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Abstract 
In contrast to audio which is often streamed as complete 

music titles or even as a life feed from a radio station, video 
in today’s Internet is almost only available as small clips 
and pre-generated programs. Although some of the prob- 
lems concerning AV streaming are reasonably solved right 
now, some work in jields like wide-area distribution sys- 
tems need further investigation to make applications like 
“True Video-on-Demand” work. Our research and the one 
of many others is focused on problems that have to be 
solved to make application like VoD work in the Internet. It 
is mainly concerned with wide area distribution. In this 
paper we presents a platform f o r  experimental VoD 
research which is thought to support researchers working 
on VoD and wide-area distribution f o r  audio and video 
content. This platform offers researchers the possibili9 to 
implement their ideas without building a complete stream- 
ing environment and in addition allows the combination of 
different implementations. After motivating the develop- 
ment of our platform we present the design of our platform, 
give an overview of the actual implementation and the 
existing components that we have already built. Finally 
example scenarios f o r  the use of our platform in research 
are given. 
Keywords: VoD, Wide Area Distribution, RTSI;: RTP 

1. Introduction 
The use of the Internet for an increasing number of mul- 

timedia applications has lead to an increase of the amount 
of audio and video (AV) traffic in the Internet. The techno- 
logical basis for this development was laid by improve- 
ments in the infrastructure of the “last mile” (ADSL, cable 
modems) . 

The most favored technology for the transmission of AV 
content is the streaming technology which allows a client 
to start listening or watching content immediately after the 
request. Unfortunately today’s commercial applications 
can not compete with the quality of standard TV, especially 
in comparison to VoD scenarios. Consequently, several 
researcher are looking for ways to overcome the gap 
between standard TV and VoD. Recent examples are 
research in the efficient distribution of AV content, in the 
adaptation to network conditions including the TCP-friend- 
liness of AV traffic, and in encoding techniques like layered 

video. 
It is a common way to prove new ideas by analytical 

results ancl by simulation, but these approaches may hide 
complexity or shadow incorrect assumptions and are not 
always sufficient to prove applicability in real-world sce- 
narios. [ 11 for example has shown that an often used model 
for user requests in VoD systems does not model real user 
behavior. [2 ]  has expressed doubts about typical web traffic 
modeling on the basis of anonymized web cache traces. 
Researcheirs would profit from implementations of their 
ideas, either for an evaluation of the implementation com- 
plexity, for an identification of the limits of the technique, 
or for an experimental deployment. Results from operating 
real-world systems, even on a small scale, provide input for 
further investigations using analysis and simulation. The 
KOM player documented in this paper is intended as a step 
towards such an experimental system for distributed VoD 
systems. Many research results in  AV streaming have been 
integrated into commercial products. Examples are AV en- 
and decoders (MPEG-x, H.2xx) and transport protocols 
(RTSP, RTP/RTCP). There is still a lot of ongoing research, 
like layered coding or reliable multicast. In order to show 
the applicability of these new techniques in AV streaming 
applications, they must be integrated into existing applica- 
tions or completely new applications must be build. 

Our research focus is mainly in AV distribution systems 
such as [3,4, 5, 61. Conversations with other researchers in 
this field have shown that there is a need for a standards- 
compliant, free and open experimental AV streaming plat- 
form. Vendors focus on expanding their key technologies in 
proprietary building blocks while they keep their systems 
interoperable in all other blocks, they can rarely provide 
researchers with entirely open systems. Researchers, on the 
other handl, may want to share and combine their imple- 
mentations. with research groups in the same or in comple- 
mentary areas which makes interoperability with standards 
inevitable. 

The hope for interaction led us to redirect some of our 
time into the development of an AV streaming platform and 
to make it freely available. 

2. Design 
In this chapter the major design goals for an AV stream- 

ing environment are given. We decided to build our system 
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based on IETF standards in order to achieve interoperabil- 
ity with streaming applications deployed in the Internet. 
Since free software developments did not include many 
appropriate building blocks when we started, most of our 
system is written from scratch. To make it acceptable by 
other researchers, we apply the following goals: 

Reusable from the technical as well as the legal point of 
view, modular with well-defined interfaces 
Interoperable with other standard compliant tools 
Integratable with existing code 

2.1 Reusability 

When trying to build an AV streaming application one 
realizes that some functionality is needed in different parts 
of the application. E.g., in the case of a video server and 
client, protocols like RTPRTCP, RTSP and SDP are 
needed in both parts. Therefore it is necessary to imple- 
ment these protocols in a way that they can be easily inte- 
grated into applications by creating a well defined and 
documented API for each module. It is necessary to sup- 
port different decoders, and several video servers that 
stream diverse encoding formats (e.g. H.263, MPEG-I, 
QuickTime). It is highly unlikely that the APIs of third 
party software are identical, leading to an adaptation effort 
whenever a new library is integrated. A generic wrapper is 
used to hide this differences from other parts of the sys- 
tem. 

While such abstractions are typical for streaming appli- 
cations, a generic structure like that of the JMF [7] is 
rarely found. Existing approaches implement either hard- 
coded sequences, or they consider frameworks that allow 
the specification of an end-to-end behavior for complex 
multimedia systems. In the latter kind of systems, func- 
tionality is described at the level of cooperating distributed 
components [8, 91. It is typical for such frameworks to 
consider networking as a component that is also under the 
control of the framework. In an environment that ensures 
interoperability by specifying protocols (such as the RTSP 
streaming environment), we prefer a local approach. The 
control of the framework extends only over a single 
machine and RTSP is used explicitly for communication. 
The currently implemented components, called stream 
handlers, work at a granularity similar to the components 
of the JMF and do not provide an abstraction from the net- 
work. The stream handlers are modular media processing 
units that can be connected dynamically by a controlling 
entity to form a set of modules, which process data units 
sequentially. The sequence of data units is called the 
stream, the modules are the stream handlers. 

Due to the interaction of RTP and RTCP, and the possi- 
bility of receiving data from several sources at a single 
port, a directed, non-cyclic graph of stream handlers is an 

appropriate streaming model. In case of RTP, a stream 
handler infrastructure seems to be appropriate only if 
dynamic reconfiguration is supported by the stream han- 
dlers as well as the controlling framework. A packet that 
arrives at an RTP Source Stream Handler (a stream han- 
dler that reads UDP packets from a network interface and 
interprets them as RTP packets) from an unexpected 
sender must be handled in an application-defined way: it  
may be appropriate to discard the packet, to assign it to a 
default path, or to create an additional stream for special 
processing. 

Dynamic reconfiguration must also be supported to han- 
dle user interaction with a proxy cache of a VoD system if 
that cache acts also as a reflector. The client receives data 
from origin server through the proxy cache, which writes 
RTP packets from the origin server to disk as well as for- 
wards them to the client. If the client pauses and the appli- 
cation decides to continue the caching operation, the trunk 
of the stream handler graph that forwards data to the client 
must be cut, while the trunk that stores data on disk must 
be maintained. If the client resumes viewing, the applica- 
tion must create a new stream handler graph, which 
retrieves the data from the cache. 

2.2 Interoperability 

We decided to support the protocols that are used in 
most AV streaming applications and standardized by the 
IETF: RTPRTCP [IO],  RTSP [ l l ]  and SDP [12]. RTP 
provides end-to-end delivery services for data with real- 
time characteristics. These services are suitable for various 
distributed applications that transmit real-time data, such 
as interactive audio and video. The companion control 
protocol (RTCP) provides feedback to the RTP sources in 
the RTP session and to all participants in the session as 
well. Each participant in an RTP session periodically 
sends an RTCP packet to all other participants in the ses- 
sion. RTSP is an application-level protocol that provides 
control over the delivery of real-time data. The protocol is 
typically applied for control over continuous time-syn- 
chronized streams of continuous media such as audio and 
video and acts as a “network remote control” for media 
servers. Usually RTSP does not typically deliver the media 
streams itself but controls streams that are being carried by 
some transport protocol like RTP. 

SDP was originally intended as a complement for the 
session announcement protocol SAP to communicate con- 
ference addresses and tool-specific information over the 
MBone. Alternatives such as HTML postings or E-mail 
distribution of session descriptions were taken into 
account as well. With this primary goal in mind, SDP does 
not support negotiation of any of session information, but 
is just used for dissemination, 
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2.3 Integration 

The design of our system allows the integration of 
already existing systems and tools. One example is the use 
of IBM’s Videocharger’ as video server for our client. In 
this particular case we use mainly the data pump of the 
Videocharger which is controlled by our RTSP implemen- 
tation. One major element in an AV streaming environ- 
ment are audio and video decoders. Given the variety of 
encoding formats (H.263, MPEG-1, ...) that are used by the 
applications interoperability can only be reached, if these 
formats are also supported by our architecture. Since we 
are not able to build en- and decoders for all these formats, 
and there are already C and C++ libraries that support 
some formats, we decided to make use of third party en- 
and decoders fairly simple. So far we have integrated three 
different libraries: MpegTV, smpeg and mpeglib. All three 
of them support MPEG-1 and mpeglib supports also 
MPEG-I audio layer 3 (MP3). 

3.1 Overview 

3. Implementation 
The implementation consists of three applications that 

are sufficient for building an experimental streaming 
media distribution system: client, server and proxy-cache. 
When we started our implementation, there was only one 
implementation of RTSP available in open source2. We 
found out that this implementation preceded the RFC [ 1 I]  
and was not easily updated and reused. After some unsat- 
isfactory experiences in adapting existing RTP/RTCP 
implementations for our goals, we decided to integrate our 
own implementation [13] into the system. We checked 
whether JMF [7] fulfils our needs but MPEG-I decoders 
e.g. are only available for Solaris and Windows. RTP was 
integrated in some open source projects like vic, but a 
closer look at this implementations showed us that RTP is 
highly intergrated and was therefore not usable. In the 
MASH project a scalable multimedia architecture for dis- 
tributed multimedia collaboration in heterogeneous envi- 
ronments [14] was developed. Streaming in MASH is 
realized by the MBone videoconferencing tools and there- 
fore bears the same problems a described for vic. 

We are also aware of a stand-alone RTP library [ 151, but 
this project started after we decided to implement our own 
RTP. The “Darwin” project [ 161 was published by Apple 
after the start of our work as well. It is concerned exclu- 
sively with the server side and supports only the Quick- 
Time file format [ 171. 

’. http://www-4.ibm.com/software/data/videocharger/ ’. http://www.realnetworks.com/devzone/library/rtsp/ 
index. html 

The implementation of the KOM-Player platform aims 
at the development of a research prototype in the area of 
wide-area distribution systems for streaming media in the 
Internet. The existing code base considers mainly the dis- 
tribution of CBR MPEG-1 system streams, which was our 
initial target format because it combines hardware- and 
OS-independent playback capability with an appropriate 
quality. Since this encoding format does not support the 
scalabilily of encoding formats that can now and in the 
conceivable future be deployed in the Internet on a wide 
scale, nmre flexible encodings are considered as well in 
our research. This is reflected in ongoing implementation 
work. During the development we realized that the inte- 

RTSP 
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Figure 1 : Client-server configuration overview 

gration of various independently developed data pumps, 
CUI and decoder modules with the RTSP code results in 
an abundance of intermediate states (e.g. RTP connection 
to video server established, decoder not yet initialized). To 
coordinate the state transitions, we have put an automaton 
(finite st,ate machine) at the core of the session manage- 
ment (Figure 1). All events are controlled by the automa- 
ton to assure that only allowed actions will be executed. To 
enforce completeness of the automaton, we built a tool 
that generates automata in C++ from an automata lan- 
guage. 

3.2 Server 

The server implementation is multi-threaded, where the 
main purpose of the separation into threads was to achieve 
a better modularity. It uses only TCP for reliable delivery 
of RTSP packets [ 111, RTSP over UDP is not supported. 
Like most other RTSP implementations, ours does cur- 
rently not support deferred play requests. Several data 
pumps are controlled concurrently by one RTSP server 
process. Two data pumps are implemented at this time. 
One re1a:ys commands to a low level API of the IBM Vid- 
eoChargr:r server, the other is hand-coded and described in 
this paper. Our data dump (see Figure 2) uses UDP for the 
transmission of RTP packets over IP unicast and multicast. 
It supports MPEG-1 system CBR, MPEG-1 audio layer 3 
and raw H.261 data files. The implementation is separated 
into the 3 parts: RTSP session administration, RTSP com- 
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' munication and parsing and RTP streaming. Each active 
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Figure 2: Server 

RTSP session is represented by an RTSPServerSession 
object. The object inherits KOMServer class which imple- 
ments the automaton for the server. The state machine is 
driven by the client's RTSP messages. The automaton con- 
trols the RTP data pump and answers the RTSP messages. 
Currently each RTSPServerSession runs in a thread. The 
RTSPServerSession object is associated with an RTSPFill- 
Buffer object (which is a TCP socket). The RTSPFiII- 
Buffer object receives data from a TCP socket and parses 
the RTSP message. Each message object is delivered to its 
session for processing. The reception and parsing process 
is initiated by an object that monitors the RTSP communi- 
cations. 

The RTP streaming part performs the data transfer from 
a file to the network. It is separated into two threads, RTP 
and RTCP. It is managed by the RTSP part that initiates the 
'streaming, changes the present streaming position within 
the stream, halts the streaming temporarily and destroys it. 
The RTP thread performs the delivery of the media content 
to the network. It includes: accessing and reading from a 
media file in the file system, preparing RTP packets (pack- 
etization) and scheduling and emitting the RTP packets to 
the network. The RTCP thread prepares and emits sender 
reports to a separate UDP port and receives receiver 
reports. 

RTV' .hw,> B ddmiiii~lrolifm 

3.3 Client 

The client of the KOM-Player platform uses third party 
C++ tools or libraries for the GUI and the decoder imple- 
mentations. It is designed to cooperate with other stream- 
ing servers beside ours. This required interoperability 
testing with other RTSP and RTP/RTCP implementations. 
Taking part in an RTSP interoperability test [I81 with 
other streaming servers and clients helped us to enhance 
our'own implementation. We tested the client with several 
servers and realized that the video format is currently the 
limiting factor. Figure 3 shows the most important classes 

of the client. Four functional parts can be distinguished: 
RTSP session administration, RTSP communication, RTP 
streaming and content decoding. Since some of these parts 
are identical to the one used by the server, only the parts 
exclusively used in the client are described here. The com- 
parison of the two class diagrams (Figure 2 and Figure 3) 
shows the reusable classes. Classes in this part are only 

used in the client since a visual presentation at the server is 
not necessary. In combination with the automaton and an 
abstract interface between the automaton and the decoder 
we can integrate several available decoders. The generic 
API makes it simple to integrate decoders into our client 
and we expect support for other decoders (e.g. MPEG-2, 
H.261) too. The player is tested on Linux, its current GUI 
is based on the Qt library3. To work as a Netscape plug-in, 
the plugger tool4 is used at this time. 

3.4 Proxy Cache 

Since one of our research topics is on caching for multi- 
media streams we also designed and are currently building 
a proxy cache for those streams. A detailed design can be 
found in [19]. Figure 4 shows the class diagram of the 
proxy cache. Parts taken from server and client are not 
described again. The proxy is not an RTSP proxy as under- 
stood in the RFC [l  11. Rather, it is an RTSP/RTP proxy 
cache that stores content in addition to handling RTSP 
requests. Our caching approaches consider the typical 
commercial request to communicate with a stream's origin 
server for every RTSP session. RTSP messages from dif- 
ferent RTSP sessions are multiplexed onto one connection 
between an origin server and a proxy. RTSP SessionIDs 
are the keys to de-multiplex sessions. A proxy installs an 
RTSP connection to an origin server on-demand when a 
request for the particular origin server is received from a 
client. The connection is torn down when no more active 

'. http://www.trolltech.com 
http://www.hubbe.net/-hubbe/plugger.html 
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RTSP sessions between the proxy and the origin server 
exist.A proxy server maintains an instance of the RTSP- 
ProxySession for each active RTSP session. Since the 
proxy cache acts as a client (of the server) and as a server 
(for the client) its automaton is a combination of the server 
and client automaton. 

d '  
R T V  Sr,r.,ii,ld,"i,,iiir~lilll 

Figure 4: Proxy cache 
The most significant changes compared to server and 

client occur in the RTP streaming part of the proxy cache. 
This is caused by the fact that the proxy cache needs client 
and server functionality. The client functionality is differ- 
ent in a way that a stream can be 

stored on the local disc 
forwarded to the client and 
the combination of both 
The server functionality means to forward an incoming 

or to send a cached stream to the requesting client. This 
functionality is shown in the RTP streaming part of Figure 
5 and explained in more detail in [19]. 

urrltr s,w.m 
b 

mrS,ur,r RTPStrrrm.. . 

RTCP 

3.5 RTSPBDP Implementation 

Since RTSP is an ASCII-based protocol we use a gener- 
ated parser5 to parse the RTSP messages. The parser is at 

'. using bison++, an extension of GNU bison: http://sun- 
site.bilkent.edu.tr/pubflanguages/c++/tools/flex++bison++/ 

the core of the RTSP implementation. In combination with 
a factory class that maps RTSP messages to their related 
classes, functional variations are easily implemented. This 
is useful iin experimental environments were new function- 
ality and modifications are tested. By using the existing 
RTSP implementation we were able to create RTSP 
classes for the proxy cache quickly that implement differ- 
ent behavior. SDP is also an ASCII-based protocol and 
implemented with an additional parser for SDP messages. 
Functional adaptation works as with the RTSP parser. 

4. Conlclusions and Future Work 
Most available commercial products today have a well 

defined and documented API that makes it convenient to 
integrate functionality of those products in other applica- 
tions. Unfortunately APIs are often not sufficient for 
research. If e.g. it is assumed that a new en-/decoder tech- 
nology should be tested in an application, the codecs must 
be integrated into the application. For distribution systems 
research, networking protocols or storage mechanisms 
must be replaced. With our ongoing work on wide-area 
distribution systems for AV content it became clear that 
we had to build our own AV streaming platform to per- 
form further investigations. We want to give some exam- 
ple scenarios for research that exploits our platform. 

4.1 Caching 
Multirnedia streaming makes greater demands on the 

transmission network than traditional data transmission 
because cif the greater volume of the data and because of 
the real-time properties. Multimedia streaming requires a 
lot of memory space in hosts and high bandwidth in links. 
Large-scale video-on-demand can only be provided with 
distributed systems. Content can be stored in a number of 
caches that are located at various places in a network. A 
streaming request from a client is served from a cache 
instead of from a centrally located server. This saves net- 
work resources and provides the user with better quality 
and lower costs. In addition all caches need proxy func- 
tionality to communicate with the origin server. The devel- 
opment 'of client-independent caching systems, and 
cooperative caching for high-volume content are impor- 
tant research issues. 

4.2 Patching and Gleaning 
The basic approach in Patching [4] is the use of multi- 

cast for the delivery of a video streams to requesting cli- 
ents. Clients that request the same video shortly after the 
start of it:< transmission start to store the multicast trans- 
mission in the local cache immediately. The server sends 
unicast streams (patch streams) to the clients containing 
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the missing initial portion of the video, until the cached 
portion is reached. Then, the clients use their caches as 
cyclic buffers. Gleaning is an extension of Patching in a 
way that cache servers are deployed as proxy caches, i.e. 
clients will always connect to their proxy server to access 
data on the origin server. If the client requests a stream and 
this stream is already being delivered to a cache server or 
client, and the sender decides that the patching window for 
this stream is still open, it orders the cache server to join 
that multicast stream. Additionally, it starts the transmis- 
sion of a patch stream to the proxy cache. The proxy cache 
has to set aside sufficient buffer space for the cyclic buffer 
to hold the length of the patch stream, even if it does not 
cache the movie; the stream is delivered as a unicast 
stream to the client. It is important to evaluate the imple- 
mentation complexity to select the relevant optimization 
options. 

4.3 Adaptive Streaming 

UDP is usually used as transport protocol for AV 
streaming. In contrast to TCP, UDP does not include any 
mechanisms like flow control and retransmission. Adapta- 
tion is also mandatory to keep UDP based streaming TCP- 
friendly and therefore avoid that those streams are blocked 
by backbone operators. We want to investigate how a 
caching support for adaptive streaming could be realized. 
Our focus is on caches that support caching for adaptive 
streams transporting different formats (MPEG- 1, QT, lay- 
ered video) [19]. We intend to integrate the adaptation 
functions into the proxy cache of the KOM-Player plat- 
form. 

4.4 Reliable Multicast 

When caches are used in applications like VoD it must 
be ensured that the content on a cache is an exact copy of 
the original. In order to achieve this requirement, a trans- 
mission to the caches can be made independently from 
transmissions to clients, or the transmission to the client is 
extended to allow a reliable transmission to the cache by 
additional repair mechanisms. The second case can be 
realized by extending RTP to remember lost packets and 
initiate retransmissions that are ignored by the client. We 
implemented a first version in our RTP stack and are right 
now integrating it in a proxy cache to test it. 

We hope that our implementation can help other 
researchers in creating experimental platforms to test and 
demonstrate their new ideas. The KOM-Player platform6 
may be used under the conditions of the GNU public 
license but the core elements are also available for other 
licensing. 

Available at: http://kom.e-technik.tu-darmstadt.de/kom- 
player 
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