / 5) long class, class should not be responsible for more than one task, if there are multiple task device the responsibility. / 6) complex conditions, loops etc. / / 						6		1				2				4						3																																				5								

		39		1 -most of the time code smells lets to duplication of code / 2 -make the thing complex to understand / 3- extra ordinary large classes / 4 - Short variable names								2				1				3				4																																														

		40		Feature envy / Inappropriate intimacy																																																												1		2				

		41		refactoring / duplication / long class / long procedures												1				2		3																																																

		42		comments,Duplication,Dead codes,Temporary fields,Length of code												2				5		5				3		1																														4												

		43		Duplicate code / Too many parameters / Ubercallback / Feature envy												1		2																																														3						

		44		Duplicate Code / Duplicate Functions / Lazy Classes												1																		2																																				

		46		Feature envy / Contrived complexity / 								2																																																				1						

		47		No																																																																		

		48		Class/Interface cohesion related code-smells																																																										1								

		50		Duplicated code, Long method, Contrived complexity and Large class.								3				1				4		2																																																

		51		Not in particular.																																																																		

		52		None																																																																		

		53		Using hard coded URLS/paths. / / Using hard coded number of objects, instead of them keeping them in arrays.																																														1																				

		54		No																																																																		

		56		1. global variables. / 2. harded code / 3. long code lines in one function which contains too much business logic. / 4. not interface programming																		3										1																		2																		1		4

		57		For example forgot to resample when change the clock or reset domain, when there are loops (combinatory part that are changed from output of their same combinatory part) in the code, ...																																																																		

		59		god objects(classes that have to many logic in it) / repetitive code. / too lengthy methods, / excesive use of literals / short identifiers that doesn;t tell anythinh												2				1		3		5																										4																				

		60		Duplicated code / Long method / Excessive use of literals												1						2																												3																				

		62		Big ball of mud / Not Invented Here (NIH) syndrome / Cargo cult programming / Lazy class / Freeloader								1																						2																																				

		63		None.																																																																		

		74		None																																																																		

		78		Code duplication, unreadable code (the latter can, of course, be caused by pretty much any anti-pattern)												1																																																						

		80		its happens when the code is very complex or you haven't done your proper research on the system logic and design / if there are lot of different functions and classes you are using in yor programe which is very complex and can create confusion when you use them in a same component / It is very important to note what code you are using and what is structure of the code								1																								2																																		

		ID		Features description		Detect Duplicated and near duplicated code 		Allow specifying system constrains, customizable templates for smell detection strategies/violation of best practices		Detect potentially problematic areas		Dynamic analysis (calculation of number of calls, etc)		Detect dead code		Detect use of deprecated code		Detect unsafe type conversion		Perform automated refactoring		Detect memory leaks		Detect error-prone code		Integration with repository or deployment infrastructure		Detect cyclomatic complexity		Detect Inappropriate intimacy		Detect long method		Detect bad naming		Stand-alone software		Real-time update		Report generation		Detect large class		Suggest refactorings		High Accuracy/Recall		Good usability		Integration with IDE		Effort prediction		Support code inspection		Detect Global variables		Detect literals		Statistics report on smells		Code visualization

		3		Analysis of duplicate or near-duplicate code / Ability to specify constraints of a given system (such as memory allowed, etc) and have the tool analyse any likely problem areas / Clear notation of exactly how many iterations happen at each stage - particularly useful for deep conditionals/iteration.		1		2		3		4																																																		

		4		to find duplication codes		1																																																								

		5		Use as many functions you can that invoves repeated tasks or long tasks.		1																										2																														

		12		Duplication code detection / Unreachable code detection / Deprecated methods usage detection / Unsafe conversions detection		1								2		3		4																																												

		14		 give a lot of warnings / - prevent to continue if bad code appear / - auto re-organize code																1																														2				3								

		16		1) should be able to find memory leaks / 2) should be able to find the potential source for bugs. / 																		1		2																																						

		17		I would like an integration with the application server's environment. / / For example, I can add a new application to a repository and there it will be evaluated for some analisys tools. If I get a x% or higher score I can deploy this application to a development environment. There it will be tested and if it is accepted I can generate a release directly on this repository, which will evaluate it with more strict tools to ensure deployment on production.																						1																																				

		20		Duplicate Code		1																																																								

		22		Identifying code duplication, identifying cyclic complexity, identifying and eliminating unused literals/constants		1								3														2																														3				

		27		Function call, / Code walk through								2																																										1								

		28		Indicate those code segments that drive the platform capacity to the limit / - Indicate those code segments with high probability of becoming a pitfall in the future				1		2																																																				

		31		 Duplicated code / - Inappropriate intimacy / - Long method / - Excessively Long/short identifiers		1																								2		3		4																												

		34		I don't think it's possible for a program to detect many code smells. I would like improved version of http//www.sonarsource.org/ that does more analysis for C++ codebases with templates and improved static C++ analysis.				1																																																						

		35		stand-alone, in our team we use multiple different editors/IDEs so it should be a stand alone program not a plugin. / real-time updates, no need to run then wait it should find examples in real time. / publish reports, to include in commits.																						1										1		1		1																						

		36		Performance - Fine tuning, show benefits of changing code, function etc, if you change this function to XXX then performance should improve by 5% / / Memory Leaks / / Templates of Best Practices/Methodologies e.g. Using a framework, implements a template you can follow and adapt as you wish, but would show best practices				1				1										1																																								

		38		1) Memory leaks & Repetitive code detection / 2) For OR while loops detection which may spill over in future, complex condition or mathematic algorithms (without bound-checking etc.) / 3) unused variables, unused parameters, default parameters / 4) Long methods or class implementation / / / 		2						3		5								4										6										6																				

		39		Dead variable detection. / re factoring suggestions 										1																														2																		

		41		response time slow down should detect first becoz ultimately it is one of the important part in application.								1																																																		

		42		In my webapplications bad requests, loading time and much more								1																																																		

		47		1. Low number of false positives (detects things that are not really a problem) / 2. Very easy to learn and use / 3. Well-integrated with IDEs																																										1		2		3												

		50		Effort prediction, bug prediction and code inspection.						2														2																												1		3								

		51		To point out non-obvious problems.						1																																												1								

		56		1. the global variables used / 2. repeat logic / 3. harded code.		2																																																		1						

		57		To be easy to use if I need to read a log of 100K lines of report to find one error it's possible that I do only at the begin.																																								1				1														

		59		ease of use and instalation.Providing an database for the found error.Also a tracking tool for this errors should be integrated in this tool/																																		3		3								1		2												

		60		Find duplicated code / Find use of literals		1																																																				2				

		62		Duplicated code detection and statistics on other smells.		1																																																						2		

		78		Code refactoring, highlighting the different parts of a code which could be split up, / in-advance warnings that the current code I'm working on is starting to smell.																																		1						1																		

		80		program flow structure / program abstract diagram / i have used any specialized tool for code smell detection / if i find a bug i spend more time in studying the flow of the code 																																																										1

		Code		Rationale

		Effectiveness		Developer productivity

		Efficiency in teams		Developer productivity

		Efficiency		Developer productivity

		Productivity		Developer productivity

		Impact on software evolution		Evolvability

		Risk		Evolvability

		Ripple effect		Evolvability

		Time-consuming debugging		Evolvability

		Testability		Evolvability

		Product quality		End-product quality

		Product reliability		End-product quality

		Error probability		End-product quality

		Product performance		End-product quality

		Improve own skills		Self-improvement

		Programmer skills/status		Self-improvement

		Intuition		Lack of developer's skills

		Lack of knowledge		Lack of developer's skills

		Programmers skills		Lack of developer's skills

		Lack of support by management		Organizational support

		Difficult to promote		Organizational support

		Lack of time		Organizational support

		Lack of tools		Tool support

		Trade-offs		Cost/benefit (ROI)

		Case-by-case basis		Cost/benefit (ROI)

		Within project constraints		Cost/benefit (ROI)

		No impact		Better alternatives available

		Other practices available		Better alternatives available

		Code aesthetics		Understandability

		Code understandability		Understandability

		Compliance to standards/known practices		Understandability

		Software inspection/code review		Understandability

		Reusability		Understandability

	Introduction
	Background and Related Work
	Methodology
	Setting Objectives for Information Collection
	Designing the Survey
	Preparing the Survey Instrument
	Administering the Survey and Analyzing the Data

	Results and Discussion
	Background and Skills of Respondents
	Level of Insight in Code Smells
	Perceived Criticality of Code Smells and Anti-Patterns
	Ranking of Code Smells and Anti-Patterns
	Use of Analysis Tools in Practice
	Desired Features for Code Smell Related Tools
	Usefulness of Code Smells, and Refactoring Habits
	Limitations of the Work

	Conclusion and Future Work
	References
	Appendix A: Survey Questions
	Appendix B: Replication Material

