
KOM Player - A Platform for Experimental VoD Research
Michael Zink’, Carsten Griwodz2, and Ralf Steinmetz’ 33

Industrial Process and System Communications, Darmstaclt University of Technology, Germany
University of Oslo, Department of Informatics, Norway

German National Research Center for Information Technology, GMD IPSI, Darmstadt, Germany
Email: { MichaeLZink, Ralf.Steinmetz} @KOM.tu-darmstadt.de, griff@ifi.uio.no

Abstract
In contrast to audio which is often streamed as complete

music titles or even as a life feed from a radio station, video
in today’s Internet is almost only available as small clips
and pre-generated programs. Although some of the prob-
lems concerning AV streaming are reasonably solved right
now, some work in jields like wide-area distribution sys-
tems need further investigation to make applications like
“True Video-on-Demand” work. Our research and the one
of many others is focused on problems that have to be
solved to make application like VoD work in the Internet. It
is mainly concerned with wide area distribution. In this
paper we presents a platform f o r experimental VoD
research which is thought to support researchers working
on VoD and wide-area distribution f o r audio and video
content. This platform offers researchers the possibili9 to
implement their ideas without building a complete stream-
ing environment and in addition allows the combination of
different implementations. After motivating the develop-
ment of our platform we present the design of our platform,
give an overview of the actual implementation and the
existing components that we have already built. Finally
example scenarios f o r the use of our platform in research
are given.
Keywords: VoD, Wide Area Distribution, RTSI;: RTP

1. Introduction
The use of the Internet for an increasing number of mul-

timedia applications has lead to an increase of the amount
of audio and video (AV) traffic in the Internet. The techno-
logical basis for this development was laid by improve-
ments in the infrastructure of the “last mile” (ADSL, cable
modems) .

The most favored technology for the transmission of AV
content is the streaming technology which allows a client
to start listening or watching content immediately after the
request. Unfortunately today’s commercial applications
can not compete with the quality of standard TV, especially
in comparison to VoD scenarios. Consequently, several
researcher are looking for ways to overcome the gap
between standard TV and VoD. Recent examples are
research in the efficient distribution of AV content, in the
adaptation to network conditions including the TCP-friend-
liness of AV traffic, and in encoding techniques like layered

video.
It is a common way to prove new ideas by analytical

results ancl by simulation, but these approaches may hide
complexity or shadow incorrect assumptions and are not
always sufficient to prove applicability in real-world sce-
narios. [11 for example has shown that an often used model
for user requests in VoD systems does not model real user
behavior. [2] has expressed doubts about typical web traffic
modeling on the basis of anonymized web cache traces.
Researcheirs would profit from implementations of their
ideas, either for an evaluation of the implementation com-
plexity, for an identification of the limits of the technique,
or for an experimental deployment. Results from operating
real-world systems, even on a small scale, provide input for
further investigations using analysis and simulation. The
KOM player documented in this paper is intended as a step
towards such an experimental system for distributed VoD
systems. Many research results in AV streaming have been
integrated into commercial products. Examples are AV en-
and decoders (MPEG-x, H.2xx) and transport protocols
(RTSP, RTP/RTCP). There is still a lot of ongoing research,
like layered coding or reliable multicast. In order to show
the applicability of these new techniques in AV streaming
applications, they must be integrated into existing applica-
tions or completely new applications must be build.

Our research focus is mainly in AV distribution systems
such as [3,4, 5, 61. Conversations with other researchers in
this field have shown that there is a need for a standards-
compliant, free and open experimental AV streaming plat-
form. Vendors focus on expanding their key technologies in
proprietary building blocks while they keep their systems
interoperable in all other blocks, they can rarely provide
researchers with entirely open systems. Researchers, on the
other handl, may want to share and combine their imple-
mentations. with research groups in the same or in comple-
mentary areas which makes interoperability with standards
inevitable.

The hope for interaction led us to redirect some of our
time into the development of an AV streaming platform and
to make it freely available.

2. Design
In this chapter the major design goals for an AV stream-

ing environment are given. We decided to build our system

370
1530-1346/01$10.00 0 2001 IEEE

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

mailto:KOM.tu-darmstadt.de

based on IETF standards in order to achieve interoperabil-
ity with streaming applications deployed in the Internet.
Since free software developments did not include many
appropriate building blocks when we started, most of our
system is written from scratch. To make it acceptable by
other researchers, we apply the following goals:

Reusable from the technical as well as the legal point of
view, modular with well-defined interfaces
Interoperable with other standard compliant tools
Integratable with existing code

2.1 Reusability

When trying to build an AV streaming application one
realizes that some functionality is needed in different parts
of the application. E.g., in the case of a video server and
client, protocols like RTPRTCP, RTSP and SDP are
needed in both parts. Therefore it is necessary to imple-
ment these protocols in a way that they can be easily inte-
grated into applications by creating a well defined and
documented API for each module. It is necessary to sup-
port different decoders, and several video servers that
stream diverse encoding formats (e.g. H.263, MPEG-I,
QuickTime). It is highly unlikely that the APIs of third
party software are identical, leading to an adaptation effort
whenever a new library is integrated. A generic wrapper is
used to hide this differences from other parts of the sys-
tem.

While such abstractions are typical for streaming appli-
cations, a generic structure like that of the JMF [7] is
rarely found. Existing approaches implement either hard-
coded sequences, or they consider frameworks that allow
the specification of an end-to-end behavior for complex
multimedia systems. In the latter kind of systems, func-
tionality is described at the level of cooperating distributed
components [8, 91. It is typical for such frameworks to
consider networking as a component that is also under the
control of the framework. In an environment that ensures
interoperability by specifying protocols (such as the RTSP
streaming environment), we prefer a local approach. The
control of the framework extends only over a single
machine and RTSP is used explicitly for communication.
The currently implemented components, called stream
handlers, work at a granularity similar to the components
of the JMF and do not provide an abstraction from the net-
work. The stream handlers are modular media processing
units that can be connected dynamically by a controlling
entity to form a set of modules, which process data units
sequentially. The sequence of data units is called the
stream, the modules are the stream handlers.

Due to the interaction of RTP and RTCP, and the possi-
bility of receiving data from several sources at a single
port, a directed, non-cyclic graph of stream handlers is an

appropriate streaming model. In case of RTP, a stream
handler infrastructure seems to be appropriate only if
dynamic reconfiguration is supported by the stream han-
dlers as well as the controlling framework. A packet that
arrives at an RTP Source Stream Handler (a stream han-
dler that reads UDP packets from a network interface and
interprets them as RTP packets) from an unexpected
sender must be handled in an application-defined way: it
may be appropriate to discard the packet, to assign it to a
default path, or to create an additional stream for special
processing.

Dynamic reconfiguration must also be supported to han-
dle user interaction with a proxy cache of a VoD system if
that cache acts also as a reflector. The client receives data
from origin server through the proxy cache, which writes
RTP packets from the origin server to disk as well as for-
wards them to the client. If the client pauses and the appli-
cation decides to continue the caching operation, the trunk
of the stream handler graph that forwards data to the client
must be cut, while the trunk that stores data on disk must
be maintained. If the client resumes viewing, the applica-
tion must create a new stream handler graph, which
retrieves the data from the cache.

2.2 Interoperability

We decided to support the protocols that are used in
most AV streaming applications and standardized by the
IETF: RTPRTCP [IO], RTSP [l l] and SDP [12]. RTP
provides end-to-end delivery services for data with real-
time characteristics. These services are suitable for various
distributed applications that transmit real-time data, such
as interactive audio and video. The companion control
protocol (RTCP) provides feedback to the RTP sources in
the RTP session and to all participants in the session as
well. Each participant in an RTP session periodically
sends an RTCP packet to all other participants in the ses-
sion. RTSP is an application-level protocol that provides
control over the delivery of real-time data. The protocol is
typically applied for control over continuous time-syn-
chronized streams of continuous media such as audio and
video and acts as a “network remote control” for media
servers. Usually RTSP does not typically deliver the media
streams itself but controls streams that are being carried by
some transport protocol like RTP.

SDP was originally intended as a complement for the
session announcement protocol SAP to communicate con-
ference addresses and tool-specific information over the
MBone. Alternatives such as HTML postings or E-mail
distribution of session descriptions were taken into
account as well. With this primary goal in mind, SDP does
not support negotiation of any of session information, but
is just used for dissemination,

371

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

2.3 Integration

The design of our system allows the integration of
already existing systems and tools. One example is the use
of IBM’s Videocharger’ as video server for our client. In
this particular case we use mainly the data pump of the
Videocharger which is controlled by our RTSP implemen-
tation. One major element in an AV streaming environ-
ment are audio and video decoders. Given the variety of
encoding formats (H.263, MPEG-1, ...) that are used by the
applications interoperability can only be reached, if these
formats are also supported by our architecture. Since we
are not able to build en- and decoders for all these formats,
and there are already C and C++ libraries that support
some formats, we decided to make use of third party en-
and decoders fairly simple. So far we have integrated three
different libraries: MpegTV, smpeg and mpeglib. All three
of them support MPEG-1 and mpeglib supports also
MPEG-I audio layer 3 (MP3).

3.1 Overview

3. Implementation
The implementation consists of three applications that

are sufficient for building an experimental streaming
media distribution system: client, server and proxy-cache.
When we started our implementation, there was only one
implementation of RTSP available in open source2. We
found out that this implementation preceded the RFC [1 I]
and was not easily updated and reused. After some unsat-
isfactory experiences in adapting existing RTP/RTCP
implementations for our goals, we decided to integrate our
own implementation [13] into the system. We checked
whether JMF [7] fulfils our needs but MPEG-I decoders
e.g. are only available for Solaris and Windows. RTP was
integrated in some open source projects like vic, but a
closer look at this implementations showed us that RTP is
highly intergrated and was therefore not usable. In the
MASH project a scalable multimedia architecture for dis-
tributed multimedia collaboration in heterogeneous envi-
ronments [14] was developed. Streaming in MASH is
realized by the MBone videoconferencing tools and there-
fore bears the same problems a described for vic.

We are also aware of a stand-alone RTP library [151, but
this project started after we decided to implement our own
RTP. The “Darwin” project [161 was published by Apple
after the start of our work as well. It is concerned exclu-
sively with the server side and supports only the Quick-
Time file format [171.

’. http://www-4.ibm.com/software/data/videocharger/ ’. http://www.realnetworks.com/devzone/library/rtsp/
index. html

The implementation of the KOM-Player platform aims
at the development of a research prototype in the area of
wide-area distribution systems for streaming media in the
Internet. The existing code base considers mainly the dis-
tribution of CBR MPEG-1 system streams, which was our
initial target format because it combines hardware- and
OS-independent playback capability with an appropriate
quality. Since this encoding format does not support the
scalabilily of encoding formats that can now and in the
conceivable future be deployed in the Internet on a wide
scale, nmre flexible encodings are considered as well in
our research. This is reflected in ongoing implementation
work. During the development we realized that the inte-

RTSP

(jrdph MI‘

fi&p Sour~e k n c d e Sink R T = p g

RTP
Figure 1 : Client-server configuration overview

gration of various independently developed data pumps,
CUI and decoder modules with the RTSP code results in
an abundance of intermediate states (e.g. RTP connection
to video server established, decoder not yet initialized). To
coordinate the state transitions, we have put an automaton
(finite st,ate machine) at the core of the session manage-
ment (Figure 1). All events are controlled by the automa-
ton to assure that only allowed actions will be executed. To
enforce completeness of the automaton, we built a tool
that generates automata in C++ from an automata lan-
guage.

3.2 Server

The server implementation is multi-threaded, where the
main purpose of the separation into threads was to achieve
a better modularity. It uses only TCP for reliable delivery
of RTSP packets [111, RTSP over UDP is not supported.
Like most other RTSP implementations, ours does cur-
rently not support deferred play requests. Several data
pumps are controlled concurrently by one RTSP server
process. Two data pumps are implemented at this time.
One re1a:ys commands to a low level API of the IBM Vid-
eoChargr:r server, the other is hand-coded and described in
this paper. Our data dump (see Figure 2) uses UDP for the
transmission of RTP packets over IP unicast and multicast.
It supports MPEG-1 system CBR, MPEG-1 audio layer 3
and raw H.261 data files. The implementation is separated
into the 3 parts: RTSP session administration, RTSP com-

372

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

http://www-4.ibm.com/software/data/videocharger
http://www.realnetworks.com/devzone/library/rtsp

' munication and parsing and RTP streaming. Each active

A
nrsrs.rrerSurim I J

irSr,."N> ' w r .s,rru,nllb wv

Figure 2: Server

RTSP session is represented by an RTSPServerSession
object. The object inherits KOMServer class which imple-
ments the automaton for the server. The state machine is
driven by the client's RTSP messages. The automaton con-
trols the RTP data pump and answers the RTSP messages.
Currently each RTSPServerSession runs in a thread. The
RTSPServerSession object is associated with an RTSPFill-
Buffer object (which is a TCP socket). The RTSPFiII-
Buffer object receives data from a TCP socket and parses
the RTSP message. Each message object is delivered to its
session for processing. The reception and parsing process
is initiated by an object that monitors the RTSP communi-
cations.

The RTP streaming part performs the data transfer from
a file to the network. It is separated into two threads, RTP
and RTCP. It is managed by the RTSP part that initiates the
'streaming, changes the present streaming position within
the stream, halts the streaming temporarily and destroys it.
The RTP thread performs the delivery of the media content
to the network. It includes: accessing and reading from a
media file in the file system, preparing RTP packets (pack-
etization) and scheduling and emitting the RTP packets to
the network. The RTCP thread prepares and emits sender
reports to a separate UDP port and receives receiver
reports.

RTV' .hw,> B ddmiiii~lrolifm

3.3 Client

The client of the KOM-Player platform uses third party
C++ tools or libraries for the GUI and the decoder imple-
mentations. It is designed to cooperate with other stream-
ing servers beside ours. This required interoperability
testing with other RTSP and RTP/RTCP implementations.
Taking part in an RTSP interoperability test [I81 with
other streaming servers and clients helped us to enhance
our'own implementation. We tested the client with several
servers and realized that the video format is currently the
limiting factor. Figure 3 shows the most important classes

of the client. Four functional parts can be distinguished:
RTSP session administration, RTSP communication, RTP
streaming and content decoding. Since some of these parts
are identical to the one used by the server, only the parts
exclusively used in the client are described here. The com-
parison of the two class diagrams (Figure 2 and Figure 3)
shows the reusable classes. Classes in this part are only

used in the client since a visual presentation at the server is
not necessary. In combination with the automaton and an
abstract interface between the automaton and the decoder
we can integrate several available decoders. The generic
API makes it simple to integrate decoders into our client
and we expect support for other decoders (e.g. MPEG-2,
H.261) too. The player is tested on Linux, its current GUI
is based on the Qt library3. To work as a Netscape plug-in,
the plugger tool4 is used at this time.

3.4 Proxy Cache

Since one of our research topics is on caching for multi-
media streams we also designed and are currently building
a proxy cache for those streams. A detailed design can be
found in [19]. Figure 4 shows the class diagram of the
proxy cache. Parts taken from server and client are not
described again. The proxy is not an RTSP proxy as under-
stood in the RFC [l 11. Rather, it is an RTSP/RTP proxy
cache that stores content in addition to handling RTSP
requests. Our caching approaches consider the typical
commercial request to communicate with a stream's origin
server for every RTSP session. RTSP messages from dif-
ferent RTSP sessions are multiplexed onto one connection
between an origin server and a proxy. RTSP SessionIDs
are the keys to de-multiplex sessions. A proxy installs an
RTSP connection to an origin server on-demand when a
request for the particular origin server is received from a
client. The connection is torn down when no more active

'. http://www.trolltech.com
http://www.hubbe.net/-hubbe/plugger.html

373

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

http://www.trolltech.com
http://www.hubbe.net/-hubbe/plugger.html

RTSP sessions between the proxy and the origin server
exist.A proxy server maintains an instance of the RTSP-
ProxySession for each active RTSP session. Since the
proxy cache acts as a client (of the server) and as a server
(for the client) its automaton is a combination of the server
and client automaton.

d '
R T V Sr,r.,ii,ld,"i,,iiir~lilll

Figure 4: Proxy cache
The most significant changes compared to server and

client occur in the RTP streaming part of the proxy cache.
This is caused by the fact that the proxy cache needs client
and server functionality. The client functionality is differ-
ent in a way that a stream can be

stored on the local disc
forwarded to the client and
the combination of both
The server functionality means to forward an incoming

or to send a cached stream to the requesting client. This
functionality is shown in the RTP streaming part of Figure
5 and explained in more detail in [19].

urrltr s,w.m
b

mrS,ur,r RTPStrrrm.. .

RTCP

3.5 RTSPBDP Implementation

Since RTSP is an ASCII-based protocol we use a gener-
ated parser5 to parse the RTSP messages. The parser is at

'. using bison++, an extension of GNU bison: http://sun-
site.bilkent.edu.tr/pubflanguages/c++/tools/flex++bison++/

the core of the RTSP implementation. In combination with
a factory class that maps RTSP messages to their related
classes, functional variations are easily implemented. This
is useful iin experimental environments were new function-
ality and modifications are tested. By using the existing
RTSP implementation we were able to create RTSP
classes for the proxy cache quickly that implement differ-
ent behavior. SDP is also an ASCII-based protocol and
implemented with an additional parser for SDP messages.
Functional adaptation works as with the RTSP parser.

4. Conlclusions and Future Work
Most available commercial products today have a well

defined and documented API that makes it convenient to
integrate functionality of those products in other applica-
tions. Unfortunately APIs are often not sufficient for
research. If e.g. it is assumed that a new en-/decoder tech-
nology should be tested in an application, the codecs must
be integrated into the application. For distribution systems
research, networking protocols or storage mechanisms
must be replaced. With our ongoing work on wide-area
distribution systems for AV content it became clear that
we had to build our own AV streaming platform to per-
form further investigations. We want to give some exam-
ple scenarios for research that exploits our platform.

4.1 Caching
Multirnedia streaming makes greater demands on the

transmission network than traditional data transmission
because cif the greater volume of the data and because of
the real-time properties. Multimedia streaming requires a
lot of memory space in hosts and high bandwidth in links.
Large-scale video-on-demand can only be provided with
distributed systems. Content can be stored in a number of
caches that are located at various places in a network. A
streaming request from a client is served from a cache
instead of from a centrally located server. This saves net-
work resources and provides the user with better quality
and lower costs. In addition all caches need proxy func-
tionality to communicate with the origin server. The devel-
opment 'of client-independent caching systems, and
cooperative caching for high-volume content are impor-
tant research issues.

4.2 Patching and Gleaning
The basic approach in Patching [4] is the use of multi-

cast for the delivery of a video streams to requesting cli-
ents. Clients that request the same video shortly after the
start of it:< transmission start to store the multicast trans-
mission in the local cache immediately. The server sends
unicast streams (patch streams) to the clients containing

374

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

http://sun

the missing initial portion of the video, until the cached
portion is reached. Then, the clients use their caches as
cyclic buffers. Gleaning is an extension of Patching in a
way that cache servers are deployed as proxy caches, i.e.
clients will always connect to their proxy server to access
data on the origin server. If the client requests a stream and
this stream is already being delivered to a cache server or
client, and the sender decides that the patching window for
this stream is still open, it orders the cache server to join
that multicast stream. Additionally, it starts the transmis-
sion of a patch stream to the proxy cache. The proxy cache
has to set aside sufficient buffer space for the cyclic buffer
to hold the length of the patch stream, even if it does not
cache the movie; the stream is delivered as a unicast
stream to the client. It is important to evaluate the imple-
mentation complexity to select the relevant optimization
options.

4.3 Adaptive Streaming

UDP is usually used as transport protocol for AV
streaming. In contrast to TCP, UDP does not include any
mechanisms like flow control and retransmission. Adapta-
tion is also mandatory to keep UDP based streaming TCP-
friendly and therefore avoid that those streams are blocked
by backbone operators. We want to investigate how a
caching support for adaptive streaming could be realized.
Our focus is on caches that support caching for adaptive
streams transporting different formats (MPEG- 1, QT, lay-
ered video) [19]. We intend to integrate the adaptation
functions into the proxy cache of the KOM-Player plat-
form.

4.4 Reliable Multicast

When caches are used in applications like VoD it must
be ensured that the content on a cache is an exact copy of
the original. In order to achieve this requirement, a trans-
mission to the caches can be made independently from
transmissions to clients, or the transmission to the client is
extended to allow a reliable transmission to the cache by
additional repair mechanisms. The second case can be
realized by extending RTP to remember lost packets and
initiate retransmissions that are ignored by the client. We
implemented a first version in our RTP stack and are right
now integrating it in a proxy cache to test it.

We hope that our implementation can help other
researchers in creating experimental platforms to test and
demonstrate their new ideas. The KOM-Player platform6
may be used under the conditions of the GNU public
license but the core elements are also available for other
licensing.

Available at: http://kom.e-technik.tu-darmstadt.de/kom-
player

5. References
[I] C. Griwodz, M. Bar, and L. C. Wolf. Long-term Movie Pop-

ularity in Video-on-Demand Systems. In Proceedings of
ACM Multimedia’97, pages 340-357, November 1997.

[2] I. Marshall and C. Roadknight. Linking Cache Performance
to User Behaviour. In Proceedings of the 3rd Int’l WWW
Caching Workshop, Manchester, England, June 1998.

[3] S. Viswanathan and T. Imielinski. Metropolitan Area Video-
on-Demand Service using Pyramid Broadcasting. Multime-
dia System, 4(4): 197-208, 1996.

[4] K. A. Hua, Y. Cai, and S. Sheu. Patching: A Multicast Tech-
nique for True Video-on-Demand Services. In Proceedings
of the ACM Multimedia Conference 1998, Bristol, England,
pages 19 1-200, September 1998.

[5] M. Zink, C. Griwodz, A. Jonas, and R. Steinmetz. LC-RTP
(Loss Collection RTP): Reliability for Video Caching in the
Internet. In Proceedings of the Seventh International Confer-
ence on Parallel and Distributed Systems: Workshops, pages

[6] S. Floyd, V. Jacobson, C . Liu, S. McCanne, andL. Zhang. A
Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing. Transactions on Networking,
5(6):784-803, 1997.

[7] L. DeCarmo. Core Java Media Framework. Prentice Hall,
Upper Saddle River, New Jersey, USA, 1999.

[8] T. Kaeppner. Entwicklung verteilter Multimedia-Applika-
tionen. Vieweg Verlag, 1997.

[9] F. Eliassen and J. Nicol. Supporting lnteroperation of Con-
tinuous Media Objects. Theory and Practice of Object Sys-
tems: Special Issue on Distributed Objeci Managemeni,

[101 H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson.
RFC 1889 - RTP: A Transport Protocol for Real-Time Appli-
cations. Standards Track RFC, January 1996.

[I I] H. Schulzrinne, A. Rao, and R. Lanphier. RFC 2326 - Real
Time Streaming Protocol (RTSP). Standards Track RFC,
April 1998.

[I21 M. Handley and V. Jacobson. RFC 2327 - SDP Session De-
scription Protocol. Standards Track RFC, April 1998.

[131 C. Griwodz, A. Jonas, and M. Zink. Affordable Infrastruc-
ture for Stream Playback in the Internet. Technical Report
TR-KOM- 1999-07, Darmstadt University of Technology,
December 1999. Avalaible at ftp://ftp.kom.e-technik.tu-
darmstadt.de/pubM-KOM- 1999-07.ps.g~.

[141 S. McCanne et al. Toward a Common Infrastructure for Mul-
timedia-Networking Middleware. In 7th Inil. Workshop on
Network and Operating Systems Suppori for Digital Audio
and Video (NOSSDAV ’97), May 1997.

[15] J. Liesenborgs. Voice over IP in networked virtual environ-
ments. PhD thesis, Limburgs Universitair Centrum, Limburg,
Belgium, May 2000.

[16] Darwin Streaming Server Manual, 2000. http://www.public-
source.apple.com/projects/streaming/S treamingServerHelp/.

[171 G. Towner. Discovering Quicktime. Morgan Kaufmann Pub-
lishers, San Francisco, California, USA, 1999.

[18] R. Frederick. RTSP Interoperability Bakeoff . In Proceed-
ings of the forty-eighth Internet Engineering Task Force, Au-

[191 G. Gudmundsson. Design of a Multiformat Capable Cache
for Video Streaming. Diplomarbeit. Fachbereich Elektro-
technik und Informationstechnik, Darmstadt University of
Technology, September 2000.

281-286, July 2000.

2(2):95-117, 1996.

gust 2000.

375

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on July 10, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

http://kom.e-technik.tu-darmstadt.de/kom
ftp://ftp.kom.e-technik.tu
http://www.public

